xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 19758688)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Jana Saout <jana@saout.de>
4  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5  * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6  * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7  *
8  * This file is released under the GPL.
9  */
10 
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43 
44 #include <linux/device-mapper.h>
45 
46 #include "dm-audit.h"
47 
48 #define DM_MSG_PREFIX "crypt"
49 
50 /*
51  * context holding the current state of a multi-part conversion
52  */
53 struct convert_context {
54 	struct completion restart;
55 	struct bio *bio_in;
56 	struct bio *bio_out;
57 	struct bvec_iter iter_in;
58 	struct bvec_iter iter_out;
59 	u64 cc_sector;
60 	atomic_t cc_pending;
61 	union {
62 		struct skcipher_request *req;
63 		struct aead_request *req_aead;
64 	} r;
65 
66 };
67 
68 /*
69  * per bio private data
70  */
71 struct dm_crypt_io {
72 	struct crypt_config *cc;
73 	struct bio *base_bio;
74 	u8 *integrity_metadata;
75 	bool integrity_metadata_from_pool:1;
76 
77 	struct work_struct work;
78 
79 	struct convert_context ctx;
80 
81 	atomic_t io_pending;
82 	blk_status_t error;
83 	sector_t sector;
84 
85 	struct rb_node rb_node;
86 } CRYPTO_MINALIGN_ATTR;
87 
88 struct dm_crypt_request {
89 	struct convert_context *ctx;
90 	struct scatterlist sg_in[4];
91 	struct scatterlist sg_out[4];
92 	u64 iv_sector;
93 };
94 
95 struct crypt_config;
96 
97 struct crypt_iv_operations {
98 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
99 		   const char *opts);
100 	void (*dtr)(struct crypt_config *cc);
101 	int (*init)(struct crypt_config *cc);
102 	int (*wipe)(struct crypt_config *cc);
103 	int (*generator)(struct crypt_config *cc, u8 *iv,
104 			 struct dm_crypt_request *dmreq);
105 	int (*post)(struct crypt_config *cc, u8 *iv,
106 		    struct dm_crypt_request *dmreq);
107 };
108 
109 struct iv_benbi_private {
110 	int shift;
111 };
112 
113 #define LMK_SEED_SIZE 64 /* hash + 0 */
114 struct iv_lmk_private {
115 	struct crypto_shash *hash_tfm;
116 	u8 *seed;
117 };
118 
119 #define TCW_WHITENING_SIZE 16
120 struct iv_tcw_private {
121 	struct crypto_shash *crc32_tfm;
122 	u8 *iv_seed;
123 	u8 *whitening;
124 };
125 
126 #define ELEPHANT_MAX_KEY_SIZE 32
127 struct iv_elephant_private {
128 	struct crypto_skcipher *tfm;
129 };
130 
131 /*
132  * Crypt: maps a linear range of a block device
133  * and encrypts / decrypts at the same time.
134  */
135 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
136 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
137 	     DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
138 	     DM_CRYPT_WRITE_INLINE };
139 
140 enum cipher_flags {
141 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
142 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
143 	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
144 };
145 
146 /*
147  * The fields in here must be read only after initialization.
148  */
149 struct crypt_config {
150 	struct dm_dev *dev;
151 	sector_t start;
152 
153 	struct percpu_counter n_allocated_pages;
154 
155 	struct workqueue_struct *io_queue;
156 	struct workqueue_struct *crypt_queue;
157 
158 	spinlock_t write_thread_lock;
159 	struct task_struct *write_thread;
160 	struct rb_root write_tree;
161 
162 	char *cipher_string;
163 	char *cipher_auth;
164 	char *key_string;
165 
166 	const struct crypt_iv_operations *iv_gen_ops;
167 	union {
168 		struct iv_benbi_private benbi;
169 		struct iv_lmk_private lmk;
170 		struct iv_tcw_private tcw;
171 		struct iv_elephant_private elephant;
172 	} iv_gen_private;
173 	u64 iv_offset;
174 	unsigned int iv_size;
175 	unsigned short sector_size;
176 	unsigned char sector_shift;
177 
178 	union {
179 		struct crypto_skcipher **tfms;
180 		struct crypto_aead **tfms_aead;
181 	} cipher_tfm;
182 	unsigned int tfms_count;
183 	unsigned long cipher_flags;
184 
185 	/*
186 	 * Layout of each crypto request:
187 	 *
188 	 *   struct skcipher_request
189 	 *      context
190 	 *      padding
191 	 *   struct dm_crypt_request
192 	 *      padding
193 	 *   IV
194 	 *
195 	 * The padding is added so that dm_crypt_request and the IV are
196 	 * correctly aligned.
197 	 */
198 	unsigned int dmreq_start;
199 
200 	unsigned int per_bio_data_size;
201 
202 	unsigned long flags;
203 	unsigned int key_size;
204 	unsigned int key_parts;      /* independent parts in key buffer */
205 	unsigned int key_extra_size; /* additional keys length */
206 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
207 
208 	unsigned int integrity_tag_size;
209 	unsigned int integrity_iv_size;
210 	unsigned int on_disk_tag_size;
211 
212 	/*
213 	 * pool for per bio private data, crypto requests,
214 	 * encryption requeusts/buffer pages and integrity tags
215 	 */
216 	unsigned int tag_pool_max_sectors;
217 	mempool_t tag_pool;
218 	mempool_t req_pool;
219 	mempool_t page_pool;
220 
221 	struct bio_set bs;
222 	struct mutex bio_alloc_lock;
223 
224 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
225 	u8 key[];
226 };
227 
228 #define MIN_IOS		64
229 #define MAX_TAG_SIZE	480
230 #define POOL_ENTRY_SIZE	512
231 
232 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
233 static unsigned int dm_crypt_clients_n;
234 static volatile unsigned long dm_crypt_pages_per_client;
235 #define DM_CRYPT_MEMORY_PERCENT			2
236 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
237 
238 static void crypt_endio(struct bio *clone);
239 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
240 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
241 					     struct scatterlist *sg);
242 
243 static bool crypt_integrity_aead(struct crypt_config *cc);
244 
245 /*
246  * Use this to access cipher attributes that are independent of the key.
247  */
248 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
249 {
250 	return cc->cipher_tfm.tfms[0];
251 }
252 
253 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
254 {
255 	return cc->cipher_tfm.tfms_aead[0];
256 }
257 
258 /*
259  * Different IV generation algorithms:
260  *
261  * plain: the initial vector is the 32-bit little-endian version of the sector
262  *        number, padded with zeros if necessary.
263  *
264  * plain64: the initial vector is the 64-bit little-endian version of the sector
265  *        number, padded with zeros if necessary.
266  *
267  * plain64be: the initial vector is the 64-bit big-endian version of the sector
268  *        number, padded with zeros if necessary.
269  *
270  * essiv: "encrypted sector|salt initial vector", the sector number is
271  *        encrypted with the bulk cipher using a salt as key. The salt
272  *        should be derived from the bulk cipher's key via hashing.
273  *
274  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
275  *        (needed for LRW-32-AES and possible other narrow block modes)
276  *
277  * null: the initial vector is always zero.  Provides compatibility with
278  *       obsolete loop_fish2 devices.  Do not use for new devices.
279  *
280  * lmk:  Compatible implementation of the block chaining mode used
281  *       by the Loop-AES block device encryption system
282  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
283  *       It operates on full 512 byte sectors and uses CBC
284  *       with an IV derived from the sector number, the data and
285  *       optionally extra IV seed.
286  *       This means that after decryption the first block
287  *       of sector must be tweaked according to decrypted data.
288  *       Loop-AES can use three encryption schemes:
289  *         version 1: is plain aes-cbc mode
290  *         version 2: uses 64 multikey scheme with lmk IV generator
291  *         version 3: the same as version 2 with additional IV seed
292  *                   (it uses 65 keys, last key is used as IV seed)
293  *
294  * tcw:  Compatible implementation of the block chaining mode used
295  *       by the TrueCrypt device encryption system (prior to version 4.1).
296  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
297  *       It operates on full 512 byte sectors and uses CBC
298  *       with an IV derived from initial key and the sector number.
299  *       In addition, whitening value is applied on every sector, whitening
300  *       is calculated from initial key, sector number and mixed using CRC32.
301  *       Note that this encryption scheme is vulnerable to watermarking attacks
302  *       and should be used for old compatible containers access only.
303  *
304  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
305  *        The IV is encrypted little-endian byte-offset (with the same key
306  *        and cipher as the volume).
307  *
308  * elephant: The extended version of eboiv with additional Elephant diffuser
309  *           used with Bitlocker CBC mode.
310  *           This mode was used in older Windows systems
311  *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
312  */
313 
314 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
315 			      struct dm_crypt_request *dmreq)
316 {
317 	memset(iv, 0, cc->iv_size);
318 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
319 
320 	return 0;
321 }
322 
323 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
324 				struct dm_crypt_request *dmreq)
325 {
326 	memset(iv, 0, cc->iv_size);
327 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
328 
329 	return 0;
330 }
331 
332 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
333 				  struct dm_crypt_request *dmreq)
334 {
335 	memset(iv, 0, cc->iv_size);
336 	/* iv_size is at least of size u64; usually it is 16 bytes */
337 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
338 
339 	return 0;
340 }
341 
342 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
343 			      struct dm_crypt_request *dmreq)
344 {
345 	/*
346 	 * ESSIV encryption of the IV is now handled by the crypto API,
347 	 * so just pass the plain sector number here.
348 	 */
349 	memset(iv, 0, cc->iv_size);
350 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
351 
352 	return 0;
353 }
354 
355 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
356 			      const char *opts)
357 {
358 	unsigned int bs;
359 	int log;
360 
361 	if (crypt_integrity_aead(cc))
362 		bs = crypto_aead_blocksize(any_tfm_aead(cc));
363 	else
364 		bs = crypto_skcipher_blocksize(any_tfm(cc));
365 	log = ilog2(bs);
366 
367 	/*
368 	 * We need to calculate how far we must shift the sector count
369 	 * to get the cipher block count, we use this shift in _gen.
