xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
32 
33 #include <linux/device-mapper.h>
34 
35 #define DM_MSG_PREFIX "crypt"
36 
37 /*
38  * context holding the current state of a multi-part conversion
39  */
40 struct convert_context {
41 	struct completion restart;
42 	struct bio *bio_in;
43 	struct bio *bio_out;
44 	struct bvec_iter iter_in;
45 	struct bvec_iter iter_out;
46 	sector_t cc_sector;
47 	atomic_t cc_pending;
48 	struct skcipher_request *req;
49 };
50 
51 /*
52  * per bio private data
53  */
54 struct dm_crypt_io {
55 	struct crypt_config *cc;
56 	struct bio *base_bio;
57 	struct work_struct work;
58 
59 	struct convert_context ctx;
60 
61 	atomic_t io_pending;
62 	int error;
63 	sector_t sector;
64 
65 	struct rb_node rb_node;
66 } CRYPTO_MINALIGN_ATTR;
67 
68 struct dm_crypt_request {
69 	struct convert_context *ctx;
70 	struct scatterlist sg_in;
71 	struct scatterlist sg_out;
72 	sector_t iv_sector;
73 };
74 
75 struct crypt_config;
76 
77 struct crypt_iv_operations {
78 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 		   const char *opts);
80 	void (*dtr)(struct crypt_config *cc);
81 	int (*init)(struct crypt_config *cc);
82 	int (*wipe)(struct crypt_config *cc);
83 	int (*generator)(struct crypt_config *cc, u8 *iv,
84 			 struct dm_crypt_request *dmreq);
85 	int (*post)(struct crypt_config *cc, u8 *iv,
86 		    struct dm_crypt_request *dmreq);
87 };
88 
89 struct iv_essiv_private {
90 	struct crypto_ahash *hash_tfm;
91 	u8 *salt;
92 };
93 
94 struct iv_benbi_private {
95 	int shift;
96 };
97 
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private {
100 	struct crypto_shash *hash_tfm;
101 	u8 *seed;
102 };
103 
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private {
106 	struct crypto_shash *crc32_tfm;
107 	u8 *iv_seed;
108 	u8 *whitening;
109 };
110 
111 /*
112  * Crypt: maps a linear range of a block device
113  * and encrypts / decrypts at the same time.
114  */
115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
116 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
117 	     DM_CRYPT_EXIT_THREAD};
118 
119 /*
120  * The fields in here must be read only after initialization.
121  */
122 struct crypt_config {
123 	struct dm_dev *dev;
124 	sector_t start;
125 
126 	/*
127 	 * pool for per bio private data, crypto requests and
128 	 * encryption requeusts/buffer pages
129 	 */
130 	mempool_t *req_pool;
131 	mempool_t *page_pool;
132 	struct bio_set *bs;
133 	struct mutex bio_alloc_lock;
134 
135 	struct workqueue_struct *io_queue;
136 	struct workqueue_struct *crypt_queue;
137 
138 	struct task_struct *write_thread;
139 	wait_queue_head_t write_thread_wait;
140 	struct rb_root write_tree;
141 
142 	char *cipher;
143 	char *cipher_string;
144 
145 	struct crypt_iv_operations *iv_gen_ops;
146 	union {
147 		struct iv_essiv_private essiv;
148 		struct iv_benbi_private benbi;
149 		struct iv_lmk_private lmk;
150 		struct iv_tcw_private tcw;
151 	} iv_gen_private;
152 	sector_t iv_offset;
153 	unsigned int iv_size;
154 
155 	/* ESSIV: struct crypto_cipher *essiv_tfm */
156 	void *iv_private;
157 	struct crypto_skcipher **tfms;
158 	unsigned tfms_count;
159 
160 	/*
161 	 * Layout of each crypto request:
162 	 *
163 	 *   struct skcipher_request
164 	 *      context
165 	 *      padding
166 	 *   struct dm_crypt_request
167 	 *      padding
168 	 *   IV
169 	 *
170 	 * The padding is added so that dm_crypt_request and the IV are
171 	 * correctly aligned.
172 	 */
173 	unsigned int dmreq_start;
174 
175 	unsigned int per_bio_data_size;
176 
177 	unsigned long flags;
178 	unsigned int key_size;
179 	unsigned int key_parts;      /* independent parts in key buffer */
180 	unsigned int key_extra_size; /* additional keys length */
181 	u8 key[0];
182 };
183 
184 #define MIN_IOS        16
185 
186 static void clone_init(struct dm_crypt_io *, struct bio *);
187 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
188 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
189 
190 /*
191  * Use this to access cipher attributes that are the same for each CPU.
192  */
193 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
194 {
195 	return cc->tfms[0];
196 }
197 
198 /*
199  * Different IV generation algorithms:
200  *
201  * plain: the initial vector is the 32-bit little-endian version of the sector
202  *        number, padded with zeros if necessary.
203  *
204  * plain64: the initial vector is the 64-bit little-endian version of the sector
205  *        number, padded with zeros if necessary.
206  *
207  * essiv: "encrypted sector|salt initial vector", the sector number is
208  *        encrypted with the bulk cipher using a salt as key. The salt
209  *        should be derived from the bulk cipher's key via hashing.
210  *
211  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
212  *        (needed for LRW-32-AES and possible other narrow block modes)
213  *
214  * null: the initial vector is always zero.  Provides compatibility with
215  *       obsolete loop_fish2 devices.  Do not use for new devices.
216  *
217  * lmk:  Compatible implementation of the block chaining mode used
218  *       by the Loop-AES block device encryption system
219  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
220  *       It operates on full 512 byte sectors and uses CBC
221  *       with an IV derived from the sector number, the data and
222  *       optionally extra IV seed.
223  *       This means that after decryption the first block
224  *       of sector must be tweaked according to decrypted data.
225  *       Loop-AES can use three encryption schemes:
226  *         version 1: is plain aes-cbc mode
227  *         version 2: uses 64 multikey scheme with lmk IV generator
228  *         version 3: the same as version 2 with additional IV seed
229  *                   (it uses 65 keys, last key is used as IV seed)
230  *
231  * tcw:  Compatible implementation of the block chaining mode used
232  *       by the TrueCrypt device encryption system (prior to version 4.1).
233  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
234  *       It operates on full 512 byte sectors and uses CBC
235  *       with an IV derived from initial key and the sector number.
236  *       In addition, whitening value is applied on every sector, whitening
237  *       is calculated from initial key, sector number and mixed using CRC32.
238  *       Note that this encryption scheme is vulnerable to watermarking attacks
239  *       and should be used for old compatible containers access only.
