xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 089a49b6)
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	unsigned int offset_in;
42 	unsigned int offset_out;
43 	unsigned int idx_in;
44 	unsigned int idx_out;
45 	sector_t cc_sector;
46 	atomic_t cc_pending;
47 };
48 
49 /*
50  * per bio private data
51  */
52 struct dm_crypt_io {
53 	struct crypt_config *cc;
54 	struct bio *base_bio;
55 	struct work_struct work;
56 
57 	struct convert_context ctx;
58 
59 	atomic_t io_pending;
60 	int error;
61 	sector_t sector;
62 	struct dm_crypt_io *base_io;
63 };
64 
65 struct dm_crypt_request {
66 	struct convert_context *ctx;
67 	struct scatterlist sg_in;
68 	struct scatterlist sg_out;
69 	sector_t iv_sector;
70 };
71 
72 struct crypt_config;
73 
74 struct crypt_iv_operations {
75 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 		   const char *opts);
77 	void (*dtr)(struct crypt_config *cc);
78 	int (*init)(struct crypt_config *cc);
79 	int (*wipe)(struct crypt_config *cc);
80 	int (*generator)(struct crypt_config *cc, u8 *iv,
81 			 struct dm_crypt_request *dmreq);
82 	int (*post)(struct crypt_config *cc, u8 *iv,
83 		    struct dm_crypt_request *dmreq);
84 };
85 
86 struct iv_essiv_private {
87 	struct crypto_hash *hash_tfm;
88 	u8 *salt;
89 };
90 
91 struct iv_benbi_private {
92 	int shift;
93 };
94 
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 	struct crypto_shash *hash_tfm;
98 	u8 *seed;
99 };
100 
101 /*
102  * Crypt: maps a linear range of a block device
103  * and encrypts / decrypts at the same time.
104  */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106 
107 /*
108  * Duplicated per-CPU state for cipher.
109  */
110 struct crypt_cpu {
111 	struct ablkcipher_request *req;
112 };
113 
114 /*
115  * The fields in here must be read only after initialization,
116  * changing state should be in crypt_cpu.
117  */
118 struct crypt_config {
119 	struct dm_dev *dev;
120 	sector_t start;
121 
122 	/*
123 	 * pool for per bio private data, crypto requests and
124 	 * encryption requeusts/buffer pages
125 	 */
126 	mempool_t *io_pool;
127 	mempool_t *req_pool;
128 	mempool_t *page_pool;
129 	struct bio_set *bs;
130 
131 	struct workqueue_struct *io_queue;
132 	struct workqueue_struct *crypt_queue;
133 
134 	char *cipher;
135 	char *cipher_string;
136 
137 	struct crypt_iv_operations *iv_gen_ops;
138 	union {
139 		struct iv_essiv_private essiv;
140 		struct iv_benbi_private benbi;
141 		struct iv_lmk_private lmk;
142 	} iv_gen_private;
143 	sector_t iv_offset;
144 	unsigned int iv_size;
145 
146 	/*
147 	 * Duplicated per cpu state. Access through
148 	 * per_cpu_ptr() only.
149 	 */
150 	struct crypt_cpu __percpu *cpu;
151 
152 	/* ESSIV: struct crypto_cipher *essiv_tfm */
153 	void *iv_private;
154 	struct crypto_ablkcipher **tfms;
155 	unsigned tfms_count;
156 
157 	/*
158 	 * Layout of each crypto request:
159 	 *
160 	 *   struct ablkcipher_request
161 	 *      context
162 	 *      padding
163 	 *   struct dm_crypt_request
164 	 *      padding
165 	 *   IV
166 	 *
167 	 * The padding is added so that dm_crypt_request and the IV are
168 	 * correctly aligned.
169 	 */
170 	unsigned int dmreq_start;
171 
172 	unsigned long flags;
173 	unsigned int key_size;
174 	unsigned int key_parts;
175 	u8 key[0];
176 };
177 
178 #define MIN_IOS        16
179 #define MIN_POOL_PAGES 32
180 
181 static struct kmem_cache *_crypt_io_pool;
182 
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
186 
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
188 {
189 	return this_cpu_ptr(cc->cpu);
190 }
191 
192 /*
193  * Use this to access cipher attributes that are the same for each CPU.
194  */
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
196 {
197 	return cc->tfms[0];
198 }
199 
200 /*
201  * Different IV generation algorithms:
202  *
203  * plain: the initial vector is the 32-bit little-endian version of the sector
204  *        number, padded with zeros if necessary.
205  *
206  * plain64: the initial vector is the 64-bit little-endian version of the sector
207  *        number, padded with zeros if necessary.
208  *
209  * essiv: "encrypted sector|salt initial vector", the sector number is
210  *        encrypted with the bulk cipher using a salt as key. The salt
211  *        should be derived from the bulk cipher's key via hashing.
212  *
213  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214  *        (needed for LRW-32-AES and possible other narrow block modes)
215  *
216  * null: the initial vector is always zero.  Provides compatibility with
217  *       obsolete loop_fish2 devices.  Do not use for new devices.
218  *
219  * lmk:  Compatible implementation of the block chaining mode used
220  *       by the Loop-AES block device encryption system
221  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222  *       It operates on full 512 byte sectors and uses CBC
223  *       with an IV derived from the sector number, the data and
224  *       optionally extra IV seed.
225  *       This means that after decryption the first block
226  *       of sector must be tweaked according to decrypted data.
