xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision ee8a99bd)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68 
69 /*
70  * The block size of the device holding cache data must be >= 32KB
71  */
72 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
73 
74 /*
75  * FIXME: the cache is read/write for the time being.
76  */
77 enum cache_mode {
78 	CM_WRITE,		/* metadata may be changed */
79 	CM_READ_ONLY,		/* metadata may not be changed */
80 };
81 
82 struct cache_features {
83 	enum cache_mode mode;
84 	bool write_through:1;
85 };
86 
87 struct cache_stats {
88 	atomic_t read_hit;
89 	atomic_t read_miss;
90 	atomic_t write_hit;
91 	atomic_t write_miss;
92 	atomic_t demotion;
93 	atomic_t promotion;
94 	atomic_t copies_avoided;
95 	atomic_t cache_cell_clash;
96 	atomic_t commit_count;
97 	atomic_t discard_count;
98 };
99 
100 struct cache {
101 	struct dm_target *ti;
102 	struct dm_target_callbacks callbacks;
103 
104 	/*
105 	 * Metadata is written to this device.
106 	 */
107 	struct dm_dev *metadata_dev;
108 
109 	/*
110 	 * The slower of the two data devices.  Typically a spindle.
111 	 */
112 	struct dm_dev *origin_dev;
113 
114 	/*
115 	 * The faster of the two data devices.  Typically an SSD.
116 	 */
117 	struct dm_dev *cache_dev;
118 
119 	/*
120 	 * Cache features such as write-through.
121 	 */
122 	struct cache_features features;
123 
124 	/*
125 	 * Size of the origin device in _complete_ blocks and native sectors.
126 	 */
127 	dm_oblock_t origin_blocks;
128 	sector_t origin_sectors;
129 
130 	/*
131 	 * Size of the cache device in blocks.
132 	 */
133 	dm_cblock_t cache_size;
134 
135 	/*
136 	 * Fields for converting from sectors to blocks.
137 	 */
138 	uint32_t sectors_per_block;
139 	int sectors_per_block_shift;
140 
141 	struct dm_cache_metadata *cmd;
142 
143 	spinlock_t lock;
144 	struct bio_list deferred_bios;
145 	struct bio_list deferred_flush_bios;
146 	struct bio_list deferred_writethrough_bios;
147 	struct list_head quiesced_migrations;
148 	struct list_head completed_migrations;
149 	struct list_head need_commit_migrations;
150 	sector_t migration_threshold;
151 	atomic_t nr_migrations;
152 	wait_queue_head_t migration_wait;
153 
154 	/*
155 	 * cache_size entries, dirty if set
156 	 */
157 	dm_cblock_t nr_dirty;
158 	unsigned long *dirty_bitset;
159 
160 	/*
161 	 * origin_blocks entries, discarded if set.
162 	 */
163 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
164 	dm_dblock_t discard_nr_blocks;
165 	unsigned long *discard_bitset;
166 
167 	struct dm_kcopyd_client *copier;
168 	struct workqueue_struct *wq;
169 	struct work_struct worker;
170 
171 	struct delayed_work waker;
172 	unsigned long last_commit_jiffies;
173 
174 	struct dm_bio_prison *prison;
175 	struct dm_deferred_set *all_io_ds;
176 
177 	mempool_t *migration_pool;
178 	struct dm_cache_migration *next_migration;
179 
180 	struct dm_cache_policy *policy;
181 	unsigned policy_nr_args;
182 
183 	bool need_tick_bio:1;
184 	bool sized:1;
185 	bool quiescing:1;
186 	bool commit_requested:1;
187 	bool loaded_mappings:1;
188 	bool loaded_discards:1;
189 
190 	struct cache_stats stats;
191 
192 	/*
193 	 * Rather than reconstructing the table line for the status we just
194 	 * save it and regurgitate.
195 	 */
196 	unsigned nr_ctr_args;
197 	const char **ctr_args;
198 };
199 
200 struct per_bio_data {
201 	bool tick:1;
202 	unsigned req_nr:2;
203 	struct dm_deferred_entry *all_io_entry;
204 
205 	/*
206 	 * writethrough fields.  These MUST remain at the end of this
207 	 * structure and the 'cache' member must be the first as it
208 	 * is used to determine the offset of the writethrough fields.
209 	 */
210 	struct cache *cache;
211 	dm_cblock_t cblock;
212 	bio_end_io_t *saved_bi_end_io;
213 	struct dm_bio_details bio_details;
214 };
215 
216 struct dm_cache_migration {
217 	struct list_head list;
218 	struct cache *cache;
219 
220 	unsigned long start_jiffies;
221 	dm_oblock_t old_oblock;
222 	dm_oblock_t new_oblock;
223 	dm_cblock_t cblock;
224 
225 	bool err:1;
226 	bool writeback:1;
227 	bool demote:1;
228 	bool promote:1;
229 
230 	struct dm_bio_prison_cell *old_ocell;
231 	struct dm_bio_prison_cell *new_ocell;
232 };
233 
234 /*
235  * Processing a bio in the worker thread may require these memory
236  * allocations.  We prealloc to avoid deadlocks (the same worker thread
237  * frees them back to the mempool).
238  */
239 struct prealloc {
240 	struct dm_cache_migration *mg;
241 	struct dm_bio_prison_cell *cell1;
242 	struct dm_bio_prison_cell *cell2;
243 };
244 
245 static void wake_worker(struct cache *cache)
246 {
247 	queue_work(cache->wq, &cache->worker);
248 }
249 
250 /*----------------------------------------------------------------*/
251 
252 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
253 {
254 	/* FIXME: change to use a local slab. */
255 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
256 }
257 
258 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
259 {
260 	dm_bio_prison_free_cell(cache->prison, cell);
261 }
262 
263 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
264 {
265 	if (!p->mg) {
266 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
267 		if (!p->mg)
268 			return -ENOMEM;
269 	}
270 
271 	if (!p->cell1) {
272 		p->cell1 = alloc_prison_cell(cache);
273 		if (!p->cell1)
274 			return -ENOMEM;
275 	}
276 
277 	if (!p->cell2) {
278 		p->cell2 = alloc_prison_cell(cache);
279 		if (!p->cell2)
280 			return -ENOMEM;
281 	}
282 
283 	return 0;
284 }
285 
286 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
287 {
288 	if (p->cell2)
289 		free_prison_cell(cache, p->cell2);
290 
291 	if (p->cell1)
292 		free_prison_cell(cache, p->cell1);
293 
294 	if (p->mg)
295 		mempool_free(p->mg, cache->migration_pool);
296 }
297 
298 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
299 {
300 	struct dm_cache_migration *mg = p->mg;
301 
302 	BUG_ON(!mg);
303 	p->mg = NULL;
304 
305 	return mg;
306 }
307 
308 /*
309  * You must have a cell within the prealloc struct to return.  If not this
310  * function will BUG() rather than returning NULL.
311  */
312 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
313 {
314 	struct dm_bio_prison_cell *r = NULL;
315 
316 	if (p->cell1) {
317 		r = p->cell1;
318 		p->cell1 = NULL;
319 
320 	} else if (p->cell2) {
321 		r = p->cell2;
322 		p->cell2 = NULL;
323 	} else
324 		BUG();
325 
326 	return r;
327 }
328 
329 /*
330  * You can't have more than two cells in a prealloc struct.  BUG() will be
331  * called if you try and overfill.
332  */
333 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
334 {
335 	if (!p->cell2)
336 		p->cell2 = cell;
337 
338 	else if (!p->cell1)
339 		p->cell1 = cell;
340 
341 	else
342 		BUG();
343 }
344 
345 /*----------------------------------------------------------------*/
346 
347 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
348 {
349 	key->virtual = 0;
350 	key->dev = 0;
351 	key->block = from_oblock(oblock);
352 }
353 
354 /*
355  * The caller hands in a preallocated cell, and a free function for it.
356  * The cell will be freed if there's an error, or if it wasn't used because
357  * a cell with that key already exists.
