1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43
44 #include <linux/device-mapper.h>
45
46 #include "dm-audit.h"
47
48 #define DM_MSG_PREFIX "crypt"
49
50 /*
51 * context holding the current state of a multi-part conversion
52 */
53 struct convert_context {
54 struct completion restart;
55 struct bio *bio_in;
56 struct bvec_iter iter_in;
57 struct bio *bio_out;
58 struct bvec_iter iter_out;
59 atomic_t cc_pending;
60 u64 cc_sector;
61 union {
62 struct skcipher_request *req;
63 struct aead_request *req_aead;
64 } r;
65 bool aead_recheck;
66 bool aead_failed;
67
68 };
69
70 /*
71 * per bio private data
72 */
73 struct dm_crypt_io {
74 struct crypt_config *cc;
75 struct bio *base_bio;
76 u8 *integrity_metadata;
77 bool integrity_metadata_from_pool:1;
78
79 struct work_struct work;
80
81 struct convert_context ctx;
82
83 atomic_t io_pending;
84 blk_status_t error;
85 sector_t sector;
86
87 struct bvec_iter saved_bi_iter;
88
89 struct rb_node rb_node;
90 } CRYPTO_MINALIGN_ATTR;
91
92 struct dm_crypt_request {
93 struct convert_context *ctx;
94 struct scatterlist sg_in[4];
95 struct scatterlist sg_out[4];
96 u64 iv_sector;
97 };
98
99 struct crypt_config;
100
101 struct crypt_iv_operations {
102 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103 const char *opts);
104 void (*dtr)(struct crypt_config *cc);
105 int (*init)(struct crypt_config *cc);
106 int (*wipe)(struct crypt_config *cc);
107 int (*generator)(struct crypt_config *cc, u8 *iv,
108 struct dm_crypt_request *dmreq);
109 int (*post)(struct crypt_config *cc, u8 *iv,
110 struct dm_crypt_request *dmreq);
111 };
112
113 struct iv_benbi_private {
114 int shift;
115 };
116
117 #define LMK_SEED_SIZE 64 /* hash + 0 */
118 struct iv_lmk_private {
119 struct crypto_shash *hash_tfm;
120 u8 *seed;
121 };
122
123 #define TCW_WHITENING_SIZE 16
124 struct iv_tcw_private {
125 struct crypto_shash *crc32_tfm;
126 u8 *iv_seed;
127 u8 *whitening;
128 };
129
130 #define ELEPHANT_MAX_KEY_SIZE 32
131 struct iv_elephant_private {
132 struct crypto_skcipher *tfm;
133 };
134
135 /*
136 * Crypt: maps a linear range of a block device
137 * and encrypts / decrypts at the same time.
138 */
139 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142 DM_CRYPT_WRITE_INLINE };
143
144 enum cipher_flags {
145 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
146 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
147 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
148 };
149
150 /*
151 * The fields in here must be read only after initialization.
152 */
153 struct crypt_config {
154 struct dm_dev *dev;
155 sector_t start;
156
157 struct percpu_counter n_allocated_pages;
158
159 struct workqueue_struct *io_queue;
160 struct workqueue_struct *crypt_queue;
161
162 spinlock_t write_thread_lock;
163 struct task_struct *write_thread;
164 struct rb_root write_tree;
165
166 char *cipher_string;
167 char *cipher_auth;
168 char *key_string;
169
170 const struct crypt_iv_operations *iv_gen_ops;
171 union {
172 struct iv_benbi_private benbi;
173 struct iv_lmk_private lmk;
174 struct iv_tcw_private tcw;
175 struct iv_elephant_private elephant;
176 } iv_gen_private;
177 u64 iv_offset;
178 unsigned int iv_size;
179 unsigned short sector_size;
180 unsigned char sector_shift;
181
182 union {
183 struct crypto_skcipher **tfms;
184 struct crypto_aead **tfms_aead;
185 } cipher_tfm;
186 unsigned int tfms_count;
187 unsigned long cipher_flags;
188
189 /*
190 * Layout of each crypto request:
191 *
192 * struct skcipher_request
193 * context
194 * padding
195 * struct dm_crypt_request
196 * padding
197 * IV
198 *
199 * The padding is added so that dm_crypt_request and the IV are
200 * correctly aligned.
201 */
202 unsigned int dmreq_start;
203
204 unsigned int per_bio_data_size;
205
206 unsigned long flags;
207 unsigned int key_size;
208 unsigned int key_parts; /* independent parts in key buffer */
209 unsigned int key_extra_size; /* additional keys length */
210 unsigned int key_mac_size; /* MAC key size for authenc(...) */
211
212 unsigned int integrity_tag_size;
213 unsigned int integrity_iv_size;
214 unsigned int on_disk_tag_size;
215
216 /*
217 * pool for per bio private data, crypto requests,
218 * encryption requeusts/buffer pages and integrity tags
219 */
220 unsigned int tag_pool_max_sectors;
221 mempool_t tag_pool;
222 mempool_t req_pool;
223 mempool_t page_pool;
224
225 struct bio_set bs;
226 struct mutex bio_alloc_lock;
227
228 u8 *authenc_key; /* space for keys in authenc() format (if used) */
229 u8 key[];
230 };
231
232 #define MIN_IOS 64
233 #define MAX_TAG_SIZE 480
234 #define POOL_ENTRY_SIZE 512
235
236 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237 static unsigned int dm_crypt_clients_n;
238 static volatile unsigned long dm_crypt_pages_per_client;
239 #define DM_CRYPT_MEMORY_PERCENT 2
240 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
241
242 static void crypt_endio(struct bio *clone);
243 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245 struct scatterlist *sg);
246
247 static bool crypt_integrity_aead(struct crypt_config *cc);
248
249 /*
250 * Use this to access cipher attributes that are independent of the key.
251 */
any_tfm(struct crypt_config * cc)252 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253 {
254 return cc->cipher_tfm.tfms[0];
255 }
256
any_tfm_aead(struct crypt_config * cc)257 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258 {
259 return cc->cipher_tfm.tfms_aead[0];
260 }
261
262 /*
263 * Different IV generation algorithms:
264 *
265 * plain: the initial vector is the 32-bit little-endian version of the sector
266 * number, padded with zeros if necessary.
267 *
268 * plain64: the initial vector is the 64-bit little-endian version of the sector
269 * number, padded with zeros if necessary.
270 *
271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
272 * number, padded with zeros if necessary.
273 *
274 * essiv: "encrypted sector|salt initial vector", the sector number is
275 * encrypted with the bulk cipher using a salt as key. The salt
276 * should be derived from the bulk cipher's key via hashing.
277 *
278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279 * (needed for LRW-32-AES and possible other narrow block modes)
280 *
281 * null: the initial vector is always zero. Provides compatibility with
282 * obsolete loop_fish2 devices. Do not use for new devices.
283 *
284 * lmk: Compatible implementation of the block chaining mode used
285 * by the Loop-AES block device encryption system
286 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from the sector number, the data and
289 * optionally extra IV seed.
290 * This means that after decryption the first block
291 * of sector must be tweaked according to decrypted data.
292 * Loop-AES can use three encryption schemes:
293 * version 1: is plain aes-cbc mode
294 * version 2: uses 64 multikey scheme with lmk IV generator
295 * version 3: the same as version 2 with additional IV seed
296 * (it uses 65 keys, last key is used as IV seed)
297 *
298 * tcw: Compatible implementation of the block chaining mode used
299 * by the TrueCrypt device encryption system (prior to version 4.1).
300 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301 * It operates on full 512 byte sectors and uses CBC
302 * with an IV derived from initial key and the sector number.
303 * In addition, whitening value is applied on every sector, whitening
304 * is calculated from initial key, sector number and mixed using CRC32.
305 * Note that this encryption scheme is vulnerable to watermarking attacks
306 * and should be used for old compatible containers access only.
307 *
308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309 * The IV is encrypted little-endian byte-offset (with the same key
310 * and cipher as the volume).
311 *
312 * elephant: The extended version of eboiv with additional Elephant diffuser
313 * used with Bitlocker CBC mode.
314 * This mode was used in older Windows systems
315 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316 */
317
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)318 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319 struct dm_crypt_request *dmreq)
320 {
321 memset(iv, 0, cc->iv_size);
322 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323
324 return 0;
325 }
326
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)327 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328 struct dm_crypt_request *dmreq)
329 {
330 memset(iv, 0, cc->iv_size);
331 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332
333 return 0;
334 }
335
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)336 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337 struct dm_crypt_request *dmreq)
338 {
339 memset(iv, 0, cc->iv_size);
340 /* iv_size is at least of size u64; usually it is 16 bytes */
341 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342
343 return 0;
344 }
345
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)346 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347 struct dm_crypt_request *dmreq)
348 {
349 /*
350 * ESSIV encryption of the IV is now handled by the crypto API,
351 * so just pass the plain sector number here.
352 */
353 memset(iv, 0, cc->iv_size);
354 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355
356 return 0;
357 }
358
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)359 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360 const char *opts)
361 {
362 unsigned int bs;
363 int log;
364
365 if (crypt_integrity_aead(cc))
366 bs = crypto_aead_blocksize(any_tfm_aead(cc));
367 else
368 bs = crypto_skcipher_blocksize(any_tfm(cc));
369 log = ilog2(bs);
370
371 /*
372 * We need to calculate how far we must shift the sector count
373 * to get the cipher block count, we use this shift in _gen.
