xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 0dae7fe5)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 #include <crypto/skcipher.h>
32 
33 #include <linux/device-mapper.h>
34 
35 #define DM_MSG_PREFIX "crypt"
36 
37 /*
38  * context holding the current state of a multi-part conversion
39  */
40 struct convert_context {
41 	struct completion restart;
42 	struct bio *bio_in;
43 	struct bio *bio_out;
44 	struct bvec_iter iter_in;
45 	struct bvec_iter iter_out;
46 	sector_t cc_sector;
47 	atomic_t cc_pending;
48 	struct skcipher_request *req;
49 };
50 
51 /*
52  * per bio private data
53  */
54 struct dm_crypt_io {
55 	struct crypt_config *cc;
56 	struct bio *base_bio;
57 	struct work_struct work;
58 
59 	struct convert_context ctx;
60 
61 	atomic_t io_pending;
62 	int error;
63 	sector_t sector;
64 
65 	struct rb_node rb_node;
66 } CRYPTO_MINALIGN_ATTR;
67 
68 struct dm_crypt_request {
69 	struct convert_context *ctx;
70 	struct scatterlist sg_in;
71 	struct scatterlist sg_out;
72 	sector_t iv_sector;
73 };
74 
75 struct crypt_config;
76 
77 struct crypt_iv_operations {
78 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
79 		   const char *opts);
80 	void (*dtr)(struct crypt_config *cc);
81 	int (*init)(struct crypt_config *cc);
82 	int (*wipe)(struct crypt_config *cc);
83 	int (*generator)(struct crypt_config *cc, u8 *iv,
84 			 struct dm_crypt_request *dmreq);
85 	int (*post)(struct crypt_config *cc, u8 *iv,
86 		    struct dm_crypt_request *dmreq);
87 };
88 
89 struct iv_essiv_private {
90 	struct crypto_ahash *hash_tfm;
91 	u8 *salt;
92 };
93 
94 struct iv_benbi_private {
95 	int shift;
96 };
97 
98 #define LMK_SEED_SIZE 64 /* hash + 0 */
99 struct iv_lmk_private {
100 	struct crypto_shash *hash_tfm;
101 	u8 *seed;
102 };
103 
104 #define TCW_WHITENING_SIZE 16
105 struct iv_tcw_private {
106 	struct crypto_shash *crc32_tfm;
107 	u8 *iv_seed;
108 	u8 *whitening;
109 };
110 
111 /*
112  * Crypt: maps a linear range of a block device
113  * and encrypts / decrypts at the same time.
114  */
115 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
116 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
117 
118 /*
119  * The fields in here must be read only after initialization.
120  */
121 struct crypt_config {
122 	struct dm_dev *dev;
123 	sector_t start;
124 
125 	/*
126 	 * pool for per bio private data, crypto requests and
127 	 * encryption requeusts/buffer pages
128 	 */
129 	mempool_t *req_pool;
130 	mempool_t *page_pool;
131 	struct bio_set *bs;
132 	struct mutex bio_alloc_lock;
133 
134 	struct workqueue_struct *io_queue;
135 	struct workqueue_struct *crypt_queue;
136 
137 	struct task_struct *write_thread;
138 	wait_queue_head_t write_thread_wait;
139 	struct rb_root write_tree;
140 
141 	char *cipher;
142 	char *cipher_string;
143 
144 	struct crypt_iv_operations *iv_gen_ops;
145 	union {
146 		struct iv_essiv_private essiv;
147 		struct iv_benbi_private benbi;
148 		struct iv_lmk_private lmk;
149 		struct iv_tcw_private tcw;
150 	} iv_gen_private;
151 	sector_t iv_offset;
152 	unsigned int iv_size;
153 
154 	/* ESSIV: struct crypto_cipher *essiv_tfm */
155 	void *iv_private;
156 	struct crypto_skcipher **tfms;
157 	unsigned tfms_count;
158 
159 	/*
160 	 * Layout of each crypto request:
161 	 *
162 	 *   struct skcipher_request
163 	 *      context
164 	 *      padding
165 	 *   struct dm_crypt_request
166 	 *      padding
167 	 *   IV
168 	 *
169 	 * The padding is added so that dm_crypt_request and the IV are
170 	 * correctly aligned.
171 	 */
172 	unsigned int dmreq_start;
173 
174 	unsigned int per_bio_data_size;
175 
176 	unsigned long flags;
177 	unsigned int key_size;
178 	unsigned int key_parts;      /* independent parts in key buffer */
179 	unsigned int key_extra_size; /* additional keys length */
180 	u8 key[0];
181 };
182 
183 #define MIN_IOS        64
184 
185 static void clone_init(struct dm_crypt_io *, struct bio *);
186 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
187 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
188 
189 /*
190  * Use this to access cipher attributes that are the same for each CPU.
191  */
192 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
193 {
194 	return cc->tfms[0];
195 }
196 
197 /*
198  * Different IV generation algorithms:
199  *
200  * plain: the initial vector is the 32-bit little-endian version of the sector
201  *        number, padded with zeros if necessary.
202  *
203  * plain64: the initial vector is the 64-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * essiv: "encrypted sector|salt initial vector", the sector number is
207  *        encrypted with the bulk cipher using a salt as key. The salt
208  *        should be derived from the bulk cipher's key via hashing.
209  *
210  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
211  *        (needed for LRW-32-AES and possible other narrow block modes)
212  *
213  * null: the initial vector is always zero.  Provides compatibility with
214  *       obsolete loop_fish2 devices.  Do not use for new devices.
215  *
216  * lmk:  Compatible implementation of the block chaining mode used
217  *       by the Loop-AES block device encryption system
218  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
219  *       It operates on full 512 byte sectors and uses CBC
220  *       with an IV derived from the sector number, the data and
221  *       optionally extra IV seed.
222  *       This means that after decryption the first block
223  *       of sector must be tweaked according to decrypted data.
224  *       Loop-AES can use three encryption schemes:
225  *         version 1: is plain aes-cbc mode
226  *         version 2: uses 64 multikey scheme with lmk IV generator
227  *         version 3: the same as version 2 with additional IV seed
228  *                   (it uses 65 keys, last key is used as IV seed)
229  *
230  * tcw:  Compatible implementation of the block chaining mode used
231  *       by the TrueCrypt device encryption system (prior to version 4.1).
232  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
233  *       It operates on full 512 byte sectors and uses CBC
234  *       with an IV derived from initial key and the sector number.
235  *       In addition, whitening value is applied on every sector, whitening
236  *       is calculated from initial key, sector number and mixed using CRC32.
237  *       Note that this encryption scheme is vulnerable to watermarking attacks
238  *       and should be used for old compatible containers access only.