240  *
241  * plumb: unimplemented, see:
242  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
243  */
244 
245 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
246 			      struct dm_crypt_request *dmreq)
247 {
248 	memset(iv, 0, cc->iv_size);
249 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
250 
251 	return 0;
252 }
253 
254 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
255 				struct dm_crypt_request *dmreq)
256 {
257 	memset(iv, 0, cc->iv_size);
258 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
259 
260 	return 0;
261 }
262 
263 /* Initialise ESSIV - compute salt but no local memory allocations */
264 static int crypt_iv_essiv_init(struct crypt_config *cc)
265 {
266 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
267 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
268 	struct scatterlist sg;
269 	struct crypto_cipher *essiv_tfm;
270 	int err;
271 
272 	sg_init_one(&sg, cc->key, cc->key_size);
273 	ahash_request_set_tfm(req, essiv->hash_tfm);
274 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
275 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
276 
277 	err = crypto_ahash_digest(req);
278 	ahash_request_zero(req);
279 	if (err)
280 		return err;
281 
282 	essiv_tfm = cc->iv_private;
283 
284 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
285 			    crypto_ahash_digestsize(essiv->hash_tfm));
286 	if (err)
287 		return err;
288 
289 	return 0;
290 }
291 
292 /* Wipe salt and reset key derived from volume key */
293 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
294 {
295 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
296 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
297 	struct crypto_cipher *essiv_tfm;
298 	int r, err = 0;
299 
300 	memset(essiv->salt, 0, salt_size);
301 
302 	essiv_tfm = cc->iv_private;
303 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
304 	if (r)
305 		err = r;
306 
307 	return err;
308 }
309 
310 /* Set up per cpu cipher state */
311 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
312 					     struct dm_target *ti,
313 					     u8 *salt, unsigned saltsize)
314 {
315 	struct crypto_cipher *essiv_tfm;
316 	int err;
317 
318 	/* Setup the essiv_tfm with the given salt */
319 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
320 	if (IS_ERR(essiv_tfm)) {
321 		ti->error = "Error allocating crypto tfm for ESSIV";
322 		return essiv_tfm;
323 	}
324 
325 	if (crypto_cipher_blocksize(essiv_tfm) !=
326 	    crypto_skcipher_ivsize(any_tfm(cc))) {
327 		ti->error = "Block size of ESSIV cipher does "
328 			    "not match IV size of block cipher";
329 		crypto_free_cipher(essiv_tfm);
330 		return ERR_PTR(-EINVAL);
331 	}
332 
333 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
334 	if (err) {
335 		ti->error = "Failed to set key for ESSIV cipher";
336 		crypto_free_cipher(essiv_tfm);
337 		return ERR_PTR(err);
338 	}
339 
340 	return essiv_tfm;
341 }
342 
343 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
344 {
345 	struct crypto_cipher *essiv_tfm;
346 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
347 
348 	crypto_free_ahash(essiv->hash_tfm);
349 	essiv->hash_tfm = NULL;
350 
351 	kzfree(essiv->salt);
352 	essiv->salt = NULL;
353 
354 	essiv_tfm = cc->iv_private;
355 
356 	if (essiv_tfm)
357 		crypto_free_cipher(essiv_tfm);
358 
359 	cc->iv_private = NULL;
360 }
361 
362 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
363 			      const char *opts)
364 {
365 	struct crypto_cipher *essiv_tfm = NULL;
366 	struct crypto_ahash *hash_tfm = NULL;
367 	u8 *salt = NULL;
368 	int err;
369 
370 	if (!opts) {
371 		ti->error = "Digest algorithm missing for ESSIV mode";
372 		return -EINVAL;
373 	}
374 
375 	/* Allocate hash algorithm */
376 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
377 	if (IS_ERR(hash_tfm)) {
378 		ti->error = "Error initializing ESSIV hash";
379 		err = PTR_ERR(hash_tfm);
380 		goto bad;
381 	}
382 
383 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
384 	if (!salt) {
385 		ti->error = "Error kmallocing salt storage in ESSIV";
386 		err = -ENOMEM;
387 		goto bad;
388 	}
389 
390 	cc->iv_gen_private.essiv.salt = salt;
391 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
392 
393 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 				crypto_ahash_digestsize(hash_tfm));
395 	if (IS_ERR(essiv_tfm)) {
396 		crypt_iv_essiv_dtr(cc);
397 		return PTR_ERR(essiv_tfm);
398 	}
399 	cc->iv_private = essiv_tfm;
400 
401 	return 0;
402 
403 bad:
404 	if (hash_tfm && !IS_ERR(hash_tfm))
405 		crypto_free_ahash(hash_tfm);
406 	kfree(salt);
407 	return err;
408 }
409 
410 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
411 			      struct dm_crypt_request *dmreq)
412 {
413 	struct crypto_cipher *essiv_tfm = cc->iv_private;
414 
415 	memset(iv, 0, cc->iv_size);
416 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
417 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
418 
419 	return 0;
420 }
421 
422 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
423 			      const char *opts)
424 {
425 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
426 	int log = ilog2(bs);
427 
428 	/* we need to calculate how far we must shift the sector count
429 	 * to get the cipher block count, we use this shift in _gen */
430 
431 	if (1 << log != bs) {
432 		ti->error = "cypher blocksize is not a power of 2";
433 		return -EINVAL;
434 	}
435 
436 	if (log > 9) {
437 		ti->error = "cypher blocksize is > 512";
438 		return -EINVAL;
439 	}
440 
441 	cc->iv_gen_private.benbi.shift = 9 - log;
442 
443 	return 0;
444 }
445 
446 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
447 {
448 }
449 
450 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
451 			      struct dm_crypt_request *dmreq)
452 {
453 	__be64 val;
454 
455 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
456 
457 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
458 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
459 
460 	return 0;
461 }
462 
463 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
464 			     struct dm_crypt_request *dmreq)
465 {
466 	memset(iv, 0, cc->iv_size);
467 
468 	return 0;
469 }
470 
471 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
472 {
473 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474 
475 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
476 		crypto_free_shash(lmk->hash_tfm);
477 	lmk->hash_tfm = NULL;
478 
479 	kzfree(lmk->seed);
480 	lmk->seed = NULL;
481 }
482 
483 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
484 			    const char *opts)
485 {
486 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
487 
488 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
489 	if (IS_ERR(lmk->hash_tfm)) {
490 		ti->error = "Error initializing LMK hash";
491 		return PTR_ERR(lmk->hash_tfm);
492 	}
493 
494 	/* No seed in LMK version 2 */
495 	if (cc->key_parts == cc->tfms_count) {
496 		lmk->seed = NULL;
497 		return 0;
498 	}
499 
500 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
501 	if (!lmk->seed) {
502 		crypt_iv_lmk_dtr(cc);
503 		ti->error = "Error kmallocing seed storage in LMK";
504 		return -ENOMEM;
505 	}
506 
507 	return 0;
508 }
509 
510 static int crypt_iv_lmk_init(struct crypt_config *cc)
511 {
512 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
513 	int subkey_size = cc->key_size / cc->key_parts;
514 
515 	/* LMK seed is on the position of LMK_KEYS + 1 key */
516 	if (lmk->seed)
517 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
518 		       crypto_shash_digestsize(lmk->hash_tfm));
519 
520 	return 0;
521 }
522 
523 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
524 {
525 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
526 
527 	if (lmk->seed)
528 		memset(lmk->seed, 0, LMK_SEED_SIZE);
529 
530 	return 0;
531 }
532 
533 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
534 			    struct dm_crypt_request *dmreq,
535 			    u8 *data)
536 {
537 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
538 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
539 	struct md5_state md5state;
540 	__le32 buf[4];
541 	int i, r;
542 
543 	desc->tfm = lmk->hash_tfm;
544 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
545 
546 	r = crypto_shash_init(desc);
547 	if (r)
548 		return r;
549 
550 	if (lmk->seed) {
551 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
552 		if (r)
553 			return r;
554 	}
555 
556 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
557 	r = crypto_shash_update(desc, data + 16, 16 * 31);
558 	if (r)
559 		return r;
560 
561 	/* Sector is cropped to 56 bits here */
562 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
563 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
564 	buf[2] = cpu_to_le32(4024);
565 	buf[3] = 0;
566 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
567 	if (r)
568 		return r;
569 
570 	/* No MD5 padding here */
571 	r = crypto_shash_export(desc, &md5state);
572 	if (r)
573 		return r;
574 
575 	for (i = 0; i < MD5_HASH_WORDS; i++)
576 		__cpu_to_le32s(&md5state.hash[i]);
577 	memcpy(iv, &md5state.hash, cc->iv_size);
578 
579 	return 0;
580 }
581 
582 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
583 			    struct dm_crypt_request *dmreq)
584 {
585 	u8 *src;
586 	int r = 0;
587 