358  */
359 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
360 
361 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
362 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
363 		      cell_free_fn free_fn, void *free_context,
364 		      struct dm_bio_prison_cell **cell_result)
365 {
366 	int r;
367 	struct dm_cell_key key;
368 
369 	build_key(oblock, &key);
370 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
371 	if (r)
372 		free_fn(free_context, cell_prealloc);
373 
374 	return r;
375 }
376 
377 static int get_cell(struct cache *cache,
378 		    dm_oblock_t oblock,
379 		    struct prealloc *structs,
380 		    struct dm_bio_prison_cell **cell_result)
381 {
382 	int r;
383 	struct dm_cell_key key;
384 	struct dm_bio_prison_cell *cell_prealloc;
385 
386 	cell_prealloc = prealloc_get_cell(structs);
387 
388 	build_key(oblock, &key);
389 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
390 	if (r)
391 		prealloc_put_cell(structs, cell_prealloc);
392 
393 	return r;
394 }
395 
396 /*----------------------------------------------------------------*/
397 
398 static bool is_dirty(struct cache *cache, dm_cblock_t b)
399 {
400 	return test_bit(from_cblock(b), cache->dirty_bitset);
401 }
402 
403 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
404 {
405 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
406 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
407 		policy_set_dirty(cache->policy, oblock);
408 	}
409 }
410 
411 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
412 {
413 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
414 		policy_clear_dirty(cache->policy, oblock);
415 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
416 		if (!from_cblock(cache->nr_dirty))
417 			dm_table_event(cache->ti->table);
418 	}
419 }
420 
421 /*----------------------------------------------------------------*/
422 
423 static bool block_size_is_power_of_two(struct cache *cache)
424 {
425 	return cache->sectors_per_block_shift >= 0;
426 }
427 
428 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
429 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
430 __always_inline
431 #endif
432 static dm_block_t block_div(dm_block_t b, uint32_t n)
433 {
434 	do_div(b, n);
435 
436 	return b;
437 }
438 
439 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
440 {
441 	uint32_t discard_blocks = cache->discard_block_size;
442 	dm_block_t b = from_oblock(oblock);
443 
444 	if (!block_size_is_power_of_two(cache))
445 		discard_blocks = discard_blocks / cache->sectors_per_block;
446 	else
447 		discard_blocks >>= cache->sectors_per_block_shift;
448 
449 	b = block_div(b, discard_blocks);
450 
451 	return to_dblock(b);
452 }
453 
454 static void set_discard(struct cache *cache, dm_dblock_t b)
455 {
456 	unsigned long flags;
457 
458 	atomic_inc(&cache->stats.discard_count);
459 
460 	spin_lock_irqsave(&cache->lock, flags);
461 	set_bit(from_dblock(b), cache->discard_bitset);
462 	spin_unlock_irqrestore(&cache->lock, flags);
463 }
464 
465 static void clear_discard(struct cache *cache, dm_dblock_t b)
466 {
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&cache->lock, flags);
470 	clear_bit(from_dblock(b), cache->discard_bitset);
471 	spin_unlock_irqrestore(&cache->lock, flags);
472 }
473 
474 static bool is_discarded(struct cache *cache, dm_dblock_t b)
475 {
476 	int r;
477 	unsigned long flags;
478 
479 	spin_lock_irqsave(&cache->lock, flags);
480 	r = test_bit(from_dblock(b), cache->discard_bitset);
481 	spin_unlock_irqrestore(&cache->lock, flags);
482 
483 	return r;
484 }
485 
486 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
487 {
488 	int r;
489 	unsigned long flags;
490 
491 	spin_lock_irqsave(&cache->lock, flags);
492 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
493 		     cache->discard_bitset);
494 	spin_unlock_irqrestore(&cache->lock, flags);
495 
496 	return r;
497 }
498 
499 /*----------------------------------------------------------------*/
500 
501 static void load_stats(struct cache *cache)
502 {
503 	struct dm_cache_statistics stats;
504 
505 	dm_cache_metadata_get_stats(cache->cmd, &stats);
506 	atomic_set(&cache->stats.read_hit, stats.read_hits);
507 	atomic_set(&cache->stats.read_miss, stats.read_misses);
508 	atomic_set(&cache->stats.write_hit, stats.write_hits);
509 	atomic_set(&cache->stats.write_miss, stats.write_misses);
510 }
511 
512 static void save_stats(struct cache *cache)
513 {
514 	struct dm_cache_statistics stats;
515 
516 	stats.read_hits = atomic_read(&cache->stats.read_hit);
517 	stats.read_misses = atomic_read(&cache->stats.read_miss);
518 	stats.write_hits = atomic_read(&cache->stats.write_hit);
519 	stats.write_misses = atomic_read(&cache->stats.write_miss);
520 
521 	dm_cache_metadata_set_stats(cache->cmd, &stats);
522 }
523 
524 /*----------------------------------------------------------------
525  * Per bio data
526  *--------------------------------------------------------------*/
527 
528 /*
529  * If using writeback, leave out struct per_bio_data's writethrough fields.
530  */
531 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
532 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
533 
534 static size_t get_per_bio_data_size(struct cache *cache)
535 {
536 	return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
537 }
538 
539 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
540 {
541 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
542 	BUG_ON(!pb);
543 	return pb;
544 }
545 
546 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
547 {
548 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
549 
550 	pb->tick = false;
551 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
552 	pb->all_io_entry = NULL;
553 
554 	return pb;
555 }
556 
557 /*----------------------------------------------------------------
558  * Remapping
559  *--------------------------------------------------------------*/
560 static void remap_to_origin(struct cache *cache, struct bio *bio)
561 {
562 	bio->bi_bdev = cache->origin_dev->bdev;
563 }
564 
565 static void remap_to_cache(struct cache *cache, struct bio *bio,
566 			   dm_cblock_t cblock)
567 {
568 	sector_t bi_sector = bio->bi_sector;
569 
570 	bio->bi_bdev = cache->cache_dev->bdev;
571 	if (!block_size_is_power_of_two(cache))
572 		bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
573 				sector_div(bi_sector, cache->sectors_per_block);
574 	else
575 		bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
576 				(bi_sector & (cache->sectors_per_block - 1));
577 }
578 
579 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
580 {
581 	unsigned long flags;
582 	size_t pb_data_size = get_per_bio_data_size(cache);
583 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
584 
585 	spin_lock_irqsave(&cache->lock, flags);
586 	if (cache->need_tick_bio &&
587 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
588 		pb->tick = true;
589 		cache->need_tick_bio = false;
590 	}
591 	spin_unlock_irqrestore(&cache->lock, flags);
592 }
593 
594 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
595 				  dm_oblock_t oblock)
596 {
597 	check_if_tick_bio_needed(cache, bio);
598 	remap_to_origin(cache, bio);
599 	if (bio_data_dir(bio) == WRITE)
600 		clear_discard(cache, oblock_to_dblock(cache, oblock));
601 }
602 
603 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
604 				 dm_oblock_t oblock, dm_cblock_t cblock)
605 {
606 	remap_to_cache(cache, bio, cblock);
607 	if (bio_data_dir(bio) == WRITE) {
608 		set_dirty(cache, oblock, cblock);
609 		clear_discard(cache, oblock_to_dblock(cache, oblock));
610 	}
611 }
612 
613 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
614 {
615 	sector_t block_nr = bio->bi_sector;
616 
617 	if (!block_size_is_power_of_two(cache))
618 		(void) sector_div(block_nr, cache->sectors_per_block);
619 	else
620 		block_nr >>= cache->sectors_per_block_shift;
621 
622 	return to_oblock(block_nr);
623 }
624 
625 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
626 {
627 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
628 }
629 
630 static void issue(struct cache *cache, struct bio *bio)
631 {
632 	unsigned long flags;
633 
634 	if (!bio_triggers_commit(cache, bio)) {
635 		generic_make_request(bio);
636 		return;
637 	}
638 
639 	/*
640 	 * Batch together any bios that trigger commits and then issue a
641 	 * single commit for them in do_worker().
642 	 */
643 	spin_lock_irqsave(&cache->lock, flags);
644 	cache->commit_requested = true;
645 	bio_list_add(&cache->deferred_flush_bios, bio);
646 	spin_unlock_irqrestore(&cache->lock, flags);
647 }
648 
649 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
650 {
651 	unsigned long flags;
652 
653 	spin_lock_irqsave(&cache->lock, flags);
654 	bio_list_add(&cache->deferred_writethrough_bios, bio);
655 	spin_unlock_irqrestore(&cache->lock, flags);
656 
657 	wake_worker(cache);
658 }
659 
660 static void writethrough_endio(struct bio *bio, int err)
661 {
662 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
663 	bio->bi_end_io = pb->saved_bi_end_io;
664 
665 	if (err) {
666 		bio_endio(bio, err);
667 		return;
668 	}
669 
670 	dm_bio_restore(&pb->bio_details, bio);
671 	remap_to_cache(pb->cache, bio, pb->cblock);
672 
673 	/*
674 	 * We can't issue this bio directly, since we're in interrupt
675 	 * context.  So it gets put on a bio list for processing by the
676 	 * worker thread.
677 	 */
678 	defer_writethrough_bio(pb->cache, bio);
679 }
680 
681 /*
682  * When running in writethrough mode we need to send writes to clean blocks
683  * to both the cache and origin devices.  In future we'd like to clone the
684  * bio and send them in parallel, but for now we're doing them in
685  * series as this is easier.
686  */
687 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
688 				       dm_oblock_t oblock, dm_cblock_t cblock)
689 {
690 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
691 
692 	pb->cache = cache;
693 	pb->cblock = cblock;
694 	pb->saved_bi_end_io = bio->bi_end_io;
695 	dm_bio_record(&pb->bio_details, bio);
696 	bio->bi_end_io = writethrough_endio;
697 
698 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
699 }
700 
701 /*----------------------------------------------------------------
702  * Migration processing
703  *
704  * Migration covers moving data from the origin device to the cache, or
705  * vice versa.
706  *--------------------------------------------------------------*/
707 static void free_migration(struct dm_cache_migration *mg)
708 {
709 	mempool_free(mg, mg->cache->migration_pool);
710 }
711 
712 static void inc_nr_migrations(struct cache *cache)
713 {
714 	atomic_inc(&cache->nr_migrations);
715 }
716 
717 static void dec_nr_migrations(struct cache *cache)
718 {
719 	atomic_dec(&cache->nr_migrations);
720 
721 	/*
722 	 * Wake the worker in case we're suspending the target.