374 */
375 if (1 << log != bs) {
376 ti->error = "cypher blocksize is not a power of 2";
377 return -EINVAL;
378 }
379
380 if (log > 9) {
381 ti->error = "cypher blocksize is > 512";
382 return -EINVAL;
383 }
384
385 cc->iv_gen_private.benbi.shift = 9 - log;
386
387 return 0;
388 }
389
crypt_iv_benbi_dtr(struct crypt_config * cc)390 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391 {
392 }
393
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)394 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395 struct dm_crypt_request *dmreq)
396 {
397 __be64 val;
398
399 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400
401 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403
404 return 0;
405 }
406
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)407 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408 struct dm_crypt_request *dmreq)
409 {
410 memset(iv, 0, cc->iv_size);
411
412 return 0;
413 }
414
crypt_iv_lmk_dtr(struct crypt_config * cc)415 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416 {
417 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418
419 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
420 crypto_free_shash(lmk->hash_tfm);
421 lmk->hash_tfm = NULL;
422
423 kfree_sensitive(lmk->seed);
424 lmk->seed = NULL;
425 }
426
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)427 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428 const char *opts)
429 {
430 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431
432 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433 ti->error = "Unsupported sector size for LMK";
434 return -EINVAL;
435 }
436
437 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
438 CRYPTO_ALG_ALLOCATES_MEMORY);
439 if (IS_ERR(lmk->hash_tfm)) {
440 ti->error = "Error initializing LMK hash";
441 return PTR_ERR(lmk->hash_tfm);
442 }
443
444 /* No seed in LMK version 2 */
445 if (cc->key_parts == cc->tfms_count) {
446 lmk->seed = NULL;
447 return 0;
448 }
449
450 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451 if (!lmk->seed) {
452 crypt_iv_lmk_dtr(cc);
453 ti->error = "Error kmallocing seed storage in LMK";
454 return -ENOMEM;
455 }
456
457 return 0;
458 }
459
crypt_iv_lmk_init(struct crypt_config * cc)460 static int crypt_iv_lmk_init(struct crypt_config *cc)
461 {
462 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 int subkey_size = cc->key_size / cc->key_parts;
464
465 /* LMK seed is on the position of LMK_KEYS + 1 key */
466 if (lmk->seed)
467 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468 crypto_shash_digestsize(lmk->hash_tfm));
469
470 return 0;
471 }
472
crypt_iv_lmk_wipe(struct crypt_config * cc)473 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474 {
475 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476
477 if (lmk->seed)
478 memset(lmk->seed, 0, LMK_SEED_SIZE);
479
480 return 0;
481 }
482
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)483 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484 struct dm_crypt_request *dmreq,
485 u8 *data)
486 {
487 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489 struct md5_state md5state;
490 __le32 buf[4];
491 int i, r;
492
493 desc->tfm = lmk->hash_tfm;
494
495 r = crypto_shash_init(desc);
496 if (r)
497 return r;
498
499 if (lmk->seed) {
500 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
501 if (r)
502 return r;
503 }
504
505 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
506 r = crypto_shash_update(desc, data + 16, 16 * 31);
507 if (r)
508 return r;
509
510 /* Sector is cropped to 56 bits here */
511 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513 buf[2] = cpu_to_le32(4024);
514 buf[3] = 0;
515 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
516 if (r)
517 return r;
518
519 /* No MD5 padding here */
520 r = crypto_shash_export(desc, &md5state);
521 if (r)
522 return r;
523
524 for (i = 0; i < MD5_HASH_WORDS; i++)
525 __cpu_to_le32s(&md5state.hash[i]);
526 memcpy(iv, &md5state.hash, cc->iv_size);
527
528 return 0;
529 }
530
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)531 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532 struct dm_crypt_request *dmreq)
533 {
534 struct scatterlist *sg;
535 u8 *src;
536 int r = 0;
537
538 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539 sg = crypt_get_sg_data(cc, dmreq->sg_in);
540 src = kmap_local_page(sg_page(sg));
541 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
542 kunmap_local(src);
543 } else
544 memset(iv, 0, cc->iv_size);
545
546 return r;
547 }
548
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)549 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550 struct dm_crypt_request *dmreq)
551 {
552 struct scatterlist *sg;
553 u8 *dst;
554 int r;
555
556 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557 return 0;
558
559 sg = crypt_get_sg_data(cc, dmreq->sg_out);
560 dst = kmap_local_page(sg_page(sg));
561 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
562
563 /* Tweak the first block of plaintext sector */
564 if (!r)
565 crypto_xor(dst + sg->offset, iv, cc->iv_size);
566
567 kunmap_local(dst);
568 return r;
569 }
570
crypt_iv_tcw_dtr(struct crypt_config * cc)571 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572 {
573 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574
575 kfree_sensitive(tcw->iv_seed);
576 tcw->iv_seed = NULL;
577 kfree_sensitive(tcw->whitening);
578 tcw->whitening = NULL;
579
580 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
581 crypto_free_shash(tcw->crc32_tfm);
582 tcw->crc32_tfm = NULL;
583 }
584
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)585 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586 const char *opts)
587 {
588 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589
590 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591 ti->error = "Unsupported sector size for TCW";
592 return -EINVAL;
593 }
594
595 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596 ti->error = "Wrong key size for TCW";
597 return -EINVAL;
598 }
599
600 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
601 CRYPTO_ALG_ALLOCATES_MEMORY);
602 if (IS_ERR(tcw->crc32_tfm)) {
603 ti->error = "Error initializing CRC32 in TCW";
604 return PTR_ERR(tcw->crc32_tfm);
605 }
606
607 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
608 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 if (!tcw->iv_seed || !tcw->whitening) {
610 crypt_iv_tcw_dtr(cc);
611 ti->error = "Error allocating seed storage in TCW";
612 return -ENOMEM;
613 }
614
615 return 0;
616 }
617
crypt_iv_tcw_init(struct crypt_config * cc)618 static int crypt_iv_tcw_init(struct crypt_config *cc)
619 {
620 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622
623 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 TCW_WHITENING_SIZE);
626
627 return 0;
628 }
629
crypt_iv_tcw_wipe(struct crypt_config * cc)630 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631 {
632 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633
634 memset(tcw->iv_seed, 0, cc->iv_size);
635 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636
637 return 0;
638 }
639
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)640 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641 struct dm_crypt_request *dmreq,
642 u8 *data)
643 {
644 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645 __le64 sector = cpu_to_le64(dmreq->iv_sector);
646 u8 buf[TCW_WHITENING_SIZE];
647 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648 int i, r;
649
650 /* xor whitening with sector number */
651 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
652 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
653
654 /* calculate crc32 for every 32bit part and xor it */
655 desc->tfm = tcw->crc32_tfm;
656 for (i = 0; i < 4; i++) {
657 r = crypto_shash_init(desc);
658 if (r)
659 goto out;
660 r = crypto_shash_update(desc, &buf[i * 4], 4);
661 if (r)
662 goto out;
663 r = crypto_shash_final(desc, &buf[i * 4]);
664 if (r)
665 goto out;
666 }
667 crypto_xor(&buf[0], &buf[12], 4);
668 crypto_xor(&buf[4], &buf[8], 4);
669
670 /* apply whitening (8 bytes) to whole sector */
671 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
672 crypto_xor(data + i * 8, buf, 8);
673 out:
674 memzero_explicit(buf, sizeof(buf));
675 return r;
676 }
677
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)678 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
679 struct dm_crypt_request *dmreq)
680 {
681 struct scatterlist *sg;
682 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
683 __le64 sector = cpu_to_le64(dmreq->iv_sector);
684 u8 *src;
685 int r = 0;
686
687 /* Remove whitening from ciphertext */
688 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
689 sg = crypt_get_sg_data(cc, dmreq->sg_in);
690 src = kmap_local_page(sg_page(sg));
691 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
692 kunmap_local(src);
693 }
694
695 /* Calculate IV */
696 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
697 if (cc->iv_size > 8)
698 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
699 cc->iv_size - 8);
700
701 return r;
702 }
703
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)704 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
705 struct dm_crypt_request *dmreq)
706 {
707 struct scatterlist *sg;
708 u8 *dst;
709 int r;
710
711 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
712 return 0;
713
714 /* Apply whitening on ciphertext */
715 sg = crypt_get_sg_data(cc, dmreq->sg_out);
716 dst = kmap_local_page(sg_page(sg));
717 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
718 kunmap_local(dst);
719
720 return r;
721 }
722
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)723 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
724 struct dm_crypt_request *dmreq)
725 {
726 /* Used only for writes, there must be an additional space to store IV */
727 get_random_bytes(iv, cc->iv_size);
728 return 0;
729 }
730
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)731 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
732 const char *opts)
733 {
734 if (crypt_integrity_aead(cc)) {
735 ti->error = "AEAD transforms not supported for EBOIV";
736 return -EINVAL;
737 }
738
739 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
740 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
741 return -EINVAL;
742 }
743
744 return 0;
745 }
746
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)747 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
748 struct dm_crypt_request *dmreq)
749 {
750 struct crypto_skcipher *tfm = any_tfm(cc);
751 struct skcipher_request *req;
752 struct scatterlist src, dst;
753 DECLARE_CRYPTO_WAIT(wait);
754 unsigned int reqsize;
755 int err;
756 u8 *buf;
757
758 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
759 reqsize = ALIGN(reqsize, __alignof__(__le64));
760
761 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
762 if (!req)
763 return -ENOMEM;
764
765 skcipher_request_set_tfm(req, tfm);
766
767 buf = (u8 *)req + reqsize;
768 memset(buf, 0, cc->iv_size);
769 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
770
771 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
772 sg_init_one(&dst, iv, cc->iv_size);
773 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
774 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
775 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
776 kfree_sensitive(req);
777
778 return err;
779 }
780
crypt_iv_elephant_dtr(struct crypt_config * cc)781 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
782 {
783 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
784
785 crypto_free_skcipher(elephant->tfm);
786 elephant->tfm = NULL;
787 }
788
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)789 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
790 const char *opts)
791 {
792 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
793 int r;
794
795 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
796 CRYPTO_ALG_ALLOCATES_MEMORY);
797 if (IS_ERR(elephant->tfm)) {
798 r = PTR_ERR(elephant->tfm);
799 elephant->tfm = NULL;
800 return r;
801 }
802
803 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
804 if (r)
805 crypt_iv_elephant_dtr(cc);
806 return r;
807 }
808
diffuser_disk_to_cpu(u32 * d,size_t n)809 static void diffuser_disk_to_cpu(u32 *d, size_t n)
810 {
811 #ifndef __LITTLE_ENDIAN
812 int i;
813
814 for (i = 0; i < n; i++)
815 d[i] = le32_to_cpu((__le32)d[i]);
816 #endif
817 }
818
diffuser_cpu_to_disk(__le32 * d,size_t n)819 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
820 {
821 #ifndef __LITTLE_ENDIAN
822 int i;
823
824 for (i = 0; i < n; i++)
825 d[i] = cpu_to_le32((u32)d[i]);
826 #endif
827 }
828
diffuser_a_decrypt(u32 * d,size_t n)829 static void diffuser_a_decrypt(u32 *d, size_t n)
830 {
831 int i, i1, i2, i3;
832
833 for (i = 0; i < 5; i++) {
834 i1 = 0;
835 i2 = n - 2;
836 i3 = n - 5;
837
838 while (i1 < (n - 1)) {
839 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
840 i1++; i2++; i3++;
841
842 if (i3 >= n)
843 i3 -= n;
844
845 d[i1] += d[i2] ^ d[i3];
846 i1++; i2++; i3++;
847
848 if (i2 >= n)
849 i2 -= n;
850
851 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
852 i1++; i2++; i3++;
853
854 d[i1] += d[i2] ^ d[i3];
855 i1++; i2++; i3++;
856 }
857 }
858 }
859
diffuser_a_encrypt(u32 * d,size_t n)860 static void diffuser_a_encrypt(u32 *d, size_t n)
861 {
862 int i, i1, i2, i3;
863
864 for (i = 0; i < 5; i++) {
865 i1 = n - 1;
866 i2 = n - 2 - 1;
867 i3 = n - 5 - 1;
868
869 while (i1 > 0) {
870 d[i1] -= d[i2] ^ d[i3];
871 i1--; i2--; i3--;
872
873 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
874 i1--; i2--; i3--;
875
876 if (i2 < 0)
877 i2 += n;
878
879 d[i1] -= d[i2] ^ d[i3];
880 i1--; i2--; i3--;
881
882 if (i3 < 0)
883 i3 += n;
884
885 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
886 i1--; i2--; i3--;
887 }
888 }
889 }
890
diffuser_b_decrypt(u32 * d,size_t n)891 static void diffuser_b_decrypt(u32 *d, size_t n)
892 {
893 int i, i1, i2, i3;
894
895 for (i = 0; i < 3; i++) {
896 i1 = 0;
897 i2 = 2;
898 i3 = 5;
899
900 while (i1 < (n - 1)) {
901 d[i1] += d[i2] ^ d[i3];
902 i1++; i2++; i3++;
903
904 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
905 i1++; i2++; i3++;
906
907 if (i2 >= n)
908 i2 -= n;
909
910 d[i1] += d[i2] ^ d[i3];
911 i1++; i2++; i3++;
912
913 if (i3 >= n)
914 i3 -= n;
915
916 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
917 i1++; i2++; i3++;
918 }
919 }
920 }
921
diffuser_b_encrypt(u32 * d,size_t n)922 static void diffuser_b_encrypt(u32 *d, size_t n)
923 {
924 int i, i1, i2, i3;
925
926 for (i = 0; i < 3; i++) {
927 i1 = n - 1;
928 i2 = 2 - 1;
929 i3 = 5 - 1;
930
931 while (i1 > 0) {
932 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
933 i1--; i2--; i3--;
934
935 if (i3 < 0)
936 i3 += n;
937
938 d[i1] -= d[i2] ^ d[i3];
939 i1--; i2--; i3--;
940
941 if (i2 < 0)
942 i2 += n;
943
944 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
945 i1--; i2--; i3--;
946
947 d[i1] -= d[i2] ^ d[i3];
948 i1--; i2--; i3--;
949 }
950 }
951 }
952
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)953 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
954 {
955 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
956 u8 *es, *ks, *data, *data2, *data_offset;
957 struct skcipher_request *req;
958 struct scatterlist *sg, *sg2, src, dst;
959 DECLARE_CRYPTO_WAIT(wait);
960 int i, r;
961
962 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
963 es = kzalloc(16, GFP_NOIO); /* Key for AES */
964 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
965
966 if (!req || !es || !ks) {
967 r = -ENOMEM;
968 goto out;
969 }
970
971 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
972
973 /* E(Ks, e(s)) */
974 sg_init_one(&src, es, 16);
975 sg_init_one(&dst, ks, 16);
976 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
977 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
978 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
979 if (r)
980 goto out;
981
982 /* E(Ks, e'(s)) */
983 es[15] = 0x80;
984 sg_init_one(&dst, &ks[16], 16);
985 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
986 if (r)
987 goto out;
988
989 sg = crypt_get_sg_data(cc, dmreq->sg_out);
990 data = kmap_local_page(sg_page(sg));
991 data_offset = data + sg->offset;
992
993 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
994 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
995 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
996 data2 = kmap_local_page(sg_page(sg2));
997 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
998 kunmap_local(data2);
999 }
1000
1001 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1002 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1003 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1004 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1005 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1006 }