370 	 */
371 	if (1 << log != bs) {
372 		ti->error = "cypher blocksize is not a power of 2";
373 		return -EINVAL;
374 	}
375 
376 	if (log > 9) {
377 		ti->error = "cypher blocksize is > 512";
378 		return -EINVAL;
379 	}
380 
381 	cc->iv_gen_private.benbi.shift = 9 - log;
382 
383 	return 0;
384 }
385 
386 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
387 {
388 }
389 
390 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
391 			      struct dm_crypt_request *dmreq)
392 {
393 	__be64 val;
394 
395 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
396 
397 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
398 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
399 
400 	return 0;
401 }
402 
403 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
404 			     struct dm_crypt_request *dmreq)
405 {
406 	memset(iv, 0, cc->iv_size);
407 
408 	return 0;
409 }
410 
411 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
412 {
413 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
414 
415 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
416 		crypto_free_shash(lmk->hash_tfm);
417 	lmk->hash_tfm = NULL;
418 
419 	kfree_sensitive(lmk->seed);
420 	lmk->seed = NULL;
421 }
422 
423 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
424 			    const char *opts)
425 {
426 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
427 
428 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
429 		ti->error = "Unsupported sector size for LMK";
430 		return -EINVAL;
431 	}
432 
433 	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
434 					   CRYPTO_ALG_ALLOCATES_MEMORY);
435 	if (IS_ERR(lmk->hash_tfm)) {
436 		ti->error = "Error initializing LMK hash";
437 		return PTR_ERR(lmk->hash_tfm);
438 	}
439 
440 	/* No seed in LMK version 2 */
441 	if (cc->key_parts == cc->tfms_count) {
442 		lmk->seed = NULL;
443 		return 0;
444 	}
445 
446 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
447 	if (!lmk->seed) {
448 		crypt_iv_lmk_dtr(cc);
449 		ti->error = "Error kmallocing seed storage in LMK";
450 		return -ENOMEM;
451 	}
452 
453 	return 0;
454 }
455 
456 static int crypt_iv_lmk_init(struct crypt_config *cc)
457 {
458 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
459 	int subkey_size = cc->key_size / cc->key_parts;
460 
461 	/* LMK seed is on the position of LMK_KEYS + 1 key */
462 	if (lmk->seed)
463 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
464 		       crypto_shash_digestsize(lmk->hash_tfm));
465 
466 	return 0;
467 }
468 
469 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
470 {
471 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
472 
473 	if (lmk->seed)
474 		memset(lmk->seed, 0, LMK_SEED_SIZE);
475 
476 	return 0;
477 }
478 
479 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
480 			    struct dm_crypt_request *dmreq,
481 			    u8 *data)
482 {
483 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
485 	struct md5_state md5state;
486 	__le32 buf[4];
487 	int i, r;
488 
489 	desc->tfm = lmk->hash_tfm;
490 
491 	r = crypto_shash_init(desc);
492 	if (r)
493 		return r;
494 
495 	if (lmk->seed) {
496 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
497 		if (r)
498 			return r;
499 	}
500 
501 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
502 	r = crypto_shash_update(desc, data + 16, 16 * 31);
503 	if (r)
504 		return r;
505 
506 	/* Sector is cropped to 56 bits here */
507 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
508 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
509 	buf[2] = cpu_to_le32(4024);
510 	buf[3] = 0;
511 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
512 	if (r)
513 		return r;
514 
515 	/* No MD5 padding here */
516 	r = crypto_shash_export(desc, &md5state);
517 	if (r)
518 		return r;
519 
520 	for (i = 0; i < MD5_HASH_WORDS; i++)
521 		__cpu_to_le32s(&md5state.hash[i]);
522 	memcpy(iv, &md5state.hash, cc->iv_size);
523 
524 	return 0;
525 }
526 
527 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
528 			    struct dm_crypt_request *dmreq)
529 {
530 	struct scatterlist *sg;
531 	u8 *src;
532 	int r = 0;
533 
534 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
535 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
536 		src = kmap_local_page(sg_page(sg));
537 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
538 		kunmap_local(src);
539 	} else
540 		memset(iv, 0, cc->iv_size);
541 
542 	return r;
543 }
544 
545 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
546 			     struct dm_crypt_request *dmreq)
547 {
548 	struct scatterlist *sg;
549 	u8 *dst;
550 	int r;
551 
552 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
553 		return 0;
554 
555 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
556 	dst = kmap_local_page(sg_page(sg));
557 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
558 
559 	/* Tweak the first block of plaintext sector */
560 	if (!r)
561 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
562 
563 	kunmap_local(dst);
564 	return r;
565 }
566 
567 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
568 {
569 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
570 
571 	kfree_sensitive(tcw->iv_seed);
572 	tcw->iv_seed = NULL;
573 	kfree_sensitive(tcw->whitening);
574 	tcw->whitening = NULL;
575 
576 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
577 		crypto_free_shash(tcw->crc32_tfm);
578 	tcw->crc32_tfm = NULL;
579 }
580 
581 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
582 			    const char *opts)
583 {
584 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
585 
586 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
587 		ti->error = "Unsupported sector size for TCW";
588 		return -EINVAL;
589 	}
590 
591 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
592 		ti->error = "Wrong key size for TCW";
593 		return -EINVAL;
594 	}
595 
596 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
597 					    CRYPTO_ALG_ALLOCATES_MEMORY);
598 	if (IS_ERR(tcw->crc32_tfm)) {
599 		ti->error = "Error initializing CRC32 in TCW";
600 		return PTR_ERR(tcw->crc32_tfm);
601 	}
602 
603 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
604 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
605 	if (!tcw->iv_seed || !tcw->whitening) {
606 		crypt_iv_tcw_dtr(cc);
607 		ti->error = "Error allocating seed storage in TCW";
608 		return -ENOMEM;
609 	}
610 
611 	return 0;
612 }
613 
614 static int crypt_iv_tcw_init(struct crypt_config *cc)
615 {
616 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
618 
619 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
620 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
621 	       TCW_WHITENING_SIZE);
622 
623 	return 0;
624 }
625 
626 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
627 {
628 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
629 
630 	memset(tcw->iv_seed, 0, cc->iv_size);
631 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
632 
633 	return 0;
634 }
635 
636 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
637 				  struct dm_crypt_request *dmreq,
638 				  u8 *data)
639 {
640 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
641 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
642 	u8 buf[TCW_WHITENING_SIZE];
643 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
644 	int i, r;
645 
646 	/* xor whitening with sector number */
647 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
648 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
649 
650 	/* calculate crc32 for every 32bit part and xor it */
651 	desc->tfm = tcw->crc32_tfm;
652 	for (i = 0; i < 4; i++) {
653 		r = crypto_shash_init(desc);
654 		if (r)
655 			goto out;
656 		r = crypto_shash_update(desc, &buf[i * 4], 4);
657 		if (r)
658 			goto out;
659 		r = crypto_shash_final(desc, &buf[i * 4]);
660 		if (r)
661 			goto out;
662 	}
663 	crypto_xor(&buf[0], &buf[12], 4);
664 	crypto_xor(&buf[4], &buf[8], 4);
665 
666 	/* apply whitening (8 bytes) to whole sector */
667 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
668 		crypto_xor(data + i * 8, buf, 8);
669 out:
670 	memzero_explicit(buf, sizeof(buf));
671 	return r;
672 }
673 
674 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
675 			    struct dm_crypt_request *dmreq)
676 {
677 	struct scatterlist *sg;
678 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
679 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
680 	u8 *src;
681 	int r = 0;
682 
683 	/* Remove whitening from ciphertext */
684 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
685 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
686 		src = kmap_local_page(sg_page(sg));
687 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
688 		kunmap_local(src);
689 	}
690 
691 	/* Calculate IV */
692 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
693 	if (cc->iv_size > 8)
694 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
695 			       cc->iv_size - 8);
696 
697 	return r;
698 }
699 
700 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
701 			     struct dm_crypt_request *dmreq)
702 {
703 	struct scatterlist *sg;
704 	u8 *dst;
705 	int r;
706 
707 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
708 		return 0;
709 
710 	/* Apply whitening on ciphertext */
711 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
712 	dst = kmap_local_page(sg_page(sg));
713 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
714 	kunmap_local(dst);
715 
716 	return r;
717 }
718 
719 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
720 				struct dm_crypt_request *dmreq)
721 {
722 	/* Used only for writes, there must be an additional space to store IV */
723 	get_random_bytes(iv, cc->iv_size);
724 	return 0;
725 }
726 
727 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
728 			    const char *opts)
729 {
730 	if (crypt_integrity_aead(cc)) {
731 		ti->error = "AEAD transforms not supported for EBOIV";
732 		return -EINVAL;
733 	}
734 
735 	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
736 		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
737 		return -EINVAL;
738 	}
739 
740 	return 0;
741 }
742 
743 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
744 			    struct dm_crypt_request *dmreq)
745 {
746 	struct crypto_skcipher *tfm = any_tfm(cc);
747 	struct skcipher_request *req;
748 	struct scatterlist src, dst;
749 	DECLARE_CRYPTO_WAIT(wait);
750 	unsigned int reqsize;
751 	int err;
752 	u8 *buf;
753 
754 	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
755 	reqsize = ALIGN(reqsize, __alignof__(__le64));
756 
757 	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
758 	if (!req)
759 		return -ENOMEM;
760 
761 	skcipher_request_set_tfm(req, tfm);
762 
763 	buf = (u8 *)req + reqsize;
764 	memset(buf, 0, cc->iv_size);
765 	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
766 
767 	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
768 	sg_init_one(&dst, iv, cc->iv_size);
769 	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
770 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
771 	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
772 	kfree_sensitive(req);
773 
774 	return err;
775 }
776 
777 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
778 {
779 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
780 
781 	crypto_free_skcipher(elephant->tfm);
782 	elephant->tfm = NULL;
783 }
784 
785 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
786 			    const char *opts)
787 {
788 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
789 	int r;
790 
791 	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
792 					      CRYPTO_ALG_ALLOCATES_MEMORY);
793 	if (IS_ERR(elephant->tfm)) {
794 		r = PTR_ERR(elephant->tfm);
795 		elephant->tfm = NULL;
796 		return r;
797 	}
798 
799 	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
800 	if (r)
801 		crypt_iv_elephant_dtr(cc);
802 	return r;
803 }
804 
805 static void diffuser_disk_to_cpu(u32 *d, size_t n)
806 {
807 #ifndef __LITTLE_ENDIAN
808 	int i;
809 
810 	for (i = 0; i < n; i++)
811 		d[i] = le32_to_cpu((__le32)d[i]);
812 #endif
813 }
814 
815 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
816 {
817 #ifndef __LITTLE_ENDIAN
818 	int i;
819 
820 	for (i = 0; i < n; i++)
821 		d[i] = cpu_to_le32((u32)d[i]);
822 #endif
823 }
824 
825 static void diffuser_a_decrypt(u32 *d, size_t n)
826 {
827 	int i, i1, i2, i3;
828 
829 	for (i = 0; i < 5; i++) {
830 		i1 = 0;
831 		i2 = n - 2;
832 		i3 = n - 5;
833 
834 		while (i1 < (n - 1)) {
835 			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
836 			i1++; i2++; i3++;
837 
838 			if (i3 >= n)
839 				i3 -= n;
840 
841 			d[i1] += d[i2] ^ d[i3];
842 			i1++; i2++; i3++;
843 
844 			if (i2 >= n)
845 				i2 -= n;
846 
847 			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
848 			i1++; i2++; i3++;
849 
850 			d[i1] += d[i2] ^ d[i3];
851 			i1++; i2++; i3++;
852 		}
853 	}
854 }
855 
856 static void diffuser_a_encrypt(u32 *d, size_t n)
857 {
858 	int i, i1, i2, i3;
859 
860 	for (i = 0; i < 5; i++) {
861 		i1 = n - 1;
862 		i2 = n - 2 - 1;
863 		i3 = n - 5 - 1;
864 
865 		while (i1 > 0) {
866 			d[i1] -= d[i2] ^ d[i3];
867 			i1--; i2--; i3--;
868 
869 			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
870 			i1--; i2--; i3--;
871 
872 			if (i2 < 0)
873 				i2 += n;
874 
875 			d[i1] -= d[i2] ^ d[i3];
876 			i1--; i2--; i3--;
877 
878 			if (i3 < 0)
879 				i3 += n;
880 
881 			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
882 			i1--; i2--; i3--;
883 		}
884 	}
885 }
886 
887 static void diffuser_b_decrypt(u32 *d, size_t n)
888 {
889 	int i, i1, i2, i3;
890 
891 	for (i = 0; i < 3; i++) {
892 		i1 = 0;
893 		i2 = 2;
894 		i3 = 5;
895 
896 		while (i1 < (n - 1)) {
897 			d[i1] += d[i2] ^ d[i3];
898 			i1++; i2++; i3++;
899 
900 			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
901 			i1++; i2++; i3++;
902 
903 			if (i2 >= n)
904 				i2 -= n;
905 
906 			d[i1] += d[i2] ^ d[i3];
907 			i1++; i2++; i3++;
908 
909 			if (i3 >= n)
910 				i3 -= n;
911 
912 			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
913 			i1++; i2++; i3++;
914 		}
915 	}
916 }
917 
918 static void diffuser_b_encrypt(u32 *d, size_t n)
919 {
920 	int i, i1, i2, i3;
921 
922 	for (i = 0; i < 3; i++) {
923 		i1 = n - 1;
924 		i2 = 2 - 1;
925 		i3 = 5 - 1;
926 
927 		while (i1 > 0) {
928 			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
929 			i1--; i2--; i3--;
930 
931 			if (i3 < 0)
932 				i3 += n;
933 
934 			d[i1] -= d[i2] ^ d[i3];
935 			i1--; i2--; i3--;
936 
937 			if (i2 < 0)
938 				i2 += n;
939 
940 			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
941 			i1--; i2--; i3--;
942 
943 			d[i1] -= d[i2] ^ d[i3];
944 			i1--; i2--; i3--;
945 		}
946 	}
947 }
948 
949 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
950 {
951 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
952 	u8 *es, *ks, *data, *data2, *data_offset;
953 	struct skcipher_request *req;
954 	struct scatterlist *sg, *sg2, src, dst;
955 	DECLARE_CRYPTO_WAIT(wait);
956 	int i, r;
957 
958 	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
959 	es = kzalloc(16, GFP_NOIO); /* Key for AES */
960 	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
961 
962 	if (!req || !es || !ks) {
963 		r = -ENOMEM;
964 		goto out;
965 	}
966 
967 	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
968 
969 	/* E(Ks, e(s)) */
970 	sg_init_one(&src, es, 16);
971 	sg_init_one(&dst, ks, 16);
972 	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
973 	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
974 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
975 	if (r)
976 		goto out;
977 
978 	/* E(Ks, e'(s)) */
979 	es[15] = 0x80;
980 	sg_init_one(&dst, &ks[16], 16);
981 	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
982 	if (r)
983 		goto out;
984 
985 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
986 	data = kmap_local_page(sg_page(sg));
987 	data_offset = data + sg->offset;
988 
989 	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
990 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
991 		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