227  *       Loop-AES can use three encryption schemes:
228  *         version 1: is plain aes-cbc mode
229  *         version 2: uses 64 multikey scheme with lmk IV generator
230  *         version 3: the same as version 2 with additional IV seed
231  *                   (it uses 65 keys, last key is used as IV seed)
232  *
233  * plumb: unimplemented, see:
234  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
235  */
236 
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238 			      struct dm_crypt_request *dmreq)
239 {
240 	memset(iv, 0, cc->iv_size);
241 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
242 
243 	return 0;
244 }
245 
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247 				struct dm_crypt_request *dmreq)
248 {
249 	memset(iv, 0, cc->iv_size);
250 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
251 
252 	return 0;
253 }
254 
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
257 {
258 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259 	struct hash_desc desc;
260 	struct scatterlist sg;
261 	struct crypto_cipher *essiv_tfm;
262 	int err;
263 
264 	sg_init_one(&sg, cc->key, cc->key_size);
265 	desc.tfm = essiv->hash_tfm;
266 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
267 
268 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269 	if (err)
270 		return err;
271 
272 	essiv_tfm = cc->iv_private;
273 
274 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275 			    crypto_hash_digestsize(essiv->hash_tfm));
276 	if (err)
277 		return err;
278 
279 	return 0;
280 }
281 
282 /* Wipe salt and reset key derived from volume key */
283 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
284 {
285 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
286 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
287 	struct crypto_cipher *essiv_tfm;
288 	int r, err = 0;
289 
290 	memset(essiv->salt, 0, salt_size);
291 
292 	essiv_tfm = cc->iv_private;
293 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
294 	if (r)
295 		err = r;
296 
297 	return err;
298 }
299 
300 /* Set up per cpu cipher state */
301 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
302 					     struct dm_target *ti,
303 					     u8 *salt, unsigned saltsize)
304 {
305 	struct crypto_cipher *essiv_tfm;
306 	int err;
307 
308 	/* Setup the essiv_tfm with the given salt */
309 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
310 	if (IS_ERR(essiv_tfm)) {
311 		ti->error = "Error allocating crypto tfm for ESSIV";
312 		return essiv_tfm;
313 	}
314 
315 	if (crypto_cipher_blocksize(essiv_tfm) !=
316 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
317 		ti->error = "Block size of ESSIV cipher does "
318 			    "not match IV size of block cipher";
319 		crypto_free_cipher(essiv_tfm);
320 		return ERR_PTR(-EINVAL);
321 	}
322 
323 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
324 	if (err) {
325 		ti->error = "Failed to set key for ESSIV cipher";
326 		crypto_free_cipher(essiv_tfm);
327 		return ERR_PTR(err);
328 	}
329 
330 	return essiv_tfm;
331 }
332 
333 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
334 {
335 	struct crypto_cipher *essiv_tfm;
336 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
337 
338 	crypto_free_hash(essiv->hash_tfm);
339 	essiv->hash_tfm = NULL;
340 
341 	kzfree(essiv->salt);
342 	essiv->salt = NULL;
343 
344 	essiv_tfm = cc->iv_private;
345 
346 	if (essiv_tfm)
347 		crypto_free_cipher(essiv_tfm);
348 
349 	cc->iv_private = NULL;
350 }
351 
352 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
353 			      const char *opts)
354 {
355 	struct crypto_cipher *essiv_tfm = NULL;
356 	struct crypto_hash *hash_tfm = NULL;
357 	u8 *salt = NULL;
358 	int err;
359 
360 	if (!opts) {
361 		ti->error = "Digest algorithm missing for ESSIV mode";
362 		return -EINVAL;
363 	}
364 
365 	/* Allocate hash algorithm */
366 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
367 	if (IS_ERR(hash_tfm)) {
368 		ti->error = "Error initializing ESSIV hash";
369 		err = PTR_ERR(hash_tfm);
370 		goto bad;
371 	}
372 
373 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
374 	if (!salt) {
375 		ti->error = "Error kmallocing salt storage in ESSIV";
376 		err = -ENOMEM;
377 		goto bad;
378 	}
379 
380 	cc->iv_gen_private.essiv.salt = salt;
381 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
382 
383 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
384 				crypto_hash_digestsize(hash_tfm));
385 	if (IS_ERR(essiv_tfm)) {
386 		crypt_iv_essiv_dtr(cc);
387 		return PTR_ERR(essiv_tfm);
388 	}
389 	cc->iv_private = essiv_tfm;
390 
391 	return 0;
392 
393 bad:
394 	if (hash_tfm && !IS_ERR(hash_tfm))
395 		crypto_free_hash(hash_tfm);
396 	kfree(salt);
397 	return err;
398 }
399 
400 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
401 			      struct dm_crypt_request *dmreq)
402 {
403 	struct crypto_cipher *essiv_tfm = cc->iv_private;
404 
405 	memset(iv, 0, cc->iv_size);
406 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
407 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
408 
409 	return 0;
410 }
411 
412 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
413 			      const char *opts)
414 {
415 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
416 	int log = ilog2(bs);
417 
418 	/* we need to calculate how far we must shift the sector count
419 	 * to get the cipher block count, we use this shift in _gen */
420 
421 	if (1 << log != bs) {
422 		ti->error = "cypher blocksize is not a power of 2";
423 		return -EINVAL;
424 	}
425 
426 	if (log > 9) {
427 		ti->error = "cypher blocksize is > 512";
428 		return -EINVAL;
429 	}
430 
431 	cc->iv_gen_private.benbi.shift = 9 - log;
432 
433 	return 0;
434 }
435 
436 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
437 {
438 }
439 
440 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
441 			      struct dm_crypt_request *dmreq)
442 {
443 	__be64 val;
444 
445 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
446 
447 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
448 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
449 
450 	return 0;
451 }
452 
453 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
454 			     struct dm_crypt_request *dmreq)
455 {
456 	memset(iv, 0, cc->iv_size);
457 
458 	return 0;
459 }
460 
461 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
462 {
463 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
464 
465 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
466 		crypto_free_shash(lmk->hash_tfm);
467 	lmk->hash_tfm = NULL;
468 
469 	kzfree(lmk->seed);
470 	lmk->seed = NULL;
471 }
472 
473 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
474 			    const char *opts)
475 {
476 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
477 
478 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
479 	if (IS_ERR(lmk->hash_tfm)) {
480 		ti->error = "Error initializing LMK hash";
481 		return PTR_ERR(lmk->hash_tfm);
482 	}
483 
484 	/* No seed in LMK version 2 */
485 	if (cc->key_parts == cc->tfms_count) {
486 		lmk->seed = NULL;
487 		return 0;
488 	}
489 
490 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
491 	if (!lmk->seed) {
492 		crypt_iv_lmk_dtr(cc);
493 		ti->error = "Error kmallocing seed storage in LMK";
494 		return -ENOMEM;
495 	}
496 
497 	return 0;
498 }
499 
500 static int crypt_iv_lmk_init(struct crypt_config *cc)
501 {
502 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
503 	int subkey_size = cc->key_size / cc->key_parts;
504 
505 	/* LMK seed is on the position of LMK_KEYS + 1 key */
506 	if (lmk->seed)
507 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
508 		       crypto_shash_digestsize(lmk->hash_tfm));
509 
510 	return 0;
511 }
512 
513 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
514 {
515 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
516 
517 	if (lmk->seed)
518 		memset(lmk->seed, 0, LMK_SEED_SIZE);
519 
520 	return 0;
521 }
522 
523 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