723 	 */
724 	wake_up(&cache->migration_wait);
725 }
726 
727 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
728 			 bool holder)
729 {
730 	(holder ? dm_cell_release : dm_cell_release_no_holder)
731 		(cache->prison, cell, &cache->deferred_bios);
732 	free_prison_cell(cache, cell);
733 }
734 
735 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
736 		       bool holder)
737 {
738 	unsigned long flags;
739 
740 	spin_lock_irqsave(&cache->lock, flags);
741 	__cell_defer(cache, cell, holder);
742 	spin_unlock_irqrestore(&cache->lock, flags);
743 
744 	wake_worker(cache);
745 }
746 
747 static void cleanup_migration(struct dm_cache_migration *mg)
748 {
749 	dec_nr_migrations(mg->cache);
750 	free_migration(mg);
751 }
752 
753 static void migration_failure(struct dm_cache_migration *mg)
754 {
755 	struct cache *cache = mg->cache;
756 
757 	if (mg->writeback) {
758 		DMWARN_LIMIT("writeback failed; couldn't copy block");
759 		set_dirty(cache, mg->old_oblock, mg->cblock);
760 		cell_defer(cache, mg->old_ocell, false);
761 
762 	} else if (mg->demote) {
763 		DMWARN_LIMIT("demotion failed; couldn't copy block");
764 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
765 
766 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
767 		if (mg->promote)
768 			cell_defer(cache, mg->new_ocell, 1);
769 	} else {
770 		DMWARN_LIMIT("promotion failed; couldn't copy block");
771 		policy_remove_mapping(cache->policy, mg->new_oblock);
772 		cell_defer(cache, mg->new_ocell, 1);
773 	}
774 
775 	cleanup_migration(mg);
776 }
777 
778 static void migration_success_pre_commit(struct dm_cache_migration *mg)
779 {
780 	unsigned long flags;
781 	struct cache *cache = mg->cache;
782 
783 	if (mg->writeback) {
784 		cell_defer(cache, mg->old_ocell, false);
785 		clear_dirty(cache, mg->old_oblock, mg->cblock);
786 		cleanup_migration(mg);
787 		return;
788 
789 	} else if (mg->demote) {
790 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
791 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
792 			policy_force_mapping(cache->policy, mg->new_oblock,
793 					     mg->old_oblock);
794 			if (mg->promote)
795 				cell_defer(cache, mg->new_ocell, true);
796 			cleanup_migration(mg);
797 			return;
798 		}
799 	} else {
800 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
801 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
802 			policy_remove_mapping(cache->policy, mg->new_oblock);
803 			cleanup_migration(mg);
804 			return;
805 		}
806 	}
807 
808 	spin_lock_irqsave(&cache->lock, flags);
809 	list_add_tail(&mg->list, &cache->need_commit_migrations);
810 	cache->commit_requested = true;
811 	spin_unlock_irqrestore(&cache->lock, flags);
812 }
813 
814 static void migration_success_post_commit(struct dm_cache_migration *mg)
815 {
816 	unsigned long flags;
817 	struct cache *cache = mg->cache;
818 
819 	if (mg->writeback) {
820 		DMWARN("writeback unexpectedly triggered commit");
821 		return;
822 
823 	} else if (mg->demote) {
824 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
825 
826 		if (mg->promote) {
827 			mg->demote = false;
828 
829 			spin_lock_irqsave(&cache->lock, flags);
830 			list_add_tail(&mg->list, &cache->quiesced_migrations);
831 			spin_unlock_irqrestore(&cache->lock, flags);
832 
833 		} else
834 			cleanup_migration(mg);
835 
836 	} else {
837 		cell_defer(cache, mg->new_ocell, true);
838 		clear_dirty(cache, mg->new_oblock, mg->cblock);
839 		cleanup_migration(mg);
840 	}
841 }
842 
843 static void copy_complete(int read_err, unsigned long write_err, void *context)
844 {
845 	unsigned long flags;
846 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
847 	struct cache *cache = mg->cache;
848 
849 	if (read_err || write_err)
850 		mg->err = true;
851 
852 	spin_lock_irqsave(&cache->lock, flags);
853 	list_add_tail(&mg->list, &cache->completed_migrations);
854 	spin_unlock_irqrestore(&cache->lock, flags);
855 
856 	wake_worker(cache);
857 }
858 
859 static void issue_copy_real(struct dm_cache_migration *mg)
860 {
861 	int r;
862 	struct dm_io_region o_region, c_region;
863 	struct cache *cache = mg->cache;
864 
865 	o_region.bdev = cache->origin_dev->bdev;
866 	o_region.count = cache->sectors_per_block;
867 
868 	c_region.bdev = cache->cache_dev->bdev;
869 	c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
870 	c_region.count = cache->sectors_per_block;
871 
872 	if (mg->writeback || mg->demote) {
873 		/* demote */
874 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
875 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
876 	} else {
877 		/* promote */
878 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
879 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
880 	}
881 
882 	if (r < 0)
883 		migration_failure(mg);
884 }
885 
886 static void avoid_copy(struct dm_cache_migration *mg)
887 {
888 	atomic_inc(&mg->cache->stats.copies_avoided);
889 	migration_success_pre_commit(mg);
890 }
891 
892 static void issue_copy(struct dm_cache_migration *mg)
893 {
894 	bool avoid;
895 	struct cache *cache = mg->cache;
896 
897 	if (mg->writeback || mg->demote)
898 		avoid = !is_dirty(cache, mg->cblock) ||
899 			is_discarded_oblock(cache, mg->old_oblock);
900 	else
901 		avoid = is_discarded_oblock(cache, mg->new_oblock);
902 
903 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
904 }
905 
906 static void complete_migration(struct dm_cache_migration *mg)
907 {
908 	if (mg->err)
909 		migration_failure(mg);
910 	else
911 		migration_success_pre_commit(mg);
912 }
913 
914 static void process_migrations(struct cache *cache, struct list_head *head,
915 			       void (*fn)(struct dm_cache_migration *))
916 {
917 	unsigned long flags;
918 	struct list_head list;
919 	struct dm_cache_migration *mg, *tmp;
920 
921 	INIT_LIST_HEAD(&list);
922 	spin_lock_irqsave(&cache->lock, flags);
923 	list_splice_init(head, &list);
924 	spin_unlock_irqrestore(&cache->lock, flags);
925 
926 	list_for_each_entry_safe(mg, tmp, &list, list)
927 		fn(mg);
928 }
929 
930 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
931 {
932 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
933 }
934 
935 static void queue_quiesced_migration(struct dm_cache_migration *mg)
936 {
937 	unsigned long flags;
938 	struct cache *cache = mg->cache;
939 
940 	spin_lock_irqsave(&cache->lock, flags);
941 	__queue_quiesced_migration(mg);
942 	spin_unlock_irqrestore(&cache->lock, flags);
943 
944 	wake_worker(cache);
945 }
946 
947 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
948 {
949 	unsigned long flags;
950 	struct dm_cache_migration *mg, *tmp;
951 
952 	spin_lock_irqsave(&cache->lock, flags);
953 	list_for_each_entry_safe(mg, tmp, work, list)
954 		__queue_quiesced_migration(mg);
955 	spin_unlock_irqrestore(&cache->lock, flags);
956 
957 	wake_worker(cache);
958 }
959 
960 static void check_for_quiesced_migrations(struct cache *cache,
961 					  struct per_bio_data *pb)
962 {
963 	struct list_head work;
964 
965 	if (!pb->all_io_entry)
966 		return;
967 
968 	INIT_LIST_HEAD(&work);
969 	if (pb->all_io_entry)
970 		dm_deferred_entry_dec(pb->all_io_entry, &work);
971 
972 	if (!list_empty(&work))
973 		queue_quiesced_migrations(cache, &work);
974 }
975 
976 static void quiesce_migration(struct dm_cache_migration *mg)
977 {
978 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
979 		queue_quiesced_migration(mg);
980 }
981 
982 static void promote(struct cache *cache, struct prealloc *structs,
983 		    dm_oblock_t oblock, dm_cblock_t cblock,
984 		    struct dm_bio_prison_cell *cell)
985 {
986 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
987 
988 	mg->err = false;
989 	mg->writeback = false;
990 	mg->demote = false;
991 	mg->promote = true;
992 	mg->cache = cache;
993 	mg->new_oblock = oblock;
994 	mg->cblock = cblock;
995 	mg->old_ocell = NULL;
996 	mg->new_ocell = cell;
997 	mg->start_jiffies = jiffies;
998 
999 	inc_nr_migrations(cache);
1000 	quiesce_migration(mg);
1001 }
1002 
1003 static void writeback(struct cache *cache, struct prealloc *structs,
1004 		      dm_oblock_t oblock, dm_cblock_t cblock,
1005 		      struct dm_bio_prison_cell *cell)
1006 {
1007 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1008 
1009 	mg->err = false;
1010 	mg->writeback = true;
1011 	mg->demote = false;
1012 	mg->promote = false;
1013 	mg->cache = cache;
1014 	mg->old_oblock = oblock;
1015 	mg->cblock = cblock;
1016 	mg->old_ocell = cell;
1017 	mg->new_ocell = NULL;
1018 	mg->start_jiffies = jiffies;
1019 
1020 	inc_nr_migrations(cache);
1021 	quiesce_migration(mg);
1022 }
1023 
1024 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1025 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1026 				dm_cblock_t cblock,
1027 				struct dm_bio_prison_cell *old_ocell,
1028 				struct dm_bio_prison_cell *new_ocell)
1029 {
1030 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1031 
1032 	mg->err = false;
1033 	mg->writeback = false;
1034 	mg->demote = true;
1035 	mg->promote = true;
1036 	mg->cache = cache;
1037 	mg->old_oblock = old_oblock;
1038 	mg->new_oblock = new_oblock;
1039 	mg->cblock = cblock;
1040 	mg->old_ocell = old_ocell;
1041 	mg->new_ocell = new_ocell;
1042 	mg->start_jiffies = jiffies;
1043 
1044 	inc_nr_migrations(cache);
1045 	quiesce_migration(mg);
1046 }
1047 
1048 /*----------------------------------------------------------------
1049  * bio processing
1050  *--------------------------------------------------------------*/
1051 static void defer_bio(struct cache *cache, struct bio *bio)
1052 {
1053 	unsigned long flags;
1054 
1055 	spin_lock_irqsave(&cache->lock, flags);
1056 	bio_list_add(&cache->deferred_bios, bio);
1057 	spin_unlock_irqrestore(&cache->lock, flags);
1058 
1059 	wake_worker(cache);
1060 }
1061 
1062 static void process_flush_bio(struct cache *cache, struct bio *bio)
1063 {
1064 	size_t pb_data_size = get_per_bio_data_size(cache);
1065 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1066 
1067 	BUG_ON(bio->bi_size);
1068 	if (!pb->req_nr)
1069 		remap_to_origin(cache, bio);
1070 	else
1071 		remap_to_cache(cache, bio, 0);
1072 
1073 	issue(cache, bio);
1074 }
1075 
1076 /*
1077  * People generally discard large parts of a device, eg, the whole device
1078  * when formatting.  Splitting these large discards up into cache block
1079  * sized ios and then quiescing (always neccessary for discard) takes too
1080  * long.