992 		data2 = kmap_local_page(sg_page(sg2));
993 		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
994 		kunmap_local(data2);
995 	}
996 
997 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
998 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
999 		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1000 		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1001 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1002 	}
1003 
1004 	for (i = 0; i < (cc->sector_size / 32); i++)
1005 		crypto_xor(data_offset + i * 32, ks, 32);
1006 
1007 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1008 		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1009 		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1010 		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1011 		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1012 	}
1013 
1014 	kunmap_local(data);
1015 out:
1016 	kfree_sensitive(ks);
1017 	kfree_sensitive(es);
1018 	skcipher_request_free(req);
1019 	return r;
1020 }
1021 
1022 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1023 			    struct dm_crypt_request *dmreq)
1024 {
1025 	int r;
1026 
1027 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1028 		r = crypt_iv_elephant(cc, dmreq);
1029 		if (r)
1030 			return r;
1031 	}
1032 
1033 	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1034 }
1035 
1036 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1037 				  struct dm_crypt_request *dmreq)
1038 {
1039 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1040 		return crypt_iv_elephant(cc, dmreq);
1041 
1042 	return 0;
1043 }
1044 
1045 static int crypt_iv_elephant_init(struct crypt_config *cc)
1046 {
1047 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1048 	int key_offset = cc->key_size - cc->key_extra_size;
1049 
1050 	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1051 }
1052 
1053 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1054 {
1055 	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1056 	u8 key[ELEPHANT_MAX_KEY_SIZE];
1057 
1058 	memset(key, 0, cc->key_extra_size);
1059 	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1060 }
1061 
1062 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1063 	.generator = crypt_iv_plain_gen
1064 };
1065 
1066 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1067 	.generator = crypt_iv_plain64_gen
1068 };
1069 
1070 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1071 	.generator = crypt_iv_plain64be_gen
1072 };
1073 
1074 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1075 	.generator = crypt_iv_essiv_gen
1076 };
1077 
1078 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1079 	.ctr	   = crypt_iv_benbi_ctr,
1080 	.dtr	   = crypt_iv_benbi_dtr,
1081 	.generator = crypt_iv_benbi_gen
1082 };
1083 
1084 static const struct crypt_iv_operations crypt_iv_null_ops = {
1085 	.generator = crypt_iv_null_gen
1086 };
1087 
1088 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1089 	.ctr	   = crypt_iv_lmk_ctr,
1090 	.dtr	   = crypt_iv_lmk_dtr,
1091 	.init	   = crypt_iv_lmk_init,
1092 	.wipe	   = crypt_iv_lmk_wipe,
1093 	.generator = crypt_iv_lmk_gen,
1094 	.post	   = crypt_iv_lmk_post
1095 };
1096 
1097 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1098 	.ctr	   = crypt_iv_tcw_ctr,
1099 	.dtr	   = crypt_iv_tcw_dtr,
1100 	.init	   = crypt_iv_tcw_init,
1101 	.wipe	   = crypt_iv_tcw_wipe,
1102 	.generator = crypt_iv_tcw_gen,
1103 	.post	   = crypt_iv_tcw_post
1104 };
1105 
1106 static const struct crypt_iv_operations crypt_iv_random_ops = {
1107 	.generator = crypt_iv_random_gen
1108 };
1109 
1110 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1111 	.ctr	   = crypt_iv_eboiv_ctr,
1112 	.generator = crypt_iv_eboiv_gen
1113 };
1114 
1115 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1116 	.ctr	   = crypt_iv_elephant_ctr,
1117 	.dtr	   = crypt_iv_elephant_dtr,
1118 	.init	   = crypt_iv_elephant_init,
1119 	.wipe	   = crypt_iv_elephant_wipe,
1120 	.generator = crypt_iv_elephant_gen,
1121 	.post	   = crypt_iv_elephant_post
1122 };
1123 
1124 /*
1125  * Integrity extensions
1126  */
1127 static bool crypt_integrity_aead(struct crypt_config *cc)
1128 {
1129 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1130 }
1131 
1132 static bool crypt_integrity_hmac(struct crypt_config *cc)
1133 {
1134 	return crypt_integrity_aead(cc) && cc->key_mac_size;
1135 }
1136 
1137 /* Get sg containing data */
1138 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1139 					     struct scatterlist *sg)
1140 {
1141 	if (unlikely(crypt_integrity_aead(cc)))
1142 		return &sg[2];
1143 
1144 	return sg;
1145 }
1146 
1147 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1148 {
1149 	struct bio_integrity_payload *bip;
1150 	unsigned int tag_len;
1151 	int ret;
1152 
1153 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1154 		return 0;
1155 
1156 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1157 	if (IS_ERR(bip))
1158 		return PTR_ERR(bip);
1159 
1160 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1161 
1162 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1163 
1164 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1165 				     tag_len, offset_in_page(io->integrity_metadata));
1166 	if (unlikely(ret != tag_len))
1167 		return -ENOMEM;
1168 
1169 	return 0;
1170 }
1171 
1172 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1173 {
1174 #ifdef CONFIG_BLK_DEV_INTEGRITY
1175 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1176 	struct mapped_device *md = dm_table_get_md(ti->table);
1177 
1178 	/* From now we require underlying device with our integrity profile */
1179 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1180 		ti->error = "Integrity profile not supported.";
1181 		return -EINVAL;
1182 	}
1183 
1184 	if (bi->tag_size != cc->on_disk_tag_size ||
1185 	    bi->tuple_size != cc->on_disk_tag_size) {
1186 		ti->error = "Integrity profile tag size mismatch.";
1187 		return -EINVAL;
1188 	}
1189 	if (1 << bi->interval_exp != cc->sector_size) {
1190 		ti->error = "Integrity profile sector size mismatch.";
1191 		return -EINVAL;
1192 	}
1193 
1194 	if (crypt_integrity_aead(cc)) {
1195 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1196 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1197 		       cc->integrity_tag_size, cc->integrity_iv_size);
1198 
1199 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1200 			ti->error = "Integrity AEAD auth tag size is not supported.";
1201 			return -EINVAL;
1202 		}
1203 	} else if (cc->integrity_iv_size)
1204 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1205 		       cc->integrity_iv_size);
1206 
1207 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1208 		ti->error = "Not enough space for integrity tag in the profile.";
1209 		return -EINVAL;
1210 	}
1211 
1212 	return 0;
1213 #else
1214 	ti->error = "Integrity profile not supported.";
1215 	return -EINVAL;
1216 #endif
1217 }
1218 
1219 static void crypt_convert_init(struct crypt_config *cc,
1220 			       struct convert_context *ctx,
1221 			       struct bio *bio_out, struct bio *bio_in,
1222 			       sector_t sector)
1223 {
1224 	ctx->bio_in = bio_in;
1225 	ctx->bio_out = bio_out;
1226 	if (bio_in)
1227 		ctx->iter_in = bio_in->bi_iter;
1228 	if (bio_out)
1229 		ctx->iter_out = bio_out->bi_iter;
1230 	ctx->cc_sector = sector + cc->iv_offset;
1231 	init_completion(&ctx->restart);
1232 }
1233 
1234 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1235 					     void *req)
1236 {
1237 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1238 }
1239 
1240 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1241 {
1242 	return (void *)((char *)dmreq - cc->dmreq_start);
1243 }
1244 
1245 static u8 *iv_of_dmreq(struct crypt_config *cc,
1246 		       struct dm_crypt_request *dmreq)
1247 {
1248 	if (crypt_integrity_aead(cc))
1249 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1250 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1251 	else
1252 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1253 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1254 }
1255 
1256 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1257 		       struct dm_crypt_request *dmreq)
1258 {
1259 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1260 }
1261 
1262 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1263 		       struct dm_crypt_request *dmreq)
1264 {
1265 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1266 
1267 	return (__le64 *) ptr;
1268 }
1269 
1270 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1271 		       struct dm_crypt_request *dmreq)
1272 {
1273 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1274 		  cc->iv_size + sizeof(uint64_t);
1275 
1276 	return (unsigned int *)ptr;
1277 }
1278 
1279 static void *tag_from_dmreq(struct crypt_config *cc,
1280 				struct dm_crypt_request *dmreq)
1281 {
1282 	struct convert_context *ctx = dmreq->ctx;
1283 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1284 
1285 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1286 		cc->on_disk_tag_size];
1287 }
1288 
1289 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1290 			       struct dm_crypt_request *dmreq)
1291 {
1292 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1293 }
1294 
1295 static int crypt_convert_block_aead(struct crypt_config *cc,
1296 				     struct convert_context *ctx,
1297 				     struct aead_request *req,
1298 				     unsigned int tag_offset)
1299 {
1300 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1301 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1302 	struct dm_crypt_request *dmreq;
1303 	u8 *iv, *org_iv, *tag_iv, *tag;
1304 	__le64 *sector;
1305 	int r = 0;
1306 
1307 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1308 
1309 	/* Reject unexpected unaligned bio. */
1310 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1311 		return -EIO;
1312 
1313 	dmreq = dmreq_of_req(cc, req);
1314 	dmreq->iv_sector = ctx->cc_sector;
1315 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1316 		dmreq->iv_sector >>= cc->sector_shift;
1317 	dmreq->ctx = ctx;
1318 
1319 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1320 
1321 	sector = org_sector_of_dmreq(cc, dmreq);
1322 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1323 
1324 	iv = iv_of_dmreq(cc, dmreq);
1325 	org_iv = org_iv_of_dmreq(cc, dmreq);
1326 	tag = tag_from_dmreq(cc, dmreq);
1327 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1328 
1329 	/* AEAD request:
1330 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1331 	 *  | (authenticated) | (auth+encryption) |              |
1332 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1333 	 */
1334 	sg_init_table(dmreq->sg_in, 4);
1335 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1336 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1337 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1338 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1339 
1340 	sg_init_table(dmreq->sg_out, 4);
1341 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1342 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1343 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1344 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1345 
1346 	if (cc->iv_gen_ops) {
1347 		/* For READs use IV stored in integrity metadata */
1348 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1349 			memcpy(org_iv, tag_iv, cc->iv_size);
1350 		} else {
1351 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1352 			if (r < 0)
1353 				return r;
1354 			/* Store generated IV in integrity metadata */
1355 			if (cc->integrity_iv_size)
1356 				memcpy(tag_iv, org_iv, cc->iv_size);
1357 		}
1358 		/* Working copy of IV, to be modified in crypto API */
1359 		memcpy(iv, org_iv, cc->iv_size);
1360 	}
1361 
1362 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1363 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1364 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1365 				       cc->sector_size, iv);
1366 		r = crypto_aead_encrypt(req);
1367 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1368 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1369 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1370 	} else {
1371 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1372 				       cc->sector_size + cc->integrity_tag_size, iv);
1373 		r = crypto_aead_decrypt(req);
1374 	}
1375 
1376 	if (r == -EBADMSG) {
1377 		sector_t s = le64_to_cpu(*sector);
1378 
1379 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380 			    ctx->bio_in->bi_bdev, s);
1381 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1382 				 ctx->bio_in, s, 0);
1383 	}
1384 
1385 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1386 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1387 
1388 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1389 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1390 
1391 	return r;
1392 }
1393 
1394 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1395 					struct convert_context *ctx,
1396 					struct skcipher_request *req,
1397 					unsigned int tag_offset)
1398 {
1399 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1400 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1401 	struct scatterlist *sg_in, *sg_out;
1402 	struct dm_crypt_request *dmreq;
1403 	u8 *iv, *org_iv, *tag_iv;
1404 	__le64 *sector;
1405 	int r = 0;
1406 
1407 	/* Reject unexpected unaligned bio. */
1408 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1409 		return -EIO;
1410 
1411 	dmreq = dmreq_of_req(cc, req);
1412 	dmreq->iv_sector = ctx->cc_sector;
1413 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1414 		dmreq->iv_sector >>= cc->sector_shift;
1415 	dmreq->ctx = ctx;
1416 
1417 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1418 
1419 	iv = iv_of_dmreq(cc, dmreq);
1420 	org_iv = org_iv_of_dmreq(cc, dmreq);
1421 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1422 
1423 	sector = org_sector_of_dmreq(cc, dmreq);
1424 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1425 
1426 	/* For skcipher we use only the first sg item */
1427 	sg_in  = &dmreq->sg_in[0];
1428 	sg_out = &dmreq->sg_out[0];
1429 
1430 	sg_init_table(sg_in, 1);
1431 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1432 
1433 	sg_init_table(sg_out, 1);
1434 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1435 
1436 	if (cc->iv_gen_ops) {
1437 		/* For READs use IV stored in integrity metadata */
1438 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1439 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1440 		} else {
1441 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1442 			if (r < 0)
1443 				return r;
1444 			/* Data can be already preprocessed in generator */
1445 			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1446 				sg_in = sg_out;
1447 			/* Store generated IV in integrity metadata */
1448 			if (cc->integrity_iv_size)
1449 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1450 		}
1451 		/* Working copy of IV, to be modified in crypto API */
1452 		memcpy(iv, org_iv, cc->iv_size);
1453 	}
1454 
1455 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1456 
1457 	if (bio_data_dir(ctx->bio_in) == WRITE)
1458 		r = crypto_skcipher_encrypt(req);
1459 	else
1460 		r = crypto_skcipher_decrypt(req);
1461 
1462 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1463 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1464 
1465 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1466 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1467 
1468 	return r;
1469 }
1470 
1471 static void kcryptd_async_done(void *async_req, int error);
1472 
1473 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1474 				     struct convert_context *ctx)
1475 {
1476 	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1477 
1478 	if (!ctx->r.req) {
1479 		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1480 		if (!ctx->r.req)
1481 			return -ENOMEM;
1482 	}
1483 
1484 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1485 
1486 	/*
1487 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1488 	 * requests if driver request queue is full.