524 			    struct dm_crypt_request *dmreq,
525 			    u8 *data)
526 {
527 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528 	struct {
529 		struct shash_desc desc;
530 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
531 	} sdesc;
532 	struct md5_state md5state;
533 	u32 buf[4];
534 	int i, r;
535 
536 	sdesc.desc.tfm = lmk->hash_tfm;
537 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
538 
539 	r = crypto_shash_init(&sdesc.desc);
540 	if (r)
541 		return r;
542 
543 	if (lmk->seed) {
544 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
545 		if (r)
546 			return r;
547 	}
548 
549 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
550 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
551 	if (r)
552 		return r;
553 
554 	/* Sector is cropped to 56 bits here */
555 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
556 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
557 	buf[2] = cpu_to_le32(4024);
558 	buf[3] = 0;
559 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
560 	if (r)
561 		return r;
562 
563 	/* No MD5 padding here */
564 	r = crypto_shash_export(&sdesc.desc, &md5state);
565 	if (r)
566 		return r;
567 
568 	for (i = 0; i < MD5_HASH_WORDS; i++)
569 		__cpu_to_le32s(&md5state.hash[i]);
570 	memcpy(iv, &md5state.hash, cc->iv_size);
571 
572 	return 0;
573 }
574 
575 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
576 			    struct dm_crypt_request *dmreq)
577 {
578 	u8 *src;
579 	int r = 0;
580 
581 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
582 		src = kmap_atomic(sg_page(&dmreq->sg_in));
583 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
584 		kunmap_atomic(src);
585 	} else
586 		memset(iv, 0, cc->iv_size);
587 
588 	return r;
589 }
590 
591 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
592 			     struct dm_crypt_request *dmreq)
593 {
594 	u8 *dst;
595 	int r;
596 
597 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
598 		return 0;
599 
600 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
601 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
602 
603 	/* Tweak the first block of plaintext sector */
604 	if (!r)
605 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
606 
607 	kunmap_atomic(dst);
608 	return r;
609 }
610 
611 static struct crypt_iv_operations crypt_iv_plain_ops = {
612 	.generator = crypt_iv_plain_gen
613 };
614 
615 static struct crypt_iv_operations crypt_iv_plain64_ops = {
616 	.generator = crypt_iv_plain64_gen
617 };
618 
619 static struct crypt_iv_operations crypt_iv_essiv_ops = {
620 	.ctr       = crypt_iv_essiv_ctr,
621 	.dtr       = crypt_iv_essiv_dtr,
622 	.init      = crypt_iv_essiv_init,
623 	.wipe      = crypt_iv_essiv_wipe,
624 	.generator = crypt_iv_essiv_gen
625 };
626 
627 static struct crypt_iv_operations crypt_iv_benbi_ops = {
628 	.ctr	   = crypt_iv_benbi_ctr,
629 	.dtr	   = crypt_iv_benbi_dtr,
630 	.generator = crypt_iv_benbi_gen
631 };
632 
633 static struct crypt_iv_operations crypt_iv_null_ops = {
634 	.generator = crypt_iv_null_gen
635 };
636 
637 static struct crypt_iv_operations crypt_iv_lmk_ops = {
638 	.ctr	   = crypt_iv_lmk_ctr,
639 	.dtr	   = crypt_iv_lmk_dtr,
640 	.init	   = crypt_iv_lmk_init,
641 	.wipe	   = crypt_iv_lmk_wipe,
642 	.generator = crypt_iv_lmk_gen,
643 	.post	   = crypt_iv_lmk_post
644 };
645 
646 static void crypt_convert_init(struct crypt_config *cc,
647 			       struct convert_context *ctx,
648 			       struct bio *bio_out, struct bio *bio_in,
649 			       sector_t sector)
650 {
651 	ctx->bio_in = bio_in;
652 	ctx->bio_out = bio_out;
653 	ctx->offset_in = 0;
654 	ctx->offset_out = 0;
655 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
656 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
657 	ctx->cc_sector = sector + cc->iv_offset;
658 	init_completion(&ctx->restart);
659 }
660 
661 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
662 					     struct ablkcipher_request *req)
663 {
664 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
665 }
666 
667 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
668 					       struct dm_crypt_request *dmreq)
669 {
670 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
671 }
672 
673 static u8 *iv_of_dmreq(struct crypt_config *cc,
674 		       struct dm_crypt_request *dmreq)
675 {
676 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
677 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
678 }
679 
680 static int crypt_convert_block(struct crypt_config *cc,
681 			       struct convert_context *ctx,
682 			       struct ablkcipher_request *req)
683 {
684 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
685 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
686 	struct dm_crypt_request *dmreq;
687 	u8 *iv;
688 	int r;
689 
690 	dmreq = dmreq_of_req(cc, req);
691 	iv = iv_of_dmreq(cc, dmreq);
692 
693 	dmreq->iv_sector = ctx->cc_sector;
694 	dmreq->ctx = ctx;
695 	sg_init_table(&dmreq->sg_in, 1);
696 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
697 		    bv_in->bv_offset + ctx->offset_in);
698 
699 	sg_init_table(&dmreq->sg_out, 1);
700 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
701 		    bv_out->bv_offset + ctx->offset_out);
702 
703 	ctx->offset_in += 1 << SECTOR_SHIFT;
704 	if (ctx->offset_in >= bv_in->bv_len) {
705 		ctx->offset_in = 0;
706 		ctx->idx_in++;
707 	}
708 
709 	ctx->offset_out += 1 << SECTOR_SHIFT;
710 	if (ctx->offset_out >= bv_out->bv_len) {
711 		ctx->offset_out = 0;
712 		ctx->idx_out++;
713 	}
714 
715 	if (cc->iv_gen_ops) {
716 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
717 		if (r < 0)
718 			return r;
719 	}
720 
721 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
722 				     1 << SECTOR_SHIFT, iv);
723 
724 	if (bio_data_dir(ctx->bio_in) == WRITE)
725 		r = crypto_ablkcipher_encrypt(req);
726 	else
727 		r = crypto_ablkcipher_decrypt(req);
728 
729 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
730 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
731 
732 	return r;
733 }
734 
735 static void kcryptd_async_done(struct crypto_async_request *async_req,
736 			       int error);
737 
738 static void crypt_alloc_req(struct crypt_config *cc,
739 			    struct convert_context *ctx)
740 {
741 	struct crypt_cpu *this_cc = this_crypt_config(cc);
742 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
743 
744 	if (!this_cc->req)
745 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
746 
747 	ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
748 	ablkcipher_request_set_callback(this_cc->req,
749 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
750 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
751 }
752 
753 /*
754  * Encrypt / decrypt data from one bio to another one (can be the same one)
755  */
756 static int crypt_convert(struct crypt_config *cc,
757 			 struct convert_context *ctx)
758 {
759 	struct crypt_cpu *this_cc = this_crypt_config(cc);
760 	int r;
761 
762 	atomic_set(&ctx->cc_pending, 1);
763 
764 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
765 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
766 
767 		crypt_alloc_req(cc, ctx);
768 
769 		atomic_inc(&ctx->cc_pending);
770 
771 		r = crypt_convert_block(cc, ctx, this_cc->req);
772 
773 		switch (r) {
774 		/* async */
775 		case -EBUSY:
776 			wait_for_completion(&ctx->restart);
777 			INIT_COMPLETION(ctx->restart);
778 			/* fall through*/
779 		case -EINPROGRESS:
780 			this_cc->req = NULL;
781 			ctx->cc_sector++;
782 			continue;
783 
784 		/* sync */
785 		case 0:
786 			atomic_dec(&ctx->cc_pending);
787 			ctx->cc_sector++;
788 			cond_resched();
789 			continue;
790 
791 		/* error */
792 		default:
793 			atomic_dec(&ctx->cc_pending);
794 			return r;
795 		}
796 	}
797 
798 	return 0;
799 }
800 
801 /*
802  * Generate a new unfragmented bio with the given size
803  * This should never violate the device limitations
804  * May return a smaller bio when running out of pages, indicated by
805  * *out_of_pages set to 1.