1007
1008 for (i = 0; i < (cc->sector_size / 32); i++)
1009 crypto_xor(data_offset + i * 32, ks, 32);
1010
1011 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1012 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1013 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1014 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1015 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1016 }
1017
1018 kunmap_local(data);
1019 out:
1020 kfree_sensitive(ks);
1021 kfree_sensitive(es);
1022 skcipher_request_free(req);
1023 return r;
1024 }
1025
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1026 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1027 struct dm_crypt_request *dmreq)
1028 {
1029 int r;
1030
1031 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1032 r = crypt_iv_elephant(cc, dmreq);
1033 if (r)
1034 return r;
1035 }
1036
1037 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1038 }
1039
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1040 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1041 struct dm_crypt_request *dmreq)
1042 {
1043 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1044 return crypt_iv_elephant(cc, dmreq);
1045
1046 return 0;
1047 }
1048
crypt_iv_elephant_init(struct crypt_config * cc)1049 static int crypt_iv_elephant_init(struct crypt_config *cc)
1050 {
1051 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1052 int key_offset = cc->key_size - cc->key_extra_size;
1053
1054 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1055 }
1056
crypt_iv_elephant_wipe(struct crypt_config * cc)1057 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1058 {
1059 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1060 u8 key[ELEPHANT_MAX_KEY_SIZE];
1061
1062 memset(key, 0, cc->key_extra_size);
1063 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1064 }
1065
1066 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1067 .generator = crypt_iv_plain_gen
1068 };
1069
1070 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1071 .generator = crypt_iv_plain64_gen
1072 };
1073
1074 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1075 .generator = crypt_iv_plain64be_gen
1076 };
1077
1078 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1079 .generator = crypt_iv_essiv_gen
1080 };
1081
1082 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1083 .ctr = crypt_iv_benbi_ctr,
1084 .dtr = crypt_iv_benbi_dtr,
1085 .generator = crypt_iv_benbi_gen
1086 };
1087
1088 static const struct crypt_iv_operations crypt_iv_null_ops = {
1089 .generator = crypt_iv_null_gen
1090 };
1091
1092 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1093 .ctr = crypt_iv_lmk_ctr,
1094 .dtr = crypt_iv_lmk_dtr,
1095 .init = crypt_iv_lmk_init,
1096 .wipe = crypt_iv_lmk_wipe,
1097 .generator = crypt_iv_lmk_gen,
1098 .post = crypt_iv_lmk_post
1099 };
1100
1101 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1102 .ctr = crypt_iv_tcw_ctr,
1103 .dtr = crypt_iv_tcw_dtr,
1104 .init = crypt_iv_tcw_init,
1105 .wipe = crypt_iv_tcw_wipe,
1106 .generator = crypt_iv_tcw_gen,
1107 .post = crypt_iv_tcw_post
1108 };
1109
1110 static const struct crypt_iv_operations crypt_iv_random_ops = {
1111 .generator = crypt_iv_random_gen
1112 };
1113
1114 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1115 .ctr = crypt_iv_eboiv_ctr,
1116 .generator = crypt_iv_eboiv_gen
1117 };
1118
1119 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1120 .ctr = crypt_iv_elephant_ctr,
1121 .dtr = crypt_iv_elephant_dtr,
1122 .init = crypt_iv_elephant_init,
1123 .wipe = crypt_iv_elephant_wipe,
1124 .generator = crypt_iv_elephant_gen,
1125 .post = crypt_iv_elephant_post
1126 };
1127
1128 /*
1129 * Integrity extensions
1130 */
crypt_integrity_aead(struct crypt_config * cc)1131 static bool crypt_integrity_aead(struct crypt_config *cc)
1132 {
1133 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1134 }
1135
crypt_integrity_hmac(struct crypt_config * cc)1136 static bool crypt_integrity_hmac(struct crypt_config *cc)
1137 {
1138 return crypt_integrity_aead(cc) && cc->key_mac_size;
1139 }
1140
1141 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1142 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1143 struct scatterlist *sg)
1144 {
1145 if (unlikely(crypt_integrity_aead(cc)))
1146 return &sg[2];
1147
1148 return sg;
1149 }
1150
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1151 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1152 {
1153 struct bio_integrity_payload *bip;
1154 unsigned int tag_len;
1155 int ret;
1156
1157 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1158 return 0;
1159
1160 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1161 if (IS_ERR(bip))
1162 return PTR_ERR(bip);
1163
1164 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1165
1166 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1167
1168 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1169 tag_len, offset_in_page(io->integrity_metadata));
1170 if (unlikely(ret != tag_len))
1171 return -ENOMEM;
1172
1173 return 0;
1174 }
1175
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1176 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1177 {
1178 #ifdef CONFIG_BLK_DEV_INTEGRITY
1179 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1180 struct mapped_device *md = dm_table_get_md(ti->table);
1181
1182 /* From now we require underlying device with our integrity profile */
1183 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1184 ti->error = "Integrity profile not supported.";
1185 return -EINVAL;
1186 }
1187
1188 if (bi->tag_size != cc->on_disk_tag_size ||
1189 bi->tuple_size != cc->on_disk_tag_size) {
1190 ti->error = "Integrity profile tag size mismatch.";
1191 return -EINVAL;
1192 }
1193 if (1 << bi->interval_exp != cc->sector_size) {
1194 ti->error = "Integrity profile sector size mismatch.";
1195 return -EINVAL;
1196 }
1197
1198 if (crypt_integrity_aead(cc)) {
1199 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1200 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1201 cc->integrity_tag_size, cc->integrity_iv_size);
1202
1203 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1204 ti->error = "Integrity AEAD auth tag size is not supported.";
1205 return -EINVAL;
1206 }
1207 } else if (cc->integrity_iv_size)
1208 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1209 cc->integrity_iv_size);
1210
1211 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1212 ti->error = "Not enough space for integrity tag in the profile.";
1213 return -EINVAL;
1214 }
1215
1216 return 0;
1217 #else
1218 ti->error = "Integrity profile not supported.";
1219 return -EINVAL;
1220 #endif
1221 }
1222
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1223 static void crypt_convert_init(struct crypt_config *cc,
1224 struct convert_context *ctx,
1225 struct bio *bio_out, struct bio *bio_in,
1226 sector_t sector)
1227 {
1228 ctx->bio_in = bio_in;
1229 ctx->bio_out = bio_out;
1230 if (bio_in)
1231 ctx->iter_in = bio_in->bi_iter;
1232 if (bio_out)
1233 ctx->iter_out = bio_out->bi_iter;
1234 ctx->cc_sector = sector + cc->iv_offset;
1235 init_completion(&ctx->restart);
1236 }
1237
dmreq_of_req(struct crypt_config * cc,void * req)1238 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1239 void *req)
1240 {
1241 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1242 }
1243
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1244 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1245 {
1246 return (void *)((char *)dmreq - cc->dmreq_start);
1247 }
1248
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1249 static u8 *iv_of_dmreq(struct crypt_config *cc,
1250 struct dm_crypt_request *dmreq)
1251 {
1252 if (crypt_integrity_aead(cc))
1253 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1254 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1255 else
1256 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1257 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1258 }
1259
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1260 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1261 struct dm_crypt_request *dmreq)
1262 {
1263 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1264 }
1265
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1266 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1267 struct dm_crypt_request *dmreq)
1268 {
1269 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1270
1271 return (__le64 *) ptr;
1272 }
1273
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1274 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1275 struct dm_crypt_request *dmreq)
1276 {
1277 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1278 cc->iv_size + sizeof(uint64_t);
1279
1280 return (unsigned int *)ptr;
1281 }
1282
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1283 static void *tag_from_dmreq(struct crypt_config *cc,
1284 struct dm_crypt_request *dmreq)
1285 {
1286 struct convert_context *ctx = dmreq->ctx;
1287 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1288
1289 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1290 cc->on_disk_tag_size];
1291 }
1292
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1293 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1294 struct dm_crypt_request *dmreq)
1295 {
1296 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1297 }
1298
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1299 static int crypt_convert_block_aead(struct crypt_config *cc,
1300 struct convert_context *ctx,
1301 struct aead_request *req,
1302 unsigned int tag_offset)
1303 {
1304 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1305 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1306 struct dm_crypt_request *dmreq;
1307 u8 *iv, *org_iv, *tag_iv, *tag;
1308 __le64 *sector;
1309 int r = 0;
1310
1311 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1312
1313 /* Reject unexpected unaligned bio. */
1314 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1315 return -EIO;
1316
1317 dmreq = dmreq_of_req(cc, req);
1318 dmreq->iv_sector = ctx->cc_sector;
1319 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1320 dmreq->iv_sector >>= cc->sector_shift;
1321 dmreq->ctx = ctx;
1322
1323 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1324
1325 sector = org_sector_of_dmreq(cc, dmreq);
1326 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1327
1328 iv = iv_of_dmreq(cc, dmreq);
1329 org_iv = org_iv_of_dmreq(cc, dmreq);
1330 tag = tag_from_dmreq(cc, dmreq);
1331 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1332
1333 /* AEAD request:
1334 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1335 * | (authenticated) | (auth+encryption) | |
1336 * | sector_LE | IV | sector in/out | tag in/out |
1337 */
1338 sg_init_table(dmreq->sg_in, 4);
1339 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1340 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1341 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1342 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1343
1344 sg_init_table(dmreq->sg_out, 4);
1345 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1346 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1347 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1348 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1349
1350 if (cc->iv_gen_ops) {
1351 /* For READs use IV stored in integrity metadata */
1352 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1353 memcpy(org_iv, tag_iv, cc->iv_size);
1354 } else {
1355 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1356 if (r < 0)
1357 return r;
1358 /* Store generated IV in integrity metadata */
1359 if (cc->integrity_iv_size)
1360 memcpy(tag_iv, org_iv, cc->iv_size);
1361 }
1362 /* Working copy of IV, to be modified in crypto API */
1363 memcpy(iv, org_iv, cc->iv_size);
1364 }
1365
1366 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1367 if (bio_data_dir(ctx->bio_in) == WRITE) {
1368 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1369 cc->sector_size, iv);
1370 r = crypto_aead_encrypt(req);
1371 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1372 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1373 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1374 } else {
1375 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1376 cc->sector_size + cc->integrity_tag_size, iv);
1377 r = crypto_aead_decrypt(req);
1378 }
1379
1380 if (r == -EBADMSG) {
1381 sector_t s = le64_to_cpu(*sector);
1382
1383 ctx->aead_failed = true;
1384 if (ctx->aead_recheck) {
1385 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1386 ctx->bio_in->bi_bdev, s);
1387 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1388 ctx->bio_in, s, 0);
1389 }
1390 }
1391
1392 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1393 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1394
1395 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1396 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1397
1398 return r;
1399 }
1400
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1401 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1402 struct convert_context *ctx,
1403 struct skcipher_request *req,
1404 unsigned int tag_offset)
1405 {
1406 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1407 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1408 struct scatterlist *sg_in, *sg_out;
1409 struct dm_crypt_request *dmreq;
1410 u8 *iv, *org_iv, *tag_iv;
1411 __le64 *sector;
1412 int r = 0;
1413
1414 /* Reject unexpected unaligned bio. */
1415 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1416 return -EIO;
1417
1418 dmreq = dmreq_of_req(cc, req);
1419 dmreq->iv_sector = ctx->cc_sector;
1420 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1421 dmreq->iv_sector >>= cc->sector_shift;
1422 dmreq->ctx = ctx;
1423
1424 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1425
1426 iv = iv_of_dmreq(cc, dmreq);
1427 org_iv = org_iv_of_dmreq(cc, dmreq);
1428 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1429
1430 sector = org_sector_of_dmreq(cc, dmreq);
1431 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1432
1433 /* For skcipher we use only the first sg item */
1434 sg_in = &dmreq->sg_in[0];
1435 sg_out = &dmreq->sg_out[0];
1436
1437 sg_init_table(sg_in, 1);
1438 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1439
1440 sg_init_table(sg_out, 1);
1441 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1442
1443 if (cc->iv_gen_ops) {
1444 /* For READs use IV stored in integrity metadata */
1445 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1446 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1447 } else {
1448 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1449 if (r < 0)
1450 return r;
1451 /* Data can be already preprocessed in generator */
1452 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1453 sg_in = sg_out;
1454 /* Store generated IV in integrity metadata */
1455 if (cc->integrity_iv_size)
1456 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1457 }
1458 /* Working copy of IV, to be modified in crypto API */
1459 memcpy(iv, org_iv, cc->iv_size);
1460 }
1461
1462 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1463
1464 if (bio_data_dir(ctx->bio_in) == WRITE)
1465 r = crypto_skcipher_encrypt(req);
1466 else
1467 r = crypto_skcipher_decrypt(req);
1468
1469 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1470 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1471
1472 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1473 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1474
1475 return r;
1476 }
1477
1478 static void kcryptd_async_done(void *async_req, int error);
1479
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1480 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1481 struct convert_context *ctx)
1482 {
1483 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1484
1485 if (!ctx->r.req) {
1486 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1487 if (!ctx->r.req)
1488 return -ENOMEM;
1489 }
1490
1491 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1492
1493 /*
1494 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1495 * requests if driver request queue is full.
1496 */
1497 skcipher_request_set_callback(ctx->r.req,
1498 CRYPTO_TFM_REQ_MAY_BACKLOG,
1499 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1500
1501 return 0;
1502 }
1503
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1504 static int crypt_alloc_req_aead(struct crypt_config *cc,
1505 struct convert_context *ctx)
1506 {
1507 if (!ctx->r.req_aead) {
1508 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1509 if (!ctx->r.req_aead)
1510 return -ENOMEM;
1511 }
1512
1513 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1514
1515 /*
1516 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1517 * requests if driver request queue is full.