588 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
589 		src = kmap_atomic(sg_page(&dmreq->sg_in));
590 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
591 		kunmap_atomic(src);
592 	} else
593 		memset(iv, 0, cc->iv_size);
594 
595 	return r;
596 }
597 
598 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
599 			     struct dm_crypt_request *dmreq)
600 {
601 	u8 *dst;
602 	int r;
603 
604 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
605 		return 0;
606 
607 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
608 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
609 
610 	/* Tweak the first block of plaintext sector */
611 	if (!r)
612 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
613 
614 	kunmap_atomic(dst);
615 	return r;
616 }
617 
618 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
619 {
620 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 
622 	kzfree(tcw->iv_seed);
623 	tcw->iv_seed = NULL;
624 	kzfree(tcw->whitening);
625 	tcw->whitening = NULL;
626 
627 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
628 		crypto_free_shash(tcw->crc32_tfm);
629 	tcw->crc32_tfm = NULL;
630 }
631 
632 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
633 			    const char *opts)
634 {
635 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
636 
637 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
638 		ti->error = "Wrong key size for TCW";
639 		return -EINVAL;
640 	}
641 
642 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
643 	if (IS_ERR(tcw->crc32_tfm)) {
644 		ti->error = "Error initializing CRC32 in TCW";
645 		return PTR_ERR(tcw->crc32_tfm);
646 	}
647 
648 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
649 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
650 	if (!tcw->iv_seed || !tcw->whitening) {
651 		crypt_iv_tcw_dtr(cc);
652 		ti->error = "Error allocating seed storage in TCW";
653 		return -ENOMEM;
654 	}
655 
656 	return 0;
657 }
658 
659 static int crypt_iv_tcw_init(struct crypt_config *cc)
660 {
661 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
662 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
663 
664 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
665 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
666 	       TCW_WHITENING_SIZE);
667 
668 	return 0;
669 }
670 
671 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
672 {
673 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
674 
675 	memset(tcw->iv_seed, 0, cc->iv_size);
676 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
677 
678 	return 0;
679 }
680 
681 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
682 				  struct dm_crypt_request *dmreq,
683 				  u8 *data)
684 {
685 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
686 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
687 	u8 buf[TCW_WHITENING_SIZE];
688 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
689 	int i, r;
690 
691 	/* xor whitening with sector number */
692 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
693 	crypto_xor(buf, (u8 *)&sector, 8);
694 	crypto_xor(&buf[8], (u8 *)&sector, 8);
695 
696 	/* calculate crc32 for every 32bit part and xor it */
697 	desc->tfm = tcw->crc32_tfm;
698 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
699 	for (i = 0; i < 4; i++) {
700 		r = crypto_shash_init(desc);
701 		if (r)
702 			goto out;
703 		r = crypto_shash_update(desc, &buf[i * 4], 4);
704 		if (r)
705 			goto out;
706 		r = crypto_shash_final(desc, &buf[i * 4]);
707 		if (r)
708 			goto out;
709 	}
710 	crypto_xor(&buf[0], &buf[12], 4);
711 	crypto_xor(&buf[4], &buf[8], 4);
712 
713 	/* apply whitening (8 bytes) to whole sector */
714 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
715 		crypto_xor(data + i * 8, buf, 8);
716 out:
717 	memzero_explicit(buf, sizeof(buf));
718 	return r;
719 }
720 
721 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
722 			    struct dm_crypt_request *dmreq)
723 {
724 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
725 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
726 	u8 *src;
727 	int r = 0;
728 
729 	/* Remove whitening from ciphertext */
730 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
731 		src = kmap_atomic(sg_page(&dmreq->sg_in));
732 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
733 		kunmap_atomic(src);
734 	}
735 
736 	/* Calculate IV */
737 	memcpy(iv, tcw->iv_seed, cc->iv_size);
738 	crypto_xor(iv, (u8 *)&sector, 8);
739 	if (cc->iv_size > 8)
740 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
741 
742 	return r;
743 }
744 
745 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
746 			     struct dm_crypt_request *dmreq)
747 {
748 	u8 *dst;
749 	int r;
750 
751 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
752 		return 0;
753 
754 	/* Apply whitening on ciphertext */
755 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
756 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
757 	kunmap_atomic(dst);
758 
759 	return r;
760 }
761 
762 static struct crypt_iv_operations crypt_iv_plain_ops = {
763 	.generator = crypt_iv_plain_gen
764 };
765 
766 static struct crypt_iv_operations crypt_iv_plain64_ops = {
767 	.generator = crypt_iv_plain64_gen
768 };
769 
770 static struct crypt_iv_operations crypt_iv_essiv_ops = {
771 	.ctr       = crypt_iv_essiv_ctr,
772 	.dtr       = crypt_iv_essiv_dtr,
773 	.init      = crypt_iv_essiv_init,
774 	.wipe      = crypt_iv_essiv_wipe,
775 	.generator = crypt_iv_essiv_gen
776 };
777 
778 static struct crypt_iv_operations crypt_iv_benbi_ops = {
779 	.ctr	   = crypt_iv_benbi_ctr,
780 	.dtr	   = crypt_iv_benbi_dtr,
781 	.generator = crypt_iv_benbi_gen
782 };
783 
784 static struct crypt_iv_operations crypt_iv_null_ops = {
785 	.generator = crypt_iv_null_gen
786 };
787 
788 static struct crypt_iv_operations crypt_iv_lmk_ops = {
789 	.ctr	   = crypt_iv_lmk_ctr,
790 	.dtr	   = crypt_iv_lmk_dtr,
791 	.init	   = crypt_iv_lmk_init,
792 	.wipe	   = crypt_iv_lmk_wipe,
793 	.generator = crypt_iv_lmk_gen,
794 	.post	   = crypt_iv_lmk_post
795 };
796 
797 static struct crypt_iv_operations crypt_iv_tcw_ops = {
798 	.ctr	   = crypt_iv_tcw_ctr,
799 	.dtr	   = crypt_iv_tcw_dtr,
800 	.init	   = crypt_iv_tcw_init,
801 	.wipe	   = crypt_iv_tcw_wipe,
802 	.generator = crypt_iv_tcw_gen,
803 	.post	   = crypt_iv_tcw_post
804 };
805 
806 static void crypt_convert_init(struct crypt_config *cc,
807 			       struct convert_context *ctx,
808 			       struct bio *bio_out, struct bio *bio_in,
809 			       sector_t sector)
810 {
811 	ctx->bio_in = bio_in;
812 	ctx->bio_out = bio_out;
813 	if (bio_in)
814 		ctx->iter_in = bio_in->bi_iter;
815 	if (bio_out)
816 		ctx->iter_out = bio_out->bi_iter;
817 	ctx->cc_sector = sector + cc->iv_offset;
818 	init_completion(&ctx->restart);
819 }
820 
821 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
822 					     struct skcipher_request *req)
823 {
824 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
825 }
826 
827 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
828 					       struct dm_crypt_request *dmreq)
829 {
830 	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
831 }
832 
833 static u8 *iv_of_dmreq(struct crypt_config *cc,
834 		       struct dm_crypt_request *dmreq)
835 {
836 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
837 		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
838 }
839 
840 static int crypt_convert_block(struct crypt_config *cc,
841 			       struct convert_context *ctx,
842 			       struct skcipher_request *req)
843 {
844 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
845 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
846 	struct dm_crypt_request *dmreq;
847 	u8 *iv;
848 	int r;
849 
850 	dmreq = dmreq_of_req(cc, req);
851 	iv = iv_of_dmreq(cc, dmreq);
852 
853 	dmreq->iv_sector = ctx->cc_sector;
854 	dmreq->ctx = ctx;
855 	sg_init_table(&dmreq->sg_in, 1);
856 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
857 		    bv_in.bv_offset);
858 
859 	sg_init_table(&dmreq->sg_out, 1);
860 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
861 		    bv_out.bv_offset);
862 
863 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
864 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
865 
866 	if (cc->iv_gen_ops) {
867 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
868 		if (r < 0)
869 			return r;
870 	}
871 
872 	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
873 				   1 << SECTOR_SHIFT, iv);
874 
875 	if (bio_data_dir(ctx->bio_in) == WRITE)
876 		r = crypto_skcipher_encrypt(req);
877 	else
878 		r = crypto_skcipher_decrypt(req);
879 
880 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
881 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
882 
883 	return r;
884 }
885 
886 static void kcryptd_async_done(struct crypto_async_request *async_req,
887 			       int error);
888 
889 static void crypt_alloc_req(struct crypt_config *cc,
890 			    struct convert_context *ctx)
891 {
892 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
893 
894 	if (!ctx->req)
895 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
896 
897 	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
898 
899 	/*
900 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
901 	 * requests if driver request queue is full.
