xref: /openbmc/linux/drivers/md/dm-crypt.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
38 
39 #include <linux/device-mapper.h>
40 
41 #define DM_MSG_PREFIX "crypt"
42 
43 /*
44  * context holding the current state of a multi-part conversion
45  */
46 struct convert_context {
47 	struct completion restart;
48 	struct bio *bio_in;
49 	struct bio *bio_out;
50 	struct bvec_iter iter_in;
51 	struct bvec_iter iter_out;
52 	u64 cc_sector;
53 	atomic_t cc_pending;
54 	union {
55 		struct skcipher_request *req;
56 		struct aead_request *req_aead;
57 	} r;
58 
59 };
60 
61 /*
62  * per bio private data
63  */
64 struct dm_crypt_io {
65 	struct crypt_config *cc;
66 	struct bio *base_bio;
67 	u8 *integrity_metadata;
68 	bool integrity_metadata_from_pool;
69 	struct work_struct work;
70 
71 	struct convert_context ctx;
72 
73 	atomic_t io_pending;
74 	blk_status_t error;
75 	sector_t sector;
76 
77 	struct rb_node rb_node;
78 } CRYPTO_MINALIGN_ATTR;
79 
80 struct dm_crypt_request {
81 	struct convert_context *ctx;
82 	struct scatterlist sg_in[4];
83 	struct scatterlist sg_out[4];
84 	u64 iv_sector;
85 };
86 
87 struct crypt_config;
88 
89 struct crypt_iv_operations {
90 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
91 		   const char *opts);
92 	void (*dtr)(struct crypt_config *cc);
93 	int (*init)(struct crypt_config *cc);
94 	int (*wipe)(struct crypt_config *cc);
95 	int (*generator)(struct crypt_config *cc, u8 *iv,
96 			 struct dm_crypt_request *dmreq);
97 	int (*post)(struct crypt_config *cc, u8 *iv,
98 		    struct dm_crypt_request *dmreq);
99 };
100 
101 struct iv_essiv_private {
102 	struct crypto_shash *hash_tfm;
103 	u8 *salt;
104 };
105 
106 struct iv_benbi_private {
107 	int shift;
108 };
109 
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private {
112 	struct crypto_shash *hash_tfm;
113 	u8 *seed;
114 };
115 
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private {
118 	struct crypto_shash *crc32_tfm;
119 	u8 *iv_seed;
120 	u8 *whitening;
121 };
122 
123 struct iv_eboiv_private {
124 	struct crypto_cipher *tfm;
125 };
126 
127 /*
128  * Crypt: maps a linear range of a block device
129  * and encrypts / decrypts at the same time.
130  */
131 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
132 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
133 
134 enum cipher_flags {
135 	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cihper */
136 	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
137 };
138 
139 /*
140  * The fields in here must be read only after initialization.
141  */
142 struct crypt_config {
143 	struct dm_dev *dev;
144 	sector_t start;
145 
146 	struct percpu_counter n_allocated_pages;
147 
148 	struct workqueue_struct *io_queue;
149 	struct workqueue_struct *crypt_queue;
150 
151 	spinlock_t write_thread_lock;
152 	struct task_struct *write_thread;
153 	struct rb_root write_tree;
154 
155 	char *cipher;
156 	char *cipher_string;
157 	char *cipher_auth;
158 	char *key_string;
159 
160 	const struct crypt_iv_operations *iv_gen_ops;
161 	union {
162 		struct iv_essiv_private essiv;
163 		struct iv_benbi_private benbi;
164 		struct iv_lmk_private lmk;
165 		struct iv_tcw_private tcw;
166 		struct iv_eboiv_private eboiv;
167 	} iv_gen_private;
168 	u64 iv_offset;
169 	unsigned int iv_size;
170 	unsigned short int sector_size;
171 	unsigned char sector_shift;
172 
173 	/* ESSIV: struct crypto_cipher *essiv_tfm */
174 	void *iv_private;
175 	union {
176 		struct crypto_skcipher **tfms;
177 		struct crypto_aead **tfms_aead;
178 	} cipher_tfm;
179 	unsigned tfms_count;
180 	unsigned long cipher_flags;
181 
182 	/*
183 	 * Layout of each crypto request:
184 	 *
185 	 *   struct skcipher_request
186 	 *      context
187 	 *      padding
188 	 *   struct dm_crypt_request
189 	 *      padding
190 	 *   IV
191 	 *
192 	 * The padding is added so that dm_crypt_request and the IV are
193 	 * correctly aligned.
194 	 */
195 	unsigned int dmreq_start;
196 
197 	unsigned int per_bio_data_size;
198 
199 	unsigned long flags;
200 	unsigned int key_size;
201 	unsigned int key_parts;      /* independent parts in key buffer */
202 	unsigned int key_extra_size; /* additional keys length */
203 	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
204 
205 	unsigned int integrity_tag_size;
206 	unsigned int integrity_iv_size;
207 	unsigned int on_disk_tag_size;
208 
209 	/*
210 	 * pool for per bio private data, crypto requests,
211 	 * encryption requeusts/buffer pages and integrity tags
212 	 */
213 	unsigned tag_pool_max_sectors;
214 	mempool_t tag_pool;
215 	mempool_t req_pool;
216 	mempool_t page_pool;
217 
218 	struct bio_set bs;
219 	struct mutex bio_alloc_lock;
220 
221 	u8 *authenc_key; /* space for keys in authenc() format (if used) */
222 	u8 key[0];
223 };
224 
225 #define MIN_IOS		64
226 #define MAX_TAG_SIZE	480
227 #define POOL_ENTRY_SIZE	512
228 
229 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
230 static unsigned dm_crypt_clients_n = 0;
231 static volatile unsigned long dm_crypt_pages_per_client;
232 #define DM_CRYPT_MEMORY_PERCENT			2
233 #define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_PAGES * 16)
234 
235 static void clone_init(struct dm_crypt_io *, struct bio *);
236 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
237 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
238 					     struct scatterlist *sg);
239 
240 /*
241  * Use this to access cipher attributes that are independent of the key.
242  */
243 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
244 {
245 	return cc->cipher_tfm.tfms[0];
246 }
247 
248 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
249 {
250 	return cc->cipher_tfm.tfms_aead[0];
251 }
252 
253 /*
254  * Different IV generation algorithms:
255  *
256  * plain: the initial vector is the 32-bit little-endian version of the sector
257  *        number, padded with zeros if necessary.
258  *
259  * plain64: the initial vector is the 64-bit little-endian version of the sector
260  *        number, padded with zeros if necessary.
261  *
262  * plain64be: the initial vector is the 64-bit big-endian version of the sector
263  *        number, padded with zeros if necessary.
264  *
265  * essiv: "encrypted sector|salt initial vector", the sector number is
266  *        encrypted with the bulk cipher using a salt as key. The salt
267  *        should be derived from the bulk cipher's key via hashing.
268  *
269  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
270  *        (needed for LRW-32-AES and possible other narrow block modes)
271  *
272  * null: the initial vector is always zero.  Provides compatibility with
273  *       obsolete loop_fish2 devices.  Do not use for new devices.
274  *
275  * lmk:  Compatible implementation of the block chaining mode used
276  *       by the Loop-AES block device encryption system
277  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
278  *       It operates on full 512 byte sectors and uses CBC
279  *       with an IV derived from the sector number, the data and
280  *       optionally extra IV seed.
281  *       This means that after decryption the first block
282  *       of sector must be tweaked according to decrypted data.
283  *       Loop-AES can use three encryption schemes:
284  *         version 1: is plain aes-cbc mode
285  *         version 2: uses 64 multikey scheme with lmk IV generator
286  *         version 3: the same as version 2 with additional IV seed
287  *                   (it uses 65 keys, last key is used as IV seed)
288  *
289  * tcw:  Compatible implementation of the block chaining mode used
290  *       by the TrueCrypt device encryption system (prior to version 4.1).
291  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
292  *       It operates on full 512 byte sectors and uses CBC
293  *       with an IV derived from initial key and the sector number.
294  *       In addition, whitening value is applied on every sector, whitening
295  *       is calculated from initial key, sector number and mixed using CRC32.
296  *       Note that this encryption scheme is vulnerable to watermarking attacks
297  *       and should be used for old compatible containers access only.
298  *
299  * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
300  *        The IV is encrypted little-endian byte-offset (with the same key
301  *        and cipher as the volume).
