xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision eb3fcf00)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 	void *bi_private;
122 };
123 
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125 			bio_end_io_t *bi_end_io, void *bi_private)
126 {
127 	h->bi_end_io = bio->bi_end_io;
128 	h->bi_private = bio->bi_private;
129 
130 	bio->bi_end_io = bi_end_io;
131 	bio->bi_private = bi_private;
132 }
133 
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136 	bio->bi_end_io = h->bi_end_io;
137 	bio->bi_private = h->bi_private;
138 }
139 
140 /*----------------------------------------------------------------*/
141 
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145 
146 /*
147  * The block size of the device holding cache data must be
148  * between 32KB and 1GB.
149  */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152 
153 enum cache_metadata_mode {
154 	CM_WRITE,		/* metadata may be changed */
155 	CM_READ_ONLY,		/* metadata may not be changed */
156 	CM_FAIL
157 };
158 
159 enum cache_io_mode {
160 	/*
161 	 * Data is written to cached blocks only.  These blocks are marked
162 	 * dirty.  If you lose the cache device you will lose data.
163 	 * Potential performance increase for both reads and writes.
164 	 */
165 	CM_IO_WRITEBACK,
166 
167 	/*
168 	 * Data is written to both cache and origin.  Blocks are never
169 	 * dirty.  Potential performance benfit for reads only.
170 	 */
171 	CM_IO_WRITETHROUGH,
172 
173 	/*
174 	 * A degraded mode useful for various cache coherency situations
175 	 * (eg, rolling back snapshots).  Reads and writes always go to the
176 	 * origin.  If a write goes to a cached oblock, then the cache
177 	 * block is invalidated.
178 	 */
179 	CM_IO_PASSTHROUGH
180 };
181 
182 struct cache_features {
183 	enum cache_metadata_mode mode;
184 	enum cache_io_mode io_mode;
185 };
186 
187 struct cache_stats {
188 	atomic_t read_hit;
189 	atomic_t read_miss;
190 	atomic_t write_hit;
191 	atomic_t write_miss;
192 	atomic_t demotion;
193 	atomic_t promotion;
194 	atomic_t copies_avoided;
195 	atomic_t cache_cell_clash;
196 	atomic_t commit_count;
197 	atomic_t discard_count;
198 };
199 
200 /*
201  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
202  * the one-past-the-end value.
203  */
204 struct cblock_range {
205 	dm_cblock_t begin;
206 	dm_cblock_t end;
207 };
208 
209 struct invalidation_request {
210 	struct list_head list;
211 	struct cblock_range *cblocks;
212 
213 	atomic_t complete;
214 	int err;
215 
216 	wait_queue_head_t result_wait;
217 };
218 
219 struct cache {
220 	struct dm_target *ti;
221 	struct dm_target_callbacks callbacks;
222 
223 	struct dm_cache_metadata *cmd;
224 
225 	/*
226 	 * Metadata is written to this device.
227 	 */
228 	struct dm_dev *metadata_dev;
229 
230 	/*
231 	 * The slower of the two data devices.  Typically a spindle.
232 	 */
233 	struct dm_dev *origin_dev;
234 
235 	/*
236 	 * The faster of the two data devices.  Typically an SSD.
237 	 */
238 	struct dm_dev *cache_dev;
239 
240 	/*
241 	 * Size of the origin device in _complete_ blocks and native sectors.
242 	 */
243 	dm_oblock_t origin_blocks;
244 	sector_t origin_sectors;
245 
246 	/*
247 	 * Size of the cache device in blocks.
248 	 */
249 	dm_cblock_t cache_size;
250 
251 	/*
252 	 * Fields for converting from sectors to blocks.
253 	 */
254 	uint32_t sectors_per_block;
255 	int sectors_per_block_shift;
256 
257 	spinlock_t lock;
258 	struct list_head deferred_cells;
259 	struct bio_list deferred_bios;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_writethrough_bios;
262 	struct list_head quiesced_migrations;
263 	struct list_head completed_migrations;
264 	struct list_head need_commit_migrations;
265 	sector_t migration_threshold;
266 	wait_queue_head_t migration_wait;
267 	atomic_t nr_allocated_migrations;
268 
269 	/*
270 	 * The number of in flight migrations that are performing
271 	 * background io. eg, promotion, writeback.