806  */
807 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
808 				      unsigned *out_of_pages)
809 {
810 	struct crypt_config *cc = io->cc;
811 	struct bio *clone;
812 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
813 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
814 	unsigned i, len;
815 	struct page *page;
816 
817 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
818 	if (!clone)
819 		return NULL;
820 
821 	clone_init(io, clone);
822 	*out_of_pages = 0;
823 
824 	for (i = 0; i < nr_iovecs; i++) {
825 		page = mempool_alloc(cc->page_pool, gfp_mask);
826 		if (!page) {
827 			*out_of_pages = 1;
828 			break;
829 		}
830 
831 		/*
832 		 * If additional pages cannot be allocated without waiting,
833 		 * return a partially-allocated bio.  The caller will then try
834 		 * to allocate more bios while submitting this partial bio.
835 		 */
836 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
837 
838 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
839 
840 		if (!bio_add_page(clone, page, len, 0)) {
841 			mempool_free(page, cc->page_pool);
842 			break;
843 		}
844 
845 		size -= len;
846 	}
847 
848 	if (!clone->bi_size) {
849 		bio_put(clone);
850 		return NULL;
851 	}
852 
853 	return clone;
854 }
855 
856 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
857 {
858 	unsigned int i;
859 	struct bio_vec *bv;
860 
861 	bio_for_each_segment_all(bv, clone, i) {
862 		BUG_ON(!bv->bv_page);
863 		mempool_free(bv->bv_page, cc->page_pool);
864 		bv->bv_page = NULL;
865 	}
866 }
867 
868 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
869 					  struct bio *bio, sector_t sector)
870 {
871 	struct dm_crypt_io *io;
872 
873 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
874 	io->cc = cc;
875 	io->base_bio = bio;
876 	io->sector = sector;
877 	io->error = 0;
878 	io->base_io = NULL;
879 	atomic_set(&io->io_pending, 0);
880 
881 	return io;
882 }
883 
884 static void crypt_inc_pending(struct dm_crypt_io *io)
885 {
886 	atomic_inc(&io->io_pending);
887 }
888 
889 /*
890  * One of the bios was finished. Check for completion of
891  * the whole request and correctly clean up the buffer.
892  * If base_io is set, wait for the last fragment to complete.
893  */
894 static void crypt_dec_pending(struct dm_crypt_io *io)
895 {
896 	struct crypt_config *cc = io->cc;
897 	struct bio *base_bio = io->base_bio;
898 	struct dm_crypt_io *base_io = io->base_io;
899 	int error = io->error;
900 
901 	if (!atomic_dec_and_test(&io->io_pending))
902 		return;
903 
904 	mempool_free(io, cc->io_pool);
905 
906 	if (likely(!base_io))
907 		bio_endio(base_bio, error);
908 	else {
909 		if (error && !base_io->error)
910 			base_io->error = error;
911 		crypt_dec_pending(base_io);
912 	}
913 }
914 
915 /*
916  * kcryptd/kcryptd_io:
917  *
918  * Needed because it would be very unwise to do decryption in an
919  * interrupt context.
920  *
921  * kcryptd performs the actual encryption or decryption.
922  *
923  * kcryptd_io performs the IO submission.
924  *
925  * They must be separated as otherwise the final stages could be
926  * starved by new requests which can block in the first stages due
927  * to memory allocation.
928  *
929  * The work is done per CPU global for all dm-crypt instances.
930  * They should not depend on each other and do not block.
931  */
932 static void crypt_endio(struct bio *clone, int error)
933 {
934 	struct dm_crypt_io *io = clone->bi_private;
935 	struct crypt_config *cc = io->cc;
936 	unsigned rw = bio_data_dir(clone);
937 
938 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
939 		error = -EIO;
940 
941 	/*
942 	 * free the processed pages
943 	 */
944 	if (rw == WRITE)
945 		crypt_free_buffer_pages(cc, clone);
946 
947 	bio_put(clone);
948 
949 	if (rw == READ && !error) {
950 		kcryptd_queue_crypt(io);
951 		return;
952 	}
953 
954 	if (unlikely(error))
955 		io->error = error;
956 
957 	crypt_dec_pending(io);
958 }
959 
960 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
961 {
962 	struct crypt_config *cc = io->cc;
963 
964 	clone->bi_private = io;
965 	clone->bi_end_io  = crypt_endio;
966 	clone->bi_bdev    = cc->dev->bdev;
967 	clone->bi_rw      = io->base_bio->bi_rw;
968 }
969 
970 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
971 {
972 	struct crypt_config *cc = io->cc;
973 	struct bio *base_bio = io->base_bio;
974 	struct bio *clone;
975 
976 	/*
977 	 * The block layer might modify the bvec array, so always
978 	 * copy the required bvecs because we need the original
979 	 * one in order to decrypt the whole bio data *afterwards*.