1489 	 */
1490 	skcipher_request_set_callback(ctx->r.req,
1491 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1492 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1493 
1494 	return 0;
1495 }
1496 
1497 static int crypt_alloc_req_aead(struct crypt_config *cc,
1498 				 struct convert_context *ctx)
1499 {
1500 	if (!ctx->r.req_aead) {
1501 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1502 		if (!ctx->r.req_aead)
1503 			return -ENOMEM;
1504 	}
1505 
1506 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1507 
1508 	/*
1509 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1510 	 * requests if driver request queue is full.
1511 	 */
1512 	aead_request_set_callback(ctx->r.req_aead,
1513 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1514 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1515 
1516 	return 0;
1517 }
1518 
1519 static int crypt_alloc_req(struct crypt_config *cc,
1520 			    struct convert_context *ctx)
1521 {
1522 	if (crypt_integrity_aead(cc))
1523 		return crypt_alloc_req_aead(cc, ctx);
1524 	else
1525 		return crypt_alloc_req_skcipher(cc, ctx);
1526 }
1527 
1528 static void crypt_free_req_skcipher(struct crypt_config *cc,
1529 				    struct skcipher_request *req, struct bio *base_bio)
1530 {
1531 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1532 
1533 	if ((struct skcipher_request *)(io + 1) != req)
1534 		mempool_free(req, &cc->req_pool);
1535 }
1536 
1537 static void crypt_free_req_aead(struct crypt_config *cc,
1538 				struct aead_request *req, struct bio *base_bio)
1539 {
1540 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1541 
1542 	if ((struct aead_request *)(io + 1) != req)
1543 		mempool_free(req, &cc->req_pool);
1544 }
1545 
1546 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1547 {
1548 	if (crypt_integrity_aead(cc))
1549 		crypt_free_req_aead(cc, req, base_bio);
1550 	else
1551 		crypt_free_req_skcipher(cc, req, base_bio);
1552 }
1553 
1554 /*
1555  * Encrypt / decrypt data from one bio to another one (can be the same one)
1556  */
1557 static blk_status_t crypt_convert(struct crypt_config *cc,
1558 			 struct convert_context *ctx, bool atomic, bool reset_pending)
1559 {
1560 	unsigned int tag_offset = 0;
1561 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1562 	int r;
1563 
1564 	/*
1565 	 * if reset_pending is set we are dealing with the bio for the first time,
1566 	 * else we're continuing to work on the previous bio, so don't mess with
1567 	 * the cc_pending counter
1568 	 */
1569 	if (reset_pending)
1570 		atomic_set(&ctx->cc_pending, 1);
1571 
1572 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1573 
1574 		r = crypt_alloc_req(cc, ctx);
1575 		if (r) {
1576 			complete(&ctx->restart);
1577 			return BLK_STS_DEV_RESOURCE;
1578 		}
1579 
1580 		atomic_inc(&ctx->cc_pending);
1581 
1582 		if (crypt_integrity_aead(cc))
1583 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1584 		else
1585 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1586 
1587 		switch (r) {
1588 		/*
1589 		 * The request was queued by a crypto driver
1590 		 * but the driver request queue is full, let's wait.
1591 		 */
1592 		case -EBUSY:
1593 			if (in_interrupt()) {
1594 				if (try_wait_for_completion(&ctx->restart)) {
1595 					/*
1596 					 * we don't have to block to wait for completion,
1597 					 * so proceed
1598 					 */
1599 				} else {
1600 					/*
1601 					 * we can't wait for completion without blocking
1602 					 * exit and continue processing in a workqueue
1603 					 */
1604 					ctx->r.req = NULL;
1605 					ctx->cc_sector += sector_step;
1606 					tag_offset++;
1607 					return BLK_STS_DEV_RESOURCE;
1608 				}
1609 			} else {
1610 				wait_for_completion(&ctx->restart);
1611 			}
1612 			reinit_completion(&ctx->restart);
1613 			fallthrough;
1614 		/*
1615 		 * The request is queued and processed asynchronously,
1616 		 * completion function kcryptd_async_done() will be called.
1617 		 */
1618 		case -EINPROGRESS:
1619 			ctx->r.req = NULL;
1620 			ctx->cc_sector += sector_step;
1621 			tag_offset++;
1622 			continue;
1623 		/*
1624 		 * The request was already processed (synchronously).
1625 		 */
1626 		case 0:
1627 			atomic_dec(&ctx->cc_pending);
1628 			ctx->cc_sector += sector_step;
1629 			tag_offset++;
1630 			if (!atomic)
1631 				cond_resched();
1632 			continue;
1633 		/*
1634 		 * There was a data integrity error.
1635 		 */
1636 		case -EBADMSG:
1637 			atomic_dec(&ctx->cc_pending);
1638 			return BLK_STS_PROTECTION;
1639 		/*
1640 		 * There was an error while processing the request.
1641 		 */
1642 		default:
1643 			atomic_dec(&ctx->cc_pending);
1644 			return BLK_STS_IOERR;
1645 		}
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1652 
1653 /*
1654  * Generate a new unfragmented bio with the given size
1655  * This should never violate the device limitations (but only because
1656  * max_segment_size is being constrained to PAGE_SIZE).
1657  *
1658  * This function may be called concurrently. If we allocate from the mempool
1659  * concurrently, there is a possibility of deadlock. For example, if we have
1660  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1661  * the mempool concurrently, it may deadlock in a situation where both processes
1662  * have allocated 128 pages and the mempool is exhausted.
1663  *
1664  * In order to avoid this scenario we allocate the pages under a mutex.
1665  *
1666  * In order to not degrade performance with excessive locking, we try
1667  * non-blocking allocations without a mutex first but on failure we fallback
1668  * to blocking allocations with a mutex.
1669  *
1670  * In order to reduce allocation overhead, we try to allocate compound pages in
1671  * the first pass. If they are not available, we fall back to the mempool.
1672  */
1673 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1674 {
1675 	struct crypt_config *cc = io->cc;
1676 	struct bio *clone;
1677 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1678 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1679 	unsigned int remaining_size;
1680 	unsigned int order = MAX_ORDER;
1681 
1682 retry:
1683 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1684 		mutex_lock(&cc->bio_alloc_lock);
1685 
1686 	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1687 				 GFP_NOIO, &cc->bs);
1688 	clone->bi_private = io;
1689 	clone->bi_end_io = crypt_endio;
1690 
1691 	remaining_size = size;
1692 
1693 	while (remaining_size) {
1694 		struct page *pages;
1695 		unsigned size_to_add;
1696 		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1697 		order = min(order, remaining_order);
1698 
1699 		while (order > 0) {
1700 			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1701 					(1 << order) > dm_crypt_pages_per_client))
1702 				goto decrease_order;
1703 			pages = alloc_pages(gfp_mask
1704 				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1705 				order);
1706 			if (likely(pages != NULL)) {
1707 				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1708 				goto have_pages;
1709 			}
1710 decrease_order:
1711 			order--;
1712 		}
1713 
1714 		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1715 		if (!pages) {
1716 			crypt_free_buffer_pages(cc, clone);
1717 			bio_put(clone);
1718 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1719 			order = 0;
1720 			goto retry;
1721 		}
1722 
1723 have_pages:
1724 		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1725 		__bio_add_page(clone, pages, size_to_add, 0);
1726 		remaining_size -= size_to_add;
1727 	}
1728 
1729 	/* Allocate space for integrity tags */
1730 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1731 		crypt_free_buffer_pages(cc, clone);
1732 		bio_put(clone);
1733 		clone = NULL;
1734 	}
1735 
1736 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1737 		mutex_unlock(&cc->bio_alloc_lock);
1738 
1739 	return clone;
1740 }
1741 
1742 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1743 {
1744 	struct folio_iter fi;
1745 
1746 	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1747 		bio_for_each_folio_all(fi, clone) {
1748 			if (folio_test_large(fi.folio)) {
1749 				percpu_counter_sub(&cc->n_allocated_pages,
1750 						1 << folio_order(fi.folio));
1751 				folio_put(fi.folio);
1752 			} else {
1753 				mempool_free(&fi.folio->page, &cc->page_pool);
1754 			}
1755 		}
1756 	}
1757 }
1758 
1759 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1760 			  struct bio *bio, sector_t sector)
1761 {
1762 	io->cc = cc;
1763 	io->base_bio = bio;
1764 	io->sector = sector;
1765 	io->error = 0;
1766 	io->ctx.r.req = NULL;
1767 	io->integrity_metadata = NULL;
1768 	io->integrity_metadata_from_pool = false;
1769 	atomic_set(&io->io_pending, 0);
1770 }
1771 
1772 static void crypt_inc_pending(struct dm_crypt_io *io)
1773 {
1774 	atomic_inc(&io->io_pending);
1775 }
1776 
1777 /*
1778  * One of the bios was finished. Check for completion of
1779  * the whole request and correctly clean up the buffer.
1780  */
1781 static void crypt_dec_pending(struct dm_crypt_io *io)
1782 {
1783 	struct crypt_config *cc = io->cc;
1784 	struct bio *base_bio = io->base_bio;
1785 	blk_status_t error = io->error;
1786 
1787 	if (!atomic_dec_and_test(&io->io_pending))
1788 		return;
1789 
1790 	if (io->ctx.r.req)
1791 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1792 
1793 	if (unlikely(io->integrity_metadata_from_pool))
1794 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1795 	else
1796 		kfree(io->integrity_metadata);
1797 
1798 	base_bio->bi_status = error;
1799 
1800 	bio_endio(base_bio);
1801 }
1802 
1803 /*
1804  * kcryptd/kcryptd_io:
1805  *
1806  * Needed because it would be very unwise to do decryption in an
1807  * interrupt context.
1808  *
1809  * kcryptd performs the actual encryption or decryption.
1810  *
1811  * kcryptd_io performs the IO submission.
1812  *
1813  * They must be separated as otherwise the final stages could be
1814  * starved by new requests which can block in the first stages due
1815  * to memory allocation.
1816  *
1817  * The work is done per CPU global for all dm-crypt instances.
1818  * They should not depend on each other and do not block.
1819  */
1820 static void crypt_endio(struct bio *clone)
1821 {
1822 	struct dm_crypt_io *io = clone->bi_private;
1823 	struct crypt_config *cc = io->cc;
1824 	unsigned int rw = bio_data_dir(clone);
1825 	blk_status_t error;
1826 
1827 	/*
1828 	 * free the processed pages
1829 	 */
1830 	if (rw == WRITE)
1831 		crypt_free_buffer_pages(cc, clone);
1832 
1833 	error = clone->bi_status;
1834 	bio_put(clone);
1835 
1836 	if (rw == READ && !error) {
1837 		kcryptd_queue_crypt(io);
1838 		return;
1839 	}
1840 
1841 	if (unlikely(error))
1842 		io->error = error;
1843 
1844 	crypt_dec_pending(io);
1845 }
1846 
1847 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1848 
1849 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1850 {
1851 	struct crypt_config *cc = io->cc;
1852 	struct bio *clone;
1853 
1854 	/*
1855 	 * We need the original biovec array in order to decrypt the whole bio
1856 	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1857 	 * worry about the block layer modifying the biovec array; so leverage
1858 	 * bio_alloc_clone().
1859 	 */
1860 	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1861 	if (!clone)
1862 		return 1;
1863 	clone->bi_private = io;
1864 	clone->bi_end_io = crypt_endio;
1865 
1866 	crypt_inc_pending(io);
1867 
1868 	clone->bi_iter.bi_sector = cc->start + io->sector;
1869 
1870 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1871 		crypt_dec_pending(io);
1872 		bio_put(clone);
1873 		return 1;
1874 	}
1875 
1876 	dm_submit_bio_remap(io->base_bio, clone);
1877 	return 0;
1878 }
1879 
1880 static void kcryptd_io_read_work(struct work_struct *work)
1881 {
1882 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1883 
1884 	crypt_inc_pending(io);
1885 	if (kcryptd_io_read(io, GFP_NOIO))
1886 		io->error = BLK_STS_RESOURCE;
1887 	crypt_dec_pending(io);
1888 }
1889 
1890 static void kcryptd_queue_read(struct dm_crypt_io *io)
1891 {
1892 	struct crypt_config *cc = io->cc;
1893 
1894 	INIT_WORK(&io->work, kcryptd_io_read_work);
1895 	queue_work(cc->io_queue, &io->work);
1896 }
1897 
1898 static void kcryptd_io_write(struct dm_crypt_io *io)
1899 {
1900 	struct bio *clone = io->ctx.bio_out;
1901 
1902 	dm_submit_bio_remap(io->base_bio, clone);
1903 }
1904 
1905 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1906 
1907 static int dmcrypt_write(void *data)
1908 {
1909 	struct crypt_config *cc = data;
1910 	struct dm_crypt_io *io;
1911 
1912 	while (1) {
1913 		struct rb_root write_tree;
1914 		struct blk_plug plug;
1915 
1916 		spin_lock_irq(&cc->write_thread_lock);
1917 continue_locked:
1918 
1919 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1920 			goto pop_from_list;
1921 
1922 		set_current_state(TASK_INTERRUPTIBLE);
1923 
1924 		spin_unlock_irq(&cc->write_thread_lock);
1925 
1926 		if (unlikely(kthread_should_stop())) {
1927 			set_current_state(TASK_RUNNING);
1928 			break;
1929 		}
1930 
1931 		schedule();
1932 
1933 		set_current_state(TASK_RUNNING);
1934 		spin_lock_irq(&cc->write_thread_lock);
1935 		goto continue_locked;
1936 
1937 pop_from_list:
1938 		write_tree = cc->write_tree;
1939 		cc->write_tree = RB_ROOT;
1940 		spin_unlock_irq(&cc->write_thread_lock);
1941 
1942 		BUG_ON(rb_parent(write_tree.rb_node));
1943 
1944 		/*
1945 		 * Note: we cannot walk the tree here with rb_next because
1946 		 * the structures may be freed when kcryptd_io_write is called.