272 	 */
273 	atomic_t nr_io_migrations;
274 
275 	wait_queue_head_t quiescing_wait;
276 	atomic_t quiescing;
277 	atomic_t quiescing_ack;
278 
279 	/*
280 	 * cache_size entries, dirty if set
281 	 */
282 	atomic_t nr_dirty;
283 	unsigned long *dirty_bitset;
284 
285 	/*
286 	 * origin_blocks entries, discarded if set.
287 	 */
288 	dm_dblock_t discard_nr_blocks;
289 	unsigned long *discard_bitset;
290 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
291 
292 	/*
293 	 * Rather than reconstructing the table line for the status we just
294 	 * save it and regurgitate.
295 	 */
296 	unsigned nr_ctr_args;
297 	const char **ctr_args;
298 
299 	struct dm_kcopyd_client *copier;
300 	struct workqueue_struct *wq;
301 	struct work_struct worker;
302 
303 	struct delayed_work waker;
304 	unsigned long last_commit_jiffies;
305 
306 	struct dm_bio_prison *prison;
307 	struct dm_deferred_set *all_io_ds;
308 
309 	mempool_t *migration_pool;
310 
311 	struct dm_cache_policy *policy;
312 	unsigned policy_nr_args;
313 
314 	bool need_tick_bio:1;
315 	bool sized:1;
316 	bool invalidate:1;
317 	bool commit_requested:1;
318 	bool loaded_mappings:1;
319 	bool loaded_discards:1;
320 
321 	/*
322 	 * Cache features such as write-through.
323 	 */
324 	struct cache_features features;
325 
326 	struct cache_stats stats;
327 
328 	/*
329 	 * Invalidation fields.
330 	 */
331 	spinlock_t invalidation_lock;
332 	struct list_head invalidation_requests;
333 
334 	struct io_tracker origin_tracker;
335 };
336 
337 struct per_bio_data {
338 	bool tick:1;
339 	unsigned req_nr:2;
340 	struct dm_deferred_entry *all_io_entry;
341 	struct dm_hook_info hook_info;
342 	sector_t len;
343 
344 	/*
345 	 * writethrough fields.  These MUST remain at the end of this
346 	 * structure and the 'cache' member must be the first as it
347 	 * is used to determine the offset of the writethrough fields.
348 	 */
349 	struct cache *cache;
350 	dm_cblock_t cblock;
351 	struct dm_bio_details bio_details;
352 };
353 
354 struct dm_cache_migration {
355 	struct list_head list;
356 	struct cache *cache;
357 
358 	unsigned long start_jiffies;
359 	dm_oblock_t old_oblock;
360 	dm_oblock_t new_oblock;
361 	dm_cblock_t cblock;
362 
363 	bool err:1;
364 	bool discard:1;
365 	bool writeback:1;
366 	bool demote:1;
367 	bool promote:1;
368 	bool requeue_holder:1;
369 	bool invalidate:1;
370 
371 	struct dm_bio_prison_cell *old_ocell;
372 	struct dm_bio_prison_cell *new_ocell;
373 };
374 
375 /*
376  * Processing a bio in the worker thread may require these memory
377  * allocations.  We prealloc to avoid deadlocks (the same worker thread
378  * frees them back to the mempool).