302  */
303 
304 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
305 			      struct dm_crypt_request *dmreq)
306 {
307 	memset(iv, 0, cc->iv_size);
308 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
309 
310 	return 0;
311 }
312 
313 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
314 				struct dm_crypt_request *dmreq)
315 {
316 	memset(iv, 0, cc->iv_size);
317 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
318 
319 	return 0;
320 }
321 
322 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
323 				  struct dm_crypt_request *dmreq)
324 {
325 	memset(iv, 0, cc->iv_size);
326 	/* iv_size is at least of size u64; usually it is 16 bytes */
327 	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
328 
329 	return 0;
330 }
331 
332 /* Initialise ESSIV - compute salt but no local memory allocations */
333 static int crypt_iv_essiv_init(struct crypt_config *cc)
334 {
335 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
336 	SHASH_DESC_ON_STACK(desc, essiv->hash_tfm);
337 	struct crypto_cipher *essiv_tfm;
338 	int err;
339 
340 	desc->tfm = essiv->hash_tfm;
341 
342 	err = crypto_shash_digest(desc, cc->key, cc->key_size, essiv->salt);
343 	shash_desc_zero(desc);
344 	if (err)
345 		return err;
346 
347 	essiv_tfm = cc->iv_private;
348 
349 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
350 			    crypto_shash_digestsize(essiv->hash_tfm));
351 	if (err)
352 		return err;
353 
354 	return 0;
355 }
356 
357 /* Wipe salt and reset key derived from volume key */
358 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
359 {
360 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
361 	unsigned salt_size = crypto_shash_digestsize(essiv->hash_tfm);
362 	struct crypto_cipher *essiv_tfm;
363 	int r, err = 0;
364 
365 	memset(essiv->salt, 0, salt_size);
366 
367 	essiv_tfm = cc->iv_private;
368 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
369 	if (r)
370 		err = r;
371 
372 	return err;
373 }
374 
375 /* Allocate the cipher for ESSIV */
376 static struct crypto_cipher *alloc_essiv_cipher(struct crypt_config *cc,
377 						struct dm_target *ti,
378 						const u8 *salt,
379 						unsigned int saltsize)
380 {
381 	struct crypto_cipher *essiv_tfm;
382 	int err;
383 
384 	/* Setup the essiv_tfm with the given salt */
385 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, 0);
386 	if (IS_ERR(essiv_tfm)) {
387 		ti->error = "Error allocating crypto tfm for ESSIV";
388 		return essiv_tfm;
389 	}
390 
391 	if (crypto_cipher_blocksize(essiv_tfm) != cc->iv_size) {
392 		ti->error = "Block size of ESSIV cipher does "
393 			    "not match IV size of block cipher";
394 		crypto_free_cipher(essiv_tfm);
395 		return ERR_PTR(-EINVAL);
396 	}
397 
398 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
399 	if (err) {
400 		ti->error = "Failed to set key for ESSIV cipher";
401 		crypto_free_cipher(essiv_tfm);
402 		return ERR_PTR(err);
403 	}
404 
405 	return essiv_tfm;
406 }
407 
408 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
409 {
410 	struct crypto_cipher *essiv_tfm;
411 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
412 
413 	crypto_free_shash(essiv->hash_tfm);
414 	essiv->hash_tfm = NULL;
415 
416 	kzfree(essiv->salt);
417 	essiv->salt = NULL;
418 
419 	essiv_tfm = cc->iv_private;
420 
421 	if (essiv_tfm)
422 		crypto_free_cipher(essiv_tfm);
423 
424 	cc->iv_private = NULL;
425 }
426 
427 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
428 			      const char *opts)
429 {
430 	struct crypto_cipher *essiv_tfm = NULL;
431 	struct crypto_shash *hash_tfm = NULL;
432 	u8 *salt = NULL;
433 	int err;
434 
435 	if (!opts) {
436 		ti->error = "Digest algorithm missing for ESSIV mode";
437 		return -EINVAL;
438 	}
439 
440 	/* Allocate hash algorithm */
441 	hash_tfm = crypto_alloc_shash(opts, 0, 0);
442 	if (IS_ERR(hash_tfm)) {
443 		ti->error = "Error initializing ESSIV hash";
444 		err = PTR_ERR(hash_tfm);
445 		goto bad;
446 	}
447 
448 	salt = kzalloc(crypto_shash_digestsize(hash_tfm), GFP_KERNEL);
449 	if (!salt) {
450 		ti->error = "Error kmallocing salt storage in ESSIV";
451 		err = -ENOMEM;
452 		goto bad;
453 	}
454 
455 	cc->iv_gen_private.essiv.salt = salt;
456 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
457 
458 	essiv_tfm = alloc_essiv_cipher(cc, ti, salt,
459 				       crypto_shash_digestsize(hash_tfm));
460 	if (IS_ERR(essiv_tfm)) {
461 		crypt_iv_essiv_dtr(cc);
462 		return PTR_ERR(essiv_tfm);
463 	}
464 	cc->iv_private = essiv_tfm;
465 
466 	return 0;
467 
468 bad:
469 	if (hash_tfm && !IS_ERR(hash_tfm))
470 		crypto_free_shash(hash_tfm);
471 	kfree(salt);
472 	return err;
473 }
474 
475 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
476 			      struct dm_crypt_request *dmreq)
477 {
478 	struct crypto_cipher *essiv_tfm = cc->iv_private;
479 
480 	memset(iv, 0, cc->iv_size);
481 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
482 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
483 
484 	return 0;
485 }
486 
487 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
488 			      const char *opts)
489 {
490 	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
491 	int log = ilog2(bs);
492 
493 	/* we need to calculate how far we must shift the sector count
494 	 * to get the cipher block count, we use this shift in _gen */
495 
496 	if (1 << log != bs) {
497 		ti->error = "cypher blocksize is not a power of 2";
498 		return -EINVAL;
499 	}
500 
501 	if (log > 9) {
502 		ti->error = "cypher blocksize is > 512";
503 		return -EINVAL;
504 	}
505 
506 	cc->iv_gen_private.benbi.shift = 9 - log;
507 
508 	return 0;
509 }
510 
511 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
512 {
513 }
514 
515 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
516 			      struct dm_crypt_request *dmreq)
517 {
518 	__be64 val;
519 
520 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
521 
522 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
523 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
524 
525 	return 0;
526 }
527 
528 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
529 			     struct dm_crypt_request *dmreq)
530 {
531 	memset(iv, 0, cc->iv_size);
532 
533 	return 0;
534 }
535 
536 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
537 {
538 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
539 
540 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
541 		crypto_free_shash(lmk->hash_tfm);
542 	lmk->hash_tfm = NULL;
543 
544 	kzfree(lmk->seed);
545 	lmk->seed = NULL;
546 }
547 
548 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
549 			    const char *opts)
550 {
551 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
552 
553 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
554 		ti->error = "Unsupported sector size for LMK";
555 		return -EINVAL;
556 	}
557 
558 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
559 	if (IS_ERR(lmk->hash_tfm)) {
560 		ti->error = "Error initializing LMK hash";
561 		return PTR_ERR(lmk->hash_tfm);
562 	}
563 
564 	/* No seed in LMK version 2 */
565 	if (cc->key_parts == cc->tfms_count) {
566 		lmk->seed = NULL;
567 		return 0;
568 	}
569 
570 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
571 	if (!lmk->seed) {
572 		crypt_iv_lmk_dtr(cc);
573 		ti->error = "Error kmallocing seed storage in LMK";
574 		return -ENOMEM;
575 	}
576 
577 	return 0;
578 }
579 
580 static int crypt_iv_lmk_init(struct crypt_config *cc)
581 {
582 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
583 	int subkey_size = cc->key_size / cc->key_parts;
584 
585 	/* LMK seed is on the position of LMK_KEYS + 1 key */
586 	if (lmk->seed)
587 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
588 		       crypto_shash_digestsize(lmk->hash_tfm));
589 
590 	return 0;
591 }
592 
593 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
594 {
595 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
596 
597 	if (lmk->seed)
598 		memset(lmk->seed, 0, LMK_SEED_SIZE);
599 
600 	return 0;
601 }
602 
603 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
604 			    struct dm_crypt_request *dmreq,
605 			    u8 *data)
606 {
607 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
608 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
609 	struct md5_state md5state;
610 	__le32 buf[4];
611 	int i, r;
612 
613 	desc->tfm = lmk->hash_tfm;
614 
615 	r = crypto_shash_init(desc);
616 	if (r)
617 		return r;
618 
619 	if (lmk->seed) {
620 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
621 		if (r)
622 			return r;
623 	}
624 
625 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
626 	r = crypto_shash_update(desc, data + 16, 16 * 31);
627 	if (r)
628 		return r;
629 
630 	/* Sector is cropped to 56 bits here */
631 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
632 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
633 	buf[2] = cpu_to_le32(4024);
634 	buf[3] = 0;
635 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
636 	if (r)
637 		return r;
638 
639 	/* No MD5 padding here */
640 	r = crypto_shash_export(desc, &md5state);
641 	if (r)
642 		return r;
643 
644 	for (i = 0; i < MD5_HASH_WORDS; i++)
645 		__cpu_to_le32s(&md5state.hash[i]);
646 	memcpy(iv, &md5state.hash, cc->iv_size);
647 
648 	return 0;
649 }
650 
651 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
652 			    struct dm_crypt_request *dmreq)
653 {
654 	struct scatterlist *sg;
655 	u8 *src;
656 	int r = 0;
657 
658 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
659 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
660 		src = kmap_atomic(sg_page(sg));
661 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
662 		kunmap_atomic(src);
663 	} else
664 		memset(iv, 0, cc->iv_size);
665 
666 	return r;
667 }
668 
669 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
670 			     struct dm_crypt_request *dmreq)
671 {
672 	struct scatterlist *sg;
673 	u8 *dst;
674 	int r;
675 
676 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
677 		return 0;
678 
679 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
680 	dst = kmap_atomic(sg_page(sg));
681 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
682 
683 	/* Tweak the first block of plaintext sector */
684 	if (!r)
685 		crypto_xor(dst + sg->offset, iv, cc->iv_size);
686 
687 	kunmap_atomic(dst);
688 	return r;
689 }
690 
691 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
692 {
693 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
694 
695 	kzfree(tcw->iv_seed);
696 	tcw->iv_seed = NULL;
697 	kzfree(tcw->whitening);
698 	tcw->whitening = NULL;
699 
700 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
701 		crypto_free_shash(tcw->crc32_tfm);
702 	tcw->crc32_tfm = NULL;
703 }
704 
705 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
706 			    const char *opts)
707 {
708 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
709 
710 	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
711 		ti->error = "Unsupported sector size for TCW";
712 		return -EINVAL;
713 	}
714 
715 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
716 		ti->error = "Wrong key size for TCW";
717 		return -EINVAL;
718 	}
719 
720 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
721 	if (IS_ERR(tcw->crc32_tfm)) {
722 		ti->error = "Error initializing CRC32 in TCW";
723 		return PTR_ERR(tcw->crc32_tfm);
724 	}
725 
726 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
727 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
728 	if (!tcw->iv_seed || !tcw->whitening) {
729 		crypt_iv_tcw_dtr(cc);
730 		ti->error = "Error allocating seed storage in TCW";
731 		return -ENOMEM;
732 	}
733 
734 	return 0;
735 }
736 
737 static int crypt_iv_tcw_init(struct crypt_config *cc)
738 {
739 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
740 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
741 
742 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
743 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
744 	       TCW_WHITENING_SIZE);
745 
746 	return 0;
747 }
748 
749 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
750 {
751 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
752 
753 	memset(tcw->iv_seed, 0, cc->iv_size);
754 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
755 
756 	return 0;
757 }
758 
759 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
760 				  struct dm_crypt_request *dmreq,
761 				  u8 *data)
762 {
763 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
764 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
765 	u8 buf[TCW_WHITENING_SIZE];
766 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
767 	int i, r;
768 
769 	/* xor whitening with sector number */
770 	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
771 	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
772 
773 	/* calculate crc32 for every 32bit part and xor it */
774 	desc->tfm = tcw->crc32_tfm;
775 	for (i = 0; i < 4; i++) {
776 		r = crypto_shash_init(desc);
777 		if (r)
778 			goto out;
779 		r = crypto_shash_update(desc, &buf[i * 4], 4);
780 		if (r)
781 			goto out;
782 		r = crypto_shash_final(desc, &buf[i * 4]);
783 		if (r)
784 			goto out;
785 	}
786 	crypto_xor(&buf[0], &buf[12], 4);
787 	crypto_xor(&buf[4], &buf[8], 4);
788 
789 	/* apply whitening (8 bytes) to whole sector */
790 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
791 		crypto_xor(data + i * 8, buf, 8);
792 out:
793 	memzero_explicit(buf, sizeof(buf));
794 	return r;
795 }
796 
797 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
798 			    struct dm_crypt_request *dmreq)
799 {
800 	struct scatterlist *sg;
801 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
802 	__le64 sector = cpu_to_le64(dmreq->iv_sector);
803 	u8 *src;
804 	int r = 0;
805 
806 	/* Remove whitening from ciphertext */
807 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
808 		sg = crypt_get_sg_data(cc, dmreq->sg_in);
809 		src = kmap_atomic(sg_page(sg));
810 		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
811 		kunmap_atomic(src);
812 	}
813 
814 	/* Calculate IV */
815 	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
816 	if (cc->iv_size > 8)
817 		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
818 			       cc->iv_size - 8);
819 
820 	return r;
821 }
822 
823 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
824 			     struct dm_crypt_request *dmreq)
825 {
826 	struct scatterlist *sg;
827 	u8 *dst;
828 	int r;
829 
830 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
831 		return 0;
832 
833 	/* Apply whitening on ciphertext */
834 	sg = crypt_get_sg_data(cc, dmreq->sg_out);
835 	dst = kmap_atomic(sg_page(sg));
836 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
837 	kunmap_atomic(dst);
838 
839 	return r;
840 }
841 
842 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
843 				struct dm_crypt_request *dmreq)
844 {
845 	/* Used only for writes, there must be an additional space to store IV */
846 	get_random_bytes(iv, cc->iv_size);
847 	return 0;
848 }
849 
850 static void crypt_iv_eboiv_dtr(struct crypt_config *cc)
851 {
852 	struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
853 
854 	crypto_free_cipher(eboiv->tfm);
855 	eboiv->tfm = NULL;
856 }
857 