1518 */
1519 aead_request_set_callback(ctx->r.req_aead,
1520 CRYPTO_TFM_REQ_MAY_BACKLOG,
1521 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1522
1523 return 0;
1524 }
1525
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1526 static int crypt_alloc_req(struct crypt_config *cc,
1527 struct convert_context *ctx)
1528 {
1529 if (crypt_integrity_aead(cc))
1530 return crypt_alloc_req_aead(cc, ctx);
1531 else
1532 return crypt_alloc_req_skcipher(cc, ctx);
1533 }
1534
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1535 static void crypt_free_req_skcipher(struct crypt_config *cc,
1536 struct skcipher_request *req, struct bio *base_bio)
1537 {
1538 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1539
1540 if ((struct skcipher_request *)(io + 1) != req)
1541 mempool_free(req, &cc->req_pool);
1542 }
1543
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1544 static void crypt_free_req_aead(struct crypt_config *cc,
1545 struct aead_request *req, struct bio *base_bio)
1546 {
1547 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1548
1549 if ((struct aead_request *)(io + 1) != req)
1550 mempool_free(req, &cc->req_pool);
1551 }
1552
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1553 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1554 {
1555 if (crypt_integrity_aead(cc))
1556 crypt_free_req_aead(cc, req, base_bio);
1557 else
1558 crypt_free_req_skcipher(cc, req, base_bio);
1559 }
1560
1561 /*
1562 * Encrypt / decrypt data from one bio to another one (can be the same one)
1563 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1564 static blk_status_t crypt_convert(struct crypt_config *cc,
1565 struct convert_context *ctx, bool atomic, bool reset_pending)
1566 {
1567 unsigned int tag_offset = 0;
1568 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1569 int r;
1570
1571 /*
1572 * if reset_pending is set we are dealing with the bio for the first time,
1573 * else we're continuing to work on the previous bio, so don't mess with
1574 * the cc_pending counter
1575 */
1576 if (reset_pending)
1577 atomic_set(&ctx->cc_pending, 1);
1578
1579 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1580
1581 r = crypt_alloc_req(cc, ctx);
1582 if (r) {
1583 complete(&ctx->restart);
1584 return BLK_STS_DEV_RESOURCE;
1585 }
1586
1587 atomic_inc(&ctx->cc_pending);
1588
1589 if (crypt_integrity_aead(cc))
1590 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1591 else
1592 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1593
1594 switch (r) {
1595 /*
1596 * The request was queued by a crypto driver
1597 * but the driver request queue is full, let's wait.
1598 */
1599 case -EBUSY:
1600 if (in_interrupt()) {
1601 if (try_wait_for_completion(&ctx->restart)) {
1602 /*
1603 * we don't have to block to wait for completion,
1604 * so proceed
1605 */
1606 } else {
1607 /*
1608 * we can't wait for completion without blocking
1609 * exit and continue processing in a workqueue
1610 */
1611 ctx->r.req = NULL;
1612 ctx->cc_sector += sector_step;
1613 tag_offset++;
1614 return BLK_STS_DEV_RESOURCE;
1615 }
1616 } else {
1617 wait_for_completion(&ctx->restart);
1618 }
1619 reinit_completion(&ctx->restart);
1620 fallthrough;
1621 /*
1622 * The request is queued and processed asynchronously,
1623 * completion function kcryptd_async_done() will be called.
1624 */
1625 case -EINPROGRESS:
1626 ctx->r.req = NULL;
1627 ctx->cc_sector += sector_step;
1628 tag_offset++;
1629 continue;
1630 /*
1631 * The request was already processed (synchronously).
1632 */
1633 case 0:
1634 atomic_dec(&ctx->cc_pending);
1635 ctx->cc_sector += sector_step;
1636 tag_offset++;
1637 if (!atomic)
1638 cond_resched();
1639 continue;
1640 /*
1641 * There was a data integrity error.
1642 */
1643 case -EBADMSG:
1644 atomic_dec(&ctx->cc_pending);
1645 return BLK_STS_PROTECTION;
1646 /*
1647 * There was an error while processing the request.
1648 */
1649 default:
1650 atomic_dec(&ctx->cc_pending);
1651 return BLK_STS_IOERR;
1652 }
1653 }
1654
1655 return 0;
1656 }
1657
1658 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1659
1660 /*
1661 * Generate a new unfragmented bio with the given size
1662 * This should never violate the device limitations (but only because
1663 * max_segment_size is being constrained to PAGE_SIZE).
1664 *
1665 * This function may be called concurrently. If we allocate from the mempool
1666 * concurrently, there is a possibility of deadlock. For example, if we have
1667 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1668 * the mempool concurrently, it may deadlock in a situation where both processes
1669 * have allocated 128 pages and the mempool is exhausted.
1670 *
1671 * In order to avoid this scenario we allocate the pages under a mutex.
1672 *
1673 * In order to not degrade performance with excessive locking, we try
1674 * non-blocking allocations without a mutex first but on failure we fallback
1675 * to blocking allocations with a mutex.
1676 *
1677 * In order to reduce allocation overhead, we try to allocate compound pages in
1678 * the first pass. If they are not available, we fall back to the mempool.
1679 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1680 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1681 {
1682 struct crypt_config *cc = io->cc;
1683 struct bio *clone;
1684 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1685 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1686 unsigned int remaining_size;
1687 unsigned int order = MAX_ORDER;
1688
1689 retry:
1690 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1691 mutex_lock(&cc->bio_alloc_lock);
1692
1693 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1694 GFP_NOIO, &cc->bs);
1695 clone->bi_private = io;
1696 clone->bi_end_io = crypt_endio;
1697
1698 remaining_size = size;
1699
1700 while (remaining_size) {
1701 struct page *pages;
1702 unsigned size_to_add;
1703 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1704 order = min(order, remaining_order);
1705
1706 while (order > 0) {
1707 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1708 (1 << order) > dm_crypt_pages_per_client))
1709 goto decrease_order;
1710 pages = alloc_pages(gfp_mask
1711 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1712 order);
1713 if (likely(pages != NULL)) {
1714 percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1715 goto have_pages;
1716 }
1717 decrease_order:
1718 order--;
1719 }
1720
1721 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1722 if (!pages) {
1723 crypt_free_buffer_pages(cc, clone);
1724 bio_put(clone);
1725 gfp_mask |= __GFP_DIRECT_RECLAIM;
1726 order = 0;
1727 goto retry;
1728 }
1729
1730 have_pages:
1731 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1732 __bio_add_page(clone, pages, size_to_add, 0);
1733 remaining_size -= size_to_add;
1734 }
1735
1736 /* Allocate space for integrity tags */
1737 if (dm_crypt_integrity_io_alloc(io, clone)) {
1738 crypt_free_buffer_pages(cc, clone);
1739 bio_put(clone);
1740 clone = NULL;
1741 }
1742
1743 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1744 mutex_unlock(&cc->bio_alloc_lock);
1745
1746 return clone;
1747 }
1748
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1749 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1750 {
1751 struct folio_iter fi;
1752
1753 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1754 bio_for_each_folio_all(fi, clone) {
1755 if (folio_test_large(fi.folio)) {
1756 percpu_counter_sub(&cc->n_allocated_pages,
1757 1 << folio_order(fi.folio));
1758 folio_put(fi.folio);
1759 } else {
1760 mempool_free(&fi.folio->page, &cc->page_pool);
1761 }
1762 }
1763 }
1764 }
1765
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1766 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1767 struct bio *bio, sector_t sector)
1768 {
1769 io->cc = cc;
1770 io->base_bio = bio;
1771 io->sector = sector;
1772 io->error = 0;
1773 io->ctx.aead_recheck = false;
1774 io->ctx.aead_failed = false;
1775 io->ctx.r.req = NULL;
1776 io->integrity_metadata = NULL;
1777 io->integrity_metadata_from_pool = false;
1778 atomic_set(&io->io_pending, 0);
1779 }
1780
crypt_inc_pending(struct dm_crypt_io * io)1781 static void crypt_inc_pending(struct dm_crypt_io *io)
1782 {
1783 atomic_inc(&io->io_pending);
1784 }
1785
1786 static void kcryptd_queue_read(struct dm_crypt_io *io);
1787
1788 /*
1789 * One of the bios was finished. Check for completion of
1790 * the whole request and correctly clean up the buffer.
1791 */
crypt_dec_pending(struct dm_crypt_io * io)1792 static void crypt_dec_pending(struct dm_crypt_io *io)
1793 {
1794 struct crypt_config *cc = io->cc;
1795 struct bio *base_bio = io->base_bio;
1796 blk_status_t error = io->error;
1797
1798 if (!atomic_dec_and_test(&io->io_pending))
1799 return;
1800
1801 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1802 cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1803 io->ctx.aead_recheck = true;
1804 io->ctx.aead_failed = false;
1805 io->error = 0;
1806 kcryptd_queue_read(io);
1807 return;
1808 }
1809
1810 if (io->ctx.r.req)
1811 crypt_free_req(cc, io->ctx.r.req, base_bio);
1812
1813 if (unlikely(io->integrity_metadata_from_pool))
1814 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1815 else
1816 kfree(io->integrity_metadata);
1817
1818 base_bio->bi_status = error;
1819
1820 bio_endio(base_bio);
1821 }
1822
1823 /*
1824 * kcryptd/kcryptd_io:
1825 *
1826 * Needed because it would be very unwise to do decryption in an
1827 * interrupt context.
1828 *
1829 * kcryptd performs the actual encryption or decryption.
1830 *
1831 * kcryptd_io performs the IO submission.
1832 *
1833 * They must be separated as otherwise the final stages could be
1834 * starved by new requests which can block in the first stages due
1835 * to memory allocation.
1836 *
1837 * The work is done per CPU global for all dm-crypt instances.
1838 * They should not depend on each other and do not block.
1839 */
crypt_endio(struct bio * clone)1840 static void crypt_endio(struct bio *clone)
1841 {
1842 struct dm_crypt_io *io = clone->bi_private;
1843 struct crypt_config *cc = io->cc;
1844 unsigned int rw = bio_data_dir(clone);
1845 blk_status_t error = clone->bi_status;
1846
1847 if (io->ctx.aead_recheck && !error) {
1848 kcryptd_queue_crypt(io);
1849 return;
1850 }
1851
1852 /*
1853 * free the processed pages
1854 */
1855 if (rw == WRITE || io->ctx.aead_recheck)
1856 crypt_free_buffer_pages(cc, clone);
1857
1858 bio_put(clone);
1859
1860 if (rw == READ && !error) {
1861 kcryptd_queue_crypt(io);
1862 return;
1863 }
1864
1865 if (unlikely(error))
1866 io->error = error;
1867
1868 crypt_dec_pending(io);
1869 }
1870
1871 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1872
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1873 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1874 {
1875 struct crypt_config *cc = io->cc;
1876 struct bio *clone;
1877
1878 if (io->ctx.aead_recheck) {
1879 if (!(gfp & __GFP_DIRECT_RECLAIM))
1880 return 1;
1881 crypt_inc_pending(io);
1882 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1883 if (unlikely(!clone)) {
1884 crypt_dec_pending(io);
1885 return 1;
1886 }
1887 clone->bi_iter.bi_sector = cc->start + io->sector;
1888 crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1889 io->saved_bi_iter = clone->bi_iter;
1890 dm_submit_bio_remap(io->base_bio, clone);
1891 return 0;
1892 }
1893
1894 /*
1895 * We need the original biovec array in order to decrypt the whole bio
1896 * data *afterwards* -- thanks to immutable biovecs we don't need to
1897 * worry about the block layer modifying the biovec array; so leverage
1898 * bio_alloc_clone().
1899 */
1900 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1901 if (!clone)
1902 return 1;
1903 clone->bi_private = io;
1904 clone->bi_end_io = crypt_endio;
1905
1906 crypt_inc_pending(io);
1907
1908 clone->bi_iter.bi_sector = cc->start + io->sector;
1909
1910 if (dm_crypt_integrity_io_alloc(io, clone)) {
1911 crypt_dec_pending(io);
1912 bio_put(clone);
1913 return 1;
1914 }
1915
1916 dm_submit_bio_remap(io->base_bio, clone);
1917 return 0;
1918 }
1919
kcryptd_io_read_work(struct work_struct * work)1920 static void kcryptd_io_read_work(struct work_struct *work)
1921 {
1922 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1923
1924 crypt_inc_pending(io);
1925 if (kcryptd_io_read(io, GFP_NOIO))
1926 io->error = BLK_STS_RESOURCE;
1927 crypt_dec_pending(io);
1928 }
1929
kcryptd_queue_read(struct dm_crypt_io * io)1930 static void kcryptd_queue_read(struct dm_crypt_io *io)
1931 {
1932 struct crypt_config *cc = io->cc;
1933
1934 INIT_WORK(&io->work, kcryptd_io_read_work);
1935 queue_work(cc->io_queue, &io->work);
1936 }
1937
kcryptd_io_write(struct dm_crypt_io * io)1938 static void kcryptd_io_write(struct dm_crypt_io *io)
1939 {
1940 struct bio *clone = io->ctx.bio_out;
1941
1942 dm_submit_bio_remap(io->base_bio, clone);
1943 }
1944
1945 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1946
dmcrypt_write(void * data)1947 static int dmcrypt_write(void *data)
1948 {
1949 struct crypt_config *cc = data;
1950 struct dm_crypt_io *io;
1951
1952 while (1) {
1953 struct rb_root write_tree;
1954 struct blk_plug plug;
1955
1956 spin_lock_irq(&cc->write_thread_lock);
1957 continue_locked:
1958
1959 if (!RB_EMPTY_ROOT(&cc->write_tree))
1960 goto pop_from_list;
1961
1962 set_current_state(TASK_INTERRUPTIBLE);
1963
1964 spin_unlock_irq(&cc->write_thread_lock);
1965
1966 if (unlikely(kthread_should_stop())) {
1967 set_current_state(TASK_RUNNING);
1968 break;
1969 }
1970
1971 schedule();
1972
1973 set_current_state(TASK_RUNNING);
1974 spin_lock_irq(&cc->write_thread_lock);
1975 goto continue_locked;
1976
1977 pop_from_list:
1978 write_tree = cc->write_tree;
1979 cc->write_tree = RB_ROOT;
1980 spin_unlock_irq(&cc->write_thread_lock);
1981
1982 BUG_ON(rb_parent(write_tree.rb_node));
1983
1984 /*
1985 * Note: we cannot walk the tree here with rb_next because
1986 * the structures may be freed when kcryptd_io_write is called.