379  */
380 struct prealloc {
381 	struct dm_cache_migration *mg;
382 	struct dm_bio_prison_cell *cell1;
383 	struct dm_bio_prison_cell *cell2;
384 };
385 
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387 
388 static void wake_worker(struct cache *cache)
389 {
390 	queue_work(cache->wq, &cache->worker);
391 }
392 
393 /*----------------------------------------------------------------*/
394 
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397 	/* FIXME: change to use a local slab. */
398 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400 
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403 	dm_bio_prison_free_cell(cache->prison, cell);
404 }
405 
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408 	struct dm_cache_migration *mg;
409 
410 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411 	if (mg) {
412 		mg->cache = cache;
413 		atomic_inc(&mg->cache->nr_allocated_migrations);
414 	}
415 
416 	return mg;
417 }
418 
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421 	struct cache *cache = mg->cache;
422 
423 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424 		wake_up(&cache->migration_wait);
425 
426 	mempool_free(mg, cache->migration_pool);
427 }
428 
429 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
430 {
431 	if (!p->mg) {
432 		p->mg = alloc_migration(cache);
433 		if (!p->mg)
434 			return -ENOMEM;
435 	}
436 
437 	if (!p->cell1) {
438 		p->cell1 = alloc_prison_cell(cache);
439 		if (!p->cell1)
440 			return -ENOMEM;
441 	}
442 
443 	if (!p->cell2) {
444 		p->cell2 = alloc_prison_cell(cache);
445 		if (!p->cell2)
446 			return -ENOMEM;
447 	}
448 
449 	return 0;
450 }
451 
452 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
453 {
454 	if (p->cell2)
455 		free_prison_cell(cache, p->cell2);
456 
457 	if (p->cell1)
458 		free_prison_cell(cache, p->cell1);
459 
460 	if (p->mg)
461 		free_migration(p->mg);
462 }
463 
464 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
465 {
466 	struct dm_cache_migration *mg = p->mg;
467 
468 	BUG_ON(!mg);
469 	p->mg = NULL;
470 
471 	return mg;
472 }
473 
474 /*
475  * You must have a cell within the prealloc struct to return.  If not this
476  * function will BUG() rather than returning NULL.
477  */
478 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
479 {
480 	struct dm_bio_prison_cell *r = NULL;
481 
482 	if (p->cell1) {
483 		r = p->cell1;
484 		p->cell1 = NULL;
485 
486 	} else if (p->cell2) {
487 		r = p->cell2;
488 		p->cell2 = NULL;
489 	} else
490 		BUG();
491 
492 	return r;
493 }
494 
495 /*
496  * You can't have more than two cells in a prealloc struct.  BUG() will be
497  * called if you try and overfill.
498  */
499 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
500 {
501 	if (!p->cell2)
502 		p->cell2 = cell;
503 
504 	else if (!p->cell1)
505 		p->cell1 = cell;
506 
507 	else
508 		BUG();
509 }
510 
511 /*----------------------------------------------------------------*/
512 
513 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
514 {
515 	key->virtual = 0;
516 	key->dev = 0;
517 	key->block_begin = from_oblock(begin);
518 	key->block_end = from_oblock(end);
519 }
520 
521 /*
522  * The caller hands in a preallocated cell, and a free function for it.
523  * The cell will be freed if there's an error, or if it wasn't used because
524  * a cell with that key already exists.