1947 		 */
1948 		blk_start_plug(&plug);
1949 		do {
1950 			io = crypt_io_from_node(rb_first(&write_tree));
1951 			rb_erase(&io->rb_node, &write_tree);
1952 			kcryptd_io_write(io);
1953 			cond_resched();
1954 		} while (!RB_EMPTY_ROOT(&write_tree));
1955 		blk_finish_plug(&plug);
1956 	}
1957 	return 0;
1958 }
1959 
1960 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1961 {
1962 	struct bio *clone = io->ctx.bio_out;
1963 	struct crypt_config *cc = io->cc;
1964 	unsigned long flags;
1965 	sector_t sector;
1966 	struct rb_node **rbp, *parent;
1967 
1968 	if (unlikely(io->error)) {
1969 		crypt_free_buffer_pages(cc, clone);
1970 		bio_put(clone);
1971 		crypt_dec_pending(io);
1972 		return;
1973 	}
1974 
1975 	/* crypt_convert should have filled the clone bio */
1976 	BUG_ON(io->ctx.iter_out.bi_size);
1977 
1978 	clone->bi_iter.bi_sector = cc->start + io->sector;
1979 
1980 	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1981 	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1982 		dm_submit_bio_remap(io->base_bio, clone);
1983 		return;
1984 	}
1985 
1986 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1987 	if (RB_EMPTY_ROOT(&cc->write_tree))
1988 		wake_up_process(cc->write_thread);
1989 	rbp = &cc->write_tree.rb_node;
1990 	parent = NULL;
1991 	sector = io->sector;
1992 	while (*rbp) {
1993 		parent = *rbp;
1994 		if (sector < crypt_io_from_node(parent)->sector)
1995 			rbp = &(*rbp)->rb_left;
1996 		else
1997 			rbp = &(*rbp)->rb_right;
1998 	}
1999 	rb_link_node(&io->rb_node, parent, rbp);
2000 	rb_insert_color(&io->rb_node, &cc->write_tree);
2001 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2002 }
2003 
2004 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2005 				       struct convert_context *ctx)
2006 
2007 {
2008 	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2009 		return false;
2010 
2011 	/*
2012 	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2013 	 * constraints so they do not need to be issued inline by
2014 	 * kcryptd_crypt_write_convert().
2015 	 */
2016 	switch (bio_op(ctx->bio_in)) {
2017 	case REQ_OP_WRITE:
2018 	case REQ_OP_WRITE_ZEROES:
2019 		return true;
2020 	default:
2021 		return false;
2022 	}
2023 }
2024 
2025 static void kcryptd_crypt_write_continue(struct work_struct *work)
2026 {
2027 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2028 	struct crypt_config *cc = io->cc;
2029 	struct convert_context *ctx = &io->ctx;
2030 	int crypt_finished;
2031 	sector_t sector = io->sector;
2032 	blk_status_t r;
2033 
2034 	wait_for_completion(&ctx->restart);
2035 	reinit_completion(&ctx->restart);
2036 
2037 	r = crypt_convert(cc, &io->ctx, true, false);
2038 	if (r)
2039 		io->error = r;
2040 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2041 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2042 		/* Wait for completion signaled by kcryptd_async_done() */
2043 		wait_for_completion(&ctx->restart);
2044 		crypt_finished = 1;
2045 	}
2046 
2047 	/* Encryption was already finished, submit io now */
2048 	if (crypt_finished) {
2049 		kcryptd_crypt_write_io_submit(io, 0);
2050 		io->sector = sector;
2051 	}
2052 
2053 	crypt_dec_pending(io);
2054 }
2055 
2056 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2057 {
2058 	struct crypt_config *cc = io->cc;
2059 	struct convert_context *ctx = &io->ctx;
2060 	struct bio *clone;
2061 	int crypt_finished;
2062 	sector_t sector = io->sector;
2063 	blk_status_t r;
2064 
2065 	/*
2066 	 * Prevent io from disappearing until this function completes.
2067 	 */
2068 	crypt_inc_pending(io);
2069 	crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2070 
2071 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2072 	if (unlikely(!clone)) {
2073 		io->error = BLK_STS_IOERR;
2074 		goto dec;
2075 	}
2076 
2077 	io->ctx.bio_out = clone;
2078 	io->ctx.iter_out = clone->bi_iter;
2079 
2080 	sector += bio_sectors(clone);
2081 
2082 	crypt_inc_pending(io);
2083 	r = crypt_convert(cc, ctx,
2084 			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2085 	/*
2086 	 * Crypto API backlogged the request, because its queue was full
2087 	 * and we're in softirq context, so continue from a workqueue
2088 	 * (TODO: is it actually possible to be in softirq in the write path?)
2089 	 */
2090 	if (r == BLK_STS_DEV_RESOURCE) {
2091 		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2092 		queue_work(cc->crypt_queue, &io->work);
2093 		return;
2094 	}
2095 	if (r)
2096 		io->error = r;
2097 	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2098 	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2099 		/* Wait for completion signaled by kcryptd_async_done() */
2100 		wait_for_completion(&ctx->restart);
2101 		crypt_finished = 1;
2102 	}
2103 
2104 	/* Encryption was already finished, submit io now */
2105 	if (crypt_finished) {
2106 		kcryptd_crypt_write_io_submit(io, 0);
2107 		io->sector = sector;
2108 	}
2109 
2110 dec:
2111 	crypt_dec_pending(io);
2112 }
2113 
2114 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2115 {
2116 	crypt_dec_pending(io);
2117 }
2118 
2119 static void kcryptd_crypt_read_continue(struct work_struct *work)
2120 {
2121 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2122 	struct crypt_config *cc = io->cc;
2123 	blk_status_t r;
2124 
2125 	wait_for_completion(&io->ctx.restart);
2126 	reinit_completion(&io->ctx.restart);
2127 
2128 	r = crypt_convert(cc, &io->ctx, true, false);
2129 	if (r)
2130 		io->error = r;
2131 
2132 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2133 		kcryptd_crypt_read_done(io);
2134 
2135 	crypt_dec_pending(io);
2136 }
2137 
2138 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2139 {
2140 	struct crypt_config *cc = io->cc;
2141 	blk_status_t r;
2142 
2143 	crypt_inc_pending(io);
2144 
2145 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2146 			   io->sector);
2147 
2148 	r = crypt_convert(cc, &io->ctx,
2149 			  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2150 	/*
2151 	 * Crypto API backlogged the request, because its queue was full
2152 	 * and we're in softirq context, so continue from a workqueue
2153 	 */
2154 	if (r == BLK_STS_DEV_RESOURCE) {
2155 		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2156 		queue_work(cc->crypt_queue, &io->work);
2157 		return;
2158 	}
2159 	if (r)
2160 		io->error = r;
2161 
2162 	if (atomic_dec_and_test(&io->ctx.cc_pending))
2163 		kcryptd_crypt_read_done(io);
2164 
2165 	crypt_dec_pending(io);
2166 }
2167 
2168 static void kcryptd_async_done(void *data, int error)
2169 {
2170 	struct dm_crypt_request *dmreq = data;
2171 	struct convert_context *ctx = dmreq->ctx;
2172 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2173 	struct crypt_config *cc = io->cc;
2174 
2175 	/*
2176 	 * A request from crypto driver backlog is going to be processed now,
2177 	 * finish the completion and continue in crypt_convert().
2178 	 * (Callback will be called for the second time for this request.)
2179 	 */
2180 	if (error == -EINPROGRESS) {
2181 		complete(&ctx->restart);
2182 		return;
2183 	}
2184 
2185 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2186 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2187 
2188 	if (error == -EBADMSG) {
2189 		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2190 
2191 		DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2192 			    ctx->bio_in->bi_bdev, s);
2193 		dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2194 				 ctx->bio_in, s, 0);
2195 		io->error = BLK_STS_PROTECTION;
2196 	} else if (error < 0)
2197 		io->error = BLK_STS_IOERR;
2198 
2199 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2200 
2201 	if (!atomic_dec_and_test(&ctx->cc_pending))
2202 		return;
2203 
2204 	/*
2205 	 * The request is fully completed: for inline writes, let
2206 	 * kcryptd_crypt_write_convert() do the IO submission.
2207 	 */
2208 	if (bio_data_dir(io->base_bio) == READ) {
2209 		kcryptd_crypt_read_done(io);
2210 		return;
2211 	}
2212 
2213 	if (kcryptd_crypt_write_inline(cc, ctx)) {
2214 		complete(&ctx->restart);
2215 		return;
2216 	}
2217 
2218 	kcryptd_crypt_write_io_submit(io, 1);
2219 }
2220 
2221 static void kcryptd_crypt(struct work_struct *work)
2222 {
2223 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2224 
2225 	if (bio_data_dir(io->base_bio) == READ)
2226 		kcryptd_crypt_read_convert(io);
2227 	else
2228 		kcryptd_crypt_write_convert(io);
2229 }
2230 
2231 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2232 {
2233 	struct crypt_config *cc = io->cc;
2234 
2235 	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2236 	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2237 		/*
2238 		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2239 		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2240 		 * it is being executed with irqs disabled.
2241 		 */
2242 		if (!(in_hardirq() || irqs_disabled())) {
2243 			kcryptd_crypt(&io->work);
2244 			return;
2245 		}
2246 	}
2247 
2248 	INIT_WORK(&io->work, kcryptd_crypt);
2249 	queue_work(cc->crypt_queue, &io->work);
2250 }
2251 
2252 static void crypt_free_tfms_aead(struct crypt_config *cc)
2253 {
2254 	if (!cc->cipher_tfm.tfms_aead)
2255 		return;
2256 
2257 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2258 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2259 		cc->cipher_tfm.tfms_aead[0] = NULL;
2260 	}
2261 
2262 	kfree(cc->cipher_tfm.tfms_aead);
2263 	cc->cipher_tfm.tfms_aead = NULL;
2264 }
2265 
2266 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2267 {
2268 	unsigned int i;
2269 
2270 	if (!cc->cipher_tfm.tfms)
2271 		return;
2272 
2273 	for (i = 0; i < cc->tfms_count; i++)
2274 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2275 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2276 			cc->cipher_tfm.tfms[i] = NULL;
2277 		}
2278 
2279 	kfree(cc->cipher_tfm.tfms);
2280 	cc->cipher_tfm.tfms = NULL;
2281 }
2282 
2283 static void crypt_free_tfms(struct crypt_config *cc)
2284 {
2285 	if (crypt_integrity_aead(cc))
2286 		crypt_free_tfms_aead(cc);
2287 	else
2288 		crypt_free_tfms_skcipher(cc);
2289 }
2290 
2291 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2292 {
2293 	unsigned int i;
2294 	int err;
2295 
2296 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2297 				      sizeof(struct crypto_skcipher *),
2298 				      GFP_KERNEL);
2299 	if (!cc->cipher_tfm.tfms)
2300 		return -ENOMEM;
2301 
2302 	for (i = 0; i < cc->tfms_count; i++) {
2303 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2304 						CRYPTO_ALG_ALLOCATES_MEMORY);
2305 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2306 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2307 			crypt_free_tfms(cc);
2308 			return err;
2309 		}
2310 	}
2311 
2312 	/*
2313 	 * dm-crypt performance can vary greatly depending on which crypto
2314 	 * algorithm implementation is used.  Help people debug performance
2315 	 * problems by logging the ->cra_driver_name.
2316 	 */
2317 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2318 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2319 	return 0;
2320 }
2321 
2322 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2323 {
2324 	int err;
2325 
2326 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2327 	if (!cc->cipher_tfm.tfms)
2328 		return -ENOMEM;
2329 
2330 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2331 						CRYPTO_ALG_ALLOCATES_MEMORY);
2332 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2333 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2334 		crypt_free_tfms(cc);
2335 		return err;
2336 	}
2337 
2338 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2339 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2340 	return 0;
2341 }
2342 
2343 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2344 {
2345 	if (crypt_integrity_aead(cc))
2346 		return crypt_alloc_tfms_aead(cc, ciphermode);
2347 	else
2348 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2349 }
2350 
2351 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2352 {
2353 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2354 }
2355 
2356 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2357 {
2358 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2359 }
2360 
2361 /*
2362  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2363  * the key must be for some reason in special format.