980 	 */
981 	clone = bio_clone_bioset(base_bio, gfp, cc->bs);
982 	if (!clone)
983 		return 1;
984 
985 	crypt_inc_pending(io);
986 
987 	clone_init(io, clone);
988 	clone->bi_sector = cc->start + io->sector;
989 
990 	generic_make_request(clone);
991 	return 0;
992 }
993 
994 static void kcryptd_io_write(struct dm_crypt_io *io)
995 {
996 	struct bio *clone = io->ctx.bio_out;
997 	generic_make_request(clone);
998 }
999 
1000 static void kcryptd_io(struct work_struct *work)
1001 {
1002 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1003 
1004 	if (bio_data_dir(io->base_bio) == READ) {
1005 		crypt_inc_pending(io);
1006 		if (kcryptd_io_read(io, GFP_NOIO))
1007 			io->error = -ENOMEM;
1008 		crypt_dec_pending(io);
1009 	} else
1010 		kcryptd_io_write(io);
1011 }
1012 
1013 static void kcryptd_queue_io(struct dm_crypt_io *io)
1014 {
1015 	struct crypt_config *cc = io->cc;
1016 
1017 	INIT_WORK(&io->work, kcryptd_io);
1018 	queue_work(cc->io_queue, &io->work);
1019 }
1020 
1021 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1022 {
1023 	struct bio *clone = io->ctx.bio_out;
1024 	struct crypt_config *cc = io->cc;
1025 
1026 	if (unlikely(io->error < 0)) {
1027 		crypt_free_buffer_pages(cc, clone);
1028 		bio_put(clone);
1029 		crypt_dec_pending(io);
1030 		return;
1031 	}
1032 
1033 	/* crypt_convert should have filled the clone bio */
1034 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1035 
1036 	clone->bi_sector = cc->start + io->sector;
1037 
1038 	if (async)
1039 		kcryptd_queue_io(io);
1040 	else
1041 		generic_make_request(clone);
1042 }
1043 
1044 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1045 {
1046 	struct crypt_config *cc = io->cc;
1047 	struct bio *clone;
1048 	struct dm_crypt_io *new_io;
1049 	int crypt_finished;
1050 	unsigned out_of_pages = 0;
1051 	unsigned remaining = io->base_bio->bi_size;
1052 	sector_t sector = io->sector;
1053 	int r;
1054 
1055 	/*
1056 	 * Prevent io from disappearing until this function completes.
1057 	 */
1058 	crypt_inc_pending(io);
1059 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1060 
1061 	/*
1062 	 * The allocated buffers can be smaller than the whole bio,
1063 	 * so repeat the whole process until all the data can be handled.
1064 	 */
1065 	while (remaining) {
1066 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1067 		if (unlikely(!clone)) {
1068 			io->error = -ENOMEM;
1069 			break;
1070 		}
1071 
1072 		io->ctx.bio_out = clone;
1073 		io->ctx.idx_out = 0;
1074 
1075 		remaining -= clone->bi_size;
1076 		sector += bio_sectors(clone);
1077 
1078 		crypt_inc_pending(io);
1079 
1080 		r = crypt_convert(cc, &io->ctx);
1081 		if (r < 0)
1082 			io->error = -EIO;
1083 
1084 		crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1085 
1086 		/* Encryption was already finished, submit io now */
1087 		if (crypt_finished) {
1088 			kcryptd_crypt_write_io_submit(io, 0);
1089 
1090 			/*
1091 			 * If there was an error, do not try next fragments.
1092 			 * For async, error is processed in async handler.
1093 			 */
1094 			if (unlikely(r < 0))
1095 				break;
1096 
1097 			io->sector = sector;
1098 		}
1099 
1100 		/*
1101 		 * Out of memory -> run queues
1102 		 * But don't wait if split was due to the io size restriction
1103 		 */
1104 		if (unlikely(out_of_pages))
1105 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1106 
1107 		/*
1108 		 * With async crypto it is unsafe to share the crypto context
1109 		 * between fragments, so switch to a new dm_crypt_io structure.
1110 		 */
1111 		if (unlikely(!crypt_finished && remaining)) {
1112 			new_io = crypt_io_alloc(io->cc, io->base_bio,
1113 						sector);
1114 			crypt_inc_pending(new_io);
1115 			crypt_convert_init(cc, &new_io->ctx, NULL,
1116 					   io->base_bio, sector);
1117 			new_io->ctx.idx_in = io->ctx.idx_in;
1118 			new_io->ctx.offset_in = io->ctx.offset_in;
1119 
1120 			/*
1121 			 * Fragments after the first use the base_io
1122 			 * pending count.
1123 			 */
1124 			if (!io->base_io)
1125 				new_io->base_io = io;
1126 			else {
1127 				new_io->base_io = io->base_io;
1128 				crypt_inc_pending(io->base_io);
1129 				crypt_dec_pending(io);
1130 			}
1131 
1132 			io = new_io;
1133 		}
1134 	}
1135 
1136 	crypt_dec_pending(io);
1137 }
1138 
1139 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1140 {
1141 	crypt_dec_pending(io);
1142 }
1143 
1144 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1145 {
1146 	struct crypt_config *cc = io->cc;
1147 	int r = 0;
1148 
1149 	crypt_inc_pending(io);
1150 
1151 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1152 			   io->sector);
1153 
1154 	r = crypt_convert(cc, &io->ctx);
1155 	if (r < 0)
1156 		io->error = -EIO;
1157 
1158 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1159 		kcryptd_crypt_read_done(io);
1160 
1161 	crypt_dec_pending(io);
1162 }
1163 
1164 static void kcryptd_async_done(struct crypto_async_request *async_req,
1165 			       int error)
1166 {
1167 	struct dm_crypt_request *dmreq = async_req->data;
1168 	struct convert_context *ctx = dmreq->ctx;
1169 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1170 	struct crypt_config *cc = io->cc;
1171 
1172 	if (error == -EINPROGRESS) {
1173 		complete(&ctx->restart);
1174 		return;
1175 	}
1176 
1177 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1178 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1179 
1180 	if (error < 0)
1181 		io->error = -EIO;
1182 
1183 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1184 
1185 	if (!atomic_dec_and_test(&ctx->cc_pending))
1186 		return;
1187 
1188 	if (bio_data_dir(io->base_bio) == READ)
1189 		kcryptd_crypt_read_done(io);
1190 	else
1191 		kcryptd_crypt_write_io_submit(io, 1);
1192 }
1193 
1194 static void kcryptd_crypt(struct work_struct *work)
1195 {
1196 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1197 
1198 	if (bio_data_dir(io->base_bio) == READ)
1199 		kcryptd_crypt_read_convert(io);