525  */
526 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
527 
528 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
529 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
530 			    cell_free_fn free_fn, void *free_context,
531 			    struct dm_bio_prison_cell **cell_result)
532 {
533 	int r;
534 	struct dm_cell_key key;
535 
536 	build_key(oblock_begin, oblock_end, &key);
537 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
538 	if (r)
539 		free_fn(free_context, cell_prealloc);
540 
541 	return r;
542 }
543 
544 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
545 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
546 		      cell_free_fn free_fn, void *free_context,
547 		      struct dm_bio_prison_cell **cell_result)
548 {
549 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
550 	return bio_detain_range(cache, oblock, end, bio,
551 				cell_prealloc, free_fn, free_context, cell_result);
552 }
553 
554 static int get_cell(struct cache *cache,
555 		    dm_oblock_t oblock,
556 		    struct prealloc *structs,
557 		    struct dm_bio_prison_cell **cell_result)
558 {
559 	int r;
560 	struct dm_cell_key key;
561 	struct dm_bio_prison_cell *cell_prealloc;
562 
563 	cell_prealloc = prealloc_get_cell(structs);
564 
565 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
566 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
567 	if (r)
568 		prealloc_put_cell(structs, cell_prealloc);
569 
570 	return r;
571 }
572 
573 /*----------------------------------------------------------------*/
574 
575 static bool is_dirty(struct cache *cache, dm_cblock_t b)
576 {
577 	return test_bit(from_cblock(b), cache->dirty_bitset);
578 }
579 
580 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
581 {
582 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
583 		atomic_inc(&cache->nr_dirty);
584 		policy_set_dirty(cache->policy, oblock);
585 	}
586 }
587 
588 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
589 {
590 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
591 		policy_clear_dirty(cache->policy, oblock);
592 		if (atomic_dec_return(&cache->nr_dirty) == 0)
593 			dm_table_event(cache->ti->table);
594 	}
595 }
596 
597 /*----------------------------------------------------------------*/
598 
599 static bool block_size_is_power_of_two(struct cache *cache)
600 {
601 	return cache->sectors_per_block_shift >= 0;
602 }
603 
604 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
605 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
606 __always_inline
607 #endif
608 static dm_block_t block_div(dm_block_t b, uint32_t n)
609 {
610 	do_div(b, n);
611 
612 	return b;
613 }
614 
615 static dm_block_t oblocks_per_dblock(struct cache *cache)
616 {
617 	dm_block_t oblocks = cache->discard_block_size;
618 
619 	if (block_size_is_power_of_two(cache))
620 		oblocks >>= cache->sectors_per_block_shift;
621 	else
622 		oblocks = block_div(oblocks, cache->sectors_per_block);
623 
624 	return oblocks;
625 }
626 
627 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
628 {
629 	return to_dblock(block_div(from_oblock(oblock),
630 				   oblocks_per_dblock(cache)));
631 }
632 
633 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
634 {
635 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
636 }
637 
638 static void set_discard(struct cache *cache, dm_dblock_t b)
639 {
640 	unsigned long flags;
641 
642 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
643 	atomic_inc(&cache->stats.discard_count);
644 
645 	spin_lock_irqsave(&cache->lock, flags);
646 	set_bit(from_dblock(b), cache->discard_bitset);
647 	spin_unlock_irqrestore(&cache->lock, flags);
648 }
649 
650 static void clear_discard(struct cache *cache, dm_dblock_t b)
651 {
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&cache->lock, flags);
655 	clear_bit(from_dblock(b), cache->discard_bitset);
656 	spin_unlock_irqrestore(&cache->lock, flags);
657 }
658 
659 static bool is_discarded(struct cache *cache, dm_dblock_t b)
660 {
661 	int r;
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&cache->lock, flags);
665 	r = test_bit(from_dblock(b), cache->discard_bitset);
666 	spin_unlock_irqrestore(&cache->lock, flags);
667 
668 	return r;
669 }
670 
671 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
672 {
673 	int r;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&cache->lock, flags);
677 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
678 		     cache->discard_bitset);
679 	spin_unlock_irqrestore(&cache->lock, flags);
680 
681 	return r;
682 }
683 
684 /*----------------------------------------------------------------*/
685 
686 static void load_stats(struct cache *cache)
687 {
688 	struct dm_cache_statistics stats;
689 
690 	dm_cache_metadata_get_stats(cache->cmd, &stats);
691 	atomic_set(&cache->stats.read_hit, stats.read_hits);
692 	atomic_set(&cache->stats.read_miss, stats.read_misses);
693 	atomic_set(&cache->stats.write_hit, stats.write_hits);
694 	atomic_set(&cache->stats.write_miss, stats.write_misses);
695 }
696 
697 static void save_stats(struct cache *cache)
698 {
699 	struct dm_cache_statistics stats;
700 
701 	if (get_cache_mode(cache) >= CM_READ_ONLY)
702 		return;
703 
704 	stats.read_hits = atomic_read(&cache->stats.read_hit);
705 	stats.read_misses = atomic_read(&cache->stats.read_miss);
706 	stats.write_hits = atomic_read(&cache->stats.write_hit);
707 	stats.write_misses = atomic_read(&cache->stats.write_miss);
708 
709 	dm_cache_metadata_set_stats(cache->cmd, &stats);
710 }
711 
712 /*----------------------------------------------------------------
713  * Per bio data
714  *--------------------------------------------------------------*/
715 
716 /*
717  * If using writeback, leave out struct per_bio_data's writethrough fields.