2364  * This funcion converts cc->key to this special format.
2365  */
2366 static void crypt_copy_authenckey(char *p, const void *key,
2367 				  unsigned int enckeylen, unsigned int authkeylen)
2368 {
2369 	struct crypto_authenc_key_param *param;
2370 	struct rtattr *rta;
2371 
2372 	rta = (struct rtattr *)p;
2373 	param = RTA_DATA(rta);
2374 	param->enckeylen = cpu_to_be32(enckeylen);
2375 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2376 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2377 	p += RTA_SPACE(sizeof(*param));
2378 	memcpy(p, key + enckeylen, authkeylen);
2379 	p += authkeylen;
2380 	memcpy(p, key, enckeylen);
2381 }
2382 
2383 static int crypt_setkey(struct crypt_config *cc)
2384 {
2385 	unsigned int subkey_size;
2386 	int err = 0, i, r;
2387 
2388 	/* Ignore extra keys (which are used for IV etc) */
2389 	subkey_size = crypt_subkey_size(cc);
2390 
2391 	if (crypt_integrity_hmac(cc)) {
2392 		if (subkey_size < cc->key_mac_size)
2393 			return -EINVAL;
2394 
2395 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2396 				      subkey_size - cc->key_mac_size,
2397 				      cc->key_mac_size);
2398 	}
2399 
2400 	for (i = 0; i < cc->tfms_count; i++) {
2401 		if (crypt_integrity_hmac(cc))
2402 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2403 				cc->authenc_key, crypt_authenckey_size(cc));
2404 		else if (crypt_integrity_aead(cc))
2405 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2406 					       cc->key + (i * subkey_size),
2407 					       subkey_size);
2408 		else
2409 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2410 						   cc->key + (i * subkey_size),
2411 						   subkey_size);
2412 		if (r)
2413 			err = r;
2414 	}
2415 
2416 	if (crypt_integrity_hmac(cc))
2417 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2418 
2419 	return err;
2420 }
2421 
2422 #ifdef CONFIG_KEYS
2423 
2424 static bool contains_whitespace(const char *str)
2425 {
2426 	while (*str)
2427 		if (isspace(*str++))
2428 			return true;
2429 	return false;
2430 }
2431 
2432 static int set_key_user(struct crypt_config *cc, struct key *key)
2433 {
2434 	const struct user_key_payload *ukp;
2435 
2436 	ukp = user_key_payload_locked(key);
2437 	if (!ukp)
2438 		return -EKEYREVOKED;
2439 
2440 	if (cc->key_size != ukp->datalen)
2441 		return -EINVAL;
2442 
2443 	memcpy(cc->key, ukp->data, cc->key_size);
2444 
2445 	return 0;
2446 }
2447 
2448 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2449 {
2450 	const struct encrypted_key_payload *ekp;
2451 
2452 	ekp = key->payload.data[0];
2453 	if (!ekp)
2454 		return -EKEYREVOKED;
2455 
2456 	if (cc->key_size != ekp->decrypted_datalen)
2457 		return -EINVAL;
2458 
2459 	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2460 
2461 	return 0;
2462 }
2463 
2464 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2465 {
2466 	const struct trusted_key_payload *tkp;
2467 
2468 	tkp = key->payload.data[0];
2469 	if (!tkp)
2470 		return -EKEYREVOKED;
2471 
2472 	if (cc->key_size != tkp->key_len)
2473 		return -EINVAL;
2474 
2475 	memcpy(cc->key, tkp->key, cc->key_size);
2476 
2477 	return 0;
2478 }
2479 
2480 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2481 {
2482 	char *new_key_string, *key_desc;
2483 	int ret;
2484 	struct key_type *type;
2485 	struct key *key;
2486 	int (*set_key)(struct crypt_config *cc, struct key *key);
2487 
2488 	/*
2489 	 * Reject key_string with whitespace. dm core currently lacks code for
2490 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2491 	 */
2492 	if (contains_whitespace(key_string)) {
2493 		DMERR("whitespace chars not allowed in key string");
2494 		return -EINVAL;
2495 	}
2496 
2497 	/* look for next ':' separating key_type from key_description */
2498 	key_desc = strchr(key_string, ':');
2499 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2500 		return -EINVAL;
2501 
2502 	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2503 		type = &key_type_logon;
2504 		set_key = set_key_user;
2505 	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2506 		type = &key_type_user;
2507 		set_key = set_key_user;
2508 	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2509 		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2510 		type = &key_type_encrypted;
2511 		set_key = set_key_encrypted;
2512 	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2513 		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2514 		type = &key_type_trusted;
2515 		set_key = set_key_trusted;
2516 	} else {
2517 		return -EINVAL;
2518 	}
2519 
2520 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2521 	if (!new_key_string)
2522 		return -ENOMEM;
2523 
2524 	key = request_key(type, key_desc + 1, NULL);
2525 	if (IS_ERR(key)) {
2526 		kfree_sensitive(new_key_string);
2527 		return PTR_ERR(key);
2528 	}
2529 
2530 	down_read(&key->sem);
2531 
2532 	ret = set_key(cc, key);
2533 	if (ret < 0) {
2534 		up_read(&key->sem);
2535 		key_put(key);
2536 		kfree_sensitive(new_key_string);
2537 		return ret;
2538 	}
2539 
2540 	up_read(&key->sem);
2541 	key_put(key);
2542 
2543 	/* clear the flag since following operations may invalidate previously valid key */
2544 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2545 
2546 	ret = crypt_setkey(cc);
2547 
2548 	if (!ret) {
2549 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2550 		kfree_sensitive(cc->key_string);
2551 		cc->key_string = new_key_string;
2552 	} else
2553 		kfree_sensitive(new_key_string);
2554 
2555 	return ret;
2556 }
2557 
2558 static int get_key_size(char **key_string)
2559 {
2560 	char *colon, dummy;
2561 	int ret;
2562 
2563 	if (*key_string[0] != ':')
2564 		return strlen(*key_string) >> 1;
2565 
2566 	/* look for next ':' in key string */
2567 	colon = strpbrk(*key_string + 1, ":");
2568 	if (!colon)
2569 		return -EINVAL;
2570 
2571 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2572 		return -EINVAL;
2573 
2574 	*key_string = colon;
2575 
2576 	/* remaining key string should be :<logon|user>:<key_desc> */
2577 
2578 	return ret;
2579 }
2580 
2581 #else
2582 
2583 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2584 {
2585 	return -EINVAL;
2586 }
2587 
2588 static int get_key_size(char **key_string)
2589 {
2590 	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2591 }
2592 
2593 #endif /* CONFIG_KEYS */
2594 
2595 static int crypt_set_key(struct crypt_config *cc, char *key)
2596 {
2597 	int r = -EINVAL;
2598 	int key_string_len = strlen(key);
2599 
2600 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2601 	if (!cc->key_size && strcmp(key, "-"))
2602 		goto out;
2603 
2604 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2605 	if (key[0] == ':') {
2606 		r = crypt_set_keyring_key(cc, key + 1);
2607 		goto out;
2608 	}
2609 
2610 	/* clear the flag since following operations may invalidate previously valid key */
2611 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2612 
2613 	/* wipe references to any kernel keyring key */
2614 	kfree_sensitive(cc->key_string);
2615 	cc->key_string = NULL;
2616 
2617 	/* Decode key from its hex representation. */
2618 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2619 		goto out;
2620 
2621 	r = crypt_setkey(cc);
2622 	if (!r)
2623 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2624 
2625 out:
2626 	/* Hex key string not needed after here, so wipe it. */
2627 	memset(key, '0', key_string_len);
2628 
2629 	return r;
2630 }
2631 
2632 static int crypt_wipe_key(struct crypt_config *cc)
2633 {
2634 	int r;
2635 
2636 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2637 	get_random_bytes(&cc->key, cc->key_size);
2638 
2639 	/* Wipe IV private keys */
2640 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2641 		r = cc->iv_gen_ops->wipe(cc);
2642 		if (r)
2643 			return r;
2644 	}
2645 
2646 	kfree_sensitive(cc->key_string);
2647 	cc->key_string = NULL;
2648 	r = crypt_setkey(cc);
2649 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2650 
2651 	return r;
2652 }
2653 
2654 static void crypt_calculate_pages_per_client(void)
2655 {
2656 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2657 
2658 	if (!dm_crypt_clients_n)
2659 		return;
2660 
2661 	pages /= dm_crypt_clients_n;
2662 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2663 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2664 	dm_crypt_pages_per_client = pages;
2665 }
2666 
2667 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2668 {
2669 	struct crypt_config *cc = pool_data;
2670 	struct page *page;
2671 
2672 	/*
2673 	 * Note, percpu_counter_read_positive() may over (and under) estimate
2674 	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2675 	 * but avoids potential spinlock contention of an exact result.
2676 	 */
2677 	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2678 	    likely(gfp_mask & __GFP_NORETRY))
2679 		return NULL;
2680 
2681 	page = alloc_page(gfp_mask);
2682 	if (likely(page != NULL))
2683 		percpu_counter_add(&cc->n_allocated_pages, 1);
2684 
2685 	return page;
2686 }
2687 
2688 static void crypt_page_free(void *page, void *pool_data)
2689 {
2690 	struct crypt_config *cc = pool_data;
2691 
2692 	__free_page(page);
2693 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2694 }
2695 
2696 static void crypt_dtr(struct dm_target *ti)
2697 {
2698 	struct crypt_config *cc = ti->private;
2699 
2700 	ti->private = NULL;
2701 
2702 	if (!cc)
2703 		return;
2704 
2705 	if (cc->write_thread)
2706 		kthread_stop(cc->write_thread);
2707 
2708 	if (cc->io_queue)
2709 		destroy_workqueue(cc->io_queue);
2710 	if (cc->crypt_queue)
2711 		destroy_workqueue(cc->crypt_queue);
2712 
2713 	crypt_free_tfms(cc);
2714 
2715 	bioset_exit(&cc->bs);
2716 
2717 	mempool_exit(&cc->page_pool);
2718 	mempool_exit(&cc->req_pool);
2719 	mempool_exit(&cc->tag_pool);
2720 
2721 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2722 	percpu_counter_destroy(&cc->n_allocated_pages);
2723 
2724 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2725 		cc->iv_gen_ops->dtr(cc);
2726 
2727 	if (cc->dev)
2728 		dm_put_device(ti, cc->dev);
2729 
2730 	kfree_sensitive(cc->cipher_string);
2731 	kfree_sensitive(cc->key_string);
2732 	kfree_sensitive(cc->cipher_auth);
2733 	kfree_sensitive(cc->authenc_key);
2734 
2735 	mutex_destroy(&cc->bio_alloc_lock);
2736 
2737 	/* Must zero key material before freeing */
2738 	kfree_sensitive(cc);
2739 
2740 	spin_lock(&dm_crypt_clients_lock);
2741 	WARN_ON(!dm_crypt_clients_n);
2742 	dm_crypt_clients_n--;
2743 	crypt_calculate_pages_per_client();
2744 	spin_unlock(&dm_crypt_clients_lock);
2745 
2746 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2747 }
2748 
2749 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2750 {
2751 	struct crypt_config *cc = ti->private;
2752 
2753 	if (crypt_integrity_aead(cc))
2754 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2755 	else
2756 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2757 
2758 	if (cc->iv_size)
2759 		/* at least a 64 bit sector number should fit in our buffer */
2760 		cc->iv_size = max(cc->iv_size,
2761 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2762 	else if (ivmode) {
2763 		DMWARN("Selected cipher does not support IVs");
2764 		ivmode = NULL;
2765 	}
2766 
2767 	/* Choose ivmode, see comments at iv code. */
2768 	if (ivmode == NULL)
2769 		cc->iv_gen_ops = NULL;
2770 	else if (strcmp(ivmode, "plain") == 0)
2771 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2772 	else if (strcmp(ivmode, "plain64") == 0)
2773 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2774 	else if (strcmp(ivmode, "plain64be") == 0)
2775 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2776 	else if (strcmp(ivmode, "essiv") == 0)
2777 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2778 	else if (strcmp(ivmode, "benbi") == 0)
2779 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2780 	else if (strcmp(ivmode, "null") == 0)
2781 		cc->iv_gen_ops = &crypt_iv_null_ops;
2782 	else if (strcmp(ivmode, "eboiv") == 0)
2783 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2784 	else if (strcmp(ivmode, "elephant") == 0) {
2785 		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2786 		cc->key_parts = 2;
2787 		cc->key_extra_size = cc->key_size / 2;
2788 		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2789 			return -EINVAL;
2790 		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2791 	} else if (strcmp(ivmode, "lmk") == 0) {
2792 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2793 		/*
2794 		 * Version 2 and 3 is recognised according
2795 		 * to length of provided multi-key string.