1987 */
1988 blk_start_plug(&plug);
1989 do {
1990 io = crypt_io_from_node(rb_first(&write_tree));
1991 rb_erase(&io->rb_node, &write_tree);
1992 kcryptd_io_write(io);
1993 cond_resched();
1994 } while (!RB_EMPTY_ROOT(&write_tree));
1995 blk_finish_plug(&plug);
1996 }
1997 return 0;
1998 }
1999
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)2000 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2001 {
2002 struct bio *clone = io->ctx.bio_out;
2003 struct crypt_config *cc = io->cc;
2004 unsigned long flags;
2005 sector_t sector;
2006 struct rb_node **rbp, *parent;
2007
2008 if (unlikely(io->error)) {
2009 crypt_free_buffer_pages(cc, clone);
2010 bio_put(clone);
2011 crypt_dec_pending(io);
2012 return;
2013 }
2014
2015 /* crypt_convert should have filled the clone bio */
2016 BUG_ON(io->ctx.iter_out.bi_size);
2017
2018 clone->bi_iter.bi_sector = cc->start + io->sector;
2019
2020 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2021 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2022 dm_submit_bio_remap(io->base_bio, clone);
2023 return;
2024 }
2025
2026 spin_lock_irqsave(&cc->write_thread_lock, flags);
2027 if (RB_EMPTY_ROOT(&cc->write_tree))
2028 wake_up_process(cc->write_thread);
2029 rbp = &cc->write_tree.rb_node;
2030 parent = NULL;
2031 sector = io->sector;
2032 while (*rbp) {
2033 parent = *rbp;
2034 if (sector < crypt_io_from_node(parent)->sector)
2035 rbp = &(*rbp)->rb_left;
2036 else
2037 rbp = &(*rbp)->rb_right;
2038 }
2039 rb_link_node(&io->rb_node, parent, rbp);
2040 rb_insert_color(&io->rb_node, &cc->write_tree);
2041 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2042 }
2043
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2044 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2045 struct convert_context *ctx)
2046
2047 {
2048 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2049 return false;
2050
2051 /*
2052 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2053 * constraints so they do not need to be issued inline by
2054 * kcryptd_crypt_write_convert().
2055 */
2056 switch (bio_op(ctx->bio_in)) {
2057 case REQ_OP_WRITE:
2058 case REQ_OP_WRITE_ZEROES:
2059 return true;
2060 default:
2061 return false;
2062 }
2063 }
2064
kcryptd_crypt_write_continue(struct work_struct * work)2065 static void kcryptd_crypt_write_continue(struct work_struct *work)
2066 {
2067 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2068 struct crypt_config *cc = io->cc;
2069 struct convert_context *ctx = &io->ctx;
2070 int crypt_finished;
2071 sector_t sector = io->sector;
2072 blk_status_t r;
2073
2074 wait_for_completion(&ctx->restart);
2075 reinit_completion(&ctx->restart);
2076
2077 r = crypt_convert(cc, &io->ctx, true, false);
2078 if (r)
2079 io->error = r;
2080 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2081 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2082 /* Wait for completion signaled by kcryptd_async_done() */
2083 wait_for_completion(&ctx->restart);
2084 crypt_finished = 1;
2085 }
2086
2087 /* Encryption was already finished, submit io now */
2088 if (crypt_finished) {
2089 kcryptd_crypt_write_io_submit(io, 0);
2090 io->sector = sector;
2091 }
2092
2093 crypt_dec_pending(io);
2094 }
2095
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2096 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2097 {
2098 struct crypt_config *cc = io->cc;
2099 struct convert_context *ctx = &io->ctx;
2100 struct bio *clone;
2101 int crypt_finished;
2102 sector_t sector = io->sector;
2103 blk_status_t r;
2104
2105 /*
2106 * Prevent io from disappearing until this function completes.
2107 */
2108 crypt_inc_pending(io);
2109 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2110
2111 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2112 if (unlikely(!clone)) {
2113 io->error = BLK_STS_IOERR;
2114 goto dec;
2115 }
2116
2117 io->ctx.bio_out = clone;
2118 io->ctx.iter_out = clone->bi_iter;
2119
2120 if (crypt_integrity_aead(cc)) {
2121 bio_copy_data(clone, io->base_bio);
2122 io->ctx.bio_in = clone;
2123 io->ctx.iter_in = clone->bi_iter;
2124 }
2125
2126 sector += bio_sectors(clone);
2127
2128 crypt_inc_pending(io);
2129 r = crypt_convert(cc, ctx,
2130 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2131 /*
2132 * Crypto API backlogged the request, because its queue was full
2133 * and we're in softirq context, so continue from a workqueue
2134 * (TODO: is it actually possible to be in softirq in the write path?)
2135 */
2136 if (r == BLK_STS_DEV_RESOURCE) {
2137 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2138 queue_work(cc->crypt_queue, &io->work);
2139 return;
2140 }
2141 if (r)
2142 io->error = r;
2143 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2144 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2145 /* Wait for completion signaled by kcryptd_async_done() */
2146 wait_for_completion(&ctx->restart);
2147 crypt_finished = 1;
2148 }
2149
2150 /* Encryption was already finished, submit io now */
2151 if (crypt_finished) {
2152 kcryptd_crypt_write_io_submit(io, 0);
2153 io->sector = sector;
2154 }
2155
2156 dec:
2157 crypt_dec_pending(io);
2158 }
2159
kcryptd_crypt_read_done(struct dm_crypt_io * io)2160 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2161 {
2162 if (io->ctx.aead_recheck) {
2163 if (!io->error) {
2164 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2165 bio_copy_data(io->base_bio, io->ctx.bio_in);
2166 }
2167 crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2168 bio_put(io->ctx.bio_in);
2169 }
2170 crypt_dec_pending(io);
2171 }
2172
kcryptd_crypt_read_continue(struct work_struct * work)2173 static void kcryptd_crypt_read_continue(struct work_struct *work)
2174 {
2175 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2176 struct crypt_config *cc = io->cc;
2177 blk_status_t r;
2178
2179 wait_for_completion(&io->ctx.restart);
2180 reinit_completion(&io->ctx.restart);
2181
2182 r = crypt_convert(cc, &io->ctx, true, false);
2183 if (r)
2184 io->error = r;
2185
2186 if (atomic_dec_and_test(&io->ctx.cc_pending))
2187 kcryptd_crypt_read_done(io);
2188
2189 crypt_dec_pending(io);
2190 }
2191
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2192 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2193 {
2194 struct crypt_config *cc = io->cc;
2195 blk_status_t r;
2196
2197 crypt_inc_pending(io);
2198
2199 if (io->ctx.aead_recheck) {
2200 io->ctx.cc_sector = io->sector + cc->iv_offset;
2201 r = crypt_convert(cc, &io->ctx,
2202 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2203 } else {
2204 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2205 io->sector);
2206
2207 r = crypt_convert(cc, &io->ctx,
2208 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2209 }
2210 /*
2211 * Crypto API backlogged the request, because its queue was full
2212 * and we're in softirq context, so continue from a workqueue
2213 */
2214 if (r == BLK_STS_DEV_RESOURCE) {
2215 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2216 queue_work(cc->crypt_queue, &io->work);
2217 return;
2218 }
2219 if (r)
2220 io->error = r;
2221
2222 if (atomic_dec_and_test(&io->ctx.cc_pending))
2223 kcryptd_crypt_read_done(io);
2224
2225 crypt_dec_pending(io);
2226 }
2227
kcryptd_async_done(void * data,int error)2228 static void kcryptd_async_done(void *data, int error)
2229 {
2230 struct dm_crypt_request *dmreq = data;
2231 struct convert_context *ctx = dmreq->ctx;
2232 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2233 struct crypt_config *cc = io->cc;
2234
2235 /*
2236 * A request from crypto driver backlog is going to be processed now,
2237 * finish the completion and continue in crypt_convert().
2238 * (Callback will be called for the second time for this request.)
2239 */
2240 if (error == -EINPROGRESS) {
2241 complete(&ctx->restart);
2242 return;
2243 }
2244
2245 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2246 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2247
2248 if (error == -EBADMSG) {
2249 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2250
2251 ctx->aead_failed = true;
2252 if (ctx->aead_recheck) {
2253 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2254 ctx->bio_in->bi_bdev, s);
2255 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2256 ctx->bio_in, s, 0);
2257 }
2258 io->error = BLK_STS_PROTECTION;
2259 } else if (error < 0)
2260 io->error = BLK_STS_IOERR;
2261
2262 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2263
2264 if (!atomic_dec_and_test(&ctx->cc_pending))
2265 return;
2266
2267 /*
2268 * The request is fully completed: for inline writes, let
2269 * kcryptd_crypt_write_convert() do the IO submission.
2270 */
2271 if (bio_data_dir(io->base_bio) == READ) {
2272 kcryptd_crypt_read_done(io);
2273 return;
2274 }
2275
2276 if (kcryptd_crypt_write_inline(cc, ctx)) {
2277 complete(&ctx->restart);
2278 return;
2279 }
2280
2281 kcryptd_crypt_write_io_submit(io, 1);
2282 }
2283
kcryptd_crypt(struct work_struct * work)2284 static void kcryptd_crypt(struct work_struct *work)
2285 {
2286 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2287
2288 if (bio_data_dir(io->base_bio) == READ)
2289 kcryptd_crypt_read_convert(io);
2290 else
2291 kcryptd_crypt_write_convert(io);
2292 }
2293
kcryptd_queue_crypt(struct dm_crypt_io * io)2294 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2295 {
2296 struct crypt_config *cc = io->cc;
2297
2298 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2299 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2300 /*
2301 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2302 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2303 * it is being executed with irqs disabled.
2304 */
2305 if (!(in_hardirq() || irqs_disabled())) {
2306 kcryptd_crypt(&io->work);
2307 return;
2308 }
2309 }
2310
2311 INIT_WORK(&io->work, kcryptd_crypt);
2312 queue_work(cc->crypt_queue, &io->work);
2313 }
2314
crypt_free_tfms_aead(struct crypt_config * cc)2315 static void crypt_free_tfms_aead(struct crypt_config *cc)
2316 {
2317 if (!cc->cipher_tfm.tfms_aead)
2318 return;
2319
2320 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2321 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2322 cc->cipher_tfm.tfms_aead[0] = NULL;
2323 }
2324
2325 kfree(cc->cipher_tfm.tfms_aead);
2326 cc->cipher_tfm.tfms_aead = NULL;
2327 }
2328
crypt_free_tfms_skcipher(struct crypt_config * cc)2329 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2330 {
2331 unsigned int i;
2332
2333 if (!cc->cipher_tfm.tfms)
2334 return;
2335
2336 for (i = 0; i < cc->tfms_count; i++)
2337 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2338 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2339 cc->cipher_tfm.tfms[i] = NULL;
2340 }
2341
2342 kfree(cc->cipher_tfm.tfms);
2343 cc->cipher_tfm.tfms = NULL;
2344 }
2345
crypt_free_tfms(struct crypt_config * cc)2346 static void crypt_free_tfms(struct crypt_config *cc)
2347 {
2348 if (crypt_integrity_aead(cc))
2349 crypt_free_tfms_aead(cc);
2350 else
2351 crypt_free_tfms_skcipher(cc);
2352 }
2353
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2354 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2355 {
2356 unsigned int i;
2357 int err;
2358
2359 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2360 sizeof(struct crypto_skcipher *),
2361 GFP_KERNEL);
2362 if (!cc->cipher_tfm.tfms)
2363 return -ENOMEM;
2364
2365 for (i = 0; i < cc->tfms_count; i++) {
2366 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2367 CRYPTO_ALG_ALLOCATES_MEMORY);
2368 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2369 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2370 crypt_free_tfms(cc);
2371 return err;
2372 }
2373 }
2374
2375 /*
2376 * dm-crypt performance can vary greatly depending on which crypto
2377 * algorithm implementation is used. Help people debug performance
2378 * problems by logging the ->cra_driver_name.