718  */
719 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
720 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
721 
722 static bool writethrough_mode(struct cache_features *f)
723 {
724 	return f->io_mode == CM_IO_WRITETHROUGH;
725 }
726 
727 static bool writeback_mode(struct cache_features *f)
728 {
729 	return f->io_mode == CM_IO_WRITEBACK;
730 }
731 
732 static bool passthrough_mode(struct cache_features *f)
733 {
734 	return f->io_mode == CM_IO_PASSTHROUGH;
735 }
736 
737 static size_t get_per_bio_data_size(struct cache *cache)
738 {
739 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
740 }
741 
742 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
743 {
744 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
745 	BUG_ON(!pb);
746 	return pb;
747 }
748 
749 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
750 {
751 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
752 
753 	pb->tick = false;
754 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
755 	pb->all_io_entry = NULL;
756 	pb->len = 0;
757 
758 	return pb;
759 }
760 
761 /*----------------------------------------------------------------
762  * Remapping
763  *--------------------------------------------------------------*/
764 static void remap_to_origin(struct cache *cache, struct bio *bio)
765 {
766 	bio->bi_bdev = cache->origin_dev->bdev;
767 }
768 
769 static void remap_to_cache(struct cache *cache, struct bio *bio,
770 			   dm_cblock_t cblock)
771 {
772 	sector_t bi_sector = bio->bi_iter.bi_sector;
773 	sector_t block = from_cblock(cblock);
774 
775 	bio->bi_bdev = cache->cache_dev->bdev;
776 	if (!block_size_is_power_of_two(cache))
777 		bio->bi_iter.bi_sector =
778 			(block * cache->sectors_per_block) +
779 			sector_div(bi_sector, cache->sectors_per_block);
780 	else
781 		bio->bi_iter.bi_sector =
782 			(block << cache->sectors_per_block_shift) |
783 			(bi_sector & (cache->sectors_per_block - 1));
784 }
785 
786 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
787 {
788 	unsigned long flags;
789 	size_t pb_data_size = get_per_bio_data_size(cache);
790 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
791 
792 	spin_lock_irqsave(&cache->lock, flags);
793 	if (cache->need_tick_bio &&
794 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
795 		pb->tick = true;
796 		cache->need_tick_bio = false;
797 	}
798 	spin_unlock_irqrestore(&cache->lock, flags);
799 }
800 
801 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
802 				  dm_oblock_t oblock)
803 {
804 	check_if_tick_bio_needed(cache, bio);
805 	remap_to_origin(cache, bio);
806 	if (bio_data_dir(bio) == WRITE)
807 		clear_discard(cache, oblock_to_dblock(cache, oblock));
808 }
809 
810 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
811 				 dm_oblock_t oblock, dm_cblock_t cblock)
812 {
813 	check_if_tick_bio_needed(cache, bio);
814 	remap_to_cache(cache, bio, cblock);
815 	if (bio_data_dir(bio) == WRITE) {
816 		set_dirty(cache, oblock, cblock);
817 		clear_discard(cache, oblock_to_dblock(cache, oblock));
818 	}
819 }
820 
821 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
822 {
823 	sector_t block_nr = bio->bi_iter.bi_sector;
824 
825 	if (!block_size_is_power_of_two(cache))
826 		(void) sector_div(block_nr, cache->sectors_per_block);
827 	else
828 		block_nr >>= cache->sectors_per_block_shift;
829 
830 	return to_oblock(block_nr);
831 }
832 
833 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
834 {
835 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
836 }
837 
838 /*
839  * You must increment the deferred set whilst the prison cell is held.  To
840  * encourage this, we ask for 'cell' to be passed in.