902 	 */
903 	skcipher_request_set_callback(ctx->req,
904 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
905 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
906 }
907 
908 static void crypt_free_req(struct crypt_config *cc,
909 			   struct skcipher_request *req, struct bio *base_bio)
910 {
911 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
912 
913 	if ((struct skcipher_request *)(io + 1) != req)
914 		mempool_free(req, cc->req_pool);
915 }
916 
917 /*
918  * Encrypt / decrypt data from one bio to another one (can be the same one)
919  */
920 static int crypt_convert(struct crypt_config *cc,
921 			 struct convert_context *ctx)
922 {
923 	int r;
924 
925 	atomic_set(&ctx->cc_pending, 1);
926 
927 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
928 
929 		crypt_alloc_req(cc, ctx);
930 
931 		atomic_inc(&ctx->cc_pending);
932 
933 		r = crypt_convert_block(cc, ctx, ctx->req);
934 
935 		switch (r) {
936 		/*
937 		 * The request was queued by a crypto driver
938 		 * but the driver request queue is full, let's wait.
939 		 */
940 		case -EBUSY:
941 			wait_for_completion(&ctx->restart);
942 			reinit_completion(&ctx->restart);
943 			/* fall through */
944 		/*
945 		 * The request is queued and processed asynchronously,
946 		 * completion function kcryptd_async_done() will be called.
947 		 */
948 		case -EINPROGRESS:
949 			ctx->req = NULL;
950 			ctx->cc_sector++;
951 			continue;
952 		/*
953 		 * The request was already processed (synchronously).
954 		 */
955 		case 0:
956 			atomic_dec(&ctx->cc_pending);
957 			ctx->cc_sector++;
958 			cond_resched();
959 			continue;
960 
961 		/* There was an error while processing the request. */
962 		default:
963 			atomic_dec(&ctx->cc_pending);
964 			return r;
965 		}
966 	}
967 
968 	return 0;
969 }
970 
971 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
972 
973 /*
974  * Generate a new unfragmented bio with the given size
975  * This should never violate the device limitations (but only because
976  * max_segment_size is being constrained to PAGE_SIZE).
977  *
978  * This function may be called concurrently. If we allocate from the mempool
979  * concurrently, there is a possibility of deadlock. For example, if we have
980  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
981  * the mempool concurrently, it may deadlock in a situation where both processes
982  * have allocated 128 pages and the mempool is exhausted.
983  *
984  * In order to avoid this scenario we allocate the pages under a mutex.
985  *
986  * In order to not degrade performance with excessive locking, we try
987  * non-blocking allocations without a mutex first but on failure we fallback
988  * to blocking allocations with a mutex.
989  */
990 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
991 {
992 	struct crypt_config *cc = io->cc;
993 	struct bio *clone;
994 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
995 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
996 	unsigned i, len, remaining_size;
997 	struct page *page;
998 	struct bio_vec *bvec;
999 
1000 retry:
1001 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002 		mutex_lock(&cc->bio_alloc_lock);
1003 
1004 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005 	if (!clone)
1006 		goto return_clone;
1007 
1008 	clone_init(io, clone);
1009 
1010 	remaining_size = size;
1011 
1012 	for (i = 0; i < nr_iovecs; i++) {
1013 		page = mempool_alloc(cc->page_pool, gfp_mask);
1014 		if (!page) {
1015 			crypt_free_buffer_pages(cc, clone);
1016 			bio_put(clone);
1017 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1018 			goto retry;
1019 		}
1020 
1021 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1022 
1023 		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024 		bvec->bv_page = page;
1025 		bvec->bv_len = len;
1026 		bvec->bv_offset = 0;
1027 
1028 		clone->bi_iter.bi_size += len;
1029 
1030 		remaining_size -= len;
1031 	}
1032 
1033 return_clone:
1034 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035 		mutex_unlock(&cc->bio_alloc_lock);
1036 
1037 	return clone;
1038 }
1039 
1040 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041 {
1042 	unsigned int i;
1043 	struct bio_vec *bv;
1044 
1045 	bio_for_each_segment_all(bv, clone, i) {
1046 		BUG_ON(!bv->bv_page);
1047 		mempool_free(bv->bv_page, cc->page_pool);
1048 		bv->bv_page = NULL;
1049 	}
1050 }
1051 
1052 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053 			  struct bio *bio, sector_t sector)
1054 {
1055 	io->cc = cc;
1056 	io->base_bio = bio;
1057 	io->sector = sector;
1058 	io->error = 0;
1059 	io->ctx.req = NULL;
1060 	atomic_set(&io->io_pending, 0);
1061 }
1062 
1063 static void crypt_inc_pending(struct dm_crypt_io *io)
1064 {
1065 	atomic_inc(&io->io_pending);
1066 }
1067 
1068 /*
1069  * One of the bios was finished. Check for completion of
1070  * the whole request and correctly clean up the buffer.
1071  */
1072 static void crypt_dec_pending(struct dm_crypt_io *io)
1073 {
1074 	struct crypt_config *cc = io->cc;
1075 	struct bio *base_bio = io->base_bio;
1076 	int error = io->error;
1077 
1078 	if (!atomic_dec_and_test(&io->io_pending))
1079 		return;
1080 
1081 	if (io->ctx.req)
1082 		crypt_free_req(cc, io->ctx.req, base_bio);
1083 
1084 	base_bio->bi_error = error;
1085 	bio_endio(base_bio);
1086 }
1087 
1088 /*
1089  * kcryptd/kcryptd_io:
1090  *
1091  * Needed because it would be very unwise to do decryption in an
1092  * interrupt context.
1093  *
1094  * kcryptd performs the actual encryption or decryption.
1095  *
1096  * kcryptd_io performs the IO submission.
1097  *
1098  * They must be separated as otherwise the final stages could be
1099  * starved by new requests which can block in the first stages due
1100  * to memory allocation.