239  *
240  * plumb: unimplemented, see:
241  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
242  */
243 
244 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
245 			      struct dm_crypt_request *dmreq)
246 {
247 	memset(iv, 0, cc->iv_size);
248 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
249 
250 	return 0;
251 }
252 
253 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
254 				struct dm_crypt_request *dmreq)
255 {
256 	memset(iv, 0, cc->iv_size);
257 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
258 
259 	return 0;
260 }
261 
262 /* Initialise ESSIV - compute salt but no local memory allocations */
263 static int crypt_iv_essiv_init(struct crypt_config *cc)
264 {
265 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
266 	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
267 	struct scatterlist sg;
268 	struct crypto_cipher *essiv_tfm;
269 	int err;
270 
271 	sg_init_one(&sg, cc->key, cc->key_size);
272 	ahash_request_set_tfm(req, essiv->hash_tfm);
273 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
274 	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
275 
276 	err = crypto_ahash_digest(req);
277 	ahash_request_zero(req);
278 	if (err)
279 		return err;
280 
281 	essiv_tfm = cc->iv_private;
282 
283 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
284 			    crypto_ahash_digestsize(essiv->hash_tfm));
285 	if (err)
286 		return err;
287 
288 	return 0;
289 }
290 
291 /* Wipe salt and reset key derived from volume key */
292 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
293 {
294 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
295 	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
296 	struct crypto_cipher *essiv_tfm;
297 	int r, err = 0;
298 
299 	memset(essiv->salt, 0, salt_size);
300 
301 	essiv_tfm = cc->iv_private;
302 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
303 	if (r)
304 		err = r;
305 
306 	return err;
307 }
308 
309 /* Set up per cpu cipher state */
310 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
311 					     struct dm_target *ti,
312 					     u8 *salt, unsigned saltsize)
313 {
314 	struct crypto_cipher *essiv_tfm;
315 	int err;
316 
317 	/* Setup the essiv_tfm with the given salt */
318 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
319 	if (IS_ERR(essiv_tfm)) {
320 		ti->error = "Error allocating crypto tfm for ESSIV";
321 		return essiv_tfm;
322 	}
323 
324 	if (crypto_cipher_blocksize(essiv_tfm) !=
325 	    crypto_skcipher_ivsize(any_tfm(cc))) {
326 		ti->error = "Block size of ESSIV cipher does "
327 			    "not match IV size of block cipher";
328 		crypto_free_cipher(essiv_tfm);
329 		return ERR_PTR(-EINVAL);
330 	}
331 
332 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
333 	if (err) {
334 		ti->error = "Failed to set key for ESSIV cipher";
335 		crypto_free_cipher(essiv_tfm);
336 		return ERR_PTR(err);
337 	}
338 
339 	return essiv_tfm;
340 }
341 
342 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
343 {
344 	struct crypto_cipher *essiv_tfm;
345 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
346 
347 	crypto_free_ahash(essiv->hash_tfm);
348 	essiv->hash_tfm = NULL;
349 
350 	kzfree(essiv->salt);
351 	essiv->salt = NULL;
352 
353 	essiv_tfm = cc->iv_private;
354 
355 	if (essiv_tfm)
356 		crypto_free_cipher(essiv_tfm);
357 
358 	cc->iv_private = NULL;
359 }
360 
361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
362 			      const char *opts)
363 {
364 	struct crypto_cipher *essiv_tfm = NULL;
365 	struct crypto_ahash *hash_tfm = NULL;
366 	u8 *salt = NULL;
367 	int err;
368 
369 	if (!opts) {
370 		ti->error = "Digest algorithm missing for ESSIV mode";
371 		return -EINVAL;
372 	}
373 
374 	/* Allocate hash algorithm */
375 	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
376 	if (IS_ERR(hash_tfm)) {
377 		ti->error = "Error initializing ESSIV hash";
378 		err = PTR_ERR(hash_tfm);
379 		goto bad;
380 	}
381 
382 	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
383 	if (!salt) {
384 		ti->error = "Error kmallocing salt storage in ESSIV";
385 		err = -ENOMEM;
386 		goto bad;
387 	}
388 
389 	cc->iv_gen_private.essiv.salt = salt;
390 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
391 
392 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
393 				crypto_ahash_digestsize(hash_tfm));
394 	if (IS_ERR(essiv_tfm)) {
395 		crypt_iv_essiv_dtr(cc);
396 		return PTR_ERR(essiv_tfm);
397 	}
398 	cc->iv_private = essiv_tfm;
399 
400 	return 0;
401 
402 bad:
403 	if (hash_tfm && !IS_ERR(hash_tfm))
404 		crypto_free_ahash(hash_tfm);
405 	kfree(salt);
406 	return err;
407 }
408 
409 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
410 			      struct dm_crypt_request *dmreq)
411 {
412 	struct crypto_cipher *essiv_tfm = cc->iv_private;
413 
414 	memset(iv, 0, cc->iv_size);
415 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
416 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
417 
418 	return 0;
419 }
420 
421 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
422 			      const char *opts)
423 {
424 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
425 	int log = ilog2(bs);
426 
427 	/* we need to calculate how far we must shift the sector count
428 	 * to get the cipher block count, we use this shift in _gen */
429 
430 	if (1 << log != bs) {
431 		ti->error = "cypher blocksize is not a power of 2";
432 		return -EINVAL;
433 	}
434 
435 	if (log > 9) {
436 		ti->error = "cypher blocksize is > 512";
437 		return -EINVAL;
438 	}
439 
440 	cc->iv_gen_private.benbi.shift = 9 - log;
441 
442 	return 0;
443 }
444 
445 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
446 {
447 }
448 
449 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
450 			      struct dm_crypt_request *dmreq)
451 {
452 	__be64 val;
453 
454 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
455 
456 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
457 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
458 
459 	return 0;
460 }
461 
462 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
463 			     struct dm_crypt_request *dmreq)
464 {
465 	memset(iv, 0, cc->iv_size);
466 
467 	return 0;
468 }
469 
470 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
471 {
472 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
473 
474 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
475 		crypto_free_shash(lmk->hash_tfm);
476 	lmk->hash_tfm = NULL;
477 
478 	kzfree(lmk->seed);
479 	lmk->seed = NULL;
480 }
481 
482 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
483 			    const char *opts)
484 {
485 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 
487 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
488 	if (IS_ERR(lmk->hash_tfm)) {
489 		ti->error = "Error initializing LMK hash";
490 		return PTR_ERR(lmk->hash_tfm);
491 	}
492 
493 	/* No seed in LMK version 2 */
494 	if (cc->key_parts == cc->tfms_count) {
495 		lmk->seed = NULL;
496 		return 0;
497 	}
498 
499 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
500 	if (!lmk->seed) {
501 		crypt_iv_lmk_dtr(cc);
502 		ti->error = "Error kmallocing seed storage in LMK";
503 		return -ENOMEM;
504 	}
505 
506 	return 0;
507 }
508 
509 static int crypt_iv_lmk_init(struct crypt_config *cc)
510 {
511 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
512 	int subkey_size = cc->key_size / cc->key_parts;
513 
514 	/* LMK seed is on the position of LMK_KEYS + 1 key */
515 	if (lmk->seed)
516 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
517 		       crypto_shash_digestsize(lmk->hash_tfm));
518 
519 	return 0;
520 }
521 
522 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
523 {
524 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
525 
526 	if (lmk->seed)
527 		memset(lmk->seed, 0, LMK_SEED_SIZE);
528 
529 	return 0;
530 }
531 
532 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
533 			    struct dm_crypt_request *dmreq,
534 			    u8 *data)
535 {
536 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
537 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
538 	struct md5_state md5state;
539 	__le32 buf[4];
540 	int i, r;
541 
542 	desc->tfm = lmk->hash_tfm;
543 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
544 
545 	r = crypto_shash_init(desc);
546 	if (r)
547 		return r;
548 
549 	if (lmk->seed) {
550 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
551 		if (r)
552 			return r;
553 	}
554 
555 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
556 	r = crypto_shash_update(desc, data + 16, 16 * 31);
557 	if (r)
558 		return r;
559 
560 	/* Sector is cropped to 56 bits here */
561 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
562 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
563 	buf[2] = cpu_to_le32(4024);
564 	buf[3] = 0;
565 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
566 	if (r)
567 		return r;
568 
569 	/* No MD5 padding here */
570 	r = crypto_shash_export(desc, &md5state);
571 	if (r)
572 		return r;
573 
574 	for (i = 0; i < MD5_HASH_WORDS; i++)
575 		__cpu_to_le32s(&md5state.hash[i]);
576 	memcpy(iv, &md5state.hash, cc->iv_size);
577 
578 	return 0;
579 }
580 
581 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
582 			    struct dm_crypt_request *dmreq)
583 {
584 	u8 *src;
585 	int r = 0;
586 