858 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
859 			    const char *opts)
860 {
861 	struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
862 	struct crypto_cipher *tfm;
863 
864 	tfm = crypto_alloc_cipher(cc->cipher, 0, 0);
865 	if (IS_ERR(tfm)) {
866 		ti->error = "Error allocating crypto tfm for EBOIV";
867 		return PTR_ERR(tfm);
868 	}
869 
870 	if (crypto_cipher_blocksize(tfm) != cc->iv_size) {
871 		ti->error = "Block size of EBOIV cipher does "
872 			    "not match IV size of block cipher";
873 		crypto_free_cipher(tfm);
874 		return -EINVAL;
875 	}
876 
877 	eboiv->tfm = tfm;
878 	return 0;
879 }
880 
881 static int crypt_iv_eboiv_init(struct crypt_config *cc)
882 {
883 	struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
884 	int err;
885 
886 	err = crypto_cipher_setkey(eboiv->tfm, cc->key, cc->key_size);
887 	if (err)
888 		return err;
889 
890 	return 0;
891 }
892 
893 static int crypt_iv_eboiv_wipe(struct crypt_config *cc)
894 {
895 	/* Called after cc->key is set to random key in crypt_wipe() */
896 	return crypt_iv_eboiv_init(cc);
897 }
898 
899 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
900 			    struct dm_crypt_request *dmreq)
901 {
902 	struct iv_eboiv_private *eboiv = &cc->iv_gen_private.eboiv;
903 
904 	memset(iv, 0, cc->iv_size);
905 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
906 	crypto_cipher_encrypt_one(eboiv->tfm, iv, iv);
907 
908 	return 0;
909 }
910 
911 static const struct crypt_iv_operations crypt_iv_plain_ops = {
912 	.generator = crypt_iv_plain_gen
913 };
914 
915 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
916 	.generator = crypt_iv_plain64_gen
917 };
918 
919 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
920 	.generator = crypt_iv_plain64be_gen
921 };
922 
923 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
924 	.ctr       = crypt_iv_essiv_ctr,
925 	.dtr       = crypt_iv_essiv_dtr,
926 	.init      = crypt_iv_essiv_init,
927 	.wipe      = crypt_iv_essiv_wipe,
928 	.generator = crypt_iv_essiv_gen
929 };
930 
931 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
932 	.ctr	   = crypt_iv_benbi_ctr,
933 	.dtr	   = crypt_iv_benbi_dtr,
934 	.generator = crypt_iv_benbi_gen
935 };
936 
937 static const struct crypt_iv_operations crypt_iv_null_ops = {
938 	.generator = crypt_iv_null_gen
939 };
940 
941 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
942 	.ctr	   = crypt_iv_lmk_ctr,
943 	.dtr	   = crypt_iv_lmk_dtr,
944 	.init	   = crypt_iv_lmk_init,
945 	.wipe	   = crypt_iv_lmk_wipe,
946 	.generator = crypt_iv_lmk_gen,
947 	.post	   = crypt_iv_lmk_post
948 };
949 
950 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
951 	.ctr	   = crypt_iv_tcw_ctr,
952 	.dtr	   = crypt_iv_tcw_dtr,
953 	.init	   = crypt_iv_tcw_init,
954 	.wipe	   = crypt_iv_tcw_wipe,
955 	.generator = crypt_iv_tcw_gen,
956 	.post	   = crypt_iv_tcw_post
957 };
958 
959 static struct crypt_iv_operations crypt_iv_random_ops = {
960 	.generator = crypt_iv_random_gen
961 };
962 
963 static struct crypt_iv_operations crypt_iv_eboiv_ops = {
964 	.ctr	   = crypt_iv_eboiv_ctr,
965 	.dtr	   = crypt_iv_eboiv_dtr,
966 	.init	   = crypt_iv_eboiv_init,
967 	.wipe	   = crypt_iv_eboiv_wipe,
968 	.generator = crypt_iv_eboiv_gen
969 };
970 
971 /*
972  * Integrity extensions
973  */
974 static bool crypt_integrity_aead(struct crypt_config *cc)
975 {
976 	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
977 }
978 
979 static bool crypt_integrity_hmac(struct crypt_config *cc)
980 {
981 	return crypt_integrity_aead(cc) && cc->key_mac_size;
982 }
983 
984 /* Get sg containing data */
985 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
986 					     struct scatterlist *sg)
987 {
988 	if (unlikely(crypt_integrity_aead(cc)))
989 		return &sg[2];
990 
991 	return sg;
992 }
993 
994 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
995 {
996 	struct bio_integrity_payload *bip;
997 	unsigned int tag_len;
998 	int ret;
999 
1000 	if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1001 		return 0;
1002 
1003 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1004 	if (IS_ERR(bip))
1005 		return PTR_ERR(bip);
1006 
1007 	tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1008 
1009 	bip->bip_iter.bi_size = tag_len;
1010 	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1011 
1012 	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1013 				     tag_len, offset_in_page(io->integrity_metadata));
1014 	if (unlikely(ret != tag_len))
1015 		return -ENOMEM;
1016 
1017 	return 0;
1018 }
1019 
1020 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1021 {
1022 #ifdef CONFIG_BLK_DEV_INTEGRITY
1023 	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1024 	struct mapped_device *md = dm_table_get_md(ti->table);
1025 
1026 	/* From now we require underlying device with our integrity profile */
1027 	if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1028 		ti->error = "Integrity profile not supported.";
1029 		return -EINVAL;
1030 	}
1031 
1032 	if (bi->tag_size != cc->on_disk_tag_size ||
1033 	    bi->tuple_size != cc->on_disk_tag_size) {
1034 		ti->error = "Integrity profile tag size mismatch.";
1035 		return -EINVAL;
1036 	}
1037 	if (1 << bi->interval_exp != cc->sector_size) {
1038 		ti->error = "Integrity profile sector size mismatch.";
1039 		return -EINVAL;
1040 	}
1041 
1042 	if (crypt_integrity_aead(cc)) {
1043 		cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1044 		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1045 		       cc->integrity_tag_size, cc->integrity_iv_size);
1046 
1047 		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1048 			ti->error = "Integrity AEAD auth tag size is not supported.";
1049 			return -EINVAL;
1050 		}
1051 	} else if (cc->integrity_iv_size)
1052 		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1053 		       cc->integrity_iv_size);
1054 
1055 	if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1056 		ti->error = "Not enough space for integrity tag in the profile.";
1057 		return -EINVAL;
1058 	}
1059 
1060 	return 0;
1061 #else
1062 	ti->error = "Integrity profile not supported.";
1063 	return -EINVAL;
1064 #endif
1065 }
1066 
1067 static void crypt_convert_init(struct crypt_config *cc,
1068 			       struct convert_context *ctx,
1069 			       struct bio *bio_out, struct bio *bio_in,
1070 			       sector_t sector)
1071 {
1072 	ctx->bio_in = bio_in;
1073 	ctx->bio_out = bio_out;
1074 	if (bio_in)
1075 		ctx->iter_in = bio_in->bi_iter;
1076 	if (bio_out)
1077 		ctx->iter_out = bio_out->bi_iter;
1078 	ctx->cc_sector = sector + cc->iv_offset;
1079 	init_completion(&ctx->restart);
1080 }
1081 
1082 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1083 					     void *req)
1084 {
1085 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1086 }
1087 
1088 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1089 {
1090 	return (void *)((char *)dmreq - cc->dmreq_start);
1091 }
1092 
1093 static u8 *iv_of_dmreq(struct crypt_config *cc,
1094 		       struct dm_crypt_request *dmreq)
1095 {
1096 	if (crypt_integrity_aead(cc))
1097 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1098 			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1099 	else
1100 		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1101 			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1102 }
1103 
1104 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1105 		       struct dm_crypt_request *dmreq)
1106 {
1107 	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1108 }
1109 
1110 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1111 		       struct dm_crypt_request *dmreq)
1112 {
1113 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1114 	return (__le64 *) ptr;
1115 }
1116 
1117 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1118 		       struct dm_crypt_request *dmreq)
1119 {
1120 	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1121 		  cc->iv_size + sizeof(uint64_t);
1122 	return (unsigned int*)ptr;
1123 }
1124 
1125 static void *tag_from_dmreq(struct crypt_config *cc,
1126 				struct dm_crypt_request *dmreq)
1127 {
1128 	struct convert_context *ctx = dmreq->ctx;
1129 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1130 
1131 	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1132 		cc->on_disk_tag_size];
1133 }
1134 
1135 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1136 			       struct dm_crypt_request *dmreq)
1137 {
1138 	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1139 }
1140 
1141 static int crypt_convert_block_aead(struct crypt_config *cc,
1142 				     struct convert_context *ctx,
1143 				     struct aead_request *req,
1144 				     unsigned int tag_offset)
1145 {
1146 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1147 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1148 	struct dm_crypt_request *dmreq;
1149 	u8 *iv, *org_iv, *tag_iv, *tag;
1150 	__le64 *sector;
1151 	int r = 0;
1152 
1153 	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1154 
1155 	/* Reject unexpected unaligned bio. */
1156 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1157 		return -EIO;
1158 
1159 	dmreq = dmreq_of_req(cc, req);
1160 	dmreq->iv_sector = ctx->cc_sector;
1161 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1162 		dmreq->iv_sector >>= cc->sector_shift;
1163 	dmreq->ctx = ctx;
1164 
1165 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1166 
1167 	sector = org_sector_of_dmreq(cc, dmreq);
1168 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1169 
1170 	iv = iv_of_dmreq(cc, dmreq);
1171 	org_iv = org_iv_of_dmreq(cc, dmreq);
1172 	tag = tag_from_dmreq(cc, dmreq);
1173 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1174 
1175 	/* AEAD request:
1176 	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1177 	 *  | (authenticated) | (auth+encryption) |              |
1178 	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1179 	 */
1180 	sg_init_table(dmreq->sg_in, 4);
1181 	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1182 	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1183 	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1184 	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1185 
1186 	sg_init_table(dmreq->sg_out, 4);
1187 	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1188 	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1189 	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1190 	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1191 
1192 	if (cc->iv_gen_ops) {
1193 		/* For READs use IV stored in integrity metadata */
1194 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1195 			memcpy(org_iv, tag_iv, cc->iv_size);
1196 		} else {
1197 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1198 			if (r < 0)
1199 				return r;
1200 			/* Store generated IV in integrity metadata */
1201 			if (cc->integrity_iv_size)
1202 				memcpy(tag_iv, org_iv, cc->iv_size);
1203 		}
1204 		/* Working copy of IV, to be modified in crypto API */
1205 		memcpy(iv, org_iv, cc->iv_size);
1206 	}
1207 
1208 	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1209 	if (bio_data_dir(ctx->bio_in) == WRITE) {
1210 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1211 				       cc->sector_size, iv);
1212 		r = crypto_aead_encrypt(req);
1213 		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1214 			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1215 			       cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1216 	} else {
1217 		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1218 				       cc->sector_size + cc->integrity_tag_size, iv);
1219 		r = crypto_aead_decrypt(req);
1220 	}
1221 
1222 	if (r == -EBADMSG) {
1223 		char b[BDEVNAME_SIZE];
1224 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1225 			    (unsigned long long)le64_to_cpu(*sector));
1226 	}
1227 
1228 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1229 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1230 
1231 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1232 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1233 
1234 	return r;
1235 }
1236 
1237 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1238 					struct convert_context *ctx,
1239 					struct skcipher_request *req,
1240 					unsigned int tag_offset)
1241 {
1242 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1243 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1244 	struct scatterlist *sg_in, *sg_out;
1245 	struct dm_crypt_request *dmreq;
1246 	u8 *iv, *org_iv, *tag_iv;
1247 	__le64 *sector;
1248 	int r = 0;
1249 
1250 	/* Reject unexpected unaligned bio. */
1251 	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1252 		return -EIO;
1253 
1254 	dmreq = dmreq_of_req(cc, req);
1255 	dmreq->iv_sector = ctx->cc_sector;
1256 	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1257 		dmreq->iv_sector >>= cc->sector_shift;
1258 	dmreq->ctx = ctx;
1259 
1260 	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1261 
1262 	iv = iv_of_dmreq(cc, dmreq);
1263 	org_iv = org_iv_of_dmreq(cc, dmreq);
1264 	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1265 
1266 	sector = org_sector_of_dmreq(cc, dmreq);
1267 	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1268 
1269 	/* For skcipher we use only the first sg item */
1270 	sg_in  = &dmreq->sg_in[0];
1271 	sg_out = &dmreq->sg_out[0];
1272 
1273 	sg_init_table(sg_in, 1);
1274 	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1275 
1276 	sg_init_table(sg_out, 1);
1277 	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1278 
1279 	if (cc->iv_gen_ops) {
1280 		/* For READs use IV stored in integrity metadata */
1281 		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1282 			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1283 		} else {
1284 			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1285 			if (r < 0)
1286 				return r;
1287 			/* Store generated IV in integrity metadata */
1288 			if (cc->integrity_iv_size)
1289 				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1290 		}
1291 		/* Working copy of IV, to be modified in crypto API */
1292 		memcpy(iv, org_iv, cc->iv_size);
1293 	}
1294 
1295 	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1296 
1297 	if (bio_data_dir(ctx->bio_in) == WRITE)
1298 		r = crypto_skcipher_encrypt(req);
1299 	else
1300 		r = crypto_skcipher_decrypt(req);
1301 
1302 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1303 		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1304 
1305 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1306 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1307 
1308 	return r;
1309 }
1310 
1311 static void kcryptd_async_done(struct crypto_async_request *async_req,
1312 			       int error);
1313 
1314 static void crypt_alloc_req_skcipher(struct crypt_config *cc,
1315 				     struct convert_context *ctx)
1316 {
1317 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1318 
1319 	if (!ctx->r.req)
1320 		ctx->r.req = mempool_alloc(&cc->req_pool, GFP_NOIO);
1321 
1322 	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1323 
1324 	/*
1325 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1326 	 * requests if driver request queue is full.