1101  *
1102  * The work is done per CPU global for all dm-crypt instances.
1103  * They should not depend on each other and do not block.
1104  */
1105 static void crypt_endio(struct bio *clone)
1106 {
1107 	struct dm_crypt_io *io = clone->bi_private;
1108 	struct crypt_config *cc = io->cc;
1109 	unsigned rw = bio_data_dir(clone);
1110 	int error;
1111 
1112 	/*
1113 	 * free the processed pages
1114 	 */
1115 	if (rw == WRITE)
1116 		crypt_free_buffer_pages(cc, clone);
1117 
1118 	error = clone->bi_error;
1119 	bio_put(clone);
1120 
1121 	if (rw == READ && !error) {
1122 		kcryptd_queue_crypt(io);
1123 		return;
1124 	}
1125 
1126 	if (unlikely(error))
1127 		io->error = error;
1128 
1129 	crypt_dec_pending(io);
1130 }
1131 
1132 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133 {
1134 	struct crypt_config *cc = io->cc;
1135 
1136 	clone->bi_private = io;
1137 	clone->bi_end_io  = crypt_endio;
1138 	clone->bi_bdev    = cc->dev->bdev;
1139 	clone->bi_rw      = io->base_bio->bi_rw;
1140 }
1141 
1142 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143 {
1144 	struct crypt_config *cc = io->cc;
1145 	struct bio *clone;
1146 
1147 	/*
1148 	 * We need the original biovec array in order to decrypt
1149 	 * the whole bio data *afterwards* -- thanks to immutable
1150 	 * biovecs we don't need to worry about the block layer
1151 	 * modifying the biovec array; so leverage bio_clone_fast().
1152 	 */
1153 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154 	if (!clone)
1155 		return 1;
1156 
1157 	crypt_inc_pending(io);
1158 
1159 	clone_init(io, clone);
1160 	clone->bi_iter.bi_sector = cc->start + io->sector;
1161 
1162 	generic_make_request(clone);
1163 	return 0;
1164 }
1165 
1166 static void kcryptd_io_read_work(struct work_struct *work)
1167 {
1168 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169 
1170 	crypt_inc_pending(io);
1171 	if (kcryptd_io_read(io, GFP_NOIO))
1172 		io->error = -ENOMEM;
1173 	crypt_dec_pending(io);
1174 }
1175 
1176 static void kcryptd_queue_read(struct dm_crypt_io *io)
1177 {
1178 	struct crypt_config *cc = io->cc;
1179 
1180 	INIT_WORK(&io->work, kcryptd_io_read_work);
1181 	queue_work(cc->io_queue, &io->work);
1182 }
1183 
1184 static void kcryptd_io_write(struct dm_crypt_io *io)
1185 {
1186 	struct bio *clone = io->ctx.bio_out;
1187 
1188 	generic_make_request(clone);
1189 }
1190 
1191 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192 
1193 static int dmcrypt_write(void *data)
1194 {
1195 	struct crypt_config *cc = data;
1196 	struct dm_crypt_io *io;
1197 
1198 	while (1) {
1199 		struct rb_root write_tree;
1200 		struct blk_plug plug;
1201 
1202 		DECLARE_WAITQUEUE(wait, current);
1203 
1204 		spin_lock_irq(&cc->write_thread_wait.lock);
1205 continue_locked:
1206 
1207 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1208 			goto pop_from_list;
1209 
1210 		if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211 			spin_unlock_irq(&cc->write_thread_wait.lock);
1212 			break;
1213 		}
1214 
1215 		__set_current_state(TASK_INTERRUPTIBLE);
1216 		__add_wait_queue(&cc->write_thread_wait, &wait);
1217 
1218 		spin_unlock_irq(&cc->write_thread_wait.lock);
1219 
1220 		schedule();
1221 
1222 		spin_lock_irq(&cc->write_thread_wait.lock);
1223 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1224 		goto continue_locked;
1225 
1226 pop_from_list:
1227 		write_tree = cc->write_tree;
1228 		cc->write_tree = RB_ROOT;
1229 		spin_unlock_irq(&cc->write_thread_wait.lock);
1230 
1231 		BUG_ON(rb_parent(write_tree.rb_node));
1232 
1233 		/*
1234 		 * Note: we cannot walk the tree here with rb_next because
1235 		 * the structures may be freed when kcryptd_io_write is called.
1236 		 */
1237 		blk_start_plug(&plug);
1238 		do {
1239 			io = crypt_io_from_node(rb_first(&write_tree));
1240 			rb_erase(&io->rb_node, &write_tree);
1241 			kcryptd_io_write(io);
1242 		} while (!RB_EMPTY_ROOT(&write_tree));
1243 		blk_finish_plug(&plug);
1244 	}
1245 	return 0;
1246 }
1247 
1248 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249 {
1250 	struct bio *clone = io->ctx.bio_out;
1251 	struct crypt_config *cc = io->cc;
1252 	unsigned long flags;
1253 	sector_t sector;
1254 	struct rb_node **rbp, *parent;
1255 
1256 	if (unlikely(io->error < 0)) {
1257 		crypt_free_buffer_pages(cc, clone);
1258 		bio_put(clone);
1259 		crypt_dec_pending(io);
1260 		return;
1261 	}
1262 
1263 	/* crypt_convert should have filled the clone bio */
1264 	BUG_ON(io->ctx.iter_out.bi_size);
1265 
1266 	clone->bi_iter.bi_sector = cc->start + io->sector;
1267 
1268 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269 		generic_make_request(clone);
1270 		return;
1271 	}
1272 
1273 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1274 	rbp = &cc->write_tree.rb_node;
1275 	parent = NULL;
1276 	sector = io->sector;
1277 	while (*rbp) {
1278 		parent = *rbp;
1279 		if (sector < crypt_io_from_node(parent)->sector)
1280 			rbp = &(*rbp)->rb_left;
1281 		else
1282 			rbp = &(*rbp)->rb_right;
1283 	}
1284 	rb_link_node(&io->rb_node, parent, rbp);
1285 	rb_insert_color(&io->rb_node, &cc->write_tree);
1286 
1287 	wake_up_locked(&cc->write_thread_wait);
1288 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1289 }
1290 
1291 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292 {
1293 	struct crypt_config *cc = io->cc;
1294 	struct bio *clone;
1295 	int crypt_finished;
1296 	sector_t sector = io->sector;
1297 	int r;
1298 
1299 	/*
1300 	 * Prevent io from disappearing until this function completes.
1301 	 */
1302 	crypt_inc_pending(io);
1303 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304 
1305 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306 	if (unlikely(!clone)) {
1307 		io->error = -EIO;
1308 		goto dec;
1309 	}
1310 
1311 	io->ctx.bio_out = clone;
1312 	io->ctx.iter_out = clone->bi_iter;
1313 
1314 	sector += bio_sectors(clone);
1315 
1316 	crypt_inc_pending(io);
1317 	r = crypt_convert(cc, &io->ctx);
1318 	if (r)
1319 		io->error = -EIO;
1320 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1321 
1322 	/* Encryption was already finished, submit io now */
1323 	if (crypt_finished) {
1324 		kcryptd_crypt_write_io_submit(io, 0);
1325 		io->sector = sector;
1326 	}
1327 
1328 dec:
1329 	crypt_dec_pending(io);
1330 }
1331 
1332 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333 {
1334 	crypt_dec_pending(io);
1335 }
1336 
1337 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338 {
1339 	struct crypt_config *cc = io->cc;
1340 	int r = 0;
1341 
1342 	crypt_inc_pending(io);
1343 
1344 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345 			   io->sector);
1346 
1347 	r = crypt_convert(cc, &io->ctx);
1348 	if (r < 0)
1349 		io->error = -EIO;
1350 
1351 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1352 		kcryptd_crypt_read_done(io);
1353 
1354 	crypt_dec_pending(io);
1355 }
1356 
1357 static void kcryptd_async_done(struct crypto_async_request *async_req,
1358 			       int error)
1359 {
1360 	struct dm_crypt_request *dmreq = async_req->data;
1361 	struct convert_context *ctx = dmreq->ctx;
1362 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363 	struct crypt_config *cc = io->cc;
1364 
1365 	/*
1366 	 * A request from crypto driver backlog is going to be processed now,
1367 	 * finish the completion and continue in crypt_convert().