841  */
842 static void inc_ds(struct cache *cache, struct bio *bio,
843 		   struct dm_bio_prison_cell *cell)
844 {
845 	size_t pb_data_size = get_per_bio_data_size(cache);
846 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
847 
848 	BUG_ON(!cell);
849 	BUG_ON(pb->all_io_entry);
850 
851 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
852 }
853 
854 static bool accountable_bio(struct cache *cache, struct bio *bio)
855 {
856 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
857 		!(bio->bi_rw & REQ_DISCARD));
858 }
859 
860 static void accounted_begin(struct cache *cache, struct bio *bio)
861 {
862 	size_t pb_data_size = get_per_bio_data_size(cache);
863 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
864 
865 	if (accountable_bio(cache, bio)) {
866 		pb->len = bio_sectors(bio);
867 		iot_io_begin(&cache->origin_tracker, pb->len);
868 	}
869 }
870 
871 static void accounted_complete(struct cache *cache, struct bio *bio)
872 {
873 	size_t pb_data_size = get_per_bio_data_size(cache);
874 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
875 
876 	iot_io_end(&cache->origin_tracker, pb->len);
877 }
878 
879 static void accounted_request(struct cache *cache, struct bio *bio)
880 {
881 	accounted_begin(cache, bio);
882 	generic_make_request(bio);
883 }
884 
885 static void issue(struct cache *cache, struct bio *bio)
886 {
887 	unsigned long flags;
888 
889 	if (!bio_triggers_commit(cache, bio)) {
890 		accounted_request(cache, bio);
891 		return;
892 	}
893 
894 	/*
895 	 * Batch together any bios that trigger commits and then issue a
896 	 * single commit for them in do_worker().
897 	 */
898 	spin_lock_irqsave(&cache->lock, flags);
899 	cache->commit_requested = true;
900 	bio_list_add(&cache->deferred_flush_bios, bio);
901 	spin_unlock_irqrestore(&cache->lock, flags);
902 }
903 
904 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
905 {
906 	inc_ds(cache, bio, cell);
907 	issue(cache, bio);
908 }
909 
910 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
911 {
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&cache->lock, flags);
915 	bio_list_add(&cache->deferred_writethrough_bios, bio);
916 	spin_unlock_irqrestore(&cache->lock, flags);
917 
918 	wake_worker(cache);
919 }
920 
921 static void writethrough_endio(struct bio *bio)
922 {
923 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
924 
925 	dm_unhook_bio(&pb->hook_info, bio);
926 
927 	if (bio->bi_error) {
928 		bio_endio(bio);
929 		return;
930 	}
931 
932 	dm_bio_restore(&pb->bio_details, bio);
933 	remap_to_cache(pb->cache, bio, pb->cblock);
934 
935 	/*
936 	 * We can't issue this bio directly, since we're in interrupt
937 	 * context.  So it gets put on a bio list for processing by the
938 	 * worker thread.
939 	 */
940 	defer_writethrough_bio(pb->cache, bio);
941 }
942 
943 /*
944  * When running in writethrough mode we need to send writes to clean blocks
945  * to both the cache and origin devices.  In future we'd like to clone the
946  * bio and send them in parallel, but for now we're doing them in
947  * series as this is easier.