1327 	 */
1328 	skcipher_request_set_callback(ctx->r.req,
1329 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1330 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1331 }
1332 
1333 static void crypt_alloc_req_aead(struct crypt_config *cc,
1334 				 struct convert_context *ctx)
1335 {
1336 	if (!ctx->r.req_aead)
1337 		ctx->r.req_aead = mempool_alloc(&cc->req_pool, GFP_NOIO);
1338 
1339 	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1340 
1341 	/*
1342 	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1343 	 * requests if driver request queue is full.
1344 	 */
1345 	aead_request_set_callback(ctx->r.req_aead,
1346 	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1347 	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1348 }
1349 
1350 static void crypt_alloc_req(struct crypt_config *cc,
1351 			    struct convert_context *ctx)
1352 {
1353 	if (crypt_integrity_aead(cc))
1354 		crypt_alloc_req_aead(cc, ctx);
1355 	else
1356 		crypt_alloc_req_skcipher(cc, ctx);
1357 }
1358 
1359 static void crypt_free_req_skcipher(struct crypt_config *cc,
1360 				    struct skcipher_request *req, struct bio *base_bio)
1361 {
1362 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1363 
1364 	if ((struct skcipher_request *)(io + 1) != req)
1365 		mempool_free(req, &cc->req_pool);
1366 }
1367 
1368 static void crypt_free_req_aead(struct crypt_config *cc,
1369 				struct aead_request *req, struct bio *base_bio)
1370 {
1371 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1372 
1373 	if ((struct aead_request *)(io + 1) != req)
1374 		mempool_free(req, &cc->req_pool);
1375 }
1376 
1377 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1378 {
1379 	if (crypt_integrity_aead(cc))
1380 		crypt_free_req_aead(cc, req, base_bio);
1381 	else
1382 		crypt_free_req_skcipher(cc, req, base_bio);
1383 }
1384 
1385 /*
1386  * Encrypt / decrypt data from one bio to another one (can be the same one)
1387  */
1388 static blk_status_t crypt_convert(struct crypt_config *cc,
1389 			 struct convert_context *ctx)
1390 {
1391 	unsigned int tag_offset = 0;
1392 	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1393 	int r;
1394 
1395 	atomic_set(&ctx->cc_pending, 1);
1396 
1397 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1398 
1399 		crypt_alloc_req(cc, ctx);
1400 		atomic_inc(&ctx->cc_pending);
1401 
1402 		if (crypt_integrity_aead(cc))
1403 			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1404 		else
1405 			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1406 
1407 		switch (r) {
1408 		/*
1409 		 * The request was queued by a crypto driver
1410 		 * but the driver request queue is full, let's wait.
1411 		 */
1412 		case -EBUSY:
1413 			wait_for_completion(&ctx->restart);
1414 			reinit_completion(&ctx->restart);
1415 			/* fall through */
1416 		/*
1417 		 * The request is queued and processed asynchronously,
1418 		 * completion function kcryptd_async_done() will be called.
1419 		 */
1420 		case -EINPROGRESS:
1421 			ctx->r.req = NULL;
1422 			ctx->cc_sector += sector_step;
1423 			tag_offset++;
1424 			continue;
1425 		/*
1426 		 * The request was already processed (synchronously).
1427 		 */
1428 		case 0:
1429 			atomic_dec(&ctx->cc_pending);
1430 			ctx->cc_sector += sector_step;
1431 			tag_offset++;
1432 			cond_resched();
1433 			continue;
1434 		/*
1435 		 * There was a data integrity error.
1436 		 */
1437 		case -EBADMSG:
1438 			atomic_dec(&ctx->cc_pending);
1439 			return BLK_STS_PROTECTION;
1440 		/*
1441 		 * There was an error while processing the request.
1442 		 */
1443 		default:
1444 			atomic_dec(&ctx->cc_pending);
1445 			return BLK_STS_IOERR;
1446 		}
1447 	}
1448 
1449 	return 0;
1450 }
1451 
1452 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1453 
1454 /*
1455  * Generate a new unfragmented bio with the given size
1456  * This should never violate the device limitations (but only because
1457  * max_segment_size is being constrained to PAGE_SIZE).
1458  *
1459  * This function may be called concurrently. If we allocate from the mempool
1460  * concurrently, there is a possibility of deadlock. For example, if we have
1461  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1462  * the mempool concurrently, it may deadlock in a situation where both processes
1463  * have allocated 128 pages and the mempool is exhausted.
1464  *
1465  * In order to avoid this scenario we allocate the pages under a mutex.
1466  *
1467  * In order to not degrade performance with excessive locking, we try
1468  * non-blocking allocations without a mutex first but on failure we fallback
1469  * to blocking allocations with a mutex.
1470  */
1471 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1472 {
1473 	struct crypt_config *cc = io->cc;
1474 	struct bio *clone;
1475 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1476 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1477 	unsigned i, len, remaining_size;
1478 	struct page *page;
1479 
1480 retry:
1481 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1482 		mutex_lock(&cc->bio_alloc_lock);
1483 
1484 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1485 	if (!clone)
1486 		goto out;
1487 
1488 	clone_init(io, clone);
1489 
1490 	remaining_size = size;
1491 
1492 	for (i = 0; i < nr_iovecs; i++) {
1493 		page = mempool_alloc(&cc->page_pool, gfp_mask);
1494 		if (!page) {
1495 			crypt_free_buffer_pages(cc, clone);
1496 			bio_put(clone);
1497 			gfp_mask |= __GFP_DIRECT_RECLAIM;
1498 			goto retry;
1499 		}
1500 
1501 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1502 
1503 		bio_add_page(clone, page, len, 0);
1504 
1505 		remaining_size -= len;
1506 	}
1507 
1508 	/* Allocate space for integrity tags */
1509 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1510 		crypt_free_buffer_pages(cc, clone);
1511 		bio_put(clone);
1512 		clone = NULL;
1513 	}
1514 out:
1515 	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1516 		mutex_unlock(&cc->bio_alloc_lock);
1517 
1518 	return clone;
1519 }
1520 
1521 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1522 {
1523 	struct bio_vec *bv;
1524 	struct bvec_iter_all iter_all;
1525 
1526 	bio_for_each_segment_all(bv, clone, iter_all) {
1527 		BUG_ON(!bv->bv_page);
1528 		mempool_free(bv->bv_page, &cc->page_pool);
1529 	}
1530 }
1531 
1532 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1533 			  struct bio *bio, sector_t sector)
1534 {
1535 	io->cc = cc;
1536 	io->base_bio = bio;
1537 	io->sector = sector;
1538 	io->error = 0;
1539 	io->ctx.r.req = NULL;
1540 	io->integrity_metadata = NULL;
1541 	io->integrity_metadata_from_pool = false;
1542 	atomic_set(&io->io_pending, 0);
1543 }
1544 
1545 static void crypt_inc_pending(struct dm_crypt_io *io)
1546 {
1547 	atomic_inc(&io->io_pending);
1548 }
1549 
1550 /*
1551  * One of the bios was finished. Check for completion of
1552  * the whole request and correctly clean up the buffer.
1553  */
1554 static void crypt_dec_pending(struct dm_crypt_io *io)
1555 {
1556 	struct crypt_config *cc = io->cc;
1557 	struct bio *base_bio = io->base_bio;
1558 	blk_status_t error = io->error;
1559 
1560 	if (!atomic_dec_and_test(&io->io_pending))
1561 		return;
1562 
1563 	if (io->ctx.r.req)
1564 		crypt_free_req(cc, io->ctx.r.req, base_bio);
1565 
1566 	if (unlikely(io->integrity_metadata_from_pool))
1567 		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1568 	else
1569 		kfree(io->integrity_metadata);
1570 
1571 	base_bio->bi_status = error;
1572 	bio_endio(base_bio);
1573 }
1574 
1575 /*
1576  * kcryptd/kcryptd_io:
1577  *
1578  * Needed because it would be very unwise to do decryption in an
1579  * interrupt context.
1580  *
1581  * kcryptd performs the actual encryption or decryption.
1582  *
1583  * kcryptd_io performs the IO submission.
1584  *
1585  * They must be separated as otherwise the final stages could be
1586  * starved by new requests which can block in the first stages due
1587  * to memory allocation.
1588  *
1589  * The work is done per CPU global for all dm-crypt instances.
1590  * They should not depend on each other and do not block.
1591  */
1592 static void crypt_endio(struct bio *clone)
1593 {
1594 	struct dm_crypt_io *io = clone->bi_private;
1595 	struct crypt_config *cc = io->cc;
1596 	unsigned rw = bio_data_dir(clone);
1597 	blk_status_t error;
1598 
1599 	/*
1600 	 * free the processed pages
1601 	 */
1602 	if (rw == WRITE)
1603 		crypt_free_buffer_pages(cc, clone);
1604 
1605 	error = clone->bi_status;
1606 	bio_put(clone);
1607 
1608 	if (rw == READ && !error) {
1609 		kcryptd_queue_crypt(io);
1610 		return;
1611 	}
1612 
1613 	if (unlikely(error))
1614 		io->error = error;
1615 
1616 	crypt_dec_pending(io);
1617 }
1618 
1619 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1620 {
1621 	struct crypt_config *cc = io->cc;
1622 
1623 	clone->bi_private = io;
1624 	clone->bi_end_io  = crypt_endio;
1625 	bio_set_dev(clone, cc->dev->bdev);
1626 	clone->bi_opf	  = io->base_bio->bi_opf;
1627 }
1628 
1629 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1630 {
1631 	struct crypt_config *cc = io->cc;
1632 	struct bio *clone;
1633 
1634 	/*
1635 	 * We need the original biovec array in order to decrypt
1636 	 * the whole bio data *afterwards* -- thanks to immutable
1637 	 * biovecs we don't need to worry about the block layer
1638 	 * modifying the biovec array; so leverage bio_clone_fast().