587 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
588 		src = kmap_atomic(sg_page(&dmreq->sg_in));
589 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
590 		kunmap_atomic(src);
591 	} else
592 		memset(iv, 0, cc->iv_size);
593 
594 	return r;
595 }
596 
597 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
598 			     struct dm_crypt_request *dmreq)
599 {
600 	u8 *dst;
601 	int r;
602 
603 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
604 		return 0;
605 
606 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
607 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
608 
609 	/* Tweak the first block of plaintext sector */
610 	if (!r)
611 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
612 
613 	kunmap_atomic(dst);
614 	return r;
615 }
616 
617 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
618 {
619 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
620 
621 	kzfree(tcw->iv_seed);
622 	tcw->iv_seed = NULL;
623 	kzfree(tcw->whitening);
624 	tcw->whitening = NULL;
625 
626 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
627 		crypto_free_shash(tcw->crc32_tfm);
628 	tcw->crc32_tfm = NULL;
629 }
630 
631 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
632 			    const char *opts)
633 {
634 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
635 
636 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
637 		ti->error = "Wrong key size for TCW";
638 		return -EINVAL;
639 	}
640 
641 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
642 	if (IS_ERR(tcw->crc32_tfm)) {
643 		ti->error = "Error initializing CRC32 in TCW";
644 		return PTR_ERR(tcw->crc32_tfm);
645 	}
646 
647 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
648 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
649 	if (!tcw->iv_seed || !tcw->whitening) {
650 		crypt_iv_tcw_dtr(cc);
651 		ti->error = "Error allocating seed storage in TCW";
652 		return -ENOMEM;
653 	}
654 
655 	return 0;
656 }
657 
658 static int crypt_iv_tcw_init(struct crypt_config *cc)
659 {
660 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
661 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
662 
663 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
664 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
665 	       TCW_WHITENING_SIZE);
666 
667 	return 0;
668 }
669 
670 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
671 {
672 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
673 
674 	memset(tcw->iv_seed, 0, cc->iv_size);
675 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
676 
677 	return 0;
678 }
679 
680 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
681 				  struct dm_crypt_request *dmreq,
682 				  u8 *data)
683 {
684 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
685 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
686 	u8 buf[TCW_WHITENING_SIZE];
687 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
688 	int i, r;
689 
690 	/* xor whitening with sector number */
691 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
692 	crypto_xor(buf, (u8 *)&sector, 8);
693 	crypto_xor(&buf[8], (u8 *)&sector, 8);
694 
695 	/* calculate crc32 for every 32bit part and xor it */
696 	desc->tfm = tcw->crc32_tfm;
697 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
698 	for (i = 0; i < 4; i++) {
699 		r = crypto_shash_init(desc);
700 		if (r)
701 			goto out;
702 		r = crypto_shash_update(desc, &buf[i * 4], 4);
703 		if (r)
704 			goto out;
705 		r = crypto_shash_final(desc, &buf[i * 4]);
706 		if (r)
707 			goto out;
708 	}
709 	crypto_xor(&buf[0], &buf[12], 4);
710 	crypto_xor(&buf[4], &buf[8], 4);
711 
712 	/* apply whitening (8 bytes) to whole sector */
713 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
714 		crypto_xor(data + i * 8, buf, 8);
715 out:
716 	memzero_explicit(buf, sizeof(buf));
717 	return r;
718 }
719 
720 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
721 			    struct dm_crypt_request *dmreq)
722 {
723 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
724 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
725 	u8 *src;
726 	int r = 0;
727 
728 	/* Remove whitening from ciphertext */
729 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
730 		src = kmap_atomic(sg_page(&dmreq->sg_in));
731 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
732 		kunmap_atomic(src);
733 	}
734 
735 	/* Calculate IV */
736 	memcpy(iv, tcw->iv_seed, cc->iv_size);
737 	crypto_xor(iv, (u8 *)&sector, 8);
738 	if (cc->iv_size > 8)
739 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
740 
741 	return r;
742 }
743 
744 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
745 			     struct dm_crypt_request *dmreq)
746 {
747 	u8 *dst;
748 	int r;
749 
750 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
751 		return 0;
752 
753 	/* Apply whitening on ciphertext */
754 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
755 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
756 	kunmap_atomic(dst);
757 
758 	return r;
759 }
760 
761 static struct crypt_iv_operations crypt_iv_plain_ops = {
762 	.generator = crypt_iv_plain_gen
763 };
764 
765 static struct crypt_iv_operations crypt_iv_plain64_ops = {
766 	.generator = crypt_iv_plain64_gen
767 };
768 
769 static struct crypt_iv_operations crypt_iv_essiv_ops = {
770 	.ctr       = crypt_iv_essiv_ctr,
771 	.dtr       = crypt_iv_essiv_dtr,
772 	.init      = crypt_iv_essiv_init,
773 	.wipe      = crypt_iv_essiv_wipe,
774 	.generator = crypt_iv_essiv_gen
775 };
776 
777 static struct crypt_iv_operations crypt_iv_benbi_ops = {
778 	.ctr	   = crypt_iv_benbi_ctr,
779 	.dtr	   = crypt_iv_benbi_dtr,
780 	.generator = crypt_iv_benbi_gen
781 };
782 
783 static struct crypt_iv_operations crypt_iv_null_ops = {
784 	.generator = crypt_iv_null_gen
785 };
786 
787 static struct crypt_iv_operations crypt_iv_lmk_ops = {
788 	.ctr	   = crypt_iv_lmk_ctr,
789 	.dtr	   = crypt_iv_lmk_dtr,
790 	.init	   = crypt_iv_lmk_init,
791 	.wipe	   = crypt_iv_lmk_wipe,
792 	.generator = crypt_iv_lmk_gen,
793 	.post	   = crypt_iv_lmk_post
794 };
795 
796 static struct crypt_iv_operations crypt_iv_tcw_ops = {
797 	.ctr	   = crypt_iv_tcw_ctr,
798 	.dtr	   = crypt_iv_tcw_dtr,
799 	.init	   = crypt_iv_tcw_init,
800 	.wipe	   = crypt_iv_tcw_wipe,
801 	.generator = crypt_iv_tcw_gen,
802 	.post	   = crypt_iv_tcw_post
803 };
804 
805 static void crypt_convert_init(struct crypt_config *cc,
806 			       struct convert_context *ctx,
807 			       struct bio *bio_out, struct bio *bio_in,
808 			       sector_t sector)
809 {
810 	ctx->bio_in = bio_in;
811 	ctx->bio_out = bio_out;
812 	if (bio_in)
813 		ctx->iter_in = bio_in->bi_iter;
814 	if (bio_out)
815 		ctx->iter_out = bio_out->bi_iter;
816 	ctx->cc_sector = sector + cc->iv_offset;
817 	init_completion(&ctx->restart);
818 }
819 
820 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
821 					     struct skcipher_request *req)
822 {
823 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
824 }
825 
826 static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
827 					       struct dm_crypt_request *dmreq)
828 {
829 	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
830 }
831 
832 static u8 *iv_of_dmreq(struct crypt_config *cc,
833 		       struct dm_crypt_request *dmreq)
834 {
835 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
836 		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
837 }
838 
839 static int crypt_convert_block(struct crypt_config *cc,
840 			       struct convert_context *ctx,
841 			       struct skcipher_request *req)
842 {
843 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
844 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
845 	struct dm_crypt_request *dmreq;
846 	u8 *iv;
847 	int r;
848 
849 	dmreq = dmreq_of_req(cc, req);
850 	iv = iv_of_dmreq(cc, dmreq);
851 
852 	dmreq->iv_sector = ctx->cc_sector;
853 	dmreq->ctx = ctx;
854 	sg_init_table(&dmreq->sg_in, 1);
855 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
856 		    bv_in.bv_offset);
857 
858 	sg_init_table(&dmreq->sg_out, 1);
859 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
860 		    bv_out.bv_offset);
861 
862 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
863 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
864 
865 	if (cc->iv_gen_ops) {
866 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
867 		if (r < 0)
868 			return r;
869 	}
870 
871 	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
872 				   1 << SECTOR_SHIFT, iv);
873 
874 	if (bio_data_dir(ctx->bio_in) == WRITE)
875 		r = crypto_skcipher_encrypt(req);
876 	else
877 		r = crypto_skcipher_decrypt(req);
878 
879 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
880 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
881 
882 	return r;
883 }
884 
885 static void kcryptd_async_done(struct crypto_async_request *async_req,
886 			       int error);
887 
888 static void crypt_alloc_req(struct crypt_config *cc,
889 			    struct convert_context *ctx)
890 {
891 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
892 
893 	if (!ctx->req)
894 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
895 
896 	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
897 
898 	/*
899 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
900 	 * requests if driver request queue is full.