1081  *
1082  * We keep it simple, and allow any size of discard to come in, and just
1083  * mark off blocks on the discard bitset.  No passdown occurs!
1084  *
1085  * To implement passdown we need to change the bio_prison such that a cell
1086  * can have a key that spans many blocks.
1087  */
1088 static void process_discard_bio(struct cache *cache, struct bio *bio)
1089 {
1090 	dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1091 						  cache->discard_block_size);
1092 	dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1093 	dm_block_t b;
1094 
1095 	end_block = block_div(end_block, cache->discard_block_size);
1096 
1097 	for (b = start_block; b < end_block; b++)
1098 		set_discard(cache, to_dblock(b));
1099 
1100 	bio_endio(bio, 0);
1101 }
1102 
1103 static bool spare_migration_bandwidth(struct cache *cache)
1104 {
1105 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1106 		cache->sectors_per_block;
1107 	return current_volume < cache->migration_threshold;
1108 }
1109 
1110 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1111 			       dm_cblock_t cblock)
1112 {
1113 	return bio_data_dir(bio) == WRITE &&
1114 		cache->features.write_through && !is_dirty(cache, cblock);
1115 }
1116 
1117 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1118 {
1119 	atomic_inc(bio_data_dir(bio) == READ ?
1120 		   &cache->stats.read_hit : &cache->stats.write_hit);
1121 }
1122 
1123 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1124 {
1125 	atomic_inc(bio_data_dir(bio) == READ ?
1126 		   &cache->stats.read_miss : &cache->stats.write_miss);
1127 }
1128 
1129 static void process_bio(struct cache *cache, struct prealloc *structs,
1130 			struct bio *bio)
1131 {
1132 	int r;
1133 	bool release_cell = true;
1134 	dm_oblock_t block = get_bio_block(cache, bio);
1135 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1136 	struct policy_result lookup_result;
1137 	size_t pb_data_size = get_per_bio_data_size(cache);
1138 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1139 	bool discarded_block = is_discarded_oblock(cache, block);
1140 	bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1141 
1142 	/*
1143 	 * Check to see if that block is currently migrating.
1144 	 */
1145 	cell_prealloc = prealloc_get_cell(structs);
1146 	r = bio_detain(cache, block, bio, cell_prealloc,
1147 		       (cell_free_fn) prealloc_put_cell,
1148 		       structs, &new_ocell);
1149 	if (r > 0)
1150 		return;
1151 
1152 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1153 		       bio, &lookup_result);
1154 
1155 	if (r == -EWOULDBLOCK)
1156 		/* migration has been denied */
1157 		lookup_result.op = POLICY_MISS;
1158 
1159 	switch (lookup_result.op) {
1160 	case POLICY_HIT:
1161 		inc_hit_counter(cache, bio);
1162 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1163 
1164 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
1165 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1166 		else
1167 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1168 
1169 		issue(cache, bio);
1170 		break;
1171 
1172 	case POLICY_MISS:
1173 		inc_miss_counter(cache, bio);
1174 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1175 		remap_to_origin_clear_discard(cache, bio, block);
1176 		issue(cache, bio);
1177 		break;
1178 
1179 	case POLICY_NEW:
1180 		atomic_inc(&cache->stats.promotion);
1181 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1182 		release_cell = false;
1183 		break;
1184 
1185 	case POLICY_REPLACE:
1186 		cell_prealloc = prealloc_get_cell(structs);
1187 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1188 			       (cell_free_fn) prealloc_put_cell,
1189 			       structs, &old_ocell);
1190 		if (r > 0) {
1191 			/*
1192 			 * We have to be careful to avoid lock inversion of
1193 			 * the cells.  So we back off, and wait for the
1194 			 * old_ocell to become free.
1195 			 */
1196 			policy_force_mapping(cache->policy, block,
1197 					     lookup_result.old_oblock);
1198 			atomic_inc(&cache->stats.cache_cell_clash);
1199 			break;
1200 		}
1201 		atomic_inc(&cache->stats.demotion);
1202 		atomic_inc(&cache->stats.promotion);
1203 
1204 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1205 				    block, lookup_result.cblock,
1206 				    old_ocell, new_ocell);
1207 		release_cell = false;
1208 		break;
1209 
1210 	default:
1211 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1212 			    (unsigned) lookup_result.op);
1213 		bio_io_error(bio);
1214 	}
1215 
1216 	if (release_cell)
1217 		cell_defer(cache, new_ocell, false);
1218 }
1219 
1220 static int need_commit_due_to_time(struct cache *cache)
1221 {
1222 	return jiffies < cache->last_commit_jiffies ||
1223 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1224 }
1225 
1226 static int commit_if_needed(struct cache *cache)
1227 {
1228 	if (dm_cache_changed_this_transaction(cache->cmd) &&
1229 	    (cache->commit_requested || need_commit_due_to_time(cache))) {
1230 		atomic_inc(&cache->stats.commit_count);
1231 		cache->last_commit_jiffies = jiffies;
1232 		cache->commit_requested = false;
1233 		return dm_cache_commit(cache->cmd, false);
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 static void process_deferred_bios(struct cache *cache)
1240 {
1241 	unsigned long flags;
1242 	struct bio_list bios;
1243 	struct bio *bio;
1244 	struct prealloc structs;
1245 
1246 	memset(&structs, 0, sizeof(structs));
1247 	bio_list_init(&bios);
1248 
1249 	spin_lock_irqsave(&cache->lock, flags);
1250 	bio_list_merge(&bios, &cache->deferred_bios);
1251 	bio_list_init(&cache->deferred_bios);
1252 	spin_unlock_irqrestore(&cache->lock, flags);
1253 
1254 	while (!bio_list_empty(&bios)) {
1255 		/*
1256 		 * If we've got no free migration structs, and processing
1257 		 * this bio might require one, we pause until there are some
1258 		 * prepared mappings to process.
1259 		 */
1260 		if (prealloc_data_structs(cache, &structs)) {
1261 			spin_lock_irqsave(&cache->lock, flags);
1262 			bio_list_merge(&cache->deferred_bios, &bios);
1263 			spin_unlock_irqrestore(&cache->lock, flags);
1264 			break;
1265 		}
1266 
1267 		bio = bio_list_pop(&bios);
1268 
1269 		if (bio->bi_rw & REQ_FLUSH)
1270 			process_flush_bio(cache, bio);
1271 		else if (bio->bi_rw & REQ_DISCARD)
1272 			process_discard_bio(cache, bio);
1273 		else
1274 			process_bio(cache, &structs, bio);
1275 	}
1276 
1277 	prealloc_free_structs(cache, &structs);
1278 }
1279 
1280 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1281 {
1282 	unsigned long flags;
1283 	struct bio_list bios;
1284 	struct bio *bio;
1285 
1286 	bio_list_init(&bios);
1287 
1288 	spin_lock_irqsave(&cache->lock, flags);
1289 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1290 	bio_list_init(&cache->deferred_flush_bios);
1291 	spin_unlock_irqrestore(&cache->lock, flags);
1292 
1293 	while ((bio = bio_list_pop(&bios)))
1294 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1295 }
1296 
1297 static void process_deferred_writethrough_bios(struct cache *cache)
1298 {
1299 	unsigned long flags;
1300 	struct bio_list bios;
1301 	struct bio *bio;
1302 
1303 	bio_list_init(&bios);
1304 
1305 	spin_lock_irqsave(&cache->lock, flags);
1306 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1307 	bio_list_init(&cache->deferred_writethrough_bios);
1308 	spin_unlock_irqrestore(&cache->lock, flags);
1309 
1310 	while ((bio = bio_list_pop(&bios)))
1311 		generic_make_request(bio);
1312 }
1313 
1314 static void writeback_some_dirty_blocks(struct cache *cache)
1315 {
1316 	int r = 0;
1317 	dm_oblock_t oblock;
1318 	dm_cblock_t cblock;
1319 	struct prealloc structs;
1320 	struct dm_bio_prison_cell *old_ocell;
1321 
1322 	memset(&structs, 0, sizeof(structs));
1323 
1324 	while (spare_migration_bandwidth(cache)) {