1639 	 */
1640 	clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1641 	if (!clone)
1642 		return 1;
1643 
1644 	crypt_inc_pending(io);
1645 
1646 	clone_init(io, clone);
1647 	clone->bi_iter.bi_sector = cc->start + io->sector;
1648 
1649 	if (dm_crypt_integrity_io_alloc(io, clone)) {
1650 		crypt_dec_pending(io);
1651 		bio_put(clone);
1652 		return 1;
1653 	}
1654 
1655 	generic_make_request(clone);
1656 	return 0;
1657 }
1658 
1659 static void kcryptd_io_read_work(struct work_struct *work)
1660 {
1661 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1662 
1663 	crypt_inc_pending(io);
1664 	if (kcryptd_io_read(io, GFP_NOIO))
1665 		io->error = BLK_STS_RESOURCE;
1666 	crypt_dec_pending(io);
1667 }
1668 
1669 static void kcryptd_queue_read(struct dm_crypt_io *io)
1670 {
1671 	struct crypt_config *cc = io->cc;
1672 
1673 	INIT_WORK(&io->work, kcryptd_io_read_work);
1674 	queue_work(cc->io_queue, &io->work);
1675 }
1676 
1677 static void kcryptd_io_write(struct dm_crypt_io *io)
1678 {
1679 	struct bio *clone = io->ctx.bio_out;
1680 
1681 	generic_make_request(clone);
1682 }
1683 
1684 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1685 
1686 static int dmcrypt_write(void *data)
1687 {
1688 	struct crypt_config *cc = data;
1689 	struct dm_crypt_io *io;
1690 
1691 	while (1) {
1692 		struct rb_root write_tree;
1693 		struct blk_plug plug;
1694 
1695 		spin_lock_irq(&cc->write_thread_lock);
1696 continue_locked:
1697 
1698 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1699 			goto pop_from_list;
1700 
1701 		set_current_state(TASK_INTERRUPTIBLE);
1702 
1703 		spin_unlock_irq(&cc->write_thread_lock);
1704 
1705 		if (unlikely(kthread_should_stop())) {
1706 			set_current_state(TASK_RUNNING);
1707 			break;
1708 		}
1709 
1710 		schedule();
1711 
1712 		set_current_state(TASK_RUNNING);
1713 		spin_lock_irq(&cc->write_thread_lock);
1714 		goto continue_locked;
1715 
1716 pop_from_list:
1717 		write_tree = cc->write_tree;
1718 		cc->write_tree = RB_ROOT;
1719 		spin_unlock_irq(&cc->write_thread_lock);
1720 
1721 		BUG_ON(rb_parent(write_tree.rb_node));
1722 
1723 		/*
1724 		 * Note: we cannot walk the tree here with rb_next because
1725 		 * the structures may be freed when kcryptd_io_write is called.
1726 		 */
1727 		blk_start_plug(&plug);
1728 		do {
1729 			io = crypt_io_from_node(rb_first(&write_tree));
1730 			rb_erase(&io->rb_node, &write_tree);
1731 			kcryptd_io_write(io);
1732 		} while (!RB_EMPTY_ROOT(&write_tree));
1733 		blk_finish_plug(&plug);
1734 	}
1735 	return 0;
1736 }
1737 
1738 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1739 {
1740 	struct bio *clone = io->ctx.bio_out;
1741 	struct crypt_config *cc = io->cc;
1742 	unsigned long flags;
1743 	sector_t sector;
1744 	struct rb_node **rbp, *parent;
1745 
1746 	if (unlikely(io->error)) {
1747 		crypt_free_buffer_pages(cc, clone);
1748 		bio_put(clone);
1749 		crypt_dec_pending(io);
1750 		return;
1751 	}
1752 
1753 	/* crypt_convert should have filled the clone bio */
1754 	BUG_ON(io->ctx.iter_out.bi_size);
1755 
1756 	clone->bi_iter.bi_sector = cc->start + io->sector;
1757 
1758 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1759 		generic_make_request(clone);
1760 		return;
1761 	}
1762 
1763 	spin_lock_irqsave(&cc->write_thread_lock, flags);
1764 	if (RB_EMPTY_ROOT(&cc->write_tree))
1765 		wake_up_process(cc->write_thread);
1766 	rbp = &cc->write_tree.rb_node;
1767 	parent = NULL;
1768 	sector = io->sector;
1769 	while (*rbp) {
1770 		parent = *rbp;
1771 		if (sector < crypt_io_from_node(parent)->sector)
1772 			rbp = &(*rbp)->rb_left;
1773 		else
1774 			rbp = &(*rbp)->rb_right;
1775 	}
1776 	rb_link_node(&io->rb_node, parent, rbp);
1777 	rb_insert_color(&io->rb_node, &cc->write_tree);
1778 	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1779 }
1780 
1781 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1782 {
1783 	struct crypt_config *cc = io->cc;
1784 	struct bio *clone;
1785 	int crypt_finished;
1786 	sector_t sector = io->sector;
1787 	blk_status_t r;
1788 
1789 	/*
1790 	 * Prevent io from disappearing until this function completes.
1791 	 */
1792 	crypt_inc_pending(io);
1793 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1794 
1795 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1796 	if (unlikely(!clone)) {
1797 		io->error = BLK_STS_IOERR;
1798 		goto dec;
1799 	}
1800 
1801 	io->ctx.bio_out = clone;
1802 	io->ctx.iter_out = clone->bi_iter;
1803 
1804 	sector += bio_sectors(clone);
1805 
1806 	crypt_inc_pending(io);
1807 	r = crypt_convert(cc, &io->ctx);
1808 	if (r)
1809 		io->error = r;
1810 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1811 
1812 	/* Encryption was already finished, submit io now */
1813 	if (crypt_finished) {
1814 		kcryptd_crypt_write_io_submit(io, 0);
1815 		io->sector = sector;
1816 	}
1817 
1818 dec:
1819 	crypt_dec_pending(io);
1820 }
1821 
1822 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1823 {
1824 	crypt_dec_pending(io);
1825 }
1826 
1827 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1828 {
1829 	struct crypt_config *cc = io->cc;
1830 	blk_status_t r;
1831 
1832 	crypt_inc_pending(io);
1833 
1834 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1835 			   io->sector);
1836 
1837 	r = crypt_convert(cc, &io->ctx);
1838 	if (r)
1839 		io->error = r;
1840 
1841 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1842 		kcryptd_crypt_read_done(io);
1843 
1844 	crypt_dec_pending(io);
1845 }
1846 
1847 static void kcryptd_async_done(struct crypto_async_request *async_req,
1848 			       int error)
1849 {
1850 	struct dm_crypt_request *dmreq = async_req->data;
1851 	struct convert_context *ctx = dmreq->ctx;
1852 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1853 	struct crypt_config *cc = io->cc;
1854 
1855 	/*
1856 	 * A request from crypto driver backlog is going to be processed now,
1857 	 * finish the completion and continue in crypt_convert().
1858 	 * (Callback will be called for the second time for this request.)
1859 	 */
1860 	if (error == -EINPROGRESS) {
1861 		complete(&ctx->restart);
1862 		return;
1863 	}
1864 
1865 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1866 		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
1867 
1868 	if (error == -EBADMSG) {
1869 		char b[BDEVNAME_SIZE];
1870 		DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1871 			    (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
1872 		io->error = BLK_STS_PROTECTION;
1873 	} else if (error < 0)
1874 		io->error = BLK_STS_IOERR;
1875 
1876 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1877 
1878 	if (!atomic_dec_and_test(&ctx->cc_pending))
1879 		return;
1880 
1881 	if (bio_data_dir(io->base_bio) == READ)
1882 		kcryptd_crypt_read_done(io);
1883 	else
1884 		kcryptd_crypt_write_io_submit(io, 1);
1885 }
1886 
1887 static void kcryptd_crypt(struct work_struct *work)
1888 {
1889 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1890 
1891 	if (bio_data_dir(io->base_bio) == READ)
1892 		kcryptd_crypt_read_convert(io);
1893 	else
1894 		kcryptd_crypt_write_convert(io);
1895 }
1896 
1897 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1898 {
1899 	struct crypt_config *cc = io->cc;
1900 
1901 	INIT_WORK(&io->work, kcryptd_crypt);
1902 	queue_work(cc->crypt_queue, &io->work);
1903 }
1904 
1905 static void crypt_free_tfms_aead(struct crypt_config *cc)
1906 {
1907 	if (!cc->cipher_tfm.tfms_aead)
1908 		return;
1909 
1910 	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1911 		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
1912 		cc->cipher_tfm.tfms_aead[0] = NULL;
1913 	}
1914 
1915 	kfree(cc->cipher_tfm.tfms_aead);
1916 	cc->cipher_tfm.tfms_aead = NULL;
1917 }
1918 
1919 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
1920 {
1921 	unsigned i;
1922 
1923 	if (!cc->cipher_tfm.tfms)
1924 		return;
1925 
1926 	for (i = 0; i < cc->tfms_count; i++)
1927 		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
1928 			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
1929 			cc->cipher_tfm.tfms[i] = NULL;
1930 		}
1931 
1932 	kfree(cc->cipher_tfm.tfms);
1933 	cc->cipher_tfm.tfms = NULL;
1934 }
1935 
1936 static void crypt_free_tfms(struct crypt_config *cc)
1937 {
1938 	if (crypt_integrity_aead(cc))
1939 		crypt_free_tfms_aead(cc);
1940 	else
1941 		crypt_free_tfms_skcipher(cc);
1942 }
1943 
1944 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
1945 {
1946 	unsigned i;
1947 	int err;
1948 
1949 	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
1950 				      sizeof(struct crypto_skcipher *),
1951 				      GFP_KERNEL);
1952 	if (!cc->cipher_tfm.tfms)
1953 		return -ENOMEM;
1954 
1955 	for (i = 0; i < cc->tfms_count; i++) {
1956 		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1957 		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
1958 			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
1959 			crypt_free_tfms(cc);
1960 			return err;
1961 		}
1962 	}
1963 
1964 	/*
1965 	 * dm-crypt performance can vary greatly depending on which crypto
1966 	 * algorithm implementation is used.  Help people debug performance
1967 	 * problems by logging the ->cra_driver_name.
1968 	 */
1969 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1970 	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
1971 	return 0;
1972 }
1973 
1974 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
1975 {
1976 	int err;
1977 
1978 	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
1979 	if (!cc->cipher_tfm.tfms)
1980 		return -ENOMEM;
1981 
1982 	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0, 0);
1983 	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
1984 		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
1985 		crypt_free_tfms(cc);
1986 		return err;
1987 	}
1988 
1989 	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
1990 	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
1991 	return 0;
1992 }
1993 
1994 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1995 {
1996 	if (crypt_integrity_aead(cc))
1997 		return crypt_alloc_tfms_aead(cc, ciphermode);
1998 	else
1999 		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2000 }
2001 
2002 static unsigned crypt_subkey_size(struct crypt_config *cc)
2003 {
2004 	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2005 }
2006 
2007 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2008 {
2009 	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2010 }
2011 
2012 /*
2013  * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2014  * the key must be for some reason in special format.
2015  * This funcion converts cc->key to this special format.