901 	 */
902 	skcipher_request_set_callback(ctx->req,
903 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
904 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
905 }
906 
907 static void crypt_free_req(struct crypt_config *cc,
908 			   struct skcipher_request *req, struct bio *base_bio)
909 {
910 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
911 
912 	if ((struct skcipher_request *)(io + 1) != req)
913 		mempool_free(req, cc->req_pool);
914 }
915 
916 /*
917  * Encrypt / decrypt data from one bio to another one (can be the same one)
918  */
919 static int crypt_convert(struct crypt_config *cc,
920 			 struct convert_context *ctx)
921 {
922 	int r;
923 
924 	atomic_set(&ctx->cc_pending, 1);
925 
926 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
927 
928 		crypt_alloc_req(cc, ctx);
929 
930 		atomic_inc(&ctx->cc_pending);
931 
932 		r = crypt_convert_block(cc, ctx, ctx->req);
933 
934 		switch (r) {
935 		/*
936 		 * The request was queued by a crypto driver
937 		 * but the driver request queue is full, let's wait.
938 		 */
939 		case -EBUSY:
940 			wait_for_completion(&ctx->restart);
941 			reinit_completion(&ctx->restart);
942 			/* fall through */
943 		/*
944 		 * The request is queued and processed asynchronously,
945 		 * completion function kcryptd_async_done() will be called.
946 		 */
947 		case -EINPROGRESS:
948 			ctx->req = NULL;
949 			ctx->cc_sector++;
950 			continue;
951 		/*
952 		 * The request was already processed (synchronously).
953 		 */
954 		case 0:
955 			atomic_dec(&ctx->cc_pending);
956 			ctx->cc_sector++;
957 			cond_resched();
958 			continue;
959 
960 		/* There was an error while processing the request. */
961 		default:
962 			atomic_dec(&ctx->cc_pending);
963 			return r;
964 		}
965 	}
966 
967 	return 0;
968 }
969 
970 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
971 
972 /*
973  * Generate a new unfragmented bio with the given size
974  * This should never violate the device limitations (but only because
975  * max_segment_size is being constrained to PAGE_SIZE).
976  *
977  * This function may be called concurrently. If we allocate from the mempool
978  * concurrently, there is a possibility of deadlock. For example, if we have
979  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
980  * the mempool concurrently, it may deadlock in a situation where both processes
981  * have allocated 128 pages and the mempool is exhausted.
982  *
983  * In order to avoid this scenario we allocate the pages under a mutex.
984  *
985  * In order to not degrade performance with excessive locking, we try
986  * non-blocking allocations without a mutex first but on failure we fallback
987  * to blocking allocations with a mutex.
988  */
989 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
990 {
991 	struct crypt_config *cc = io->cc;
992 	struct bio *clone;
993 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
994 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
995 	unsigned i, len, remaining_size;
996 	struct page *page;
997 
998 retry:
999 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1000 		mutex_lock(&cc->bio_alloc_lock);
1001 
1002 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1003 	if (!clone)
1004 		goto return_clone;
1005 
1006 	clone_init(io, clone);
1007 
1008 	remaining_size = size;
1009 
1010 	for (i = 0; i < nr_iovecs; i++) {
1011 		page = mempool_alloc(cc->page_pool, gfp_mask);
1012 		if (!page) {
1013 			crypt_free_buffer_pages(cc, clone);
1014 			bio_put(clone);
1015 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1016 			goto retry;
1017 		}
1018 
1019 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1020 
1021 		bio_add_page(clone, page, len, 0);
1022 
1023 		remaining_size -= len;
1024 	}
1025 
1026 return_clone:
1027 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1028 		mutex_unlock(&cc->bio_alloc_lock);
1029 
1030 	return clone;
1031 }
1032 
1033 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1034 {
1035 	unsigned int i;
1036 	struct bio_vec *bv;
1037 
1038 	bio_for_each_segment_all(bv, clone, i) {
1039 		BUG_ON(!bv->bv_page);
1040 		mempool_free(bv->bv_page, cc->page_pool);
1041 		bv->bv_page = NULL;
1042 	}
1043 }
1044 
1045 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1046 			  struct bio *bio, sector_t sector)
1047 {
1048 	io->cc = cc;
1049 	io->base_bio = bio;
1050 	io->sector = sector;
1051 	io->error = 0;
1052 	io->ctx.req = NULL;
1053 	atomic_set(&io->io_pending, 0);
1054 }
1055 
1056 static void crypt_inc_pending(struct dm_crypt_io *io)
1057 {
1058 	atomic_inc(&io->io_pending);
1059 }
1060 
1061 /*
1062  * One of the bios was finished. Check for completion of
1063  * the whole request and correctly clean up the buffer.
1064  */
1065 static void crypt_dec_pending(struct dm_crypt_io *io)
1066 {
1067 	struct crypt_config *cc = io->cc;
1068 	struct bio *base_bio = io->base_bio;
1069 	int error = io->error;
1070 
1071 	if (!atomic_dec_and_test(&io->io_pending))
1072 		return;
1073 
1074 	if (io->ctx.req)
1075 		crypt_free_req(cc, io->ctx.req, base_bio);
1076 
1077 	base_bio->bi_error = error;
1078 	bio_endio(base_bio);
1079 }
1080 
1081 /*
1082  * kcryptd/kcryptd_io:
1083  *
1084  * Needed because it would be very unwise to do decryption in an
1085  * interrupt context.
1086  *
1087  * kcryptd performs the actual encryption or decryption.
1088  *
1089  * kcryptd_io performs the IO submission.
1090  *
1091  * They must be separated as otherwise the final stages could be
1092  * starved by new requests which can block in the first stages due
1093  * to memory allocation.
1094  *
1095  * The work is done per CPU global for all dm-crypt instances.
1096  * They should not depend on each other and do not block.