1325 		if (prealloc_data_structs(cache, &structs))
1326 			break;
1327 
1328 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1329 		if (r)
1330 			break;
1331 
1332 		r = get_cell(cache, oblock, &structs, &old_ocell);
1333 		if (r) {
1334 			policy_set_dirty(cache->policy, oblock);
1335 			break;
1336 		}
1337 
1338 		writeback(cache, &structs, oblock, cblock, old_ocell);
1339 	}
1340 
1341 	prealloc_free_structs(cache, &structs);
1342 }
1343 
1344 /*----------------------------------------------------------------
1345  * Main worker loop
1346  *--------------------------------------------------------------*/
1347 static void start_quiescing(struct cache *cache)
1348 {
1349 	unsigned long flags;
1350 
1351 	spin_lock_irqsave(&cache->lock, flags);
1352 	cache->quiescing = 1;
1353 	spin_unlock_irqrestore(&cache->lock, flags);
1354 }
1355 
1356 static void stop_quiescing(struct cache *cache)
1357 {
1358 	unsigned long flags;
1359 
1360 	spin_lock_irqsave(&cache->lock, flags);
1361 	cache->quiescing = 0;
1362 	spin_unlock_irqrestore(&cache->lock, flags);
1363 }
1364 
1365 static bool is_quiescing(struct cache *cache)
1366 {
1367 	int r;
1368 	unsigned long flags;
1369 
1370 	spin_lock_irqsave(&cache->lock, flags);
1371 	r = cache->quiescing;
1372 	spin_unlock_irqrestore(&cache->lock, flags);
1373 
1374 	return r;
1375 }
1376 
1377 static void wait_for_migrations(struct cache *cache)
1378 {
1379 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1380 }
1381 
1382 static void stop_worker(struct cache *cache)
1383 {
1384 	cancel_delayed_work(&cache->waker);
1385 	flush_workqueue(cache->wq);
1386 }
1387 
1388 static void requeue_deferred_io(struct cache *cache)
1389 {
1390 	struct bio *bio;
1391 	struct bio_list bios;
1392 
1393 	bio_list_init(&bios);
1394 	bio_list_merge(&bios, &cache->deferred_bios);
1395 	bio_list_init(&cache->deferred_bios);
1396 
1397 	while ((bio = bio_list_pop(&bios)))
1398 		bio_endio(bio, DM_ENDIO_REQUEUE);
1399 }
1400 
1401 static int more_work(struct cache *cache)
1402 {
1403 	if (is_quiescing(cache))
1404 		return !list_empty(&cache->quiesced_migrations) ||
1405 			!list_empty(&cache->completed_migrations) ||
1406 			!list_empty(&cache->need_commit_migrations);
1407 	else
1408 		return !bio_list_empty(&cache->deferred_bios) ||
1409 			!bio_list_empty(&cache->deferred_flush_bios) ||
1410 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1411 			!list_empty(&cache->quiesced_migrations) ||
1412 			!list_empty(&cache->completed_migrations) ||
1413 			!list_empty(&cache->need_commit_migrations);
1414 }
1415 
1416 static void do_worker(struct work_struct *ws)
1417 {
1418 	struct cache *cache = container_of(ws, struct cache, worker);
1419 
1420 	do {
1421 		if (!is_quiescing(cache))
1422 			process_deferred_bios(cache);
1423 
1424 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1425 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1426 
1427 		writeback_some_dirty_blocks(cache);
1428 
1429 		process_deferred_writethrough_bios(cache);
1430 
1431 		if (commit_if_needed(cache)) {
1432 			process_deferred_flush_bios(cache, false);
1433 
1434 			/*
1435 			 * FIXME: rollback metadata or just go into a
1436 			 * failure mode and error everything
1437 			 */
1438 		} else {
1439 			process_deferred_flush_bios(cache, true);
1440 			process_migrations(cache, &cache->need_commit_migrations,
1441 					   migration_success_post_commit);
1442 		}
1443 	} while (more_work(cache));
1444 }
1445 
1446 /*
1447  * We want to commit periodically so that not too much
1448  * unwritten metadata builds up.
1449  */
1450 static void do_waker(struct work_struct *ws)
1451 {
1452 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1453 	policy_tick(cache->policy);
1454 	wake_worker(cache);
1455 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1456 }
1457 
1458 /*----------------------------------------------------------------*/
1459 
1460 static int is_congested(struct dm_dev *dev, int bdi_bits)
1461 {
1462 	struct request_queue *q = bdev_get_queue(dev->bdev);
1463 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1464 }
1465 
1466 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1467 {
1468 	struct cache *cache = container_of(cb, struct cache, callbacks);
1469 
1470 	return is_congested(cache->origin_dev, bdi_bits) ||
1471 		is_congested(cache->cache_dev, bdi_bits);
1472 }
1473 
1474 /*----------------------------------------------------------------
1475  * Target methods
1476  *--------------------------------------------------------------*/
1477 
1478 /*
1479  * This function gets called on the error paths of the constructor, so we
1480  * have to cope with a partially initialised struct.
1481  */
1482 static void destroy(struct cache *cache)
1483 {
1484 	unsigned i;
1485 
1486 	if (cache->next_migration)
1487 		mempool_free(cache->next_migration, cache->migration_pool);
1488 
1489 	if (cache->migration_pool)
1490 		mempool_destroy(cache->migration_pool);
1491 
1492 	if (cache->all_io_ds)
1493 		dm_deferred_set_destroy(cache->all_io_ds);
1494 
1495 	if (cache->prison)
1496 		dm_bio_prison_destroy(cache->prison);
1497 
1498 	if (cache->wq)
1499 		destroy_workqueue(cache->wq);
1500 
1501 	if (cache->dirty_bitset)
1502 		free_bitset(cache->dirty_bitset);
1503 
1504 	if (cache->discard_bitset)
1505 		free_bitset(cache->discard_bitset);
1506 
1507 	if (cache->copier)
1508 		dm_kcopyd_client_destroy(cache->copier);
1509 
1510 	if (cache->cmd)
1511 		dm_cache_metadata_close(cache->cmd);
1512 
1513 	if (cache->metadata_dev)
1514 		dm_put_device(cache->ti, cache->metadata_dev);
1515 
1516 	if (cache->origin_dev)
1517 		dm_put_device(cache->ti, cache->origin_dev);
1518 
1519 	if (cache->cache_dev)
1520 		dm_put_device(cache->ti, cache->cache_dev);
1521 
1522 	if (cache->policy)
1523 		dm_cache_policy_destroy(cache->policy);
1524 
1525 	for (i = 0; i < cache->nr_ctr_args ; i++)
1526 		kfree(cache->ctr_args[i]);
1527 	kfree(cache->ctr_args);
1528 
1529 	kfree(cache);
1530 }
1531 
1532 static void cache_dtr(struct dm_target *ti)
1533 {
1534 	struct cache *cache = ti->private;
1535 
1536 	destroy(cache);
1537 }
1538 
1539 static sector_t get_dev_size(struct dm_dev *dev)
1540 {
1541 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1542 }
1543 
1544 /*----------------------------------------------------------------*/
1545 
1546 /*
1547  * Construct a cache device mapping.
1548  *
1549  * cache <metadata dev> <cache dev> <origin dev> <block size>
1550  *       <#feature args> [<feature arg>]*
1551  *       <policy> <#policy args> [<policy arg>]*
1552  *
1553  * metadata dev    : fast device holding the persistent metadata
1554  * cache dev	   : fast device holding cached data blocks
1555  * origin dev	   : slow device holding original data blocks
1556  * block size	   : cache unit size in sectors
1557  *
1558  * #feature args   : number of feature arguments passed
1559  * feature args    : writethrough.  (The default is writeback.)
1560  *
1561  * policy	   : the replacement policy to use
1562  * #policy args    : an even number of policy arguments corresponding
1563  *		     to key/value pairs passed to the policy
1564  * policy args	   : key/value pairs passed to the policy
1565  *		     E.g. 'sequential_threshold 1024'
1566  *		     See cache-policies.txt for details.
1567  *
1568  * Optional feature arguments are:
1569  *   writethrough  : write through caching that prohibits cache block
1570  *		     content from being different from origin block content.
1571  *		     Without this argument, the default behaviour is to write
1572  *		     back cache block contents later for performance reasons,
1573  *		     so they may differ from the corresponding origin blocks.