1200 	else
1201 		kcryptd_crypt_write_convert(io);
1202 }
1203 
1204 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1205 {
1206 	struct crypt_config *cc = io->cc;
1207 
1208 	INIT_WORK(&io->work, kcryptd_crypt);
1209 	queue_work(cc->crypt_queue, &io->work);
1210 }
1211 
1212 /*
1213  * Decode key from its hex representation
1214  */
1215 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1216 {
1217 	char buffer[3];
1218 	unsigned int i;
1219 
1220 	buffer[2] = '\0';
1221 
1222 	for (i = 0; i < size; i++) {
1223 		buffer[0] = *hex++;
1224 		buffer[1] = *hex++;
1225 
1226 		if (kstrtou8(buffer, 16, &key[i]))
1227 			return -EINVAL;
1228 	}
1229 
1230 	if (*hex != '\0')
1231 		return -EINVAL;
1232 
1233 	return 0;
1234 }
1235 
1236 static void crypt_free_tfms(struct crypt_config *cc)
1237 {
1238 	unsigned i;
1239 
1240 	if (!cc->tfms)
1241 		return;
1242 
1243 	for (i = 0; i < cc->tfms_count; i++)
1244 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1245 			crypto_free_ablkcipher(cc->tfms[i]);
1246 			cc->tfms[i] = NULL;
1247 		}
1248 
1249 	kfree(cc->tfms);
1250 	cc->tfms = NULL;
1251 }
1252 
1253 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1254 {
1255 	unsigned i;
1256 	int err;
1257 
1258 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1259 			   GFP_KERNEL);
1260 	if (!cc->tfms)
1261 		return -ENOMEM;
1262 
1263 	for (i = 0; i < cc->tfms_count; i++) {
1264 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1265 		if (IS_ERR(cc->tfms[i])) {
1266 			err = PTR_ERR(cc->tfms[i]);
1267 			crypt_free_tfms(cc);
1268 			return err;
1269 		}
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 static int crypt_setkey_allcpus(struct crypt_config *cc)
1276 {
1277 	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1278 	int err = 0, i, r;
1279 
1280 	for (i = 0; i < cc->tfms_count; i++) {
1281 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1282 					     cc->key + (i * subkey_size),
1283 					     subkey_size);
1284 		if (r)
1285 			err = r;
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 static int crypt_set_key(struct crypt_config *cc, char *key)
1292 {
1293 	int r = -EINVAL;
1294 	int key_string_len = strlen(key);
1295 
1296 	/* The key size may not be changed. */
1297 	if (cc->key_size != (key_string_len >> 1))
1298 		goto out;
1299 
1300 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1301 	if (!cc->key_size && strcmp(key, "-"))
1302 		goto out;
1303 
1304 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1305 		goto out;
1306 
1307 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1308 
1309 	r = crypt_setkey_allcpus(cc);
1310 
1311 out:
1312 	/* Hex key string not needed after here, so wipe it. */
1313 	memset(key, '0', key_string_len);
1314 
1315 	return r;
1316 }
1317 
1318 static int crypt_wipe_key(struct crypt_config *cc)
1319 {
1320 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1321 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1322 
1323 	return crypt_setkey_allcpus(cc);
1324 }
1325 
1326 static void crypt_dtr(struct dm_target *ti)
1327 {
1328 	struct crypt_config *cc = ti->private;
1329 	struct crypt_cpu *cpu_cc;
1330 	int cpu;
1331 
1332 	ti->private = NULL;
1333 
1334 	if (!cc)
1335 		return;
1336 
1337 	if (cc->io_queue)
1338 		destroy_workqueue(cc->io_queue);
1339 	if (cc->crypt_queue)
1340 		destroy_workqueue(cc->crypt_queue);
1341 
1342 	if (cc->cpu)
1343 		for_each_possible_cpu(cpu) {
1344 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1345 			if (cpu_cc->req)
1346 				mempool_free(cpu_cc->req, cc->req_pool);
1347 		}
1348 
1349 	crypt_free_tfms(cc);
1350 
1351 	if (cc->bs)
1352 		bioset_free(cc->bs);
1353 
1354 	if (cc->page_pool)
1355 		mempool_destroy(cc->page_pool);
1356 	if (cc->req_pool)
1357 		mempool_destroy(cc->req_pool);
1358 	if (cc->io_pool)
1359 		mempool_destroy(cc->io_pool);
1360 
1361 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1362 		cc->iv_gen_ops->dtr(cc);
1363 
1364 	if (cc->dev)
1365 		dm_put_device(ti, cc->dev);
1366 
1367 	if (cc->cpu)
1368 		free_percpu(cc->cpu);
1369 
1370 	kzfree(cc->cipher);
1371 	kzfree(cc->cipher_string);
1372 
1373 	/* Must zero key material before freeing */
1374 	kzfree(cc);
1375 }
1376 
1377 static int crypt_ctr_cipher(struct dm_target *ti,
1378 			    char *cipher_in, char *key)
1379 {
1380 	struct crypt_config *cc = ti->private;
1381 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1382 	char *cipher_api = NULL;
1383 	int ret = -EINVAL;
1384 	char dummy;
1385 
1386 	/* Convert to crypto api definition? */
1387 	if (strchr(cipher_in, '(')) {
1388 		ti->error = "Bad cipher specification";
1389 		return -EINVAL;
1390 	}
1391 
1392 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1393 	if (!cc->cipher_string)
1394 		goto bad_mem;
1395 
1396 	/*
1397 	 * Legacy dm-crypt cipher specification
1398 	 * cipher[:keycount]-mode-iv:ivopts
1399 	 */
1400 	tmp = cipher_in;
1401 	keycount = strsep(&tmp, "-");
1402 	cipher = strsep(&keycount, ":");
1403 
1404 	if (!keycount)
1405 		cc->tfms_count = 1;
1406 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1407 		 !is_power_of_2(cc->tfms_count)) {
1408 		ti->error = "Bad cipher key count specification";
1409 		return -EINVAL;
1410 	}
1411 	cc->key_parts = cc->tfms_count;
1412 
1413 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1414 	if (!cc->cipher)
1415 		goto bad_mem;
1416 
1417 	chainmode = strsep(&tmp, "-");
1418 	ivopts = strsep(&tmp, "-");
1419 	ivmode = strsep(&ivopts, ":");
1420 
1421 	if (tmp)
1422 		DMWARN("Ignoring unexpected additional cipher options");
1423 
1424 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1425 				 __alignof__(struct crypt_cpu));
1426 	if (!cc->cpu) {
1427 		ti->error = "Cannot allocate per cpu state";
1428 		goto bad_mem;
1429 	}
1430 
1431 	/*
1432 	 * For compatibility with the original dm-crypt mapping format, if
1433 	 * only the cipher name is supplied, use cbc-plain.