1097  */
1098 static void crypt_endio(struct bio *clone)
1099 {
1100 	struct dm_crypt_io *io = clone->bi_private;
1101 	struct crypt_config *cc = io->cc;
1102 	unsigned rw = bio_data_dir(clone);
1103 	int error;
1104 
1105 	/*
1106 	 * free the processed pages
1107 	 */
1108 	if (rw == WRITE)
1109 		crypt_free_buffer_pages(cc, clone);
1110 
1111 	error = clone->bi_error;
1112 	bio_put(clone);
1113 
1114 	if (rw == READ && !error) {
1115 		kcryptd_queue_crypt(io);
1116 		return;
1117 	}
1118 
1119 	if (unlikely(error))
1120 		io->error = error;
1121 
1122 	crypt_dec_pending(io);
1123 }
1124 
1125 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1126 {
1127 	struct crypt_config *cc = io->cc;
1128 
1129 	clone->bi_private = io;
1130 	clone->bi_end_io  = crypt_endio;
1131 	clone->bi_bdev    = cc->dev->bdev;
1132 	bio_set_op_attrs(clone, bio_op(io->base_bio), bio_flags(io->base_bio));
1133 }
1134 
1135 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1136 {
1137 	struct crypt_config *cc = io->cc;
1138 	struct bio *clone;
1139 
1140 	/*
1141 	 * We need the original biovec array in order to decrypt
1142 	 * the whole bio data *afterwards* -- thanks to immutable
1143 	 * biovecs we don't need to worry about the block layer
1144 	 * modifying the biovec array; so leverage bio_clone_fast().
1145 	 */
1146 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1147 	if (!clone)
1148 		return 1;
1149 
1150 	crypt_inc_pending(io);
1151 
1152 	clone_init(io, clone);
1153 	clone->bi_iter.bi_sector = cc->start + io->sector;
1154 
1155 	generic_make_request(clone);
1156 	return 0;
1157 }
1158 
1159 static void kcryptd_io_read_work(struct work_struct *work)
1160 {
1161 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1162 
1163 	crypt_inc_pending(io);
1164 	if (kcryptd_io_read(io, GFP_NOIO))
1165 		io->error = -ENOMEM;
1166 	crypt_dec_pending(io);
1167 }
1168 
1169 static void kcryptd_queue_read(struct dm_crypt_io *io)
1170 {
1171 	struct crypt_config *cc = io->cc;
1172 
1173 	INIT_WORK(&io->work, kcryptd_io_read_work);
1174 	queue_work(cc->io_queue, &io->work);
1175 }
1176 
1177 static void kcryptd_io_write(struct dm_crypt_io *io)
1178 {
1179 	struct bio *clone = io->ctx.bio_out;
1180 
1181 	generic_make_request(clone);
1182 }
1183 
1184 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1185 
1186 static int dmcrypt_write(void *data)
1187 {
1188 	struct crypt_config *cc = data;
1189 	struct dm_crypt_io *io;
1190 
1191 	while (1) {
1192 		struct rb_root write_tree;
1193 		struct blk_plug plug;
1194 
1195 		DECLARE_WAITQUEUE(wait, current);
1196 
1197 		spin_lock_irq(&cc->write_thread_wait.lock);
1198 continue_locked:
1199 
1200 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1201 			goto pop_from_list;
1202 
1203 		set_current_state(TASK_INTERRUPTIBLE);
1204 		__add_wait_queue(&cc->write_thread_wait, &wait);
1205 
1206 		spin_unlock_irq(&cc->write_thread_wait.lock);
1207 
1208 		if (unlikely(kthread_should_stop())) {
1209 			set_task_state(current, TASK_RUNNING);
1210 			remove_wait_queue(&cc->write_thread_wait, &wait);
1211 			break;
1212 		}
1213 
1214 		schedule();
1215 
1216 		set_task_state(current, TASK_RUNNING);
1217 		spin_lock_irq(&cc->write_thread_wait.lock);
1218 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1219 		goto continue_locked;
1220 
1221 pop_from_list:
1222 		write_tree = cc->write_tree;
1223 		cc->write_tree = RB_ROOT;
1224 		spin_unlock_irq(&cc->write_thread_wait.lock);
1225 
1226 		BUG_ON(rb_parent(write_tree.rb_node));
1227 
1228 		/*
1229 		 * Note: we cannot walk the tree here with rb_next because
1230 		 * the structures may be freed when kcryptd_io_write is called.
1231 		 */
1232 		blk_start_plug(&plug);
1233 		do {
1234 			io = crypt_io_from_node(rb_first(&write_tree));
1235 			rb_erase(&io->rb_node, &write_tree);
1236 			kcryptd_io_write(io);
1237 		} while (!RB_EMPTY_ROOT(&write_tree));
1238 		blk_finish_plug(&plug);
1239 	}
1240 	return 0;
1241 }
1242 
1243 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1244 {
1245 	struct bio *clone = io->ctx.bio_out;
1246 	struct crypt_config *cc = io->cc;
1247 	unsigned long flags;
1248 	sector_t sector;
1249 	struct rb_node **rbp, *parent;
1250 
1251 	if (unlikely(io->error < 0)) {
1252 		crypt_free_buffer_pages(cc, clone);
1253 		bio_put(clone);
1254 		crypt_dec_pending(io);
1255 		return;
1256 	}
1257 
1258 	/* crypt_convert should have filled the clone bio */
1259 	BUG_ON(io->ctx.iter_out.bi_size);
1260 
1261 	clone->bi_iter.bi_sector = cc->start + io->sector;
1262 
1263 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1264 		generic_make_request(clone);
1265 		return;
1266 	}
1267 
1268 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1269 	rbp = &cc->write_tree.rb_node;
1270 	parent = NULL;
1271 	sector = io->sector;
1272 	while (*rbp) {
1273 		parent = *rbp;
1274 		if (sector < crypt_io_from_node(parent)->sector)
1275 			rbp = &(*rbp)->rb_left;
1276 		else
1277 			rbp = &(*rbp)->rb_right;
1278 	}
1279 	rb_link_node(&io->rb_node, parent, rbp);
1280 	rb_insert_color(&io->rb_node, &cc->write_tree);
1281 
1282 	wake_up_locked(&cc->write_thread_wait);
1283 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1284 }
1285 
1286 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1287 {
1288 	struct crypt_config *cc = io->cc;
1289 	struct bio *clone;
1290 	int crypt_finished;
1291 	sector_t sector = io->sector;
1292 	int r;
1293 
1294 	/*
1295 	 * Prevent io from disappearing until this function completes.
1296 	 */
1297 	crypt_inc_pending(io);
1298 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1299 
1300 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1301 	if (unlikely(!clone)) {
1302 		io->error = -EIO;
1303 		goto dec;
1304 	}
1305 
1306 	io->ctx.bio_out = clone;
1307 	io->ctx.iter_out = clone->bi_iter;
1308 
1309 	sector += bio_sectors(clone);
1310 
1311 	crypt_inc_pending(io);
1312 	r = crypt_convert(cc, &io->ctx);
1313 	if (r)
1314 		io->error = -EIO;
1315 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1316 
1317 	/* Encryption was already finished, submit io now */
1318 	if (crypt_finished) {
1319 		kcryptd_crypt_write_io_submit(io, 0);
1320 		io->sector = sector;
1321 	}
1322 
1323 dec:
1324 	crypt_dec_pending(io);
1325 }
1326 
1327 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1328 {
1329 	crypt_dec_pending(io);
1330 }
1331 
1332 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1333 {
1334 	struct crypt_config *cc = io->cc;
1335 	int r = 0;
1336 
1337 	crypt_inc_pending(io);
1338 
1339 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1340 			   io->sector);
1341 
1342 	r = crypt_convert(cc, &io->ctx);
1343 	if (r < 0)
1344 		io->error = -EIO;
1345 
1346 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1347 		kcryptd_crypt_read_done(io);
1348 
1349 	crypt_dec_pending(io);
1350 }
1351 
1352 static void kcryptd_async_done(struct crypto_async_request *async_req,
1353 			       int error)
1354 {
1355 	struct dm_crypt_request *dmreq = async_req->data;
1356 	struct convert_context *ctx = dmreq->ctx;
1357 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1358 	struct crypt_config *cc = io->cc;
1359 
1360 	/*
1361 	 * A request from crypto driver backlog is going to be processed now,
1362 	 * finish the completion and continue in crypt_convert().