2016  */
2017 static void crypt_copy_authenckey(char *p, const void *key,
2018 				  unsigned enckeylen, unsigned authkeylen)
2019 {
2020 	struct crypto_authenc_key_param *param;
2021 	struct rtattr *rta;
2022 
2023 	rta = (struct rtattr *)p;
2024 	param = RTA_DATA(rta);
2025 	param->enckeylen = cpu_to_be32(enckeylen);
2026 	rta->rta_len = RTA_LENGTH(sizeof(*param));
2027 	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2028 	p += RTA_SPACE(sizeof(*param));
2029 	memcpy(p, key + enckeylen, authkeylen);
2030 	p += authkeylen;
2031 	memcpy(p, key, enckeylen);
2032 }
2033 
2034 static int crypt_setkey(struct crypt_config *cc)
2035 {
2036 	unsigned subkey_size;
2037 	int err = 0, i, r;
2038 
2039 	/* Ignore extra keys (which are used for IV etc) */
2040 	subkey_size = crypt_subkey_size(cc);
2041 
2042 	if (crypt_integrity_hmac(cc)) {
2043 		if (subkey_size < cc->key_mac_size)
2044 			return -EINVAL;
2045 
2046 		crypt_copy_authenckey(cc->authenc_key, cc->key,
2047 				      subkey_size - cc->key_mac_size,
2048 				      cc->key_mac_size);
2049 	}
2050 
2051 	for (i = 0; i < cc->tfms_count; i++) {
2052 		if (crypt_integrity_hmac(cc))
2053 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2054 				cc->authenc_key, crypt_authenckey_size(cc));
2055 		else if (crypt_integrity_aead(cc))
2056 			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2057 					       cc->key + (i * subkey_size),
2058 					       subkey_size);
2059 		else
2060 			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2061 						   cc->key + (i * subkey_size),
2062 						   subkey_size);
2063 		if (r)
2064 			err = r;
2065 	}
2066 
2067 	if (crypt_integrity_hmac(cc))
2068 		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2069 
2070 	return err;
2071 }
2072 
2073 #ifdef CONFIG_KEYS
2074 
2075 static bool contains_whitespace(const char *str)
2076 {
2077 	while (*str)
2078 		if (isspace(*str++))
2079 			return true;
2080 	return false;
2081 }
2082 
2083 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2084 {
2085 	char *new_key_string, *key_desc;
2086 	int ret;
2087 	struct key *key;
2088 	const struct user_key_payload *ukp;
2089 
2090 	/*
2091 	 * Reject key_string with whitespace. dm core currently lacks code for
2092 	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2093 	 */
2094 	if (contains_whitespace(key_string)) {
2095 		DMERR("whitespace chars not allowed in key string");
2096 		return -EINVAL;
2097 	}
2098 
2099 	/* look for next ':' separating key_type from key_description */
2100 	key_desc = strpbrk(key_string, ":");
2101 	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2102 		return -EINVAL;
2103 
2104 	if (strncmp(key_string, "logon:", key_desc - key_string + 1) &&
2105 	    strncmp(key_string, "user:", key_desc - key_string + 1))
2106 		return -EINVAL;
2107 
2108 	new_key_string = kstrdup(key_string, GFP_KERNEL);
2109 	if (!new_key_string)
2110 		return -ENOMEM;
2111 
2112 	key = request_key(key_string[0] == 'l' ? &key_type_logon : &key_type_user,
2113 			  key_desc + 1, NULL);
2114 	if (IS_ERR(key)) {
2115 		kzfree(new_key_string);
2116 		return PTR_ERR(key);
2117 	}
2118 
2119 	down_read(&key->sem);
2120 
2121 	ukp = user_key_payload_locked(key);
2122 	if (!ukp) {
2123 		up_read(&key->sem);
2124 		key_put(key);
2125 		kzfree(new_key_string);
2126 		return -EKEYREVOKED;
2127 	}
2128 
2129 	if (cc->key_size != ukp->datalen) {
2130 		up_read(&key->sem);
2131 		key_put(key);
2132 		kzfree(new_key_string);
2133 		return -EINVAL;
2134 	}
2135 
2136 	memcpy(cc->key, ukp->data, cc->key_size);
2137 
2138 	up_read(&key->sem);
2139 	key_put(key);
2140 
2141 	/* clear the flag since following operations may invalidate previously valid key */
2142 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2143 
2144 	ret = crypt_setkey(cc);
2145 
2146 	if (!ret) {
2147 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2148 		kzfree(cc->key_string);
2149 		cc->key_string = new_key_string;
2150 	} else
2151 		kzfree(new_key_string);
2152 
2153 	return ret;
2154 }
2155 
2156 static int get_key_size(char **key_string)
2157 {
2158 	char *colon, dummy;
2159 	int ret;
2160 
2161 	if (*key_string[0] != ':')
2162 		return strlen(*key_string) >> 1;
2163 
2164 	/* look for next ':' in key string */
2165 	colon = strpbrk(*key_string + 1, ":");
2166 	if (!colon)
2167 		return -EINVAL;
2168 
2169 	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2170 		return -EINVAL;
2171 
2172 	*key_string = colon;
2173 
2174 	/* remaining key string should be :<logon|user>:<key_desc> */
2175 
2176 	return ret;
2177 }
2178 
2179 #else
2180 
2181 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2182 {
2183 	return -EINVAL;
2184 }
2185 
2186 static int get_key_size(char **key_string)
2187 {
2188 	return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2189 }
2190 
2191 #endif
2192 
2193 static int crypt_set_key(struct crypt_config *cc, char *key)
2194 {
2195 	int r = -EINVAL;
2196 	int key_string_len = strlen(key);
2197 
2198 	/* Hyphen (which gives a key_size of zero) means there is no key. */
2199 	if (!cc->key_size && strcmp(key, "-"))
2200 		goto out;
2201 
2202 	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2203 	if (key[0] == ':') {
2204 		r = crypt_set_keyring_key(cc, key + 1);
2205 		goto out;
2206 	}
2207 
2208 	/* clear the flag since following operations may invalidate previously valid key */
2209 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2210 
2211 	/* wipe references to any kernel keyring key */
2212 	kzfree(cc->key_string);
2213 	cc->key_string = NULL;
2214 
2215 	/* Decode key from its hex representation. */
2216 	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2217 		goto out;
2218 
2219 	r = crypt_setkey(cc);
2220 	if (!r)
2221 		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2222 
2223 out:
2224 	/* Hex key string not needed after here, so wipe it. */
2225 	memset(key, '0', key_string_len);
2226 
2227 	return r;
2228 }
2229 
2230 static int crypt_wipe_key(struct crypt_config *cc)
2231 {
2232 	int r;
2233 
2234 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2235 	get_random_bytes(&cc->key, cc->key_size);
2236 
2237 	/* Wipe IV private keys */
2238 	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2239 		r = cc->iv_gen_ops->wipe(cc);
2240 		if (r)
2241 			return r;
2242 	}
2243 
2244 	kzfree(cc->key_string);
2245 	cc->key_string = NULL;
2246 	r = crypt_setkey(cc);
2247 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2248 
2249 	return r;
2250 }
2251 
2252 static void crypt_calculate_pages_per_client(void)
2253 {
2254 	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2255 
2256 	if (!dm_crypt_clients_n)
2257 		return;
2258 
2259 	pages /= dm_crypt_clients_n;
2260 	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2261 		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2262 	dm_crypt_pages_per_client = pages;
2263 }
2264 
2265 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2266 {
2267 	struct crypt_config *cc = pool_data;
2268 	struct page *page;
2269 
2270 	if (unlikely(percpu_counter_compare(&cc->n_allocated_pages, dm_crypt_pages_per_client) >= 0) &&
2271 	    likely(gfp_mask & __GFP_NORETRY))
2272 		return NULL;
2273 
2274 	page = alloc_page(gfp_mask);
2275 	if (likely(page != NULL))
2276 		percpu_counter_add(&cc->n_allocated_pages, 1);
2277 
2278 	return page;
2279 }
2280 
2281 static void crypt_page_free(void *page, void *pool_data)
2282 {
2283 	struct crypt_config *cc = pool_data;
2284 
2285 	__free_page(page);
2286 	percpu_counter_sub(&cc->n_allocated_pages, 1);
2287 }
2288 
2289 static void crypt_dtr(struct dm_target *ti)
2290 {
2291 	struct crypt_config *cc = ti->private;
2292 
2293 	ti->private = NULL;
2294 
2295 	if (!cc)
2296 		return;
2297 
2298 	if (cc->write_thread)
2299 		kthread_stop(cc->write_thread);
2300 
2301 	if (cc->io_queue)
2302 		destroy_workqueue(cc->io_queue);
2303 	if (cc->crypt_queue)
2304 		destroy_workqueue(cc->crypt_queue);
2305 
2306 	crypt_free_tfms(cc);
2307 
2308 	bioset_exit(&cc->bs);
2309 
2310 	mempool_exit(&cc->page_pool);
2311 	mempool_exit(&cc->req_pool);
2312 	mempool_exit(&cc->tag_pool);
2313 
2314 	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2315 	percpu_counter_destroy(&cc->n_allocated_pages);
2316 
2317 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2318 		cc->iv_gen_ops->dtr(cc);
2319 
2320 	if (cc->dev)
2321 		dm_put_device(ti, cc->dev);
2322 
2323 	kzfree(cc->cipher);
2324 	kzfree(cc->cipher_string);
2325 	kzfree(cc->key_string);
2326 	kzfree(cc->cipher_auth);
2327 	kzfree(cc->authenc_key);
2328 
2329 	mutex_destroy(&cc->bio_alloc_lock);
2330 
2331 	/* Must zero key material before freeing */
2332 	kzfree(cc);
2333 
2334 	spin_lock(&dm_crypt_clients_lock);
2335 	WARN_ON(!dm_crypt_clients_n);
2336 	dm_crypt_clients_n--;
2337 	crypt_calculate_pages_per_client();
2338 	spin_unlock(&dm_crypt_clients_lock);
2339 }
2340 
2341 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2342 {
2343 	struct crypt_config *cc = ti->private;
2344 
2345 	if (crypt_integrity_aead(cc))
2346 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2347 	else
2348 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2349 
2350 	if (cc->iv_size)
2351 		/* at least a 64 bit sector number should fit in our buffer */
2352 		cc->iv_size = max(cc->iv_size,
2353 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2354 	else if (ivmode) {
2355 		DMWARN("Selected cipher does not support IVs");
2356 		ivmode = NULL;
2357 	}
2358 
2359 	/* Choose ivmode, see comments at iv code. */
2360 	if (ivmode == NULL)
2361 		cc->iv_gen_ops = NULL;
2362 	else if (strcmp(ivmode, "plain") == 0)
2363 		cc->iv_gen_ops = &crypt_iv_plain_ops;
2364 	else if (strcmp(ivmode, "plain64") == 0)
2365 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2366 	else if (strcmp(ivmode, "plain64be") == 0)
2367 		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2368 	else if (strcmp(ivmode, "essiv") == 0)
2369 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2370 	else if (strcmp(ivmode, "benbi") == 0)
2371 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2372 	else if (strcmp(ivmode, "null") == 0)
2373 		cc->iv_gen_ops = &crypt_iv_null_ops;
2374 	else if (strcmp(ivmode, "eboiv") == 0)
2375 		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2376 	else if (strcmp(ivmode, "lmk") == 0) {
2377 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2378 		/*
2379 		 * Version 2 and 3 is recognised according
2380 		 * to length of provided multi-key string.
2381 		 * If present (version 3), last key is used as IV seed.
2382 		 * All keys (including IV seed) are always the same size.
2383 		 */
2384 		if (cc->key_size % cc->key_parts) {
2385 			cc->key_parts++;
2386 			cc->key_extra_size = cc->key_size / cc->key_parts;
2387 		}
2388 	} else if (strcmp(ivmode, "tcw") == 0) {
2389 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2390 		cc->key_parts += 2; /* IV + whitening */
2391 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2392 	} else if (strcmp(ivmode, "random") == 0) {
2393 		cc->iv_gen_ops = &crypt_iv_random_ops;
2394 		/* Need storage space in integrity fields. */
2395 		cc->integrity_iv_size = cc->iv_size;
2396 	} else {
2397 		ti->error = "Invalid IV mode";
2398 		return -EINVAL;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 /*
2405  * Workaround to parse cipher algorithm from crypto API spec.
2406  * The cc->cipher is currently used only in ESSIV.
2407  * This should be probably done by crypto-api calls (once available...)
2408  */
2409 static int crypt_ctr_blkdev_cipher(struct crypt_config *cc)
2410 {
2411 	const char *alg_name = NULL;
2412 	char *start, *end;
2413 
2414 	if (crypt_integrity_aead(cc)) {
2415 		alg_name = crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc)));
2416 		if (!alg_name)
2417 			return -EINVAL;
2418 		if (crypt_integrity_hmac(cc)) {
2419 			alg_name = strchr(alg_name, ',');
2420 			if (!alg_name)
2421 				return -EINVAL;
2422 		}
2423 		alg_name++;
2424 	} else {
2425 		alg_name = crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc)));
2426 		if (!alg_name)
2427 			return -EINVAL;
2428 	}
2429 
2430 	start = strchr(alg_name, '(');
2431 	end = strchr(alg_name, ')');
2432 
2433 	if (!start && !end) {
2434 		cc->cipher = kstrdup(alg_name, GFP_KERNEL);
2435 		return cc->cipher ? 0 : -ENOMEM;
2436 	}
2437 
2438 	if (!start || !end || ++start >= end)
2439 		return -EINVAL;
2440 
2441 	cc->cipher = kzalloc(end - start + 1, GFP_KERNEL);
2442 	if (!cc->cipher)
2443 		return -ENOMEM;
2444 
2445 	strncpy(cc->cipher, start, end - start);
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2452  * The HMAC is needed to calculate tag size (HMAC digest size).