2379 */
2380 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2381 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2382 return 0;
2383 }
2384
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2385 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2386 {
2387 int err;
2388
2389 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2390 if (!cc->cipher_tfm.tfms)
2391 return -ENOMEM;
2392
2393 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2394 CRYPTO_ALG_ALLOCATES_MEMORY);
2395 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2396 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2397 crypt_free_tfms(cc);
2398 return err;
2399 }
2400
2401 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2403 return 0;
2404 }
2405
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2406 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2407 {
2408 if (crypt_integrity_aead(cc))
2409 return crypt_alloc_tfms_aead(cc, ciphermode);
2410 else
2411 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2412 }
2413
crypt_subkey_size(struct crypt_config * cc)2414 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2415 {
2416 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2417 }
2418
crypt_authenckey_size(struct crypt_config * cc)2419 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2420 {
2421 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2422 }
2423
2424 /*
2425 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2426 * the key must be for some reason in special format.
2427 * This funcion converts cc->key to this special format.
2428 */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2429 static void crypt_copy_authenckey(char *p, const void *key,
2430 unsigned int enckeylen, unsigned int authkeylen)
2431 {
2432 struct crypto_authenc_key_param *param;
2433 struct rtattr *rta;
2434
2435 rta = (struct rtattr *)p;
2436 param = RTA_DATA(rta);
2437 param->enckeylen = cpu_to_be32(enckeylen);
2438 rta->rta_len = RTA_LENGTH(sizeof(*param));
2439 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2440 p += RTA_SPACE(sizeof(*param));
2441 memcpy(p, key + enckeylen, authkeylen);
2442 p += authkeylen;
2443 memcpy(p, key, enckeylen);
2444 }
2445
crypt_setkey(struct crypt_config * cc)2446 static int crypt_setkey(struct crypt_config *cc)
2447 {
2448 unsigned int subkey_size;
2449 int err = 0, i, r;
2450
2451 /* Ignore extra keys (which are used for IV etc) */
2452 subkey_size = crypt_subkey_size(cc);
2453
2454 if (crypt_integrity_hmac(cc)) {
2455 if (subkey_size < cc->key_mac_size)
2456 return -EINVAL;
2457
2458 crypt_copy_authenckey(cc->authenc_key, cc->key,
2459 subkey_size - cc->key_mac_size,
2460 cc->key_mac_size);
2461 }
2462
2463 for (i = 0; i < cc->tfms_count; i++) {
2464 if (crypt_integrity_hmac(cc))
2465 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2466 cc->authenc_key, crypt_authenckey_size(cc));
2467 else if (crypt_integrity_aead(cc))
2468 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2469 cc->key + (i * subkey_size),
2470 subkey_size);
2471 else
2472 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2473 cc->key + (i * subkey_size),
2474 subkey_size);
2475 if (r)
2476 err = r;
2477 }
2478
2479 if (crypt_integrity_hmac(cc))
2480 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2481
2482 return err;
2483 }
2484
2485 #ifdef CONFIG_KEYS
2486
contains_whitespace(const char * str)2487 static bool contains_whitespace(const char *str)
2488 {
2489 while (*str)
2490 if (isspace(*str++))
2491 return true;
2492 return false;
2493 }
2494
set_key_user(struct crypt_config * cc,struct key * key)2495 static int set_key_user(struct crypt_config *cc, struct key *key)
2496 {
2497 const struct user_key_payload *ukp;
2498
2499 ukp = user_key_payload_locked(key);
2500 if (!ukp)
2501 return -EKEYREVOKED;
2502
2503 if (cc->key_size != ukp->datalen)
2504 return -EINVAL;
2505
2506 memcpy(cc->key, ukp->data, cc->key_size);
2507
2508 return 0;
2509 }
2510
set_key_encrypted(struct crypt_config * cc,struct key * key)2511 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2512 {
2513 const struct encrypted_key_payload *ekp;
2514
2515 ekp = key->payload.data[0];
2516 if (!ekp)
2517 return -EKEYREVOKED;
2518
2519 if (cc->key_size != ekp->decrypted_datalen)
2520 return -EINVAL;
2521
2522 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2523
2524 return 0;
2525 }
2526
set_key_trusted(struct crypt_config * cc,struct key * key)2527 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2528 {
2529 const struct trusted_key_payload *tkp;
2530
2531 tkp = key->payload.data[0];
2532 if (!tkp)
2533 return -EKEYREVOKED;
2534
2535 if (cc->key_size != tkp->key_len)
2536 return -EINVAL;
2537
2538 memcpy(cc->key, tkp->key, cc->key_size);
2539
2540 return 0;
2541 }
2542
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2543 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2544 {
2545 char *new_key_string, *key_desc;
2546 int ret;
2547 struct key_type *type;
2548 struct key *key;
2549 int (*set_key)(struct crypt_config *cc, struct key *key);
2550
2551 /*
2552 * Reject key_string with whitespace. dm core currently lacks code for
2553 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2554 */
2555 if (contains_whitespace(key_string)) {
2556 DMERR("whitespace chars not allowed in key string");
2557 return -EINVAL;
2558 }
2559
2560 /* look for next ':' separating key_type from key_description */
2561 key_desc = strchr(key_string, ':');
2562 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2563 return -EINVAL;
2564
2565 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2566 type = &key_type_logon;
2567 set_key = set_key_user;
2568 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2569 type = &key_type_user;
2570 set_key = set_key_user;
2571 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2572 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2573 type = &key_type_encrypted;
2574 set_key = set_key_encrypted;
2575 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2576 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2577 type = &key_type_trusted;
2578 set_key = set_key_trusted;
2579 } else {
2580 return -EINVAL;
2581 }
2582
2583 new_key_string = kstrdup(key_string, GFP_KERNEL);
2584 if (!new_key_string)
2585 return -ENOMEM;
2586
2587 key = request_key(type, key_desc + 1, NULL);
2588 if (IS_ERR(key)) {
2589 kfree_sensitive(new_key_string);
2590 return PTR_ERR(key);
2591 }
2592
2593 down_read(&key->sem);
2594
2595 ret = set_key(cc, key);
2596 if (ret < 0) {
2597 up_read(&key->sem);
2598 key_put(key);
2599 kfree_sensitive(new_key_string);
2600 return ret;
2601 }
2602
2603 up_read(&key->sem);
2604 key_put(key);
2605
2606 /* clear the flag since following operations may invalidate previously valid key */
2607 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2608
2609 ret = crypt_setkey(cc);
2610
2611 if (!ret) {
2612 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2613 kfree_sensitive(cc->key_string);
2614 cc->key_string = new_key_string;
2615 } else
2616 kfree_sensitive(new_key_string);
2617
2618 return ret;
2619 }
2620
get_key_size(char ** key_string)2621 static int get_key_size(char **key_string)
2622 {
2623 char *colon, dummy;
2624 int ret;
2625
2626 if (*key_string[0] != ':')
2627 return strlen(*key_string) >> 1;
2628
2629 /* look for next ':' in key string */
2630 colon = strpbrk(*key_string + 1, ":");
2631 if (!colon)
2632 return -EINVAL;
2633
2634 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2635 return -EINVAL;
2636
2637 *key_string = colon;
2638
2639 /* remaining key string should be :<logon|user>:<key_desc> */
2640
2641 return ret;
2642 }
2643
2644 #else
2645
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2646 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2647 {
2648 return -EINVAL;
2649 }
2650
get_key_size(char ** key_string)2651 static int get_key_size(char **key_string)
2652 {
2653 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2654 }
2655
2656 #endif /* CONFIG_KEYS */
2657
crypt_set_key(struct crypt_config * cc,char * key)2658 static int crypt_set_key(struct crypt_config *cc, char *key)
2659 {
2660 int r = -EINVAL;
2661 int key_string_len = strlen(key);
2662
2663 /* Hyphen (which gives a key_size of zero) means there is no key. */
2664 if (!cc->key_size && strcmp(key, "-"))
2665 goto out;
2666
2667 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2668 if (key[0] == ':') {
2669 r = crypt_set_keyring_key(cc, key + 1);
2670 goto out;
2671 }
2672
2673 /* clear the flag since following operations may invalidate previously valid key */
2674 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2675
2676 /* wipe references to any kernel keyring key */
2677 kfree_sensitive(cc->key_string);
2678 cc->key_string = NULL;
2679
2680 /* Decode key from its hex representation. */
2681 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2682 goto out;
2683
2684 r = crypt_setkey(cc);
2685 if (!r)
2686 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2687
2688 out:
2689 /* Hex key string not needed after here, so wipe it. */
2690 memset(key, '0', key_string_len);
2691
2692 return r;
2693 }
2694
crypt_wipe_key(struct crypt_config * cc)2695 static int crypt_wipe_key(struct crypt_config *cc)
2696 {
2697 int r;
2698
2699 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2700 get_random_bytes(&cc->key, cc->key_size);
2701
2702 /* Wipe IV private keys */
2703 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2704 r = cc->iv_gen_ops->wipe(cc);
2705 if (r)
2706 return r;
2707 }
2708
2709 kfree_sensitive(cc->key_string);
2710 cc->key_string = NULL;
2711 r = crypt_setkey(cc);
2712 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2713
2714 return r;
2715 }
2716
crypt_calculate_pages_per_client(void)2717 static void crypt_calculate_pages_per_client(void)
2718 {
2719 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2720
2721 if (!dm_crypt_clients_n)
2722 return;
2723
2724 pages /= dm_crypt_clients_n;
2725 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2726 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2727 dm_crypt_pages_per_client = pages;
2728 }
2729
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2730 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2731 {
2732 struct crypt_config *cc = pool_data;
2733 struct page *page;
2734
2735 /*
2736 * Note, percpu_counter_read_positive() may over (and under) estimate
2737 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2738 * but avoids potential spinlock contention of an exact result.
2739 */
2740 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2741 likely(gfp_mask & __GFP_NORETRY))
2742 return NULL;
2743
2744 page = alloc_page(gfp_mask);
2745 if (likely(page != NULL))
2746 percpu_counter_add(&cc->n_allocated_pages, 1);
2747
2748 return page;
2749 }
2750
crypt_page_free(void * page,void * pool_data)2751 static void crypt_page_free(void *page, void *pool_data)
2752 {
2753 struct crypt_config *cc = pool_data;
2754
2755 __free_page(page);
2756 percpu_counter_sub(&cc->n_allocated_pages, 1);
2757 }
2758
crypt_dtr(struct dm_target * ti)2759 static void crypt_dtr(struct dm_target *ti)
2760 {
2761 struct crypt_config *cc = ti->private;
2762
2763 ti->private = NULL;
2764
2765 if (!cc)
2766 return;
2767
2768 if (cc->write_thread)
2769 kthread_stop(cc->write_thread);
2770
2771 if (cc->io_queue)
2772 destroy_workqueue(cc->io_queue);
2773 if (cc->crypt_queue)
2774 destroy_workqueue(cc->crypt_queue);
2775
2776 crypt_free_tfms(cc);
2777
2778 bioset_exit(&cc->bs);
2779
2780 mempool_exit(&cc->page_pool);
2781 mempool_exit(&cc->req_pool);
2782 mempool_exit(&cc->tag_pool);
2783
2784 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2785 percpu_counter_destroy(&cc->n_allocated_pages);
2786
2787 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2788 cc->iv_gen_ops->dtr(cc);
2789
2790 if (cc->dev)
2791 dm_put_device(ti, cc->dev);
2792
2793 kfree_sensitive(cc->cipher_string);
2794 kfree_sensitive(cc->key_string);
2795 kfree_sensitive(cc->cipher_auth);
2796 kfree_sensitive(cc->authenc_key);
2797
2798 mutex_destroy(&cc->bio_alloc_lock);
2799
2800 /* Must zero key material before freeing */
2801 kfree_sensitive(cc);
2802
2803 spin_lock(&dm_crypt_clients_lock);
2804 WARN_ON(!dm_crypt_clients_n);
2805 dm_crypt_clients_n--;
2806 crypt_calculate_pages_per_client();
2807 spin_unlock(&dm_crypt_clients_lock);
2808
2809 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2810 }
2811
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2812 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2813 {
2814 struct crypt_config *cc = ti->private;
2815
2816 if (crypt_integrity_aead(cc))
2817 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2818 else
2819 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2820
2821 if (cc->iv_size)
2822 /* at least a 64 bit sector number should fit in our buffer */
2823 cc->iv_size = max(cc->iv_size,
2824 (unsigned int)(sizeof(u64) / sizeof(u8)));
2825 else if (ivmode) {
2826 DMWARN("Selected cipher does not support IVs");
2827 ivmode = NULL;
2828 }
2829
2830 /* Choose ivmode, see comments at iv code. */
2831 if (ivmode == NULL)
2832 cc->iv_gen_ops = NULL;
2833 else if (strcmp(ivmode, "plain") == 0)
2834 cc->iv_gen_ops = &crypt_iv_plain_ops;
2835 else if (strcmp(ivmode, "plain64") == 0)
2836 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2837 else if (strcmp(ivmode, "plain64be") == 0)
2838 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2839 else if (strcmp(ivmode, "essiv") == 0)
2840 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2841 else if (strcmp(ivmode, "benbi") == 0)
2842 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2843 else if (strcmp(ivmode, "null") == 0)
2844 cc->iv_gen_ops = &crypt_iv_null_ops;
2845 else if (strcmp(ivmode, "eboiv") == 0)
2846 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2847 else if (strcmp(ivmode, "elephant") == 0) {
2848 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2849 cc->key_parts = 2;
2850 cc->key_extra_size = cc->key_size / 2;
2851 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2852 return -EINVAL;
2853 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2854 } else if (strcmp(ivmode, "lmk") == 0) {
2855 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2856 /*
2857 * Version 2 and 3 is recognised according
2858 * to length of provided multi-key string.