1363 	 * (Callback will be called for the second time for this request.)
1364 	 */
1365 	if (error == -EINPROGRESS) {
1366 		complete(&ctx->restart);
1367 		return;
1368 	}
1369 
1370 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1371 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1372 
1373 	if (error < 0)
1374 		io->error = -EIO;
1375 
1376 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1377 
1378 	if (!atomic_dec_and_test(&ctx->cc_pending))
1379 		return;
1380 
1381 	if (bio_data_dir(io->base_bio) == READ)
1382 		kcryptd_crypt_read_done(io);
1383 	else
1384 		kcryptd_crypt_write_io_submit(io, 1);
1385 }
1386 
1387 static void kcryptd_crypt(struct work_struct *work)
1388 {
1389 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1390 
1391 	if (bio_data_dir(io->base_bio) == READ)
1392 		kcryptd_crypt_read_convert(io);
1393 	else
1394 		kcryptd_crypt_write_convert(io);
1395 }
1396 
1397 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1398 {
1399 	struct crypt_config *cc = io->cc;
1400 
1401 	INIT_WORK(&io->work, kcryptd_crypt);
1402 	queue_work(cc->crypt_queue, &io->work);
1403 }
1404 
1405 /*
1406  * Decode key from its hex representation
1407  */
1408 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1409 {
1410 	char buffer[3];
1411 	unsigned int i;
1412 
1413 	buffer[2] = '\0';
1414 
1415 	for (i = 0; i < size; i++) {
1416 		buffer[0] = *hex++;
1417 		buffer[1] = *hex++;
1418 
1419 		if (kstrtou8(buffer, 16, &key[i]))
1420 			return -EINVAL;
1421 	}
1422 
1423 	if (*hex != '\0')
1424 		return -EINVAL;
1425 
1426 	return 0;
1427 }
1428 
1429 static void crypt_free_tfms(struct crypt_config *cc)
1430 {
1431 	unsigned i;
1432 
1433 	if (!cc->tfms)
1434 		return;
1435 
1436 	for (i = 0; i < cc->tfms_count; i++)
1437 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1438 			crypto_free_skcipher(cc->tfms[i]);
1439 			cc->tfms[i] = NULL;
1440 		}
1441 
1442 	kfree(cc->tfms);
1443 	cc->tfms = NULL;
1444 }
1445 
1446 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1447 {
1448 	unsigned i;
1449 	int err;
1450 
1451 	cc->tfms = kzalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1452 			   GFP_KERNEL);
1453 	if (!cc->tfms)
1454 		return -ENOMEM;
1455 
1456 	for (i = 0; i < cc->tfms_count; i++) {
1457 		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1458 		if (IS_ERR(cc->tfms[i])) {
1459 			err = PTR_ERR(cc->tfms[i]);
1460 			crypt_free_tfms(cc);
1461 			return err;
1462 		}
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static int crypt_setkey_allcpus(struct crypt_config *cc)
1469 {
1470 	unsigned subkey_size;
1471 	int err = 0, i, r;
1472 
1473 	/* Ignore extra keys (which are used for IV etc) */
1474 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1475 
1476 	for (i = 0; i < cc->tfms_count; i++) {
1477 		r = crypto_skcipher_setkey(cc->tfms[i],
1478 					   cc->key + (i * subkey_size),
1479 					   subkey_size);
1480 		if (r)
1481 			err = r;
1482 	}
1483 
1484 	return err;
1485 }
1486 
1487 static int crypt_set_key(struct crypt_config *cc, char *key)
1488 {
1489 	int r = -EINVAL;
1490 	int key_string_len = strlen(key);
1491 
1492 	/* The key size may not be changed. */
1493 	if (cc->key_size != (key_string_len >> 1))
1494 		goto out;
1495 
1496 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1497 	if (!cc->key_size && strcmp(key, "-"))
1498 		goto out;
1499 
1500 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1501 		goto out;
1502 
1503 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1504 
1505 	r = crypt_setkey_allcpus(cc);
1506 
1507 out:
1508 	/* Hex key string not needed after here, so wipe it. */
1509 	memset(key, '0', key_string_len);
1510 
1511 	return r;
1512 }
1513 
1514 static int crypt_wipe_key(struct crypt_config *cc)
1515 {
1516 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1517 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1518 
1519 	return crypt_setkey_allcpus(cc);
1520 }
1521 
1522 static void crypt_dtr(struct dm_target *ti)
1523 {
1524 	struct crypt_config *cc = ti->private;
1525 
1526 	ti->private = NULL;
1527 
1528 	if (!cc)
1529 		return;
1530 
1531 	if (cc->write_thread)
1532 		kthread_stop(cc->write_thread);
1533 
1534 	if (cc->io_queue)
1535 		destroy_workqueue(cc->io_queue);
1536 	if (cc->crypt_queue)
1537 		destroy_workqueue(cc->crypt_queue);
1538 
1539 	crypt_free_tfms(cc);
1540 
1541 	if (cc->bs)
1542 		bioset_free(cc->bs);
1543 
1544 	mempool_destroy(cc->page_pool);
1545 	mempool_destroy(cc->req_pool);
1546 
1547 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1548 		cc->iv_gen_ops->dtr(cc);
1549 
1550 	if (cc->dev)
1551 		dm_put_device(ti, cc->dev);
1552 
1553 	kzfree(cc->cipher);
1554 	kzfree(cc->cipher_string);
1555 
1556 	/* Must zero key material before freeing */
1557 	kzfree(cc);
1558 }
1559 
1560 static int crypt_ctr_cipher(struct dm_target *ti,
1561 			    char *cipher_in, char *key)
1562 {
1563 	struct crypt_config *cc = ti->private;
1564 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1565 	char *cipher_api = NULL;
1566 	int ret = -EINVAL;
1567 	char dummy;
1568 
1569 	/* Convert to crypto api definition? */
1570 	if (strchr(cipher_in, '(')) {
1571 		ti->error = "Bad cipher specification";
1572 		return -EINVAL;
1573 	}
1574 
1575 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1576 	if (!cc->cipher_string)
1577 		goto bad_mem;
1578 
1579 	/*
1580 	 * Legacy dm-crypt cipher specification
1581 	 * cipher[:keycount]-mode-iv:ivopts
1582 	 */
1583 	tmp = cipher_in;
1584 	keycount = strsep(&tmp, "-");
1585 	cipher = strsep(&keycount, ":");
1586 
1587 	if (!keycount)
1588 		cc->tfms_count = 1;
1589 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1590 		 !is_power_of_2(cc->tfms_count)) {
1591 		ti->error = "Bad cipher key count specification";
1592 		return -EINVAL;
1593 	}
1594 	cc->key_parts = cc->tfms_count;
1595 	cc->key_extra_size = 0;
1596 
1597 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1598 	if (!cc->cipher)
1599 		goto bad_mem;
1600 
1601 	chainmode = strsep(&tmp, "-");
1602 	ivopts = strsep(&tmp, "-");
1603 	ivmode = strsep(&ivopts, ":");
1604 
1605 	if (tmp)
1606 		DMWARN("Ignoring unexpected additional cipher options");
1607 
1608 	/*
1609 	 * For compatibility with the original dm-crypt mapping format, if
1610 	 * only the cipher name is supplied, use cbc-plain.