1434 	 */
1435 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1436 		chainmode = "cbc";
1437 		ivmode = "plain";
1438 	}
1439 
1440 	if (strcmp(chainmode, "ecb") && !ivmode) {
1441 		ti->error = "IV mechanism required";
1442 		return -EINVAL;
1443 	}
1444 
1445 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1446 	if (!cipher_api)
1447 		goto bad_mem;
1448 
1449 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1450 		       "%s(%s)", chainmode, cipher);
1451 	if (ret < 0) {
1452 		kfree(cipher_api);
1453 		goto bad_mem;
1454 	}
1455 
1456 	/* Allocate cipher */
1457 	ret = crypt_alloc_tfms(cc, cipher_api);
1458 	if (ret < 0) {
1459 		ti->error = "Error allocating crypto tfm";
1460 		goto bad;
1461 	}
1462 
1463 	/* Initialize and set key */
1464 	ret = crypt_set_key(cc, key);
1465 	if (ret < 0) {
1466 		ti->error = "Error decoding and setting key";
1467 		goto bad;
1468 	}
1469 
1470 	/* Initialize IV */
1471 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1472 	if (cc->iv_size)
1473 		/* at least a 64 bit sector number should fit in our buffer */
1474 		cc->iv_size = max(cc->iv_size,
1475 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1476 	else if (ivmode) {
1477 		DMWARN("Selected cipher does not support IVs");
1478 		ivmode = NULL;
1479 	}
1480 
1481 	/* Choose ivmode, see comments at iv code. */
1482 	if (ivmode == NULL)
1483 		cc->iv_gen_ops = NULL;
1484 	else if (strcmp(ivmode, "plain") == 0)
1485 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1486 	else if (strcmp(ivmode, "plain64") == 0)
1487 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1488 	else if (strcmp(ivmode, "essiv") == 0)
1489 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1490 	else if (strcmp(ivmode, "benbi") == 0)
1491 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1492 	else if (strcmp(ivmode, "null") == 0)
1493 		cc->iv_gen_ops = &crypt_iv_null_ops;
1494 	else if (strcmp(ivmode, "lmk") == 0) {
1495 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1496 		/* Version 2 and 3 is recognised according
1497 		 * to length of provided multi-key string.
1498 		 * If present (version 3), last key is used as IV seed.
1499 		 */
1500 		if (cc->key_size % cc->key_parts)
1501 			cc->key_parts++;
1502 	} else {
1503 		ret = -EINVAL;
1504 		ti->error = "Invalid IV mode";
1505 		goto bad;
1506 	}
1507 
1508 	/* Allocate IV */
1509 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1510 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1511 		if (ret < 0) {
1512 			ti->error = "Error creating IV";
1513 			goto bad;
1514 		}
1515 	}
1516 
1517 	/* Initialize IV (set keys for ESSIV etc) */
1518 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1519 		ret = cc->iv_gen_ops->init(cc);
1520 		if (ret < 0) {
1521 			ti->error = "Error initialising IV";
1522 			goto bad;
1523 		}
1524 	}
1525 
1526 	ret = 0;
1527 bad:
1528 	kfree(cipher_api);
1529 	return ret;
1530 
1531 bad_mem:
1532 	ti->error = "Cannot allocate cipher strings";
1533 	return -ENOMEM;
1534 }
1535 
1536 /*
1537  * Construct an encryption mapping:
1538  * <cipher> <key> <iv_offset> <dev_path> <start>
1539  */
1540 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1541 {
1542 	struct crypt_config *cc;
1543 	unsigned int key_size, opt_params;
1544 	unsigned long long tmpll;
1545 	int ret;
1546 	struct dm_arg_set as;
1547 	const char *opt_string;
1548 	char dummy;
1549 
1550 	static struct dm_arg _args[] = {
1551 		{0, 1, "Invalid number of feature args"},
1552 	};
1553 
1554 	if (argc < 5) {
1555 		ti->error = "Not enough arguments";
1556 		return -EINVAL;
1557 	}
1558 
1559 	key_size = strlen(argv[1]) >> 1;
1560 
1561 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1562 	if (!cc) {
1563 		ti->error = "Cannot allocate encryption context";
1564 		return -ENOMEM;
1565 	}
1566 	cc->key_size = key_size;
1567 
1568 	ti->private = cc;
1569 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1570 	if (ret < 0)
1571 		goto bad;
1572 
1573 	ret = -ENOMEM;
1574 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1575 	if (!cc->io_pool) {
1576 		ti->error = "Cannot allocate crypt io mempool";
1577 		goto bad;
1578 	}
1579 
1580 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1581 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1582 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1583 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1584 			   ~(crypto_tfm_ctx_alignment() - 1);
1585 
1586 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1587 			sizeof(struct dm_crypt_request) + cc->iv_size);
1588 	if (!cc->req_pool) {
1589 		ti->error = "Cannot allocate crypt request mempool";
1590 		goto bad;
1591 	}
1592 
1593 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1594 	if (!cc->page_pool) {
1595 		ti->error = "Cannot allocate page mempool";
1596 		goto bad;
1597 	}
1598 
1599 	cc->bs = bioset_create(MIN_IOS, 0);
1600 	if (!cc->bs) {
1601 		ti->error = "Cannot allocate crypt bioset";
1602 		goto bad;
1603 	}
1604 
1605 	ret = -EINVAL;
1606 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1607 		ti->error = "Invalid iv_offset sector";
1608 		goto bad;
1609 	}
1610 	cc->iv_offset = tmpll;
1611 
1612 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1613 		ti->error = "Device lookup failed";
1614 		goto bad;
1615 	}
1616 
1617 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1618 		ti->error = "Invalid device sector";
1619 		goto bad;
1620 	}
1621 	cc->start = tmpll;
1622 
1623 	argv += 5;
1624 	argc -= 5;
1625 
1626 	/* Optional parameters */
1627 	if (argc) {
1628 		as.argc = argc;
1629 		as.argv = argv;
1630 
1631 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1632 		if (ret)
1633 			goto bad;
1634 
1635 		opt_string = dm_shift_arg(&as);
1636 
1637 		if (opt_params == 1 && opt_string &&
1638 		    !strcasecmp(opt_string, "allow_discards"))
1639 			ti->num_discard_bios = 1;
1640 		else if (opt_params) {
1641 			ret = -EINVAL;