2859 * If present (version 3), last key is used as IV seed.
2860 * All keys (including IV seed) are always the same size.
2861 */
2862 if (cc->key_size % cc->key_parts) {
2863 cc->key_parts++;
2864 cc->key_extra_size = cc->key_size / cc->key_parts;
2865 }
2866 } else if (strcmp(ivmode, "tcw") == 0) {
2867 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2868 cc->key_parts += 2; /* IV + whitening */
2869 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2870 } else if (strcmp(ivmode, "random") == 0) {
2871 cc->iv_gen_ops = &crypt_iv_random_ops;
2872 /* Need storage space in integrity fields. */
2873 cc->integrity_iv_size = cc->iv_size;
2874 } else {
2875 ti->error = "Invalid IV mode";
2876 return -EINVAL;
2877 }
2878
2879 return 0;
2880 }
2881
2882 /*
2883 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2884 * The HMAC is needed to calculate tag size (HMAC digest size).
2885 * This should be probably done by crypto-api calls (once available...)
2886 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2887 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2888 {
2889 char *start, *end, *mac_alg = NULL;
2890 struct crypto_ahash *mac;
2891
2892 if (!strstarts(cipher_api, "authenc("))
2893 return 0;
2894
2895 start = strchr(cipher_api, '(');
2896 end = strchr(cipher_api, ',');
2897 if (!start || !end || ++start > end)
2898 return -EINVAL;
2899
2900 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2901 if (!mac_alg)
2902 return -ENOMEM;
2903 strncpy(mac_alg, start, end - start);
2904
2905 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2906 kfree(mac_alg);
2907
2908 if (IS_ERR(mac))
2909 return PTR_ERR(mac);
2910
2911 cc->key_mac_size = crypto_ahash_digestsize(mac);
2912 crypto_free_ahash(mac);
2913
2914 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2915 if (!cc->authenc_key)
2916 return -ENOMEM;
2917
2918 return 0;
2919 }
2920
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2921 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2922 char **ivmode, char **ivopts)
2923 {
2924 struct crypt_config *cc = ti->private;
2925 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2926 int ret = -EINVAL;
2927
2928 cc->tfms_count = 1;
2929
2930 /*
2931 * New format (capi: prefix)
2932 * capi:cipher_api_spec-iv:ivopts
2933 */
2934 tmp = &cipher_in[strlen("capi:")];
2935
2936 /* Separate IV options if present, it can contain another '-' in hash name */
2937 *ivopts = strrchr(tmp, ':');
2938 if (*ivopts) {
2939 **ivopts = '\0';
2940 (*ivopts)++;
2941 }
2942 /* Parse IV mode */
2943 *ivmode = strrchr(tmp, '-');
2944 if (*ivmode) {
2945 **ivmode = '\0';
2946 (*ivmode)++;
2947 }
2948 /* The rest is crypto API spec */
2949 cipher_api = tmp;
2950
2951 /* Alloc AEAD, can be used only in new format. */
2952 if (crypt_integrity_aead(cc)) {
2953 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2954 if (ret < 0) {
2955 ti->error = "Invalid AEAD cipher spec";
2956 return ret;
2957 }
2958 }
2959
2960 if (*ivmode && !strcmp(*ivmode, "lmk"))
2961 cc->tfms_count = 64;
2962
2963 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2964 if (!*ivopts) {
2965 ti->error = "Digest algorithm missing for ESSIV mode";
2966 return -EINVAL;
2967 }
2968 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2969 cipher_api, *ivopts);
2970 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2971 ti->error = "Cannot allocate cipher string";
2972 return -ENOMEM;
2973 }
2974 cipher_api = buf;
2975 }
2976
2977 cc->key_parts = cc->tfms_count;
2978
2979 /* Allocate cipher */
2980 ret = crypt_alloc_tfms(cc, cipher_api);
2981 if (ret < 0) {
2982 ti->error = "Error allocating crypto tfm";
2983 return ret;
2984 }
2985
2986 if (crypt_integrity_aead(cc))
2987 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2988 else
2989 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2990
2991 return 0;
2992 }
2993
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2994 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2995 char **ivmode, char **ivopts)
2996 {
2997 struct crypt_config *cc = ti->private;
2998 char *tmp, *cipher, *chainmode, *keycount;
2999 char *cipher_api = NULL;
3000 int ret = -EINVAL;
3001 char dummy;
3002
3003 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3004 ti->error = "Bad cipher specification";
3005 return -EINVAL;
3006 }
3007
3008 /*
3009 * Legacy dm-crypt cipher specification
3010 * cipher[:keycount]-mode-iv:ivopts
3011 */
3012 tmp = cipher_in;
3013 keycount = strsep(&tmp, "-");
3014 cipher = strsep(&keycount, ":");
3015
3016 if (!keycount)
3017 cc->tfms_count = 1;
3018 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3019 !is_power_of_2(cc->tfms_count)) {
3020 ti->error = "Bad cipher key count specification";
3021 return -EINVAL;
3022 }
3023 cc->key_parts = cc->tfms_count;
3024
3025 chainmode = strsep(&tmp, "-");
3026 *ivmode = strsep(&tmp, ":");
3027 *ivopts = tmp;
3028
3029 /*
3030 * For compatibility with the original dm-crypt mapping format, if
3031 * only the cipher name is supplied, use cbc-plain.
3032 */
3033 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3034 chainmode = "cbc";
3035 *ivmode = "plain";
3036 }
3037
3038 if (strcmp(chainmode, "ecb") && !*ivmode) {
3039 ti->error = "IV mechanism required";
3040 return -EINVAL;
3041 }
3042
3043 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3044 if (!cipher_api)
3045 goto bad_mem;
3046
3047 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3048 if (!*ivopts) {
3049 ti->error = "Digest algorithm missing for ESSIV mode";
3050 kfree(cipher_api);
3051 return -EINVAL;
3052 }
3053 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3054 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3055 } else {
3056 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3057 "%s(%s)", chainmode, cipher);
3058 }
3059 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3060 kfree(cipher_api);
3061 goto bad_mem;
3062 }
3063
3064 /* Allocate cipher */
3065 ret = crypt_alloc_tfms(cc, cipher_api);
3066 if (ret < 0) {
3067 ti->error = "Error allocating crypto tfm";
3068 kfree(cipher_api);
3069 return ret;
3070 }
3071 kfree(cipher_api);
3072
3073 return 0;
3074 bad_mem:
3075 ti->error = "Cannot allocate cipher strings";
3076 return -ENOMEM;
3077 }
3078
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3079 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3080 {
3081 struct crypt_config *cc = ti->private;
3082 char *ivmode = NULL, *ivopts = NULL;
3083 int ret;
3084
3085 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3086 if (!cc->cipher_string) {
3087 ti->error = "Cannot allocate cipher strings";
3088 return -ENOMEM;
3089 }
3090
3091 if (strstarts(cipher_in, "capi:"))
3092 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3093 else
3094 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3095 if (ret)
3096 return ret;
3097
3098 /* Initialize IV */
3099 ret = crypt_ctr_ivmode(ti, ivmode);
3100 if (ret < 0)
3101 return ret;
3102
3103 /* Initialize and set key */
3104 ret = crypt_set_key(cc, key);
3105 if (ret < 0) {
3106 ti->error = "Error decoding and setting key";
3107 return ret;
3108 }
3109
3110 /* Allocate IV */
3111 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3112 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3113 if (ret < 0) {
3114 ti->error = "Error creating IV";
3115 return ret;
3116 }
3117 }
3118
3119 /* Initialize IV (set keys for ESSIV etc) */
3120 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3121 ret = cc->iv_gen_ops->init(cc);
3122 if (ret < 0) {
3123 ti->error = "Error initialising IV";
3124 return ret;
3125 }
3126 }
3127
3128 /* wipe the kernel key payload copy */
3129 if (cc->key_string)
3130 memset(cc->key, 0, cc->key_size * sizeof(u8));
3131
3132 return ret;
3133 }
3134
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3135 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3136 {
3137 struct crypt_config *cc = ti->private;
3138 struct dm_arg_set as;
3139 static const struct dm_arg _args[] = {
3140 {0, 8, "Invalid number of feature args"},
3141 };
3142 unsigned int opt_params, val;
3143 const char *opt_string, *sval;
3144 char dummy;
3145 int ret;
3146
3147 /* Optional parameters */
3148 as.argc = argc;
3149 as.argv = argv;
3150
3151 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3152 if (ret)
3153 return ret;
3154
3155 while (opt_params--) {
3156 opt_string = dm_shift_arg(&as);
3157 if (!opt_string) {
3158 ti->error = "Not enough feature arguments";
3159 return -EINVAL;
3160 }
3161
3162 if (!strcasecmp(opt_string, "allow_discards"))
3163 ti->num_discard_bios = 1;
3164
3165 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3166 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3167
3168 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3169 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3170 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3171 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3172 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3173 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3174 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3175 if (val == 0 || val > MAX_TAG_SIZE) {
3176 ti->error = "Invalid integrity arguments";
3177 return -EINVAL;
3178 }
3179 cc->on_disk_tag_size = val;
3180 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3181 if (!strcasecmp(sval, "aead")) {
3182 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3183 } else if (strcasecmp(sval, "none")) {
3184 ti->error = "Unknown integrity profile";
3185 return -EINVAL;
3186 }
3187
3188 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3189 if (!cc->cipher_auth)
3190 return -ENOMEM;
3191 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3192 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3193 cc->sector_size > 4096 ||
3194 (cc->sector_size & (cc->sector_size - 1))) {
3195 ti->error = "Invalid feature value for sector_size";
3196 return -EINVAL;
3197 }
3198 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3199 ti->error = "Device size is not multiple of sector_size feature";
3200 return -EINVAL;
3201 }
3202 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3203 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3204 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3205 else {
3206 ti->error = "Invalid feature arguments";
3207 return -EINVAL;
3208 }
3209 }
3210
3211 return 0;
3212 }
3213
3214 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3215 static int crypt_report_zones(struct dm_target *ti,
3216 struct dm_report_zones_args *args, unsigned int nr_zones)
3217 {
3218 struct crypt_config *cc = ti->private;
3219
3220 return dm_report_zones(cc->dev->bdev, cc->start,
3221 cc->start + dm_target_offset(ti, args->next_sector),
3222 args, nr_zones);
3223 }
3224 #else
3225 #define crypt_report_zones NULL
3226 #endif
3227
3228 /*
3229 * Construct an encryption mapping:
3230 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3231 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3232 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3233 {
3234 struct crypt_config *cc;
3235 const char *devname = dm_table_device_name(ti->table);
3236 int key_size;
3237 unsigned int align_mask;
3238 unsigned long long tmpll;
3239 int ret;
3240 size_t iv_size_padding, additional_req_size;
3241 char dummy;
3242
3243 if (argc < 5) {
3244 ti->error = "Not enough arguments";
3245 return -EINVAL;
3246 }
3247
3248 key_size = get_key_size(&argv[1]);
3249 if (key_size < 0) {
3250 ti->error = "Cannot parse key size";
3251 return -EINVAL;
3252 }
3253
3254 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3255 if (!cc) {
3256 ti->error = "Cannot allocate encryption context";
3257 return -ENOMEM;
3258 }
3259 cc->key_size = key_size;
3260 cc->sector_size = (1 << SECTOR_SHIFT);
3261 cc->sector_shift = 0;
3262
3263 ti->private = cc;
3264
3265 spin_lock(&dm_crypt_clients_lock);
3266 dm_crypt_clients_n++;
3267 crypt_calculate_pages_per_client();
3268 spin_unlock(&dm_crypt_clients_lock);
3269
3270 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3271 if (ret < 0)
3272 goto bad;
3273
3274 /* Optional parameters need to be read before cipher constructor */
3275 if (argc > 5) {
3276 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3277 if (ret)
3278 goto bad;
3279 }
3280
3281 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3282 if (ret < 0)
3283 goto bad;
3284
3285 if (crypt_integrity_aead(cc)) {
3286 cc->dmreq_start = sizeof(struct aead_request);
3287 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3288 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3289 } else {
3290 cc->dmreq_start = sizeof(struct skcipher_request);
3291 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3292 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3293 }
3294 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3295
3296 if (align_mask < CRYPTO_MINALIGN) {
3297 /* Allocate the padding exactly */
3298 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3299 & align_mask;
3300 } else {
3301 /*
3302 * If the cipher requires greater alignment than kmalloc
3303 * alignment, we don't know the exact position of the
3304 * initialization vector. We must assume worst case.