1611 	 */
1612 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1613 		chainmode = "cbc";
1614 		ivmode = "plain";
1615 	}
1616 
1617 	if (strcmp(chainmode, "ecb") && !ivmode) {
1618 		ti->error = "IV mechanism required";
1619 		return -EINVAL;
1620 	}
1621 
1622 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1623 	if (!cipher_api)
1624 		goto bad_mem;
1625 
1626 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1627 		       "%s(%s)", chainmode, cipher);
1628 	if (ret < 0) {
1629 		kfree(cipher_api);
1630 		goto bad_mem;
1631 	}
1632 
1633 	/* Allocate cipher */
1634 	ret = crypt_alloc_tfms(cc, cipher_api);
1635 	if (ret < 0) {
1636 		ti->error = "Error allocating crypto tfm";
1637 		goto bad;
1638 	}
1639 
1640 	/* Initialize IV */
1641 	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1642 	if (cc->iv_size)
1643 		/* at least a 64 bit sector number should fit in our buffer */
1644 		cc->iv_size = max(cc->iv_size,
1645 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1646 	else if (ivmode) {
1647 		DMWARN("Selected cipher does not support IVs");
1648 		ivmode = NULL;
1649 	}
1650 
1651 	/* Choose ivmode, see comments at iv code. */
1652 	if (ivmode == NULL)
1653 		cc->iv_gen_ops = NULL;
1654 	else if (strcmp(ivmode, "plain") == 0)
1655 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1656 	else if (strcmp(ivmode, "plain64") == 0)
1657 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1658 	else if (strcmp(ivmode, "essiv") == 0)
1659 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1660 	else if (strcmp(ivmode, "benbi") == 0)
1661 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1662 	else if (strcmp(ivmode, "null") == 0)
1663 		cc->iv_gen_ops = &crypt_iv_null_ops;
1664 	else if (strcmp(ivmode, "lmk") == 0) {
1665 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1666 		/*
1667 		 * Version 2 and 3 is recognised according
1668 		 * to length of provided multi-key string.
1669 		 * If present (version 3), last key is used as IV seed.
1670 		 * All keys (including IV seed) are always the same size.
1671 		 */
1672 		if (cc->key_size % cc->key_parts) {
1673 			cc->key_parts++;
1674 			cc->key_extra_size = cc->key_size / cc->key_parts;
1675 		}
1676 	} else if (strcmp(ivmode, "tcw") == 0) {
1677 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1678 		cc->key_parts += 2; /* IV + whitening */
1679 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1680 	} else {
1681 		ret = -EINVAL;
1682 		ti->error = "Invalid IV mode";
1683 		goto bad;
1684 	}
1685 
1686 	/* Initialize and set key */
1687 	ret = crypt_set_key(cc, key);
1688 	if (ret < 0) {
1689 		ti->error = "Error decoding and setting key";
1690 		goto bad;
1691 	}
1692 
1693 	/* Allocate IV */
1694 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1695 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1696 		if (ret < 0) {
1697 			ti->error = "Error creating IV";
1698 			goto bad;
1699 		}
1700 	}
1701 
1702 	/* Initialize IV (set keys for ESSIV etc) */
1703 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1704 		ret = cc->iv_gen_ops->init(cc);
1705 		if (ret < 0) {
1706 			ti->error = "Error initialising IV";
1707 			goto bad;
1708 		}
1709 	}
1710 
1711 	ret = 0;
1712 bad:
1713 	kfree(cipher_api);
1714 	return ret;
1715 
1716 bad_mem:
1717 	ti->error = "Cannot allocate cipher strings";
1718 	return -ENOMEM;
1719 }
1720 
1721 /*
1722  * Construct an encryption mapping:
1723  * <cipher> <key> <iv_offset> <dev_path> <start>
1724  */
1725 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1726 {
1727 	struct crypt_config *cc;
1728 	unsigned int key_size, opt_params;
1729 	unsigned long long tmpll;
1730 	int ret;
1731 	size_t iv_size_padding;
1732 	struct dm_arg_set as;
1733 	const char *opt_string;
1734 	char dummy;
1735 
1736 	static struct dm_arg _args[] = {
1737 		{0, 3, "Invalid number of feature args"},
1738 	};
1739 
1740 	if (argc < 5) {
1741 		ti->error = "Not enough arguments";
1742 		return -EINVAL;
1743 	}
1744 
1745 	key_size = strlen(argv[1]) >> 1;
1746 
1747 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1748 	if (!cc) {
1749 		ti->error = "Cannot allocate encryption context";
1750 		return -ENOMEM;
1751 	}
1752 	cc->key_size = key_size;
1753 
1754 	ti->private = cc;
1755 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1756 	if (ret < 0)
1757 		goto bad;
1758 
1759 	cc->dmreq_start = sizeof(struct skcipher_request);
1760 	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
1761 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1762 
1763 	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1764 		/* Allocate the padding exactly */
1765 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1766 				& crypto_skcipher_alignmask(any_tfm(cc));
1767 	} else {
1768 		/*
1769 		 * If the cipher requires greater alignment than kmalloc
1770 		 * alignment, we don't know the exact position of the
1771 		 * initialization vector. We must assume worst case.