1642 			ti->error = "Invalid feature arguments";
1643 			goto bad;
1644 		}
1645 	}
1646 
1647 	ret = -ENOMEM;
1648 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1649 	if (!cc->io_queue) {
1650 		ti->error = "Couldn't create kcryptd io queue";
1651 		goto bad;
1652 	}
1653 
1654 	cc->crypt_queue = alloc_workqueue("kcryptd",
1655 					  WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1656 	if (!cc->crypt_queue) {
1657 		ti->error = "Couldn't create kcryptd queue";
1658 		goto bad;
1659 	}
1660 
1661 	ti->num_flush_bios = 1;
1662 	ti->discard_zeroes_data_unsupported = true;
1663 
1664 	return 0;
1665 
1666 bad:
1667 	crypt_dtr(ti);
1668 	return ret;
1669 }
1670 
1671 static int crypt_map(struct dm_target *ti, struct bio *bio)
1672 {
1673 	struct dm_crypt_io *io;
1674 	struct crypt_config *cc = ti->private;
1675 
1676 	/*
1677 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1678 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1679 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1680 	 */
1681 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1682 		bio->bi_bdev = cc->dev->bdev;
1683 		if (bio_sectors(bio))
1684 			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1685 		return DM_MAPIO_REMAPPED;
1686 	}
1687 
1688 	io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1689 
1690 	if (bio_data_dir(io->base_bio) == READ) {
1691 		if (kcryptd_io_read(io, GFP_NOWAIT))
1692 			kcryptd_queue_io(io);
1693 	} else
1694 		kcryptd_queue_crypt(io);
1695 
1696 	return DM_MAPIO_SUBMITTED;
1697 }
1698 
1699 static void crypt_status(struct dm_target *ti, status_type_t type,
1700 			 unsigned status_flags, char *result, unsigned maxlen)
1701 {
1702 	struct crypt_config *cc = ti->private;
1703 	unsigned i, sz = 0;
1704 
1705 	switch (type) {
1706 	case STATUSTYPE_INFO:
1707 		result[0] = '\0';
1708 		break;
1709 
1710 	case STATUSTYPE_TABLE:
1711 		DMEMIT("%s ", cc->cipher_string);
1712 
1713 		if (cc->key_size > 0)
1714 			for (i = 0; i < cc->key_size; i++)
1715 				DMEMIT("%02x", cc->key[i]);
1716 		else
1717 			DMEMIT("-");
1718 
1719 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1720 				cc->dev->name, (unsigned long long)cc->start);
1721 
1722 		if (ti->num_discard_bios)
1723 			DMEMIT(" 1 allow_discards");
1724 
1725 		break;
1726 	}
1727 }
1728 
1729 static void crypt_postsuspend(struct dm_target *ti)
1730 {
1731 	struct crypt_config *cc = ti->private;
1732 
1733 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1734 }
1735 
1736 static int crypt_preresume(struct dm_target *ti)
1737 {
1738 	struct crypt_config *cc = ti->private;
1739 
1740 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1741 		DMERR("aborting resume - crypt key is not set.");
1742 		return -EAGAIN;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 static void crypt_resume(struct dm_target *ti)
1749 {
1750 	struct crypt_config *cc = ti->private;
1751 
1752 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1753 }
1754 
1755 /* Message interface
1756  *	key set <key>
1757  *	key wipe
1758  */
1759 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1760 {
1761 	struct crypt_config *cc = ti->private;
1762 	int ret = -EINVAL;
1763 
1764 	if (argc < 2)
1765 		goto error;
1766 
1767 	if (!strcasecmp(argv[0], "key")) {
1768 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1769 			DMWARN("not suspended during key manipulation.");
1770 			return -EINVAL;
1771 		}
1772 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1773 			ret = crypt_set_key(cc, argv[2]);
1774 			if (ret)
1775 				return ret;
1776 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1777 				ret = cc->iv_gen_ops->init(cc);
1778 			return ret;
1779 		}
1780 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1781 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1782 				ret = cc->iv_gen_ops->wipe(cc);
1783 				if (ret)
1784 					return ret;
1785 			}
1786 			return crypt_wipe_key(cc);
1787 		}
1788 	}
1789 
1790 error:
1791 	DMWARN("unrecognised message received.");
1792 	return -EINVAL;
1793 }
1794 
1795 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1796 		       struct bio_vec *biovec, int max_size)
1797 {
1798 	struct crypt_config *cc = ti->private;
1799 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1800 
1801 	if (!q->merge_bvec_fn)
1802 		return max_size;
1803 
1804 	bvm->bi_bdev = cc->dev->bdev;
1805 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1806 
1807 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1808 }
1809 
1810 static int crypt_iterate_devices(struct dm_target *ti,
1811 				 iterate_devices_callout_fn fn, void *data)
1812 {
1813 	struct crypt_config *cc = ti->private;
1814 
1815 	return fn(ti, cc->dev, cc->start, ti->len, data);
1816 }
1817 
1818 static struct target_type crypt_target = {
1819 	.name   = "crypt",
1820 	.version = {1, 12, 1},
1821 	.module = THIS_MODULE,
1822 	.ctr    = crypt_ctr,
1823 	.dtr    = crypt_dtr,
1824 	.map    = crypt_map,
1825 	.status = crypt_status,
1826 	.postsuspend = crypt_postsuspend,
1827 	.preresume = crypt_preresume,
1828 	.resume = crypt_resume,
1829 	.message = crypt_message,
1830 	.merge  = crypt_merge,
1831 	.iterate_devices = crypt_iterate_devices,
1832 };
1833 
1834 static int __init dm_crypt_init(void)
1835 {
1836 	int r;
1837 
1838 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1839 	if (!_crypt_io_pool)
1840 		return -ENOMEM;
1841 
1842 	r = dm_register_target(&crypt_target);
1843 	if (r < 0) {
1844 		DMERR("register failed %d", r);
1845 		kmem_cache_destroy(_crypt_io_pool);
1846 	}
1847 
1848 	return r;
1849 }
1850 
1851 static void __exit dm_crypt_exit(void)
1852 {
1853 	dm_unregister_target(&crypt_target);
1854 	kmem_cache_destroy(_crypt_io_pool);
1855 }
1856 
1857 module_init(dm_crypt_init);
1858 module_exit(dm_crypt_exit);
1859 
1860 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1861 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1862 MODULE_LICENSE("GPL");
1863