2453  * This should be probably done by crypto-api calls (once available...)
2454  */
2455 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2456 {
2457 	char *start, *end, *mac_alg = NULL;
2458 	struct crypto_ahash *mac;
2459 
2460 	if (!strstarts(cipher_api, "authenc("))
2461 		return 0;
2462 
2463 	start = strchr(cipher_api, '(');
2464 	end = strchr(cipher_api, ',');
2465 	if (!start || !end || ++start > end)
2466 		return -EINVAL;
2467 
2468 	mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2469 	if (!mac_alg)
2470 		return -ENOMEM;
2471 	strncpy(mac_alg, start, end - start);
2472 
2473 	mac = crypto_alloc_ahash(mac_alg, 0, 0);
2474 	kfree(mac_alg);
2475 
2476 	if (IS_ERR(mac))
2477 		return PTR_ERR(mac);
2478 
2479 	cc->key_mac_size = crypto_ahash_digestsize(mac);
2480 	crypto_free_ahash(mac);
2481 
2482 	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2483 	if (!cc->authenc_key)
2484 		return -ENOMEM;
2485 
2486 	return 0;
2487 }
2488 
2489 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2490 				char **ivmode, char **ivopts)
2491 {
2492 	struct crypt_config *cc = ti->private;
2493 	char *tmp, *cipher_api;
2494 	int ret = -EINVAL;
2495 
2496 	cc->tfms_count = 1;
2497 
2498 	/*
2499 	 * New format (capi: prefix)
2500 	 * capi:cipher_api_spec-iv:ivopts
2501 	 */
2502 	tmp = &cipher_in[strlen("capi:")];
2503 
2504 	/* Separate IV options if present, it can contain another '-' in hash name */
2505 	*ivopts = strrchr(tmp, ':');
2506 	if (*ivopts) {
2507 		**ivopts = '\0';
2508 		(*ivopts)++;
2509 	}
2510 	/* Parse IV mode */
2511 	*ivmode = strrchr(tmp, '-');
2512 	if (*ivmode) {
2513 		**ivmode = '\0';
2514 		(*ivmode)++;
2515 	}
2516 	/* The rest is crypto API spec */
2517 	cipher_api = tmp;
2518 
2519 	if (*ivmode && !strcmp(*ivmode, "lmk"))
2520 		cc->tfms_count = 64;
2521 
2522 	cc->key_parts = cc->tfms_count;
2523 
2524 	/* Allocate cipher */
2525 	ret = crypt_alloc_tfms(cc, cipher_api);
2526 	if (ret < 0) {
2527 		ti->error = "Error allocating crypto tfm";
2528 		return ret;
2529 	}
2530 
2531 	/* Alloc AEAD, can be used only in new format. */
2532 	if (crypt_integrity_aead(cc)) {
2533 		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2534 		if (ret < 0) {
2535 			ti->error = "Invalid AEAD cipher spec";
2536 			return -ENOMEM;
2537 		}
2538 		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2539 	} else
2540 		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2541 
2542 	ret = crypt_ctr_blkdev_cipher(cc);
2543 	if (ret < 0) {
2544 		ti->error = "Cannot allocate cipher string";
2545 		return -ENOMEM;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2552 				char **ivmode, char **ivopts)
2553 {
2554 	struct crypt_config *cc = ti->private;
2555 	char *tmp, *cipher, *chainmode, *keycount;
2556 	char *cipher_api = NULL;
2557 	int ret = -EINVAL;
2558 	char dummy;
2559 
2560 	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2561 		ti->error = "Bad cipher specification";
2562 		return -EINVAL;
2563 	}
2564 
2565 	/*
2566 	 * Legacy dm-crypt cipher specification
2567 	 * cipher[:keycount]-mode-iv:ivopts
2568 	 */
2569 	tmp = cipher_in;
2570 	keycount = strsep(&tmp, "-");
2571 	cipher = strsep(&keycount, ":");
2572 
2573 	if (!keycount)
2574 		cc->tfms_count = 1;
2575 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2576 		 !is_power_of_2(cc->tfms_count)) {
2577 		ti->error = "Bad cipher key count specification";
2578 		return -EINVAL;
2579 	}
2580 	cc->key_parts = cc->tfms_count;
2581 
2582 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
2583 	if (!cc->cipher)
2584 		goto bad_mem;
2585 
2586 	chainmode = strsep(&tmp, "-");
2587 	*ivmode = strsep(&tmp, ":");
2588 	*ivopts = tmp;
2589 
2590 	/*
2591 	 * For compatibility with the original dm-crypt mapping format, if
2592 	 * only the cipher name is supplied, use cbc-plain.
2593 	 */
2594 	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2595 		chainmode = "cbc";
2596 		*ivmode = "plain";
2597 	}
2598 
2599 	if (strcmp(chainmode, "ecb") && !*ivmode) {
2600 		ti->error = "IV mechanism required";
2601 		return -EINVAL;
2602 	}
2603 
2604 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2605 	if (!cipher_api)
2606 		goto bad_mem;
2607 
2608 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2609 		       "%s(%s)", chainmode, cipher);
2610 	if (ret < 0) {
2611 		kfree(cipher_api);
2612 		goto bad_mem;
2613 	}
2614 
2615 	/* Allocate cipher */
2616 	ret = crypt_alloc_tfms(cc, cipher_api);
2617 	if (ret < 0) {
2618 		ti->error = "Error allocating crypto tfm";
2619 		kfree(cipher_api);
2620 		return ret;
2621 	}
2622 	kfree(cipher_api);
2623 
2624 	return 0;
2625 bad_mem:
2626 	ti->error = "Cannot allocate cipher strings";
2627 	return -ENOMEM;
2628 }
2629 
2630 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
2631 {
2632 	struct crypt_config *cc = ti->private;
2633 	char *ivmode = NULL, *ivopts = NULL;
2634 	int ret;
2635 
2636 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
2637 	if (!cc->cipher_string) {
2638 		ti->error = "Cannot allocate cipher strings";
2639 		return -ENOMEM;
2640 	}
2641 
2642 	if (strstarts(cipher_in, "capi:"))
2643 		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
2644 	else
2645 		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
2646 	if (ret)
2647 		return ret;
2648 
2649 	/* Initialize IV */
2650 	ret = crypt_ctr_ivmode(ti, ivmode);
2651 	if (ret < 0)
2652 		return ret;
2653 
2654 	/* Initialize and set key */
2655 	ret = crypt_set_key(cc, key);
2656 	if (ret < 0) {
2657 		ti->error = "Error decoding and setting key";
2658 		return ret;
2659 	}
2660 
2661 	/* Allocate IV */
2662 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
2663 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
2664 		if (ret < 0) {
2665 			ti->error = "Error creating IV";
2666 			return ret;
2667 		}
2668 	}
2669 
2670 	/* Initialize IV (set keys for ESSIV etc) */
2671 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
2672 		ret = cc->iv_gen_ops->init(cc);
2673 		if (ret < 0) {
2674 			ti->error = "Error initialising IV";
2675 			return ret;
2676 		}
2677 	}
2678 
2679 	/* wipe the kernel key payload copy */
2680 	if (cc->key_string)
2681 		memset(cc->key, 0, cc->key_size * sizeof(u8));
2682 
2683 	return ret;
2684 }
2685 
2686 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
2687 {
2688 	struct crypt_config *cc = ti->private;
2689 	struct dm_arg_set as;
2690 	static const struct dm_arg _args[] = {
2691 		{0, 6, "Invalid number of feature args"},
2692 	};
2693 	unsigned int opt_params, val;
2694 	const char *opt_string, *sval;
2695 	char dummy;
2696 	int ret;
2697 
2698 	/* Optional parameters */
2699 	as.argc = argc;
2700 	as.argv = argv;
2701 
2702 	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2703 	if (ret)
2704 		return ret;
2705 
2706 	while (opt_params--) {
2707 		opt_string = dm_shift_arg(&as);
2708 		if (!opt_string) {
2709 			ti->error = "Not enough feature arguments";
2710 			return -EINVAL;
2711 		}
2712 
2713 		if (!strcasecmp(opt_string, "allow_discards"))
2714 			ti->num_discard_bios = 1;
2715 
2716 		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
2717 			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
2718 
2719 		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
2720 			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
2721 		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
2722 			if (val == 0 || val > MAX_TAG_SIZE) {
2723 				ti->error = "Invalid integrity arguments";
2724 				return -EINVAL;
2725 			}
2726 			cc->on_disk_tag_size = val;
2727 			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
2728 			if (!strcasecmp(sval, "aead")) {
2729 				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
2730 			} else  if (strcasecmp(sval, "none")) {
2731 				ti->error = "Unknown integrity profile";
2732 				return -EINVAL;
2733 			}
2734 
2735 			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
2736 			if (!cc->cipher_auth)
2737 				return -ENOMEM;
2738 		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
2739 			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
2740 			    cc->sector_size > 4096 ||
2741 			    (cc->sector_size & (cc->sector_size - 1))) {
2742 				ti->error = "Invalid feature value for sector_size";
2743 				return -EINVAL;
2744 			}
2745 			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
2746 				ti->error = "Device size is not multiple of sector_size feature";
2747 				return -EINVAL;
2748 			}
2749 			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
2750 		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
2751 			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
2752 		else {
2753 			ti->error = "Invalid feature arguments";
2754 			return -EINVAL;
2755 		}
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * Construct an encryption mapping:
2763  * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2764  */
2765 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2766 {
2767 	struct crypt_config *cc;
2768 	const char *devname = dm_table_device_name(ti->table);
2769 	int key_size;
2770 	unsigned int align_mask;
2771 	unsigned long long tmpll;
2772 	int ret;
2773 	size_t iv_size_padding, additional_req_size;
2774 	char dummy;
2775 
2776 	if (argc < 5) {
2777 		ti->error = "Not enough arguments";
2778 		return -EINVAL;
2779 	}
2780 
2781 	key_size = get_key_size(&argv[1]);
2782 	if (key_size < 0) {
2783 		ti->error = "Cannot parse key size";
2784 		return -EINVAL;
2785 	}
2786 
2787 	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
2788 	if (!cc) {
2789 		ti->error = "Cannot allocate encryption context";
2790 		return -ENOMEM;
2791 	}
2792 	cc->key_size = key_size;
2793 	cc->sector_size = (1 << SECTOR_SHIFT);
2794 	cc->sector_shift = 0;
2795 
2796 	ti->private = cc;
2797 
2798 	spin_lock(&dm_crypt_clients_lock);
2799 	dm_crypt_clients_n++;
2800 	crypt_calculate_pages_per_client();
2801 	spin_unlock(&dm_crypt_clients_lock);
2802 
2803 	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
2804 	if (ret < 0)
2805 		goto bad;
2806 
2807 	/* Optional parameters need to be read before cipher constructor */
2808 	if (argc > 5) {
2809 		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
2810 		if (ret)
2811 			goto bad;
2812 	}
2813 
2814 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
2815 	if (ret < 0)
2816 		goto bad;
2817 
2818 	if (crypt_integrity_aead(cc)) {
2819 		cc->dmreq_start = sizeof(struct aead_request);
2820 		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
2821 		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
2822 	} else {
2823 		cc->dmreq_start = sizeof(struct skcipher_request);
2824 		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
2825 		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
2826 	}
2827 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
2828 
2829 	if (align_mask < CRYPTO_MINALIGN) {
2830 		/* Allocate the padding exactly */
2831 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
2832 				& align_mask;
2833 	} else {
2834 		/*
2835 		 * If the cipher requires greater alignment than kmalloc
2836 		 * alignment, we don't know the exact position of the
2837 		 * initialization vector. We must assume worst case.