2796 		 * If present (version 3), last key is used as IV seed.
2797 		 * All keys (including IV seed) are always the same size.
2798 		 */
2799 		if (cc->key_size % cc->key_parts) {
2800 			cc->key_parts++;
2801 			cc->key_extra_size = cc->key_size / cc->key_parts;
2802 		}
2803 	} else if (strcmp(ivmode, "tcw") == 0) {
2804 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2805 		cc->key_parts += 2; /* IV + whitening */
2806 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2807 	} else if (strcmp(ivmode, "random") == 0) {
2808 		cc->iv_gen_ops = &crypt_iv_random_ops;
2809 		/* Need storage space in integrity fields. */
2810 		cc->integrity_iv_size = cc->iv_size;
2811 	} else {
2812 		ti->error = "Invalid IV mode";
2813 		return -EINVAL;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 /*
2820  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2821  * The HMAC is needed to calculate tag size (HMAC digest size).
2822  * This should be probably done by crypto-api calls (once available...)
2823  */
2824 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2825 {
2826 	char *start, *end, *mac_alg = NULL;
2827 	struct crypto_ahash *mac;
2828 
2829 	if (!strstarts(cipher_api, "authenc("))
2830 		return 0;
2831 
2832 	start = strchr(cipher_api, '(');
2833 	end = strchr(cipher_api, ',');
2834 	if (!start || !end || ++start > end)
2835 		return -EINVAL;
2836 
2837 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2838 	if (!mac_alg)
2839 		return -ENOMEM;
2840 	strncpy(mac_alg, start, end - start);
2841 
2842 	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2843 	kfree(mac_alg);
2844 
2845 	if (IS_ERR(mac))
2846 		return PTR_ERR(mac);
2847 
2848 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2849 	crypto_free_ahash(mac);
2850 
2851 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2852 	if (!cc->authenc_key)
2853 		return -ENOMEM;
2854 
2855 	return 0;
2856 }
2857 
2858 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2859 				char **ivmode, char **ivopts)
2860 {
2861 	struct crypt_config *cc = ti->private;
2862 	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2863 	int ret = -EINVAL;
2864 
2865 	cc->tfms_count = 1;
2866 
2867 	/*
2868 	 * New format (capi: prefix)
2869 	 * capi:cipher_api_spec-iv:ivopts
2870 	 */
2871 	tmp = &cipher_in[strlen("capi:")];
2872 
2873 	/* Separate IV options if present, it can contain another '-' in hash name */
2874 	*ivopts = strrchr(tmp, ':');
2875 	if (*ivopts) {
2876 		**ivopts = '\0';
2877 		(*ivopts)++;
2878 	}
2879 	/* Parse IV mode */
2880 	*ivmode = strrchr(tmp, '-');
2881 	if (*ivmode) {
2882 		**ivmode = '\0';
2883 		(*ivmode)++;
2884 	}
2885 	/* The rest is crypto API spec */
2886 	cipher_api = tmp;
2887 
2888 	/* Alloc AEAD, can be used only in new format. */
2889 	if (crypt_integrity_aead(cc)) {
2890 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2891 		if (ret < 0) {
2892 			ti->error = "Invalid AEAD cipher spec";
2893 			return ret;
2894 		}
2895 	}
2896 
2897 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2898 		cc->tfms_count = 64;
2899 
2900 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2901 		if (!*ivopts) {
2902 			ti->error = "Digest algorithm missing for ESSIV mode";
2903 			return -EINVAL;
2904 		}
2905 		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2906 			       cipher_api, *ivopts);
2907 		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2908 			ti->error = "Cannot allocate cipher string";
2909 			return -ENOMEM;
2910 		}
2911 		cipher_api = buf;
2912 	}
2913 
2914 	cc->key_parts = cc->tfms_count;
2915 
2916 	/* Allocate cipher */
2917 	ret = crypt_alloc_tfms(cc, cipher_api);
2918 	if (ret < 0) {
2919 		ti->error = "Error allocating crypto tfm";
2920 		return ret;
2921 	}
2922 
2923 	if (crypt_integrity_aead(cc))
2924 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2925 	else
2926 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2927 
2928 	return 0;
2929 }
2930 
2931 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2932 				char **ivmode, char **ivopts)
2933 {
2934 	struct crypt_config *cc = ti->private;
2935 	char *tmp, *cipher, *chainmode, *keycount;
2936 	char *cipher_api = NULL;
2937 	int ret = -EINVAL;
2938 	char dummy;
2939 
2940 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2941 		ti->error = "Bad cipher specification";
2942 		return -EINVAL;
2943 	}
2944 
2945 	/*
2946 	 * Legacy dm-crypt cipher specification
2947 	 * cipher[:keycount]-mode-iv:ivopts
2948 	 */
2949 	tmp = cipher_in;
2950 	keycount = strsep(&tmp, "-");
2951 	cipher = strsep(&keycount, ":");
2952 
2953 	if (!keycount)
2954 		cc->tfms_count = 1;
2955 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2956 		 !is_power_of_2(cc->tfms_count)) {
2957 		ti->error = "Bad cipher key count specification";
2958 		return -EINVAL;
2959 	}
2960 	cc->key_parts = cc->tfms_count;
2961 
2962 	chainmode = strsep(&tmp, "-");
2963 	*ivmode = strsep(&tmp, ":");
2964 	*ivopts = tmp;
2965 
2966 	/*
2967 	 * For compatibility with the original dm-crypt mapping format, if
2968 	 * only the cipher name is supplied, use cbc-plain.
2969 	 */
2970 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2971 		chainmode = "cbc";
2972 		*ivmode = "plain";
2973 	}
2974 
2975 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2976 		ti->error = "IV mechanism required";
2977 		return -EINVAL;
2978 	}
2979 
2980 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2981 	if (!cipher_api)
2982 		goto bad_mem;
2983 
2984 	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2985 		if (!*ivopts) {
2986 			ti->error = "Digest algorithm missing for ESSIV mode";
2987 			kfree(cipher_api);
2988 			return -EINVAL;
2989 		}
2990 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2991 			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2992 	} else {
2993 		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2994 			       "%s(%s)", chainmode, cipher);
2995 	}
2996 	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2997 		kfree(cipher_api);
2998 		goto bad_mem;
2999 	}
3000 
3001 	/* Allocate cipher */
3002 	ret = crypt_alloc_tfms(cc, cipher_api);
3003 	if (ret < 0) {
3004 		ti->error = "Error allocating crypto tfm";
3005 		kfree(cipher_api);
3006 		return ret;
3007 	}
3008 	kfree(cipher_api);
3009 
3010 	return 0;
3011 bad_mem:
3012 	ti->error = "Cannot allocate cipher strings";
3013 	return -ENOMEM;
3014 }
3015 
3016 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3017 {
3018 	struct crypt_config *cc = ti->private;
3019 	char *ivmode = NULL, *ivopts = NULL;
3020 	int ret;
3021 
3022 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3023 	if (!cc->cipher_string) {
3024 		ti->error = "Cannot allocate cipher strings";
3025 		return -ENOMEM;
3026 	}
3027 
3028 	if (strstarts(cipher_in, "capi:"))
3029 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3030 	else
3031 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3032 	if (ret)
3033 		return ret;
3034 
3035 	/* Initialize IV */
3036 	ret = crypt_ctr_ivmode(ti, ivmode);
3037 	if (ret < 0)
3038 		return ret;
3039 
3040 	/* Initialize and set key */
3041 	ret = crypt_set_key(cc, key);
3042 	if (ret < 0) {
3043 		ti->error = "Error decoding and setting key";
3044 		return ret;
3045 	}
3046 
3047 	/* Allocate IV */
3048 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3049 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3050 		if (ret < 0) {
3051 			ti->error = "Error creating IV";
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	/* Initialize IV (set keys for ESSIV etc) */
3057 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3058 		ret = cc->iv_gen_ops->init(cc);
3059 		if (ret < 0) {
3060 			ti->error = "Error initialising IV";
3061 			return ret;
3062 		}
3063 	}
3064 
3065 	/* wipe the kernel key payload copy */
3066 	if (cc->key_string)
3067 		memset(cc->key, 0, cc->key_size * sizeof(u8));
3068 
3069 	return ret;
3070 }
3071 
3072 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3073 {
3074 	struct crypt_config *cc = ti->private;
3075 	struct dm_arg_set as;
3076 	static const struct dm_arg _args[] = {
3077 		{0, 8, "Invalid number of feature args"},
3078 	};
3079 	unsigned int opt_params, val;
3080 	const char *opt_string, *sval;
3081 	char dummy;
3082 	int ret;
3083 
3084 	/* Optional parameters */
3085 	as.argc = argc;
3086 	as.argv = argv;
3087 
3088 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3089 	if (ret)
3090 		return ret;
3091 
3092 	while (opt_params--) {
3093 		opt_string = dm_shift_arg(&as);
3094 		if (!opt_string) {
3095 			ti->error = "Not enough feature arguments";
3096 			return -EINVAL;
3097 		}
3098 
3099 		if (!strcasecmp(opt_string, "allow_discards"))
3100 			ti->num_discard_bios = 1;
3101 
3102 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3103 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3104 
3105 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3106 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3107 		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3108 			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3109 		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3110 			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3111 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3112 			if (val == 0 || val > MAX_TAG_SIZE) {
3113 				ti->error = "Invalid integrity arguments";
3114 				return -EINVAL;
3115 			}
3116 			cc->on_disk_tag_size = val;
3117 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3118 			if (!strcasecmp(sval, "aead")) {
3119 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3120 			} else  if (strcasecmp(sval, "none")) {
3121 				ti->error = "Unknown integrity profile";
3122 				return -EINVAL;
3123 			}
3124 
3125 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3126 			if (!cc->cipher_auth)
3127 				return -ENOMEM;
3128 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3129 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3130 			    cc->sector_size > 4096 ||
3131 			    (cc->sector_size & (cc->sector_size - 1))) {
3132 				ti->error = "Invalid feature value for sector_size";
3133 				return -EINVAL;
3134 			}
3135 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3136 				ti->error = "Device size is not multiple of sector_size feature";
3137 				return -EINVAL;
3138 			}
3139 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3140 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3141 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3142 		else {
3143 			ti->error = "Invalid feature arguments";
3144 			return -EINVAL;
3145 		}
3146 	}
3147 
3148 	return 0;
3149 }
3150 
3151 #ifdef CONFIG_BLK_DEV_ZONED
3152 static int crypt_report_zones(struct dm_target *ti,
3153 		struct dm_report_zones_args *args, unsigned int nr_zones)
3154 {
3155 	struct crypt_config *cc = ti->private;
3156 
3157 	return dm_report_zones(cc->dev->bdev, cc->start,
3158 			cc->start + dm_target_offset(ti, args->next_sector),
3159 			args, nr_zones);
3160 }
3161 #else
3162 #define crypt_report_zones NULL
3163 #endif
3164 
3165 /*
3166  * Construct an encryption mapping:
3167  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3168  */
3169 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3170 {
3171 	struct crypt_config *cc;
3172 	const char *devname = dm_table_device_name(ti->table);
3173 	int key_size;
3174 	unsigned int align_mask;
3175 	unsigned long long tmpll;
3176 	int ret;
3177 	size_t iv_size_padding, additional_req_size;
3178 	char dummy;
3179 
3180 	if (argc < 5) {
3181 		ti->error = "Not enough arguments";
3182 		return -EINVAL;
3183 	}
3184 
3185 	key_size = get_key_size(&argv[1]);
3186 	if (key_size < 0) {
3187 		ti->error = "Cannot parse key size";
3188 		return -EINVAL;
3189 	}
3190 
3191 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3192 	if (!cc) {
3193 		ti->error = "Cannot allocate encryption context";
3194 		return -ENOMEM;
3195 	}
3196 	cc->key_size = key_size;
3197 	cc->sector_size = (1 << SECTOR_SHIFT);
3198 	cc->sector_shift = 0;
3199 
3200 	ti->private = cc;
3201 
3202 	spin_lock(&dm_crypt_clients_lock);
3203 	dm_crypt_clients_n++;
3204 	crypt_calculate_pages_per_client();
3205 	spin_unlock(&dm_crypt_clients_lock);
3206 
3207 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3208 	if (ret < 0)
3209 		goto bad;
3210 
3211 	/* Optional parameters need to be read before cipher constructor */
3212 	if (argc > 5) {
3213 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3214 		if (ret)
3215 			goto bad;
3216 	}
3217 
3218 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3219 	if (ret < 0)
3220 		goto bad;
3221 
3222 	if (crypt_integrity_aead(cc)) {
3223 		cc->dmreq_start = sizeof(struct aead_request);
3224 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3225 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3226 	} else {
3227 		cc->dmreq_start = sizeof(struct skcipher_request);
3228 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3229 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3230 	}
3231 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3232 
3233 	if (align_mask < CRYPTO_MINALIGN) {
3234 		/* Allocate the padding exactly */
3235 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3236 				& align_mask;
3237 	} else {
3238 		/*
3239 		 * If the cipher requires greater alignment than kmalloc
3240 		 * alignment, we don't know the exact position of the
3241 		 * initialization vector. We must assume worst case.