1772 		 */
1773 		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1774 	}
1775 
1776 	ret = -ENOMEM;
1777 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1778 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1779 	if (!cc->req_pool) {
1780 		ti->error = "Cannot allocate crypt request mempool";
1781 		goto bad;
1782 	}
1783 
1784 	cc->per_bio_data_size = ti->per_io_data_size =
1785 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1786 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1787 		      ARCH_KMALLOC_MINALIGN);
1788 
1789 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1790 	if (!cc->page_pool) {
1791 		ti->error = "Cannot allocate page mempool";
1792 		goto bad;
1793 	}
1794 
1795 	cc->bs = bioset_create(MIN_IOS, 0);
1796 	if (!cc->bs) {
1797 		ti->error = "Cannot allocate crypt bioset";
1798 		goto bad;
1799 	}
1800 
1801 	mutex_init(&cc->bio_alloc_lock);
1802 
1803 	ret = -EINVAL;
1804 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1805 		ti->error = "Invalid iv_offset sector";
1806 		goto bad;
1807 	}
1808 	cc->iv_offset = tmpll;
1809 
1810 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1811 	if (ret) {
1812 		ti->error = "Device lookup failed";
1813 		goto bad;
1814 	}
1815 
1816 	ret = -EINVAL;
1817 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1818 		ti->error = "Invalid device sector";
1819 		goto bad;
1820 	}
1821 	cc->start = tmpll;
1822 
1823 	argv += 5;
1824 	argc -= 5;
1825 
1826 	/* Optional parameters */
1827 	if (argc) {
1828 		as.argc = argc;
1829 		as.argv = argv;
1830 
1831 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1832 		if (ret)
1833 			goto bad;
1834 
1835 		ret = -EINVAL;
1836 		while (opt_params--) {
1837 			opt_string = dm_shift_arg(&as);
1838 			if (!opt_string) {
1839 				ti->error = "Not enough feature arguments";
1840 				goto bad;
1841 			}
1842 
1843 			if (!strcasecmp(opt_string, "allow_discards"))
1844 				ti->num_discard_bios = 1;
1845 
1846 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1847 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1848 
1849 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1850 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1851 
1852 			else {
1853 				ti->error = "Invalid feature arguments";
1854 				goto bad;
1855 			}
1856 		}
1857 	}
1858 
1859 	ret = -ENOMEM;
1860 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1861 	if (!cc->io_queue) {
1862 		ti->error = "Couldn't create kcryptd io queue";
1863 		goto bad;
1864 	}
1865 
1866 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1867 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1868 	else
1869 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1870 						  num_online_cpus());
1871 	if (!cc->crypt_queue) {
1872 		ti->error = "Couldn't create kcryptd queue";
1873 		goto bad;
1874 	}
1875 
1876 	init_waitqueue_head(&cc->write_thread_wait);
1877 	cc->write_tree = RB_ROOT;
1878 
1879 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1880 	if (IS_ERR(cc->write_thread)) {
1881 		ret = PTR_ERR(cc->write_thread);
1882 		cc->write_thread = NULL;
1883 		ti->error = "Couldn't spawn write thread";
1884 		goto bad;
1885 	}
1886 	wake_up_process(cc->write_thread);
1887 
1888 	ti->num_flush_bios = 1;
1889 	ti->discard_zeroes_data_unsupported = true;
1890 
1891 	return 0;
1892 
1893 bad:
1894 	crypt_dtr(ti);
1895 	return ret;
1896 }
1897 
1898 static int crypt_map(struct dm_target *ti, struct bio *bio)
1899 {
1900 	struct dm_crypt_io *io;
1901 	struct crypt_config *cc = ti->private;
1902 
1903 	/*
1904 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
1905 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
1906 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
1907 	 */
1908 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
1909 	    bio_op(bio) == REQ_OP_DISCARD)) {
1910 		bio->bi_bdev = cc->dev->bdev;
1911 		if (bio_sectors(bio))
1912 			bio->bi_iter.bi_sector = cc->start +
1913 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1914 		return DM_MAPIO_REMAPPED;
1915 	}
1916 
1917 	/*
1918 	 * Check if bio is too large, split as needed.
1919 	 */
1920 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
1921 	    bio_data_dir(bio) == WRITE)
1922 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
1923 
1924 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1925 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1926 	io->ctx.req = (struct skcipher_request *)(io + 1);
1927 
1928 	if (bio_data_dir(io->base_bio) == READ) {
1929 		if (kcryptd_io_read(io, GFP_NOWAIT))
1930 			kcryptd_queue_read(io);
1931 	} else
1932 		kcryptd_queue_crypt(io);
1933 
1934 	return DM_MAPIO_SUBMITTED;
1935 }
1936 
1937 static void crypt_status(struct dm_target *ti, status_type_t type,
1938 			 unsigned status_flags, char *result, unsigned maxlen)
1939 {
1940 	struct crypt_config *cc = ti->private;
1941 	unsigned i, sz = 0;
1942 	int num_feature_args = 0;
1943 
1944 	switch (type) {
1945 	case STATUSTYPE_INFO:
1946 		result[0] = '\0';
1947 		break;
1948 
1949 	case STATUSTYPE_TABLE:
1950 		DMEMIT("%s ", cc->cipher_string);
1951 
1952 		if (cc->key_size > 0)
1953 			for (i = 0; i < cc->key_size; i++)
1954 				DMEMIT("%02x", cc->key[i]);
1955 		else
1956 			DMEMIT("-");
1957 
1958 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1959 				cc->dev->name, (unsigned long long)cc->start);
1960 
1961 		num_feature_args += !!ti->num_discard_bios;
1962 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1963 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1964 		if (num_feature_args) {
1965 			DMEMIT(" %d", num_feature_args);
1966 			if (ti->num_discard_bios)
1967 				DMEMIT(" allow_discards");
1968 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1969 				DMEMIT(" same_cpu_crypt");
1970 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1971 				DMEMIT(" submit_from_crypt_cpus");
1972 		}
1973 
1974 		break;
1975 	}
1976 }
1977 
1978 static void crypt_postsuspend(struct dm_target *ti)
1979 {
1980 	struct crypt_config *cc = ti->private;
1981 
1982 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1983 }
1984 
1985 static int crypt_preresume(struct dm_target *ti)
1986 {
1987 	struct crypt_config *cc = ti->private;
1988 
1989 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1990 		DMERR("aborting resume - crypt key is not set.");
1991 		return -EAGAIN;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static void crypt_resume(struct dm_target *ti)
1998 {
1999 	struct crypt_config *cc = ti->private;
2000 
2001 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2002 }
2003 
2004 /* Message interface
2005  *	key set <key>
2006  *	key wipe
2007  */
2008 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2009 {
2010 	struct crypt_config *cc = ti->private;
2011 	int ret = -EINVAL;
2012 
2013 	if (argc < 2)
2014 		goto error;
2015 
2016 	if (!strcasecmp(argv[0], "key")) {
2017 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2018 			DMWARN("not suspended during key manipulation.");
2019 			return -EINVAL;
2020 		}
2021 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
2022 			ret = crypt_set_key(cc, argv[2]);
2023 			if (ret)
2024 				return ret;
2025 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2026 				ret = cc->iv_gen_ops->init(cc);
2027 			return ret;
2028 		}
2029 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2030 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2031 				ret = cc->iv_gen_ops->wipe(cc);
2032 				if (ret)
2033 					return ret;
2034 			}
2035 			return crypt_wipe_key(cc);
2036 		}
2037 	}
2038 
2039 error:
2040 	DMWARN("unrecognised message received.");
2041 	return -EINVAL;
2042 }
2043 
2044 static int crypt_iterate_devices(struct dm_target *ti,
2045 				 iterate_devices_callout_fn fn, void *data)
2046 {
2047 	struct crypt_config *cc = ti->private;
2048 
2049 	return fn(ti, cc->dev, cc->start, ti->len, data);
2050 }
2051 
2052 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2053 {
2054 	/*
2055 	 * Unfortunate constraint that is required to avoid the potential
2056 	 * for exceeding underlying device's max_segments limits -- due to
2057 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2058 	 * bio that are not as physically contiguous as the original bio.
2059 	 */
2060 	limits->max_segment_size = PAGE_SIZE;
2061 }
2062 
2063 static struct target_type crypt_target = {
2064 	.name   = "crypt",
2065 	.version = {1, 14, 1},
2066 	.module = THIS_MODULE,
2067 	.ctr    = crypt_ctr,
2068 	.dtr    = crypt_dtr,
2069 	.map    = crypt_map,
2070 	.status = crypt_status,
2071 	.postsuspend = crypt_postsuspend,
2072 	.preresume = crypt_preresume,
2073 	.resume = crypt_resume,
2074 	.message = crypt_message,
2075 	.iterate_devices = crypt_iterate_devices,
2076 	.io_hints = crypt_io_hints,
2077 };
2078 
2079 static int __init dm_crypt_init(void)
2080 {
2081 	int r;
2082 
2083 	r = dm_register_target(&crypt_target);
2084 	if (r < 0)
2085 		DMERR("register failed %d", r);
2086 
2087 	return r;
2088 }
2089 
2090 static void __exit dm_crypt_exit(void)
2091 {
2092 	dm_unregister_target(&crypt_target);
2093 }
2094 
2095 module_init(dm_crypt_init);
2096 module_exit(dm_crypt_exit);
2097 
2098 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2099 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2100 MODULE_LICENSE("GPL");
2101