1368 	 * (Callback will be called for the second time for this request.)
1369 	 */
1370 	if (error == -EINPROGRESS) {
1371 		complete(&ctx->restart);
1372 		return;
1373 	}
1374 
1375 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1377 
1378 	if (error < 0)
1379 		io->error = -EIO;
1380 
1381 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382 
1383 	if (!atomic_dec_and_test(&ctx->cc_pending))
1384 		return;
1385 
1386 	if (bio_data_dir(io->base_bio) == READ)
1387 		kcryptd_crypt_read_done(io);
1388 	else
1389 		kcryptd_crypt_write_io_submit(io, 1);
1390 }
1391 
1392 static void kcryptd_crypt(struct work_struct *work)
1393 {
1394 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395 
1396 	if (bio_data_dir(io->base_bio) == READ)
1397 		kcryptd_crypt_read_convert(io);
1398 	else
1399 		kcryptd_crypt_write_convert(io);
1400 }
1401 
1402 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403 {
1404 	struct crypt_config *cc = io->cc;
1405 
1406 	INIT_WORK(&io->work, kcryptd_crypt);
1407 	queue_work(cc->crypt_queue, &io->work);
1408 }
1409 
1410 /*
1411  * Decode key from its hex representation
1412  */
1413 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414 {
1415 	char buffer[3];
1416 	unsigned int i;
1417 
1418 	buffer[2] = '\0';
1419 
1420 	for (i = 0; i < size; i++) {
1421 		buffer[0] = *hex++;
1422 		buffer[1] = *hex++;
1423 
1424 		if (kstrtou8(buffer, 16, &key[i]))
1425 			return -EINVAL;
1426 	}
1427 
1428 	if (*hex != '\0')
1429 		return -EINVAL;
1430 
1431 	return 0;
1432 }
1433 
1434 static void crypt_free_tfms(struct crypt_config *cc)
1435 {
1436 	unsigned i;
1437 
1438 	if (!cc->tfms)
1439 		return;
1440 
1441 	for (i = 0; i < cc->tfms_count; i++)
1442 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443 			crypto_free_skcipher(cc->tfms[i]);
1444 			cc->tfms[i] = NULL;
1445 		}
1446 
1447 	kfree(cc->tfms);
1448 	cc->tfms = NULL;
1449 }
1450 
1451 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1452 {
1453 	unsigned i;
1454 	int err;
1455 
1456 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457 			   GFP_KERNEL);
1458 	if (!cc->tfms)
1459 		return -ENOMEM;
1460 
1461 	for (i = 0; i < cc->tfms_count; i++) {
1462 		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463 		if (IS_ERR(cc->tfms[i])) {
1464 			err = PTR_ERR(cc->tfms[i]);
1465 			crypt_free_tfms(cc);
1466 			return err;
1467 		}
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static int crypt_setkey_allcpus(struct crypt_config *cc)
1474 {
1475 	unsigned subkey_size;
1476 	int err = 0, i, r;
1477 
1478 	/* Ignore extra keys (which are used for IV etc) */
1479 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1480 
1481 	for (i = 0; i < cc->tfms_count; i++) {
1482 		r = crypto_skcipher_setkey(cc->tfms[i],
1483 					   cc->key + (i * subkey_size),
1484 					   subkey_size);
1485 		if (r)
1486 			err = r;
1487 	}
1488 
1489 	return err;
1490 }
1491 
1492 static int crypt_set_key(struct crypt_config *cc, char *key)
1493 {
1494 	int r = -EINVAL;
1495 	int key_string_len = strlen(key);
1496 
1497 	/* The key size may not be changed. */
1498 	if (cc->key_size != (key_string_len >> 1))
1499 		goto out;
1500 
1501 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1502 	if (!cc->key_size && strcmp(key, "-"))
1503 		goto out;
1504 
1505 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1506 		goto out;
1507 
1508 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1509 
1510 	r = crypt_setkey_allcpus(cc);
1511 
1512 out:
1513 	/* Hex key string not needed after here, so wipe it. */
1514 	memset(key, '0', key_string_len);
1515 
1516 	return r;
1517 }
1518 
1519 static int crypt_wipe_key(struct crypt_config *cc)
1520 {
1521 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1522 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523 
1524 	return crypt_setkey_allcpus(cc);
1525 }
1526 
1527 static void crypt_dtr(struct dm_target *ti)
1528 {
1529 	struct crypt_config *cc = ti->private;
1530 
1531 	ti->private = NULL;
1532 
1533 	if (!cc)
1534 		return;
1535 
1536 	if (cc->write_thread) {
1537 		spin_lock_irq(&cc->write_thread_wait.lock);
1538 		set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539 		wake_up_locked(&cc->write_thread_wait);
1540 		spin_unlock_irq(&cc->write_thread_wait.lock);
1541 		kthread_stop(cc->write_thread);
1542 	}
1543 
1544 	if (cc->io_queue)
1545 		destroy_workqueue(cc->io_queue);
1546 	if (cc->crypt_queue)
1547 		destroy_workqueue(cc->crypt_queue);
1548 
1549 	crypt_free_tfms(cc);
1550 
1551 	if (cc->bs)
1552 		bioset_free(cc->bs);
1553 
1554 	mempool_destroy(cc->page_pool);
1555 	mempool_destroy(cc->req_pool);
1556 
1557 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558 		cc->iv_gen_ops->dtr(cc);
1559 
1560 	if (cc->dev)
1561 		dm_put_device(ti, cc->dev);
1562 
1563 	kzfree(cc->cipher);
1564 	kzfree(cc->cipher_string);
1565 
1566 	/* Must zero key material before freeing */
1567 	kzfree(cc);
1568 }
1569 
1570 static int crypt_ctr_cipher(struct dm_target *ti,
1571 			    char *cipher_in, char *key)
1572 {
1573 	struct crypt_config *cc = ti->private;
1574 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575 	char *cipher_api = NULL;
1576 	int ret = -EINVAL;
1577 	char dummy;
1578 
1579 	/* Convert to crypto api definition? */
1580 	if (strchr(cipher_in, '(')) {
1581 		ti->error = "Bad cipher specification";
1582 		return -EINVAL;
1583 	}
1584 
1585 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586 	if (!cc->cipher_string)
1587 		goto bad_mem;
1588 
1589 	/*
1590 	 * Legacy dm-crypt cipher specification
1591 	 * cipher[:keycount]-mode-iv:ivopts
1592 	 */
1593 	tmp = cipher_in;
1594 	keycount = strsep(&tmp, "-");
1595 	cipher = strsep(&keycount, ":");
1596 
1597 	if (!keycount)
1598 		cc->tfms_count = 1;
1599 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600 		 !is_power_of_2(cc->tfms_count)) {
1601 		ti->error = "Bad cipher key count specification";
1602 		return -EINVAL;
1603 	}
1604 	cc->key_parts = cc->tfms_count;
1605 	cc->key_extra_size = 0;
1606 
1607 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608 	if (!cc->cipher)
1609 		goto bad_mem;
1610 
1611 	chainmode = strsep(&tmp, "-");
1612 	ivopts = strsep(&tmp, "-");
1613 	ivmode = strsep(&ivopts, ":");
1614 
1615 	if (tmp)
1616 		DMWARN("Ignoring unexpected additional cipher options");
1617 
1618 	/*
1619 	 * For compatibility with the original dm-crypt mapping format, if
1620 	 * only the cipher name is supplied, use cbc-plain.