1574  */
1575 struct cache_args {
1576 	struct dm_target *ti;
1577 
1578 	struct dm_dev *metadata_dev;
1579 
1580 	struct dm_dev *cache_dev;
1581 	sector_t cache_sectors;
1582 
1583 	struct dm_dev *origin_dev;
1584 	sector_t origin_sectors;
1585 
1586 	uint32_t block_size;
1587 
1588 	const char *policy_name;
1589 	int policy_argc;
1590 	const char **policy_argv;
1591 
1592 	struct cache_features features;
1593 };
1594 
1595 static void destroy_cache_args(struct cache_args *ca)
1596 {
1597 	if (ca->metadata_dev)
1598 		dm_put_device(ca->ti, ca->metadata_dev);
1599 
1600 	if (ca->cache_dev)
1601 		dm_put_device(ca->ti, ca->cache_dev);
1602 
1603 	if (ca->origin_dev)
1604 		dm_put_device(ca->ti, ca->origin_dev);
1605 
1606 	kfree(ca);
1607 }
1608 
1609 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1610 {
1611 	if (!as->argc) {
1612 		*error = "Insufficient args";
1613 		return false;
1614 	}
1615 
1616 	return true;
1617 }
1618 
1619 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1620 			      char **error)
1621 {
1622 	int r;
1623 	sector_t metadata_dev_size;
1624 	char b[BDEVNAME_SIZE];
1625 
1626 	if (!at_least_one_arg(as, error))
1627 		return -EINVAL;
1628 
1629 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1630 			  &ca->metadata_dev);
1631 	if (r) {
1632 		*error = "Error opening metadata device";
1633 		return r;
1634 	}
1635 
1636 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1637 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1638 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1639 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1640 
1641 	return 0;
1642 }
1643 
1644 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1645 			   char **error)
1646 {
1647 	int r;
1648 
1649 	if (!at_least_one_arg(as, error))
1650 		return -EINVAL;
1651 
1652 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1653 			  &ca->cache_dev);
1654 	if (r) {
1655 		*error = "Error opening cache device";
1656 		return r;
1657 	}
1658 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1659 
1660 	return 0;
1661 }
1662 
1663 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1664 			    char **error)
1665 {
1666 	int r;
1667 
1668 	if (!at_least_one_arg(as, error))
1669 		return -EINVAL;
1670 
1671 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1672 			  &ca->origin_dev);
1673 	if (r) {
1674 		*error = "Error opening origin device";
1675 		return r;
1676 	}
1677 
1678 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1679 	if (ca->ti->len > ca->origin_sectors) {
1680 		*error = "Device size larger than cached device";
1681 		return -EINVAL;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1688 			    char **error)
1689 {
1690 	unsigned long tmp;
1691 
1692 	if (!at_least_one_arg(as, error))
1693 		return -EINVAL;
1694 
1695 	if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1696 	    tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1697 	    tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1698 		*error = "Invalid data block size";
1699 		return -EINVAL;
1700 	}
1701 
1702 	if (tmp > ca->cache_sectors) {
1703 		*error = "Data block size is larger than the cache device";
1704 		return -EINVAL;
1705 	}
1706 
1707 	ca->block_size = tmp;
1708 
1709 	return 0;
1710 }
1711 
1712 static void init_features(struct cache_features *cf)
1713 {
1714 	cf->mode = CM_WRITE;
1715 	cf->write_through = false;
1716 }
1717 
1718 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1719 			  char **error)
1720 {
1721 	static struct dm_arg _args[] = {
1722 		{0, 1, "Invalid number of cache feature arguments"},
1723 	};
1724 
1725 	int r;
1726 	unsigned argc;
1727 	const char *arg;
1728 	struct cache_features *cf = &ca->features;
1729 
1730 	init_features(cf);
1731 
1732 	r = dm_read_arg_group(_args, as, &argc, error);
1733 	if (r)
1734 		return -EINVAL;
1735 
1736 	while (argc--) {
1737 		arg = dm_shift_arg(as);
1738 
1739 		if (!strcasecmp(arg, "writeback"))
1740 			cf->write_through = false;
1741 
1742 		else if (!strcasecmp(arg, "writethrough"))
1743 			cf->write_through = true;
1744 
1745 		else {
1746 			*error = "Unrecognised cache feature requested";
1747 			return -EINVAL;
1748 		}
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1755 			char **error)
1756 {
1757 	static struct dm_arg _args[] = {
1758 		{0, 1024, "Invalid number of policy arguments"},
1759 	};
1760 
1761 	int r;
1762 
1763 	if (!at_least_one_arg(as, error))
1764 		return -EINVAL;
1765 
1766 	ca->policy_name = dm_shift_arg(as);
1767 
1768 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1769 	if (r)
1770 		return -EINVAL;
1771 
1772 	ca->policy_argv = (const char **)as->argv;
1773 	dm_consume_args(as, ca->policy_argc);
1774 
1775 	return 0;
1776 }
1777 
1778 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1779 			    char **error)
1780 {
1781 	int r;
1782 	struct dm_arg_set as;
1783 
1784 	as.argc = argc;
1785 	as.argv = argv;
1786 
1787 	r = parse_metadata_dev(ca, &as, error);
1788 	if (r)
1789 		return r;
1790 
1791 	r = parse_cache_dev(ca, &as, error);
1792 	if (r)
1793 		return r;
1794 
1795 	r = parse_origin_dev(ca, &as, error);
1796 	if (r)
1797 		return r;
1798 
1799 	r = parse_block_size(ca, &as, error);
1800 	if (r)
1801 		return r;
1802 
1803 	r = parse_features(ca, &as, error);
1804 	if (r)
1805 		return r;
1806 
1807 	r = parse_policy(ca, &as, error);
1808 	if (r)
1809 		return r;
1810 
1811 	return 0;
1812 }
1813 
1814 /*----------------------------------------------------------------*/
1815 
1816 static struct kmem_cache *migration_cache;
1817 
1818 #define NOT_CORE_OPTION 1
1819 
1820 static int process_config_option(struct cache *cache, const char *key, const char *value)
1821 {
1822 	unsigned long tmp;
1823 
1824 	if (!strcasecmp(key, "migration_threshold")) {
1825 		if (kstrtoul(value, 10, &tmp))
1826 			return -EINVAL;
1827 
1828 		cache->migration_threshold = tmp;
1829 		return 0;
1830 	}
1831 
1832 	return NOT_CORE_OPTION;
1833 }
1834 
1835 static int set_config_value(struct cache *cache, const char *key, const char *value)
1836 {
1837 	int r = process_config_option(cache, key, value);
1838 
1839 	if (r == NOT_CORE_OPTION)
1840 		r = policy_set_config_value(cache->policy, key, value);
1841 
1842 	if (r)
1843 		DMWARN("bad config value for %s: %s", key, value);
1844 
1845 	return r;
1846 }
1847 
1848 static int set_config_values(struct cache *cache, int argc, const char **argv)
1849 {
1850 	int r = 0;
1851 
1852 	if (argc & 1) {
1853 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1854 		return -EINVAL;
1855 	}
1856 
1857 	while (argc) {
1858 		r = set_config_value(cache, argv[0], argv[1]);
1859 		if (r)
1860 			break;
1861 
1862 		argc -= 2;
1863 		argv += 2;
1864 	}
1865 
1866 	return r;
1867 }
1868 
1869 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1870 			       char **error)
1871 {
1872 	cache->policy =	dm_cache_policy_create(ca->policy_name,
1873 					       cache->cache_size,
1874 					       cache->origin_sectors,
1875 					       cache->sectors_per_block);
1876 	if (!cache->policy) {
1877 		*error = "Error creating cache's policy";
1878 		return -ENOMEM;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 /*
1885  * We want the discard block size to be a power of two, at least the size
1886  * of the cache block size, and have no more than 2^14 discard blocks
1887  * across the origin.
1888  */
1889 #define MAX_DISCARD_BLOCKS (1 << 14)
1890 
1891 static bool too_many_discard_blocks(sector_t discard_block_size,
1892 				    sector_t origin_size)
1893 {
1894 	(void) sector_div(origin_size, discard_block_size);
1895 
1896 	return origin_size > MAX_DISCARD_BLOCKS;
1897 }
1898 
1899 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1900 					     sector_t origin_size)
1901 {
1902 	sector_t discard_block_size;
1903 
1904 	discard_block_size = roundup_pow_of_two(cache_block_size);
1905 
1906 	if (origin_size)
1907 		while (too_many_discard_blocks(discard_block_size, origin_size))
1908 			discard_block_size *= 2;
1909 
1910 	return discard_block_size;
1911 }
1912 
1913 #define DEFAULT_MIGRATION_THRESHOLD 2048
1914 
1915 static int cache_create(struct cache_args *ca, struct cache **result)
1916 {
1917 	int r = 0;
1918 	char **error = &ca->ti->error;
1919 	struct cache *cache;
1920 	struct dm_target *ti = ca->ti;
1921 	dm_block_t origin_blocks;
1922 	struct dm_cache_metadata *cmd;
1923 	bool may_format = ca->features.mode == CM_WRITE;
1924 
1925 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1926 	if (!cache)
1927 		return -ENOMEM;
1928 
1929 	cache->ti = ca->ti;
1930 	ti->private = cache;
1931 	ti->num_flush_bios = 2;
1932 	ti->flush_supported = true;
1933 
1934 	ti->num_discard_bios = 1;
1935 	ti->discards_supported = true;
1936 	ti->discard_zeroes_data_unsupported = true;
1937 
1938 	cache->features = ca->features;
1939 	ti->per_bio_data_size = get_per_bio_data_size(cache);
1940 
1941 	cache->callbacks.congested_fn = cache_is_congested;
1942 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1943 
1944 	cache->metadata_dev = ca->metadata_dev;
1945 	cache->origin_dev = ca->origin_dev;
1946 	cache->cache_dev = ca->cache_dev;
1947 
1948 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1949 
1950 	/* FIXME: factor out this whole section */
1951 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
1952 	origin_blocks = block_div(origin_blocks, ca->block_size);
1953 	cache->origin_blocks = to_oblock(origin_blocks);
1954 
1955 	cache->sectors_per_block = ca->block_size;
1956 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1957 		r = -EINVAL;
1958 		goto bad;
1959 	}
1960 
1961 	if (ca->block_size & (ca->block_size - 1)) {
1962 		dm_block_t cache_size = ca->cache_sectors;
1963 
1964 		cache->sectors_per_block_shift = -1;
1965 		cache_size = block_div(cache_size, ca->block_size);
1966 		cache->cache_size = to_cblock(cache_size);
1967 	} else {
1968 		cache->sectors_per_block_shift = __ffs(ca->block_size);
1969 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1970 	}
1971 
1972 	r = create_cache_policy(cache, ca, error);
1973 	if (r)
1974 		goto bad;
1975 
1976 	cache->policy_nr_args = ca->policy_argc;
1977 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1978 
1979 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