3305 */
3306 iv_size_padding = align_mask;
3307 }
3308
3309 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3310 additional_req_size = sizeof(struct dm_crypt_request) +
3311 iv_size_padding + cc->iv_size +
3312 cc->iv_size +
3313 sizeof(uint64_t) +
3314 sizeof(unsigned int);
3315
3316 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3317 if (ret) {
3318 ti->error = "Cannot allocate crypt request mempool";
3319 goto bad;
3320 }
3321
3322 cc->per_bio_data_size = ti->per_io_data_size =
3323 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3324 ARCH_DMA_MINALIGN);
3325
3326 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3327 if (ret) {
3328 ti->error = "Cannot allocate page mempool";
3329 goto bad;
3330 }
3331
3332 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3333 if (ret) {
3334 ti->error = "Cannot allocate crypt bioset";
3335 goto bad;
3336 }
3337
3338 mutex_init(&cc->bio_alloc_lock);
3339
3340 ret = -EINVAL;
3341 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3342 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3343 ti->error = "Invalid iv_offset sector";
3344 goto bad;
3345 }
3346 cc->iv_offset = tmpll;
3347
3348 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3349 if (ret) {
3350 ti->error = "Device lookup failed";
3351 goto bad;
3352 }
3353
3354 ret = -EINVAL;
3355 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3356 ti->error = "Invalid device sector";
3357 goto bad;
3358 }
3359 cc->start = tmpll;
3360
3361 if (bdev_is_zoned(cc->dev->bdev)) {
3362 /*
3363 * For zoned block devices, we need to preserve the issuer write
3364 * ordering. To do so, disable write workqueues and force inline
3365 * encryption completion.
3366 */
3367 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3368 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3369
3370 /*
3371 * All zone append writes to a zone of a zoned block device will
3372 * have the same BIO sector, the start of the zone. When the
3373 * cypher IV mode uses sector values, all data targeting a
3374 * zone will be encrypted using the first sector numbers of the
3375 * zone. This will not result in write errors but will
3376 * cause most reads to fail as reads will use the sector values
3377 * for the actual data locations, resulting in IV mismatch.
3378 * To avoid this problem, ask DM core to emulate zone append
3379 * operations with regular writes.
3380 */
3381 DMDEBUG("Zone append operations will be emulated");
3382 ti->emulate_zone_append = true;
3383 }
3384
3385 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3386 ret = crypt_integrity_ctr(cc, ti);
3387 if (ret)
3388 goto bad;
3389
3390 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3391 if (!cc->tag_pool_max_sectors)
3392 cc->tag_pool_max_sectors = 1;
3393
3394 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3395 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3396 if (ret) {
3397 ti->error = "Cannot allocate integrity tags mempool";
3398 goto bad;
3399 }
3400
3401 cc->tag_pool_max_sectors <<= cc->sector_shift;
3402 }
3403
3404 ret = -ENOMEM;
3405 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3406 if (!cc->io_queue) {
3407 ti->error = "Couldn't create kcryptd io queue";
3408 goto bad;
3409 }
3410
3411 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3412 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3413 1, devname);
3414 else
3415 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3416 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3417 num_online_cpus(), devname);
3418 if (!cc->crypt_queue) {
3419 ti->error = "Couldn't create kcryptd queue";
3420 goto bad;
3421 }
3422
3423 spin_lock_init(&cc->write_thread_lock);
3424 cc->write_tree = RB_ROOT;
3425
3426 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3427 if (IS_ERR(cc->write_thread)) {
3428 ret = PTR_ERR(cc->write_thread);
3429 cc->write_thread = NULL;
3430 ti->error = "Couldn't spawn write thread";
3431 goto bad;
3432 }
3433
3434 ti->num_flush_bios = 1;
3435 ti->limit_swap_bios = true;
3436 ti->accounts_remapped_io = true;
3437
3438 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3439 return 0;
3440
3441 bad:
3442 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3443 crypt_dtr(ti);
3444 return ret;
3445 }
3446
crypt_map(struct dm_target * ti,struct bio * bio)3447 static int crypt_map(struct dm_target *ti, struct bio *bio)
3448 {
3449 struct dm_crypt_io *io;
3450 struct crypt_config *cc = ti->private;
3451
3452 /*
3453 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3454 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3455 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3456 */
3457 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3458 bio_op(bio) == REQ_OP_DISCARD)) {
3459 bio_set_dev(bio, cc->dev->bdev);
3460 if (bio_sectors(bio))
3461 bio->bi_iter.bi_sector = cc->start +
3462 dm_target_offset(ti, bio->bi_iter.bi_sector);
3463 return DM_MAPIO_REMAPPED;
3464 }
3465
3466 /*
3467 * Check if bio is too large, split as needed.
3468 */
3469 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3470 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3471 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3472
3473 /*
3474 * Ensure that bio is a multiple of internal sector encryption size
3475 * and is aligned to this size as defined in IO hints.
3476 */
3477 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3478 return DM_MAPIO_KILL;
3479
3480 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3481 return DM_MAPIO_KILL;
3482
3483 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3484 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3485
3486 if (cc->on_disk_tag_size) {
3487 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3488
3489 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3490 io->integrity_metadata = NULL;
3491 else
3492 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3493
3494 if (unlikely(!io->integrity_metadata)) {
3495 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3496 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3497 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3498 io->integrity_metadata_from_pool = true;
3499 }
3500 }
3501
3502 if (crypt_integrity_aead(cc))
3503 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3504 else
3505 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3506
3507 if (bio_data_dir(io->base_bio) == READ) {
3508 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3509 kcryptd_queue_read(io);
3510 } else
3511 kcryptd_queue_crypt(io);
3512
3513 return DM_MAPIO_SUBMITTED;
3514 }
3515
hex2asc(unsigned char c)3516 static char hex2asc(unsigned char c)
3517 {
3518 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3519 }
3520
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3521 static void crypt_status(struct dm_target *ti, status_type_t type,
3522 unsigned int status_flags, char *result, unsigned int maxlen)
3523 {
3524 struct crypt_config *cc = ti->private;
3525 unsigned int i, sz = 0;
3526 int num_feature_args = 0;
3527
3528 switch (type) {
3529 case STATUSTYPE_INFO:
3530 result[0] = '\0';
3531 break;
3532
3533 case STATUSTYPE_TABLE:
3534 DMEMIT("%s ", cc->cipher_string);
3535
3536 if (cc->key_size > 0) {
3537 if (cc->key_string)
3538 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3539 else {
3540 for (i = 0; i < cc->key_size; i++) {
3541 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3542 hex2asc(cc->key[i] & 0xf));
3543 }
3544 }
3545 } else
3546 DMEMIT("-");
3547
3548 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3549 cc->dev->name, (unsigned long long)cc->start);
3550
3551 num_feature_args += !!ti->num_discard_bios;
3552 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3553 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3554 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3555 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3556 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3557 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3558 if (cc->on_disk_tag_size)
3559 num_feature_args++;
3560 if (num_feature_args) {
3561 DMEMIT(" %d", num_feature_args);
3562 if (ti->num_discard_bios)
3563 DMEMIT(" allow_discards");
3564 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3565 DMEMIT(" same_cpu_crypt");
3566 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3567 DMEMIT(" submit_from_crypt_cpus");
3568 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3569 DMEMIT(" no_read_workqueue");
3570 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3571 DMEMIT(" no_write_workqueue");
3572 if (cc->on_disk_tag_size)
3573 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3574 if (cc->sector_size != (1 << SECTOR_SHIFT))
3575 DMEMIT(" sector_size:%d", cc->sector_size);
3576 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3577 DMEMIT(" iv_large_sectors");
3578 }
3579 break;
3580
3581 case STATUSTYPE_IMA:
3582 DMEMIT_TARGET_NAME_VERSION(ti->type);
3583 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3584 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3585 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3586 'y' : 'n');
3587 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3588 'y' : 'n');
3589 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3590 'y' : 'n');
3591 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3592 'y' : 'n');
3593
3594 if (cc->on_disk_tag_size)
3595 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3596 cc->on_disk_tag_size, cc->cipher_auth);
3597 if (cc->sector_size != (1 << SECTOR_SHIFT))
3598 DMEMIT(",sector_size=%d", cc->sector_size);
3599 if (cc->cipher_string)
3600 DMEMIT(",cipher_string=%s", cc->cipher_string);
3601
3602 DMEMIT(",key_size=%u", cc->key_size);
3603 DMEMIT(",key_parts=%u", cc->key_parts);
3604 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3605 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3606 DMEMIT(";");
3607 break;
3608 }
3609 }
3610
crypt_postsuspend(struct dm_target * ti)3611 static void crypt_postsuspend(struct dm_target *ti)
3612 {
3613 struct crypt_config *cc = ti->private;
3614
3615 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3616 }
3617
crypt_preresume(struct dm_target * ti)3618 static int crypt_preresume(struct dm_target *ti)
3619 {
3620 struct crypt_config *cc = ti->private;
3621
3622 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3623 DMERR("aborting resume - crypt key is not set.");
3624 return -EAGAIN;
3625 }
3626
3627 return 0;
3628 }
3629
crypt_resume(struct dm_target * ti)3630 static void crypt_resume(struct dm_target *ti)
3631 {
3632 struct crypt_config *cc = ti->private;
3633
3634 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3635 }
3636
3637 /* Message interface
3638 * key set <key>
3639 * key wipe
3640 */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3641 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3642 char *result, unsigned int maxlen)
3643 {
3644 struct crypt_config *cc = ti->private;
3645 int key_size, ret = -EINVAL;
3646
3647 if (argc < 2)
3648 goto error;
3649
3650 if (!strcasecmp(argv[0], "key")) {
3651 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3652 DMWARN("not suspended during key manipulation.");
3653 return -EINVAL;
3654 }
3655 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3656 /* The key size may not be changed. */
3657 key_size = get_key_size(&argv[2]);
3658 if (key_size < 0 || cc->key_size != key_size) {
3659 memset(argv[2], '0', strlen(argv[2]));
3660 return -EINVAL;
3661 }
3662
3663 ret = crypt_set_key(cc, argv[2]);
3664 if (ret)
3665 return ret;
3666 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3667 ret = cc->iv_gen_ops->init(cc);
3668 /* wipe the kernel key payload copy */
3669 if (cc->key_string)
3670 memset(cc->key, 0, cc->key_size * sizeof(u8));
3671 return ret;
3672 }
3673 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3674 return crypt_wipe_key(cc);
3675 }
3676
3677 error:
3678 DMWARN("unrecognised message received.");
3679 return -EINVAL;
3680 }
3681
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3682 static int crypt_iterate_devices(struct dm_target *ti,
3683 iterate_devices_callout_fn fn, void *data)
3684 {
3685 struct crypt_config *cc = ti->private;
3686
3687 return fn(ti, cc->dev, cc->start, ti->len, data);
3688 }
3689
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3690 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3691 {
3692 struct crypt_config *cc = ti->private;
3693
3694 /*
3695 * Unfortunate constraint that is required to avoid the potential
3696 * for exceeding underlying device's max_segments limits -- due to
3697 * crypt_alloc_buffer() possibly allocating pages for the encryption
3698 * bio that are not as physically contiguous as the original bio.
3699 */
3700 limits->max_segment_size = PAGE_SIZE;
3701
3702 limits->logical_block_size =
3703 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3704 limits->physical_block_size =
3705 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3706 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3707 limits->dma_alignment = limits->logical_block_size - 1;
3708 }
3709
3710 static struct target_type crypt_target = {
3711 .name = "crypt",
3712 .version = {1, 24, 0},
3713 .module = THIS_MODULE,
3714 .ctr = crypt_ctr,
3715 .dtr = crypt_dtr,
3716 .features = DM_TARGET_ZONED_HM,
3717 .report_zones = crypt_report_zones,
3718 .map = crypt_map,
3719 .status = crypt_status,
3720 .postsuspend = crypt_postsuspend,
3721 .preresume = crypt_preresume,
3722 .resume = crypt_resume,
3723 .message = crypt_message,
3724 .iterate_devices = crypt_iterate_devices,
3725 .io_hints = crypt_io_hints,
3726 };
3727 module_dm(crypt);
3728
3729 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3730 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3731 MODULE_LICENSE("GPL");
3732