1621 	 */
1622 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623 		chainmode = "cbc";
1624 		ivmode = "plain";
1625 	}
1626 
1627 	if (strcmp(chainmode, "ecb") && !ivmode) {
1628 		ti->error = "IV mechanism required";
1629 		return -EINVAL;
1630 	}
1631 
1632 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633 	if (!cipher_api)
1634 		goto bad_mem;
1635 
1636 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637 		       "%s(%s)", chainmode, cipher);
1638 	if (ret < 0) {
1639 		kfree(cipher_api);
1640 		goto bad_mem;
1641 	}
1642 
1643 	/* Allocate cipher */
1644 	ret = crypt_alloc_tfms(cc, cipher_api);
1645 	if (ret < 0) {
1646 		ti->error = "Error allocating crypto tfm";
1647 		goto bad;
1648 	}
1649 
1650 	/* Initialize IV */
1651 	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652 	if (cc->iv_size)
1653 		/* at least a 64 bit sector number should fit in our buffer */
1654 		cc->iv_size = max(cc->iv_size,
1655 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1656 	else if (ivmode) {
1657 		DMWARN("Selected cipher does not support IVs");
1658 		ivmode = NULL;
1659 	}
1660 
1661 	/* Choose ivmode, see comments at iv code. */
1662 	if (ivmode == NULL)
1663 		cc->iv_gen_ops = NULL;
1664 	else if (strcmp(ivmode, "plain") == 0)
1665 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1666 	else if (strcmp(ivmode, "plain64") == 0)
1667 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668 	else if (strcmp(ivmode, "essiv") == 0)
1669 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670 	else if (strcmp(ivmode, "benbi") == 0)
1671 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672 	else if (strcmp(ivmode, "null") == 0)
1673 		cc->iv_gen_ops = &crypt_iv_null_ops;
1674 	else if (strcmp(ivmode, "lmk") == 0) {
1675 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676 		/*
1677 		 * Version 2 and 3 is recognised according
1678 		 * to length of provided multi-key string.
1679 		 * If present (version 3), last key is used as IV seed.
1680 		 * All keys (including IV seed) are always the same size.
1681 		 */
1682 		if (cc->key_size % cc->key_parts) {
1683 			cc->key_parts++;
1684 			cc->key_extra_size = cc->key_size / cc->key_parts;
1685 		}
1686 	} else if (strcmp(ivmode, "tcw") == 0) {
1687 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688 		cc->key_parts += 2; /* IV + whitening */
1689 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690 	} else {
1691 		ret = -EINVAL;
1692 		ti->error = "Invalid IV mode";
1693 		goto bad;
1694 	}
1695 
1696 	/* Initialize and set key */
1697 	ret = crypt_set_key(cc, key);
1698 	if (ret < 0) {
1699 		ti->error = "Error decoding and setting key";
1700 		goto bad;
1701 	}
1702 
1703 	/* Allocate IV */
1704 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706 		if (ret < 0) {
1707 			ti->error = "Error creating IV";
1708 			goto bad;
1709 		}
1710 	}
1711 
1712 	/* Initialize IV (set keys for ESSIV etc) */
1713 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714 		ret = cc->iv_gen_ops->init(cc);
1715 		if (ret < 0) {
1716 			ti->error = "Error initialising IV";
1717 			goto bad;
1718 		}
1719 	}
1720 
1721 	ret = 0;
1722 bad:
1723 	kfree(cipher_api);
1724 	return ret;
1725 
1726 bad_mem:
1727 	ti->error = "Cannot allocate cipher strings";
1728 	return -ENOMEM;
1729 }
1730 
1731 /*
1732  * Construct an encryption mapping:
1733  * <cipher> <key> <iv_offset> <dev_path> <start>
1734  */
1735 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736 {
1737 	struct crypt_config *cc;
1738 	unsigned int key_size, opt_params;
1739 	unsigned long long tmpll;
1740 	int ret;
1741 	size_t iv_size_padding;
1742 	struct dm_arg_set as;
1743 	const char *opt_string;
1744 	char dummy;
1745 
1746 	static struct dm_arg _args[] = {
1747 		{0, 3, "Invalid number of feature args"},
1748 	};
1749 
1750 	if (argc < 5) {
1751 		ti->error = "Not enough arguments";
1752 		return -EINVAL;
1753 	}
1754 
1755 	key_size = strlen(argv[1]) >> 1;
1756 
1757 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758 	if (!cc) {
1759 		ti->error = "Cannot allocate encryption context";
1760 		return -ENOMEM;
1761 	}
1762 	cc->key_size = key_size;
1763 
1764 	ti->private = cc;
1765 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766 	if (ret < 0)
1767 		goto bad;
1768 
1769 	cc->dmreq_start = sizeof(struct skcipher_request);
1770 	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1771 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772 
1773 	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774 		/* Allocate the padding exactly */
1775 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776 				& crypto_skcipher_alignmask(any_tfm(cc));
1777 	} else {
1778 		/*
1779 		 * If the cipher requires greater alignment than kmalloc
1780 		 * alignment, we don't know the exact position of the
1781 		 * initialization vector. We must assume worst case.