3242 		 */
3243 		iv_size_padding = align_mask;
3244 	}
3245 
3246 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3247 	additional_req_size = sizeof(struct dm_crypt_request) +
3248 		iv_size_padding + cc->iv_size +
3249 		cc->iv_size +
3250 		sizeof(uint64_t) +
3251 		sizeof(unsigned int);
3252 
3253 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3254 	if (ret) {
3255 		ti->error = "Cannot allocate crypt request mempool";
3256 		goto bad;
3257 	}
3258 
3259 	cc->per_bio_data_size = ti->per_io_data_size =
3260 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3261 		      ARCH_DMA_MINALIGN);
3262 
3263 	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3264 	if (ret) {
3265 		ti->error = "Cannot allocate page mempool";
3266 		goto bad;
3267 	}
3268 
3269 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3270 	if (ret) {
3271 		ti->error = "Cannot allocate crypt bioset";
3272 		goto bad;
3273 	}
3274 
3275 	mutex_init(&cc->bio_alloc_lock);
3276 
3277 	ret = -EINVAL;
3278 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3279 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3280 		ti->error = "Invalid iv_offset sector";
3281 		goto bad;
3282 	}
3283 	cc->iv_offset = tmpll;
3284 
3285 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3286 	if (ret) {
3287 		ti->error = "Device lookup failed";
3288 		goto bad;
3289 	}
3290 
3291 	ret = -EINVAL;
3292 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3293 		ti->error = "Invalid device sector";
3294 		goto bad;
3295 	}
3296 	cc->start = tmpll;
3297 
3298 	if (bdev_is_zoned(cc->dev->bdev)) {
3299 		/*
3300 		 * For zoned block devices, we need to preserve the issuer write
3301 		 * ordering. To do so, disable write workqueues and force inline
3302 		 * encryption completion.
3303 		 */
3304 		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3305 		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3306 
3307 		/*
3308 		 * All zone append writes to a zone of a zoned block device will
3309 		 * have the same BIO sector, the start of the zone. When the
3310 		 * cypher IV mode uses sector values, all data targeting a
3311 		 * zone will be encrypted using the first sector numbers of the
3312 		 * zone. This will not result in write errors but will
3313 		 * cause most reads to fail as reads will use the sector values
3314 		 * for the actual data locations, resulting in IV mismatch.
3315 		 * To avoid this problem, ask DM core to emulate zone append
3316 		 * operations with regular writes.
3317 		 */
3318 		DMDEBUG("Zone append operations will be emulated");
3319 		ti->emulate_zone_append = true;
3320 	}
3321 
3322 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3323 		ret = crypt_integrity_ctr(cc, ti);
3324 		if (ret)
3325 			goto bad;
3326 
3327 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3328 		if (!cc->tag_pool_max_sectors)
3329 			cc->tag_pool_max_sectors = 1;
3330 
3331 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3332 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3333 		if (ret) {
3334 			ti->error = "Cannot allocate integrity tags mempool";
3335 			goto bad;
3336 		}
3337 
3338 		cc->tag_pool_max_sectors <<= cc->sector_shift;
3339 	}
3340 
3341 	ret = -ENOMEM;
3342 	cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3343 	if (!cc->io_queue) {
3344 		ti->error = "Couldn't create kcryptd io queue";
3345 		goto bad;
3346 	}
3347 
3348 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3349 		cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3350 						  1, devname);
3351 	else
3352 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3353 						  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3354 						  num_online_cpus(), devname);
3355 	if (!cc->crypt_queue) {
3356 		ti->error = "Couldn't create kcryptd queue";
3357 		goto bad;
3358 	}
3359 
3360 	spin_lock_init(&cc->write_thread_lock);
3361 	cc->write_tree = RB_ROOT;
3362 
3363 	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3364 	if (IS_ERR(cc->write_thread)) {
3365 		ret = PTR_ERR(cc->write_thread);
3366 		cc->write_thread = NULL;
3367 		ti->error = "Couldn't spawn write thread";
3368 		goto bad;
3369 	}
3370 
3371 	ti->num_flush_bios = 1;
3372 	ti->limit_swap_bios = true;
3373 	ti->accounts_remapped_io = true;
3374 
3375 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3376 	return 0;
3377 
3378 bad:
3379 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3380 	crypt_dtr(ti);
3381 	return ret;
3382 }
3383 
3384 static int crypt_map(struct dm_target *ti, struct bio *bio)
3385 {
3386 	struct dm_crypt_io *io;
3387 	struct crypt_config *cc = ti->private;
3388 
3389 	/*
3390 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3391 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3392 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3393 	 */
3394 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3395 	    bio_op(bio) == REQ_OP_DISCARD)) {
3396 		bio_set_dev(bio, cc->dev->bdev);
3397 		if (bio_sectors(bio))
3398 			bio->bi_iter.bi_sector = cc->start +
3399 				dm_target_offset(ti, bio->bi_iter.bi_sector);
3400 		return DM_MAPIO_REMAPPED;
3401 	}
3402 
3403 	/*
3404 	 * Check if bio is too large, split as needed.
3405 	 */
3406 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3407 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3408 		dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3409 
3410 	/*
3411 	 * Ensure that bio is a multiple of internal sector encryption size
3412 	 * and is aligned to this size as defined in IO hints.
3413 	 */
3414 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3415 		return DM_MAPIO_KILL;
3416 
3417 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3418 		return DM_MAPIO_KILL;
3419 
3420 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3421 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3422 
3423 	if (cc->on_disk_tag_size) {
3424 		unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3425 
3426 		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3427 			io->integrity_metadata = NULL;
3428 		else
3429 			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3430 
3431 		if (unlikely(!io->integrity_metadata)) {
3432 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3433 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3434 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3435 			io->integrity_metadata_from_pool = true;
3436 		}
3437 	}
3438 
3439 	if (crypt_integrity_aead(cc))
3440 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3441 	else
3442 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3443 
3444 	if (bio_data_dir(io->base_bio) == READ) {
3445 		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3446 			kcryptd_queue_read(io);
3447 	} else
3448 		kcryptd_queue_crypt(io);
3449 
3450 	return DM_MAPIO_SUBMITTED;
3451 }
3452 
3453 static char hex2asc(unsigned char c)
3454 {
3455 	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3456 }
3457 
3458 static void crypt_status(struct dm_target *ti, status_type_t type,
3459 			 unsigned int status_flags, char *result, unsigned int maxlen)
3460 {
3461 	struct crypt_config *cc = ti->private;
3462 	unsigned int i, sz = 0;
3463 	int num_feature_args = 0;
3464 
3465 	switch (type) {
3466 	case STATUSTYPE_INFO:
3467 		result[0] = '\0';
3468 		break;
3469 
3470 	case STATUSTYPE_TABLE:
3471 		DMEMIT("%s ", cc->cipher_string);
3472 
3473 		if (cc->key_size > 0) {
3474 			if (cc->key_string)
3475 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3476 			else {
3477 				for (i = 0; i < cc->key_size; i++) {
3478 					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3479 					       hex2asc(cc->key[i] & 0xf));
3480 				}
3481 			}
3482 		} else
3483 			DMEMIT("-");
3484 
3485 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3486 				cc->dev->name, (unsigned long long)cc->start);
3487 
3488 		num_feature_args += !!ti->num_discard_bios;
3489 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3490 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3491 		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3492 		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3493 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3494 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3495 		if (cc->on_disk_tag_size)
3496 			num_feature_args++;
3497 		if (num_feature_args) {
3498 			DMEMIT(" %d", num_feature_args);
3499 			if (ti->num_discard_bios)
3500 				DMEMIT(" allow_discards");
3501 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3502 				DMEMIT(" same_cpu_crypt");
3503 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3504 				DMEMIT(" submit_from_crypt_cpus");
3505 			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3506 				DMEMIT(" no_read_workqueue");
3507 			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3508 				DMEMIT(" no_write_workqueue");
3509 			if (cc->on_disk_tag_size)
3510 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3511 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3512 				DMEMIT(" sector_size:%d", cc->sector_size);
3513 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3514 				DMEMIT(" iv_large_sectors");
3515 		}
3516 		break;
3517 
3518 	case STATUSTYPE_IMA:
3519 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3520 		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3521 		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3522 		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3523 		       'y' : 'n');
3524 		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3525 		       'y' : 'n');
3526 		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3527 		       'y' : 'n');
3528 		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3529 		       'y' : 'n');
3530 
3531 		if (cc->on_disk_tag_size)
3532 			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3533 			       cc->on_disk_tag_size, cc->cipher_auth);
3534 		if (cc->sector_size != (1 << SECTOR_SHIFT))
3535 			DMEMIT(",sector_size=%d", cc->sector_size);
3536 		if (cc->cipher_string)
3537 			DMEMIT(",cipher_string=%s", cc->cipher_string);
3538 
3539 		DMEMIT(",key_size=%u", cc->key_size);
3540 		DMEMIT(",key_parts=%u", cc->key_parts);
3541 		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3542 		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3543 		DMEMIT(";");
3544 		break;
3545 	}
3546 }
3547 
3548 static void crypt_postsuspend(struct dm_target *ti)
3549 {
3550 	struct crypt_config *cc = ti->private;
3551 
3552 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3553 }
3554 
3555 static int crypt_preresume(struct dm_target *ti)
3556 {
3557 	struct crypt_config *cc = ti->private;
3558 
3559 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3560 		DMERR("aborting resume - crypt key is not set.");
3561 		return -EAGAIN;
3562 	}
3563 
3564 	return 0;
3565 }
3566 
3567 static void crypt_resume(struct dm_target *ti)
3568 {
3569 	struct crypt_config *cc = ti->private;
3570 
3571 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3572 }
3573 
3574 /* Message interface
3575  *	key set <key>
3576  *	key wipe
3577  */
3578 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3579 			 char *result, unsigned int maxlen)
3580 {
3581 	struct crypt_config *cc = ti->private;
3582 	int key_size, ret = -EINVAL;
3583 
3584 	if (argc < 2)
3585 		goto error;
3586 
3587 	if (!strcasecmp(argv[0], "key")) {
3588 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3589 			DMWARN("not suspended during key manipulation.");
3590 			return -EINVAL;
3591 		}
3592 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3593 			/* The key size may not be changed. */
3594 			key_size = get_key_size(&argv[2]);
3595 			if (key_size < 0 || cc->key_size != key_size) {
3596 				memset(argv[2], '0', strlen(argv[2]));
3597 				return -EINVAL;
3598 			}
3599 
3600 			ret = crypt_set_key(cc, argv[2]);
3601 			if (ret)
3602 				return ret;
3603 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3604 				ret = cc->iv_gen_ops->init(cc);
3605 			/* wipe the kernel key payload copy */
3606 			if (cc->key_string)
3607 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3608 			return ret;
3609 		}
3610 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3611 			return crypt_wipe_key(cc);
3612 	}
3613 
3614 error:
3615 	DMWARN("unrecognised message received.");
3616 	return -EINVAL;
3617 }
3618 
3619 static int crypt_iterate_devices(struct dm_target *ti,
3620 				 iterate_devices_callout_fn fn, void *data)
3621 {
3622 	struct crypt_config *cc = ti->private;
3623 
3624 	return fn(ti, cc->dev, cc->start, ti->len, data);
3625 }
3626 
3627 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3628 {
3629 	struct crypt_config *cc = ti->private;
3630 
3631 	/*
3632 	 * Unfortunate constraint that is required to avoid the potential
3633 	 * for exceeding underlying device's max_segments limits -- due to
3634 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3635 	 * bio that are not as physically contiguous as the original bio.
3636 	 */
3637 	limits->max_segment_size = PAGE_SIZE;
3638 
3639 	limits->logical_block_size =
3640 		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3641 	limits->physical_block_size =
3642 		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3643 	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3644 	limits->dma_alignment = limits->logical_block_size - 1;
3645 }
3646 
3647 static struct target_type crypt_target = {
3648 	.name   = "crypt",
3649 	.version = {1, 24, 0},
3650 	.module = THIS_MODULE,
3651 	.ctr    = crypt_ctr,
3652 	.dtr    = crypt_dtr,
3653 	.features = DM_TARGET_ZONED_HM,
3654 	.report_zones = crypt_report_zones,
3655 	.map    = crypt_map,
3656 	.status = crypt_status,
3657 	.postsuspend = crypt_postsuspend,
3658 	.preresume = crypt_preresume,
3659 	.resume = crypt_resume,
3660 	.message = crypt_message,
3661 	.iterate_devices = crypt_iterate_devices,
3662 	.io_hints = crypt_io_hints,
3663 };
3664 module_dm(crypt);
3665 
3666 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3667 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3668 MODULE_LICENSE("GPL");
3669