1980 	if (r) {
1981 		*error = "Error setting cache policy's config values";
1982 		goto bad;
1983 	}
1984 
1985 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1986 				     ca->block_size, may_format,
1987 				     dm_cache_policy_get_hint_size(cache->policy));
1988 	if (IS_ERR(cmd)) {
1989 		*error = "Error creating metadata object";
1990 		r = PTR_ERR(cmd);
1991 		goto bad;
1992 	}
1993 	cache->cmd = cmd;
1994 
1995 	spin_lock_init(&cache->lock);
1996 	bio_list_init(&cache->deferred_bios);
1997 	bio_list_init(&cache->deferred_flush_bios);
1998 	bio_list_init(&cache->deferred_writethrough_bios);
1999 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2000 	INIT_LIST_HEAD(&cache->completed_migrations);
2001 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2002 	atomic_set(&cache->nr_migrations, 0);
2003 	init_waitqueue_head(&cache->migration_wait);
2004 
2005 	r = -ENOMEM;
2006 	cache->nr_dirty = 0;
2007 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2008 	if (!cache->dirty_bitset) {
2009 		*error = "could not allocate dirty bitset";
2010 		goto bad;
2011 	}
2012 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2013 
2014 	cache->discard_block_size =
2015 		calculate_discard_block_size(cache->sectors_per_block,
2016 					     cache->origin_sectors);
2017 	cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2018 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2019 	if (!cache->discard_bitset) {
2020 		*error = "could not allocate discard bitset";
2021 		goto bad;
2022 	}
2023 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2024 
2025 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2026 	if (IS_ERR(cache->copier)) {
2027 		*error = "could not create kcopyd client";
2028 		r = PTR_ERR(cache->copier);
2029 		goto bad;
2030 	}
2031 
2032 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2033 	if (!cache->wq) {
2034 		*error = "could not create workqueue for metadata object";
2035 		goto bad;
2036 	}
2037 	INIT_WORK(&cache->worker, do_worker);
2038 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2039 	cache->last_commit_jiffies = jiffies;
2040 
2041 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2042 	if (!cache->prison) {
2043 		*error = "could not create bio prison";
2044 		goto bad;
2045 	}
2046 
2047 	cache->all_io_ds = dm_deferred_set_create();
2048 	if (!cache->all_io_ds) {
2049 		*error = "could not create all_io deferred set";
2050 		goto bad;
2051 	}
2052 
2053 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2054 							 migration_cache);
2055 	if (!cache->migration_pool) {
2056 		*error = "Error creating cache's migration mempool";
2057 		goto bad;
2058 	}
2059 
2060 	cache->next_migration = NULL;
2061 
2062 	cache->need_tick_bio = true;
2063 	cache->sized = false;
2064 	cache->quiescing = false;
2065 	cache->commit_requested = false;
2066 	cache->loaded_mappings = false;
2067 	cache->loaded_discards = false;
2068 
2069 	load_stats(cache);
2070 
2071 	atomic_set(&cache->stats.demotion, 0);
2072 	atomic_set(&cache->stats.promotion, 0);
2073 	atomic_set(&cache->stats.copies_avoided, 0);
2074 	atomic_set(&cache->stats.cache_cell_clash, 0);
2075 	atomic_set(&cache->stats.commit_count, 0);
2076 	atomic_set(&cache->stats.discard_count, 0);
2077 
2078 	*result = cache;
2079 	return 0;
2080 
2081 bad:
2082 	destroy(cache);
2083 	return r;
2084 }
2085 
2086 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2087 {
2088 	unsigned i;
2089 	const char **copy;
2090 
2091 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2092 	if (!copy)
2093 		return -ENOMEM;
2094 	for (i = 0; i < argc; i++) {
2095 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2096 		if (!copy[i]) {
2097 			while (i--)
2098 				kfree(copy[i]);
2099 			kfree(copy);
2100 			return -ENOMEM;
2101 		}
2102 	}
2103 
2104 	cache->nr_ctr_args = argc;
2105 	cache->ctr_args = copy;
2106 
2107 	return 0;
2108 }
2109 
2110 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2111 {
2112 	int r = -EINVAL;
2113 	struct cache_args *ca;
2114 	struct cache *cache = NULL;
2115 
2116 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2117 	if (!ca) {
2118 		ti->error = "Error allocating memory for cache";
2119 		return -ENOMEM;
2120 	}
2121 	ca->ti = ti;
2122 
2123 	r = parse_cache_args(ca, argc, argv, &ti->error);
2124 	if (r)
2125 		goto out;
2126 
2127 	r = cache_create(ca, &cache);
2128 	if (r)
2129 		goto out;
2130 
2131 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2132 	if (r) {
2133 		destroy(cache);
2134 		goto out;
2135 	}
2136 
2137 	ti->private = cache;
2138 
2139 out:
2140 	destroy_cache_args(ca);
2141 	return r;
2142 }
2143 
2144 static int cache_map(struct dm_target *ti, struct bio *bio)
2145 {
2146 	struct cache *cache = ti->private;
2147 
2148 	int r;
2149 	dm_oblock_t block = get_bio_block(cache, bio);
2150 	size_t pb_data_size = get_per_bio_data_size(cache);
2151 	bool can_migrate = false;
2152 	bool discarded_block;
2153 	struct dm_bio_prison_cell *cell;
2154 	struct policy_result lookup_result;
2155 	struct per_bio_data *pb;
2156 
2157 	if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2158 		/*
2159 		 * This can only occur if the io goes to a partial block at
2160 		 * the end of the origin device.  We don't cache these.
2161 		 * Just remap to the origin and carry on.
2162 		 */
2163 		remap_to_origin_clear_discard(cache, bio, block);
2164 		return DM_MAPIO_REMAPPED;
2165 	}
2166 
2167 	pb = init_per_bio_data(bio, pb_data_size);
2168 
2169 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2170 		defer_bio(cache, bio);
2171 		return DM_MAPIO_SUBMITTED;
2172 	}
2173 
2174 	/*
2175 	 * Check to see if that block is currently migrating.
2176 	 */
2177 	cell = alloc_prison_cell(cache);
2178 	if (!cell) {
2179 		defer_bio(cache, bio);
2180 		return DM_MAPIO_SUBMITTED;
2181 	}
2182 
2183 	r = bio_detain(cache, block, bio, cell,
2184 		       (cell_free_fn) free_prison_cell,
2185 		       cache, &cell);
2186 	if (r) {
2187 		if (r < 0)
2188 			defer_bio(cache, bio);
2189 
2190 		return DM_MAPIO_SUBMITTED;
2191 	}
2192 
2193 	discarded_block = is_discarded_oblock(cache, block);
2194 
2195 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2196 		       bio, &lookup_result);
2197 	if (r == -EWOULDBLOCK) {
2198 		cell_defer(cache, cell, true);
2199 		return DM_MAPIO_SUBMITTED;
2200 
2201 	} else if (r) {
2202 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2203 		bio_io_error(bio);
2204 		return DM_MAPIO_SUBMITTED;
2205 	}
2206 
2207 	switch (lookup_result.op) {
2208 	case POLICY_HIT:
2209 		inc_hit_counter(cache, bio);
2210 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2211 
2212 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
2213 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2214 		else
2215 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2216 
2217 		cell_defer(cache, cell, false);
2218 		break;
2219 
2220 	case POLICY_MISS:
2221 		inc_miss_counter(cache, bio);
2222 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2223 
2224 		if (pb->req_nr != 0) {
2225 			/*
2226 			 * This is a duplicate writethrough io that is no
2227 			 * longer needed because the block has been demoted.
2228 			 */
2229 			bio_endio(bio, 0);
2230 			cell_defer(cache, cell, false);
2231 			return DM_MAPIO_SUBMITTED;
2232 		} else {
2233 			remap_to_origin_clear_discard(cache, bio, block);
2234 			cell_defer(cache, cell, false);
2235 		}
2236 		break;
2237 
2238 	default:
2239 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2240 			    (unsigned) lookup_result.op);
2241 		bio_io_error(bio);
2242 		return DM_MAPIO_SUBMITTED;
2243 	}
2244 
2245 	return DM_MAPIO_REMAPPED;
2246 }
2247 
2248 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2249 {
2250 	struct cache *cache = ti->private;
2251 	unsigned long flags;
2252 	size_t pb_data_size = get_per_bio_data_size(cache);
2253 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2254 
2255 	if (pb->tick) {
2256 		policy_tick(cache->policy);
2257 
2258 		spin_lock_irqsave(&cache->lock, flags);
2259 		cache->need_tick_bio = true;
2260 		spin_unlock_irqrestore(&cache->lock, flags);
2261 	}
2262 
2263 	check_for_quiesced_migrations(cache, pb);
2264 
2265 	return 0;
2266 }
2267 
2268 static int write_dirty_bitset(struct cache *cache)
2269 {
2270 	unsigned i, r;
2271 
2272 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2273 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2274 				       is_dirty(cache, to_cblock(i)));
2275 		if (r)
2276 			return r;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 static int write_discard_bitset(struct cache *cache)
2283 {
2284 	unsigned i, r;
2285 
2286 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2287 					   cache->discard_nr_blocks);
2288 	if (r) {
2289 		DMERR("could not resize on-disk discard bitset");
2290 		return r;
2291 	}
2292 
2293 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2294 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2295 					 is_discarded(cache, to_dblock(i)));
2296 		if (r)
2297 			return r;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2304 		     uint32_t hint)
2305 {
2306 	struct cache *cache = context;
2307 	return dm_cache_save_hint(cache->cmd, cblock, hint);
2308 }
2309 
2310 static int write_hints(struct cache *cache)
2311 {
2312 	int r;
2313 
2314 	r = dm_cache_begin_hints(cache->cmd, cache->policy);
2315 	if (r) {
2316 		DMERR("dm_cache_begin_hints failed");
2317 		return r;
2318 	}
2319 
2320 	r = policy_walk_mappings(cache->policy, save_hint, cache);
2321 	if (r)
2322 		DMERR("policy_walk_mappings failed");
2323 
2324 	return r;
2325 }
2326 
2327 /*
2328  * returns true on success
2329  */
2330 static bool sync_metadata(struct cache *cache)
2331 {
2332 	int r1, r2, r3, r4;
2333 
2334 	r1 = write_dirty_bitset(cache);
2335 	if (r1)
2336 		DMERR("could not write dirty bitset");
2337 
2338 	r2 = write_discard_bitset(cache);
2339 	if (r2)
2340 		DMERR("could not write discard bitset");
2341 
2342 	save_stats(cache);
2343 
2344 	r3 = write_hints(cache);
2345 	if (r3)
2346 		DMERR("could not write hints");
2347 
2348 	/*
2349 	 * If writing the above metadata failed, we still commit, but don't
2350 	 * set the clean shutdown flag.  This will effectively force every
2351 	 * dirty bit to be set on reload.