2838 		 */
2839 		iv_size_padding = align_mask;
2840 	}
2841 
2842 	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
2843 	additional_req_size = sizeof(struct dm_crypt_request) +
2844 		iv_size_padding + cc->iv_size +
2845 		cc->iv_size +
2846 		sizeof(uint64_t) +
2847 		sizeof(unsigned int);
2848 
2849 	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
2850 	if (ret) {
2851 		ti->error = "Cannot allocate crypt request mempool";
2852 		goto bad;
2853 	}
2854 
2855 	cc->per_bio_data_size = ti->per_io_data_size =
2856 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
2857 		      ARCH_KMALLOC_MINALIGN);
2858 
2859 	ret = mempool_init(&cc->page_pool, BIO_MAX_PAGES, crypt_page_alloc, crypt_page_free, cc);
2860 	if (ret) {
2861 		ti->error = "Cannot allocate page mempool";
2862 		goto bad;
2863 	}
2864 
2865 	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
2866 	if (ret) {
2867 		ti->error = "Cannot allocate crypt bioset";
2868 		goto bad;
2869 	}
2870 
2871 	mutex_init(&cc->bio_alloc_lock);
2872 
2873 	ret = -EINVAL;
2874 	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
2875 	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
2876 		ti->error = "Invalid iv_offset sector";
2877 		goto bad;
2878 	}
2879 	cc->iv_offset = tmpll;
2880 
2881 	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
2882 	if (ret) {
2883 		ti->error = "Device lookup failed";
2884 		goto bad;
2885 	}
2886 
2887 	ret = -EINVAL;
2888 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
2889 		ti->error = "Invalid device sector";
2890 		goto bad;
2891 	}
2892 	cc->start = tmpll;
2893 
2894 	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
2895 		ret = crypt_integrity_ctr(cc, ti);
2896 		if (ret)
2897 			goto bad;
2898 
2899 		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
2900 		if (!cc->tag_pool_max_sectors)
2901 			cc->tag_pool_max_sectors = 1;
2902 
2903 		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
2904 			cc->tag_pool_max_sectors * cc->on_disk_tag_size);
2905 		if (ret) {
2906 			ti->error = "Cannot allocate integrity tags mempool";
2907 			goto bad;
2908 		}
2909 
2910 		cc->tag_pool_max_sectors <<= cc->sector_shift;
2911 	}
2912 
2913 	ret = -ENOMEM;
2914 	cc->io_queue = alloc_workqueue("kcryptd_io/%s",
2915 				       WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2916 				       1, devname);
2917 	if (!cc->io_queue) {
2918 		ti->error = "Couldn't create kcryptd io queue";
2919 		goto bad;
2920 	}
2921 
2922 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
2923 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2924 						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
2925 						  1, devname);
2926 	else
2927 		cc->crypt_queue = alloc_workqueue("kcryptd/%s",
2928 						  WQ_HIGHPRI | WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
2929 						  num_online_cpus(), devname);
2930 	if (!cc->crypt_queue) {
2931 		ti->error = "Couldn't create kcryptd queue";
2932 		goto bad;
2933 	}
2934 
2935 	spin_lock_init(&cc->write_thread_lock);
2936 	cc->write_tree = RB_ROOT;
2937 
2938 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
2939 	if (IS_ERR(cc->write_thread)) {
2940 		ret = PTR_ERR(cc->write_thread);
2941 		cc->write_thread = NULL;
2942 		ti->error = "Couldn't spawn write thread";
2943 		goto bad;
2944 	}
2945 	wake_up_process(cc->write_thread);
2946 
2947 	ti->num_flush_bios = 1;
2948 
2949 	return 0;
2950 
2951 bad:
2952 	crypt_dtr(ti);
2953 	return ret;
2954 }
2955 
2956 static int crypt_map(struct dm_target *ti, struct bio *bio)
2957 {
2958 	struct dm_crypt_io *io;
2959 	struct crypt_config *cc = ti->private;
2960 
2961 	/*
2962 	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2963 	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2964 	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2965 	 */
2966 	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
2967 	    bio_op(bio) == REQ_OP_DISCARD)) {
2968 		bio_set_dev(bio, cc->dev->bdev);
2969 		if (bio_sectors(bio))
2970 			bio->bi_iter.bi_sector = cc->start +
2971 				dm_target_offset(ti, bio->bi_iter.bi_sector);
2972 		return DM_MAPIO_REMAPPED;
2973 	}
2974 
2975 	/*
2976 	 * Check if bio is too large, split as needed.
2977 	 */
2978 	if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_PAGES << PAGE_SHIFT)) &&
2979 	    (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
2980 		dm_accept_partial_bio(bio, ((BIO_MAX_PAGES << PAGE_SHIFT) >> SECTOR_SHIFT));
2981 
2982 	/*
2983 	 * Ensure that bio is a multiple of internal sector encryption size
2984 	 * and is aligned to this size as defined in IO hints.
2985 	 */
2986 	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
2987 		return DM_MAPIO_KILL;
2988 
2989 	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
2990 		return DM_MAPIO_KILL;
2991 
2992 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
2993 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
2994 
2995 	if (cc->on_disk_tag_size) {
2996 		unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
2997 
2998 		if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
2999 		    unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3000 				GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3001 			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3002 				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3003 			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3004 			io->integrity_metadata_from_pool = true;
3005 		}
3006 	}
3007 
3008 	if (crypt_integrity_aead(cc))
3009 		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3010 	else
3011 		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3012 
3013 	if (bio_data_dir(io->base_bio) == READ) {
3014 		if (kcryptd_io_read(io, GFP_NOWAIT))
3015 			kcryptd_queue_read(io);
3016 	} else
3017 		kcryptd_queue_crypt(io);
3018 
3019 	return DM_MAPIO_SUBMITTED;
3020 }
3021 
3022 static void crypt_status(struct dm_target *ti, status_type_t type,
3023 			 unsigned status_flags, char *result, unsigned maxlen)
3024 {
3025 	struct crypt_config *cc = ti->private;
3026 	unsigned i, sz = 0;
3027 	int num_feature_args = 0;
3028 
3029 	switch (type) {
3030 	case STATUSTYPE_INFO:
3031 		result[0] = '\0';
3032 		break;
3033 
3034 	case STATUSTYPE_TABLE:
3035 		DMEMIT("%s ", cc->cipher_string);
3036 
3037 		if (cc->key_size > 0) {
3038 			if (cc->key_string)
3039 				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3040 			else
3041 				for (i = 0; i < cc->key_size; i++)
3042 					DMEMIT("%02x", cc->key[i]);
3043 		} else
3044 			DMEMIT("-");
3045 
3046 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3047 				cc->dev->name, (unsigned long long)cc->start);
3048 
3049 		num_feature_args += !!ti->num_discard_bios;
3050 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3051 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3052 		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3053 		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3054 		if (cc->on_disk_tag_size)
3055 			num_feature_args++;
3056 		if (num_feature_args) {
3057 			DMEMIT(" %d", num_feature_args);
3058 			if (ti->num_discard_bios)
3059 				DMEMIT(" allow_discards");
3060 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3061 				DMEMIT(" same_cpu_crypt");
3062 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3063 				DMEMIT(" submit_from_crypt_cpus");
3064 			if (cc->on_disk_tag_size)
3065 				DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3066 			if (cc->sector_size != (1 << SECTOR_SHIFT))
3067 				DMEMIT(" sector_size:%d", cc->sector_size);
3068 			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3069 				DMEMIT(" iv_large_sectors");
3070 		}
3071 
3072 		break;
3073 	}
3074 }
3075 
3076 static void crypt_postsuspend(struct dm_target *ti)
3077 {
3078 	struct crypt_config *cc = ti->private;
3079 
3080 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3081 }
3082 
3083 static int crypt_preresume(struct dm_target *ti)
3084 {
3085 	struct crypt_config *cc = ti->private;
3086 
3087 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3088 		DMERR("aborting resume - crypt key is not set.");
3089 		return -EAGAIN;
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static void crypt_resume(struct dm_target *ti)
3096 {
3097 	struct crypt_config *cc = ti->private;
3098 
3099 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3100 }
3101 
3102 /* Message interface
3103  *	key set <key>
3104  *	key wipe
3105  */
3106 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3107 			 char *result, unsigned maxlen)
3108 {
3109 	struct crypt_config *cc = ti->private;
3110 	int key_size, ret = -EINVAL;
3111 
3112 	if (argc < 2)
3113 		goto error;
3114 
3115 	if (!strcasecmp(argv[0], "key")) {
3116 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3117 			DMWARN("not suspended during key manipulation.");
3118 			return -EINVAL;
3119 		}
3120 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3121 			/* The key size may not be changed. */
3122 			key_size = get_key_size(&argv[2]);
3123 			if (key_size < 0 || cc->key_size != key_size) {
3124 				memset(argv[2], '0', strlen(argv[2]));
3125 				return -EINVAL;
3126 			}
3127 
3128 			ret = crypt_set_key(cc, argv[2]);
3129 			if (ret)
3130 				return ret;
3131 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3132 				ret = cc->iv_gen_ops->init(cc);
3133 			/* wipe the kernel key payload copy */
3134 			if (cc->key_string)
3135 				memset(cc->key, 0, cc->key_size * sizeof(u8));
3136 			return ret;
3137 		}
3138 		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3139 			return crypt_wipe_key(cc);
3140 	}
3141 
3142 error:
3143 	DMWARN("unrecognised message received.");
3144 	return -EINVAL;
3145 }
3146 
3147 static int crypt_iterate_devices(struct dm_target *ti,
3148 				 iterate_devices_callout_fn fn, void *data)
3149 {
3150 	struct crypt_config *cc = ti->private;
3151 
3152 	return fn(ti, cc->dev, cc->start, ti->len, data);
3153 }
3154 
3155 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3156 {
3157 	struct crypt_config *cc = ti->private;
3158 
3159 	/*
3160 	 * Unfortunate constraint that is required to avoid the potential
3161 	 * for exceeding underlying device's max_segments limits -- due to
3162 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
3163 	 * bio that are not as physically contiguous as the original bio.
3164 	 */
3165 	limits->max_segment_size = PAGE_SIZE;
3166 
3167 	limits->logical_block_size =
3168 		max_t(unsigned short, limits->logical_block_size, cc->sector_size);
3169 	limits->physical_block_size =
3170 		max_t(unsigned, limits->physical_block_size, cc->sector_size);
3171 	limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3172 }
3173 
3174 static struct target_type crypt_target = {
3175 	.name   = "crypt",
3176 	.version = {1, 19, 0},
3177 	.module = THIS_MODULE,
3178 	.ctr    = crypt_ctr,
3179 	.dtr    = crypt_dtr,
3180 	.map    = crypt_map,
3181 	.status = crypt_status,
3182 	.postsuspend = crypt_postsuspend,
3183 	.preresume = crypt_preresume,
3184 	.resume = crypt_resume,
3185 	.message = crypt_message,
3186 	.iterate_devices = crypt_iterate_devices,
3187 	.io_hints = crypt_io_hints,
3188 };
3189 
3190 static int __init dm_crypt_init(void)
3191 {
3192 	int r;
3193 
3194 	r = dm_register_target(&crypt_target);
3195 	if (r < 0)
3196 		DMERR("register failed %d", r);
3197 
3198 	return r;
3199 }
3200 
3201 static void __exit dm_crypt_exit(void)
3202 {
3203 	dm_unregister_target(&crypt_target);
3204 }
3205 
3206 module_init(dm_crypt_init);
3207 module_exit(dm_crypt_exit);
3208 
3209 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3210 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3211 MODULE_LICENSE("GPL");
3212