1782 		 */
1783 		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784 	}
1785 
1786 	ret = -ENOMEM;
1787 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789 	if (!cc->req_pool) {
1790 		ti->error = "Cannot allocate crypt request mempool";
1791 		goto bad;
1792 	}
1793 
1794 	cc->per_bio_data_size = ti->per_io_data_size =
1795 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797 		      ARCH_KMALLOC_MINALIGN);
1798 
1799 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800 	if (!cc->page_pool) {
1801 		ti->error = "Cannot allocate page mempool";
1802 		goto bad;
1803 	}
1804 
1805 	cc->bs = bioset_create(MIN_IOS, 0);
1806 	if (!cc->bs) {
1807 		ti->error = "Cannot allocate crypt bioset";
1808 		goto bad;
1809 	}
1810 
1811 	mutex_init(&cc->bio_alloc_lock);
1812 
1813 	ret = -EINVAL;
1814 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1815 		ti->error = "Invalid iv_offset sector";
1816 		goto bad;
1817 	}
1818 	cc->iv_offset = tmpll;
1819 
1820 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821 	if (ret) {
1822 		ti->error = "Device lookup failed";
1823 		goto bad;
1824 	}
1825 
1826 	ret = -EINVAL;
1827 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828 		ti->error = "Invalid device sector";
1829 		goto bad;
1830 	}
1831 	cc->start = tmpll;
1832 
1833 	argv += 5;
1834 	argc -= 5;
1835 
1836 	/* Optional parameters */
1837 	if (argc) {
1838 		as.argc = argc;
1839 		as.argv = argv;
1840 
1841 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1842 		if (ret)
1843 			goto bad;
1844 
1845 		ret = -EINVAL;
1846 		while (opt_params--) {
1847 			opt_string = dm_shift_arg(&as);
1848 			if (!opt_string) {
1849 				ti->error = "Not enough feature arguments";
1850 				goto bad;
1851 			}
1852 
1853 			if (!strcasecmp(opt_string, "allow_discards"))
1854 				ti->num_discard_bios = 1;
1855 
1856 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858 
1859 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861 
1862 			else {
1863 				ti->error = "Invalid feature arguments";
1864 				goto bad;
1865 			}
1866 		}
1867 	}
1868 
1869 	ret = -ENOMEM;
1870 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1871 	if (!cc->io_queue) {
1872 		ti->error = "Couldn't create kcryptd io queue";
1873 		goto bad;
1874 	}
1875 
1876 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878 	else
1879 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880 						  num_online_cpus());
1881 	if (!cc->crypt_queue) {
1882 		ti->error = "Couldn't create kcryptd queue";
1883 		goto bad;
1884 	}
1885 
1886 	init_waitqueue_head(&cc->write_thread_wait);
1887 	cc->write_tree = RB_ROOT;
1888 
1889 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890 	if (IS_ERR(cc->write_thread)) {
1891 		ret = PTR_ERR(cc->write_thread);
1892 		cc->write_thread = NULL;
1893 		ti->error = "Couldn't spawn write thread";
1894 		goto bad;
1895 	}
1896 	wake_up_process(cc->write_thread);
1897 
1898 	ti->num_flush_bios = 1;
1899 	ti->discard_zeroes_data_unsupported = true;
1900 
1901 	return 0;
1902 
1903 bad:
1904 	crypt_dtr(ti);
1905 	return ret;
1906 }
1907 
1908 static int crypt_map(struct dm_target *ti, struct bio *bio)
1909 {
1910 	struct dm_crypt_io *io;
1911 	struct crypt_config *cc = ti->private;
1912 
1913 	/*
1914 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1917 	 */
1918 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919 		bio->bi_bdev = cc->dev->bdev;
1920 		if (bio_sectors(bio))
1921 			bio->bi_iter.bi_sector = cc->start +
1922 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 		return DM_MAPIO_REMAPPED;
1924 	}
1925 
1926 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928 	io->ctx.req = (struct skcipher_request *)(io + 1);
1929 
1930 	if (bio_data_dir(io->base_bio) == READ) {
1931 		if (kcryptd_io_read(io, GFP_NOWAIT))
1932 			kcryptd_queue_read(io);
1933 	} else
1934 		kcryptd_queue_crypt(io);
1935 
1936 	return DM_MAPIO_SUBMITTED;
1937 }
1938 
1939 static void crypt_status(struct dm_target *ti, status_type_t type,
1940 			 unsigned status_flags, char *result, unsigned maxlen)
1941 {
1942 	struct crypt_config *cc = ti->private;
1943 	unsigned i, sz = 0;
1944 	int num_feature_args = 0;
1945 
1946 	switch (type) {
1947 	case STATUSTYPE_INFO:
1948 		result[0] = '\0';
1949 		break;
1950 
1951 	case STATUSTYPE_TABLE:
1952 		DMEMIT("%s ", cc->cipher_string);
1953 
1954 		if (cc->key_size > 0)
1955 			for (i = 0; i < cc->key_size; i++)
1956 				DMEMIT("%02x", cc->key[i]);
1957 		else
1958 			DMEMIT("-");
1959 
1960 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961 				cc->dev->name, (unsigned long long)cc->start);
1962 
1963 		num_feature_args += !!ti->num_discard_bios;
1964 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1965 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1966 		if (num_feature_args) {
1967 			DMEMIT(" %d", num_feature_args);
1968 			if (ti->num_discard_bios)
1969 				DMEMIT(" allow_discards");
1970 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971 				DMEMIT(" same_cpu_crypt");
1972 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973 				DMEMIT(" submit_from_crypt_cpus");
1974 		}
1975 
1976 		break;
1977 	}
1978 }
1979 
1980 static void crypt_postsuspend(struct dm_target *ti)
1981 {
1982 	struct crypt_config *cc = ti->private;
1983 
1984 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985 }
1986 
1987 static int crypt_preresume(struct dm_target *ti)
1988 {
1989 	struct crypt_config *cc = ti->private;
1990 
1991 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992 		DMERR("aborting resume - crypt key is not set.");
1993 		return -EAGAIN;
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static void crypt_resume(struct dm_target *ti)
2000 {
2001 	struct crypt_config *cc = ti->private;
2002 
2003 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004 }
2005 
2006 /* Message interface
2007  *	key set <key>
2008  *	key wipe
2009  */
2010 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2011 {
2012 	struct crypt_config *cc = ti->private;
2013 	int ret = -EINVAL;
2014 
2015 	if (argc < 2)
2016 		goto error;
2017 
2018 	if (!strcasecmp(argv[0], "key")) {
2019 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020 			DMWARN("not suspended during key manipulation.");
2021 			return -EINVAL;
2022 		}
2023 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2024 			ret = crypt_set_key(cc, argv[2]);
2025 			if (ret)
2026 				return ret;
2027 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028 				ret = cc->iv_gen_ops->init(cc);
2029 			return ret;
2030 		}
2031 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033 				ret = cc->iv_gen_ops->wipe(cc);
2034 				if (ret)
2035 					return ret;
2036 			}
2037 			return crypt_wipe_key(cc);
2038 		}
2039 	}
2040 
2041 error:
2042 	DMWARN("unrecognised message received.");
2043 	return -EINVAL;
2044 }
2045 
2046 static int crypt_iterate_devices(struct dm_target *ti,
2047 				 iterate_devices_callout_fn fn, void *data)
2048 {
2049 	struct crypt_config *cc = ti->private;
2050 
2051 	return fn(ti, cc->dev, cc->start, ti->len, data);
2052 }
2053 
2054 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055 {
2056 	/*
2057 	 * Unfortunate constraint that is required to avoid the potential
2058 	 * for exceeding underlying device's max_segments limits -- due to
2059 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060 	 * bio that are not as physically contiguous as the original bio.
2061 	 */
2062 	limits->max_segment_size = PAGE_SIZE;
2063 }
2064 
2065 static struct target_type crypt_target = {
2066 	.name   = "crypt",
2067 	.version = {1, 14, 1},
2068 	.module = THIS_MODULE,
2069 	.ctr    = crypt_ctr,
2070 	.dtr    = crypt_dtr,
2071 	.map    = crypt_map,
2072 	.status = crypt_status,
2073 	.postsuspend = crypt_postsuspend,
2074 	.preresume = crypt_preresume,
2075 	.resume = crypt_resume,
2076 	.message = crypt_message,
2077 	.iterate_devices = crypt_iterate_devices,
2078 	.io_hints = crypt_io_hints,
2079 };
2080 
2081 static int __init dm_crypt_init(void)
2082 {
2083 	int r;
2084 
2085 	r = dm_register_target(&crypt_target);
2086 	if (r < 0)
2087 		DMERR("register failed %d", r);
2088 
2089 	return r;
2090 }
2091 
2092 static void __exit dm_crypt_exit(void)
2093 {
2094 	dm_unregister_target(&crypt_target);
2095 }
2096 
2097 module_init(dm_crypt_init);
2098 module_exit(dm_crypt_exit);
2099 
2100 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102 MODULE_LICENSE("GPL");
2103