2352 	 */
2353 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2354 	if (r4)
2355 		DMERR("could not write cache metadata.  Data loss may occur.");
2356 
2357 	return !r1 && !r2 && !r3 && !r4;
2358 }
2359 
2360 static void cache_postsuspend(struct dm_target *ti)
2361 {
2362 	struct cache *cache = ti->private;
2363 
2364 	start_quiescing(cache);
2365 	wait_for_migrations(cache);
2366 	stop_worker(cache);
2367 	requeue_deferred_io(cache);
2368 	stop_quiescing(cache);
2369 
2370 	(void) sync_metadata(cache);
2371 }
2372 
2373 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2374 			bool dirty, uint32_t hint, bool hint_valid)
2375 {
2376 	int r;
2377 	struct cache *cache = context;
2378 
2379 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2380 	if (r)
2381 		return r;
2382 
2383 	if (dirty)
2384 		set_dirty(cache, oblock, cblock);
2385 	else
2386 		clear_dirty(cache, oblock, cblock);
2387 
2388 	return 0;
2389 }
2390 
2391 static int load_discard(void *context, sector_t discard_block_size,
2392 			dm_dblock_t dblock, bool discard)
2393 {
2394 	struct cache *cache = context;
2395 
2396 	/* FIXME: handle mis-matched block size */
2397 
2398 	if (discard)
2399 		set_discard(cache, dblock);
2400 	else
2401 		clear_discard(cache, dblock);
2402 
2403 	return 0;
2404 }
2405 
2406 static int cache_preresume(struct dm_target *ti)
2407 {
2408 	int r = 0;
2409 	struct cache *cache = ti->private;
2410 	sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2411 	(void) sector_div(actual_cache_size, cache->sectors_per_block);
2412 
2413 	/*
2414 	 * Check to see if the cache has resized.
2415 	 */
2416 	if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2417 		cache->cache_size = to_cblock(actual_cache_size);
2418 
2419 		r = dm_cache_resize(cache->cmd, cache->cache_size);
2420 		if (r) {
2421 			DMERR("could not resize cache metadata");
2422 			return r;
2423 		}
2424 
2425 		cache->sized = true;
2426 	}
2427 
2428 	if (!cache->loaded_mappings) {
2429 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2430 					   load_mapping, cache);
2431 		if (r) {
2432 			DMERR("could not load cache mappings");
2433 			return r;
2434 		}
2435 
2436 		cache->loaded_mappings = true;
2437 	}
2438 
2439 	if (!cache->loaded_discards) {
2440 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2441 		if (r) {
2442 			DMERR("could not load origin discards");
2443 			return r;
2444 		}
2445 
2446 		cache->loaded_discards = true;
2447 	}
2448 
2449 	return r;
2450 }
2451 
2452 static void cache_resume(struct dm_target *ti)
2453 {
2454 	struct cache *cache = ti->private;
2455 
2456 	cache->need_tick_bio = true;
2457 	do_waker(&cache->waker.work);
2458 }
2459 
2460 /*
2461  * Status format:
2462  *
2463  * <#used metadata blocks>/<#total metadata blocks>
2464  * <#read hits> <#read misses> <#write hits> <#write misses>
2465  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2466  * <#features> <features>*
2467  * <#core args> <core args>
2468  * <#policy args> <policy args>*
2469  */
2470 static void cache_status(struct dm_target *ti, status_type_t type,
2471 			 unsigned status_flags, char *result, unsigned maxlen)
2472 {
2473 	int r = 0;
2474 	unsigned i;
2475 	ssize_t sz = 0;
2476 	dm_block_t nr_free_blocks_metadata = 0;
2477 	dm_block_t nr_blocks_metadata = 0;
2478 	char buf[BDEVNAME_SIZE];
2479 	struct cache *cache = ti->private;
2480 	dm_cblock_t residency;
2481 
2482 	switch (type) {
2483 	case STATUSTYPE_INFO:
2484 		/* Commit to ensure statistics aren't out-of-date */
2485 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2486 			r = dm_cache_commit(cache->cmd, false);
2487 			if (r)
2488 				DMERR("could not commit metadata for accurate status");
2489 		}
2490 
2491 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2492 							   &nr_free_blocks_metadata);
2493 		if (r) {
2494 			DMERR("could not get metadata free block count");
2495 			goto err;
2496 		}
2497 
2498 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2499 		if (r) {
2500 			DMERR("could not get metadata device size");
2501 			goto err;
2502 		}
2503 
2504 		residency = policy_residency(cache->policy);
2505 
2506 		DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2507 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2508 		       (unsigned long long)nr_blocks_metadata,
2509 		       (unsigned) atomic_read(&cache->stats.read_hit),
2510 		       (unsigned) atomic_read(&cache->stats.read_miss),
2511 		       (unsigned) atomic_read(&cache->stats.write_hit),
2512 		       (unsigned) atomic_read(&cache->stats.write_miss),
2513 		       (unsigned) atomic_read(&cache->stats.demotion),
2514 		       (unsigned) atomic_read(&cache->stats.promotion),
2515 		       (unsigned long long) from_cblock(residency),
2516 		       cache->nr_dirty);
2517 
2518 		if (cache->features.write_through)
2519 			DMEMIT("1 writethrough ");
2520 		else
2521 			DMEMIT("0 ");
2522 
2523 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2524 		if (sz < maxlen) {
2525 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2526 			if (r)
2527 				DMERR("policy_emit_config_values returned %d", r);
2528 		}
2529 
2530 		break;
2531 
2532 	case STATUSTYPE_TABLE:
2533 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2534 		DMEMIT("%s ", buf);
2535 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2536 		DMEMIT("%s ", buf);
2537 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2538 		DMEMIT("%s", buf);
2539 
2540 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2541 			DMEMIT(" %s", cache->ctr_args[i]);
2542 		if (cache->nr_ctr_args)
2543 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2544 	}
2545 
2546 	return;
2547 
2548 err:
2549 	DMEMIT("Error");
2550 }
2551 
2552 /*
2553  * Supports <key> <value>.
2554  *
2555  * The key migration_threshold is supported by the cache target core.
2556  */
2557 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2558 {
2559 	struct cache *cache = ti->private;
2560 
2561 	if (argc != 2)
2562 		return -EINVAL;
2563 
2564 	return set_config_value(cache, argv[0], argv[1]);
2565 }
2566 
2567 static int cache_iterate_devices(struct dm_target *ti,
2568 				 iterate_devices_callout_fn fn, void *data)
2569 {
2570 	int r = 0;
2571 	struct cache *cache = ti->private;
2572 
2573 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2574 	if (!r)
2575 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
2576 
2577 	return r;
2578 }
2579 
2580 /*
2581  * We assume I/O is going to the origin (which is the volume
2582  * more likely to have restrictions e.g. by being striped).
2583  * (Looking up the exact location of the data would be expensive
2584  * and could always be out of date by the time the bio is submitted.)
2585  */
2586 static int cache_bvec_merge(struct dm_target *ti,
2587 			    struct bvec_merge_data *bvm,
2588 			    struct bio_vec *biovec, int max_size)
2589 {
2590 	struct cache *cache = ti->private;
2591 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2592 
2593 	if (!q->merge_bvec_fn)
2594 		return max_size;
2595 
2596 	bvm->bi_bdev = cache->origin_dev->bdev;
2597 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2598 }
2599 
2600 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2601 {
2602 	/*
2603 	 * FIXME: these limits may be incompatible with the cache device
2604 	 */
2605 	limits->max_discard_sectors = cache->discard_block_size * 1024;
2606 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2607 }
2608 
2609 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2610 {
2611 	struct cache *cache = ti->private;
2612 
2613 	blk_limits_io_min(limits, 0);
2614 	blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2615 	set_discard_limits(cache, limits);
2616 }
2617 
2618 /*----------------------------------------------------------------*/
2619 
2620 static struct target_type cache_target = {
2621 	.name = "cache",
2622 	.version = {1, 1, 1},
2623 	.module = THIS_MODULE,
2624 	.ctr = cache_ctr,
2625 	.dtr = cache_dtr,
2626 	.map = cache_map,
2627 	.end_io = cache_end_io,
2628 	.postsuspend = cache_postsuspend,
2629 	.preresume = cache_preresume,
2630 	.resume = cache_resume,
2631 	.status = cache_status,
2632 	.message = cache_message,
2633 	.iterate_devices = cache_iterate_devices,
2634 	.merge = cache_bvec_merge,
2635 	.io_hints = cache_io_hints,
2636 };
2637 
2638 static int __init dm_cache_init(void)
2639 {
2640 	int r;
2641 
2642 	r = dm_register_target(&cache_target);
2643 	if (r) {
2644 		DMERR("cache target registration failed: %d", r);
2645 		return r;
2646 	}
2647 
2648 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2649 	if (!migration_cache) {
2650 		dm_unregister_target(&cache_target);
2651 		return -ENOMEM;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static void __exit dm_cache_exit(void)
2658 {
2659 	dm_unregister_target(&cache_target);
2660 	kmem_cache_destroy(migration_cache);
2661 }
2662 
2663 module_init(dm_cache_init);
2664 module_exit(dm_cache_exit);
2665 
2666 MODULE_DESCRIPTION(DM_NAME " cache target");
2667 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2668 MODULE_LICENSE("GPL");
2669