948  */
949 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
950 				       dm_oblock_t oblock, dm_cblock_t cblock)
951 {
952 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
953 
954 	pb->cache = cache;
955 	pb->cblock = cblock;
956 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
957 	dm_bio_record(&pb->bio_details, bio);
958 
959 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
960 }
961 
962 /*----------------------------------------------------------------
963  * Failure modes
964  *--------------------------------------------------------------*/
965 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
966 {
967 	return cache->features.mode;
968 }
969 
970 static const char *cache_device_name(struct cache *cache)
971 {
972 	return dm_device_name(dm_table_get_md(cache->ti->table));
973 }
974 
975 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
976 {
977 	const char *descs[] = {
978 		"write",
979 		"read-only",
980 		"fail"
981 	};
982 
983 	dm_table_event(cache->ti->table);
984 	DMINFO("%s: switching cache to %s mode",
985 	       cache_device_name(cache), descs[(int)mode]);
986 }
987 
988 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
989 {
990 	bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
991 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
992 
993 	if (new_mode == CM_WRITE && needs_check) {
994 		DMERR("%s: unable to switch cache to write mode until repaired.",
995 		      cache_device_name(cache));
996 		if (old_mode != new_mode)
997 			new_mode = old_mode;
998 		else
999 			new_mode = CM_READ_ONLY;
1000 	}
1001 
1002 	/* Never move out of fail mode */
1003 	if (old_mode == CM_FAIL)
1004 		new_mode = CM_FAIL;
1005 
1006 	switch (new_mode) {
1007 	case CM_FAIL:
1008 	case CM_READ_ONLY:
1009 		dm_cache_metadata_set_read_only(cache->cmd);
1010 		break;
1011 
1012 	case CM_WRITE:
1013 		dm_cache_metadata_set_read_write(cache->cmd);
1014 		break;
1015 	}
1016 
1017 	cache->features.mode = new_mode;
1018 
1019 	if (new_mode != old_mode)
1020 		notify_mode_switch(cache, new_mode);
1021 }
1022 
1023 static void abort_transaction(struct cache *cache)
1024 {
1025 	const char *dev_name = cache_device_name(cache);
1026 
1027 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1028 		return;
1029 
1030 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1031 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1032 		set_cache_mode(cache, CM_FAIL);
1033 	}
1034 
1035 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1036 	if (dm_cache_metadata_abort(cache->cmd)) {
1037 		DMERR("%s: failed to abort metadata transaction", dev_name);
1038 		set_cache_mode(cache, CM_FAIL);
1039 	}
1040 }
1041 
1042 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1043 {
1044 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1045 		    cache_device_name(cache), op, r);
1046 	abort_transaction(cache);
1047 	set_cache_mode(cache, CM_READ_ONLY);
1048 }
1049 
1050 /*----------------------------------------------------------------
1051  * Migration processing
1052  *
1053  * Migration covers moving data from the origin device to the cache, or
1054  * vice versa.
1055  *--------------------------------------------------------------*/
1056 static void inc_io_migrations(struct cache *cache)
1057 {
1058 	atomic_inc(&cache->nr_io_migrations);
1059 }
1060 
1061 static void dec_io_migrations(struct cache *cache)
1062 {
1063 	atomic_dec(&cache->nr_io_migrations);
1064 }
1065 
1066 static bool discard_or_flush(struct bio *bio)
1067 {
1068 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1069 }
1070 
1071 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1072 {
1073 	if (discard_or_flush(cell->holder)) {
1074 		/*
1075 		 * We have to handle these bios individually.
1076 		 */
1077 		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1078 		free_prison_cell(cache, cell);
1079 	} else
1080 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1081 }
1082 
1083 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1084 {
1085 	unsigned long flags;
1086 
1087 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1088 		/*
1089 		 * There was no prisoner to promote to holder, the
1090 		 * cell has been released.
1091 		 */
1092 		free_prison_cell(cache, cell);
1093 		return;
1094 	}
1095 
1096 	spin_lock_irqsave(&cache->lock, flags);
1097 	__cell_defer(cache, cell);
1098 	spin_unlock_irqrestore(&cache->lock, flags);
1099 
1100 	wake_worker(cache);
1101 }
1102 
1103 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1104 {
1105 	dm_cell_error(cache->prison, cell, err);
1106 	free_prison_cell(cache, cell);
1107 }
1108 
1109 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1110 {
1111 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1112 }
1113 
1114 static void free_io_migration(struct dm_cache_migration *mg)
1115 {
1116 	struct cache *cache = mg->cache;
1117 
1118 	dec_io_migrations(cache);
1119 	free_migration(mg);
1120 	wake_worker(cache);
1121 }
1122 
1123 static void migration_failure(struct dm_cache_migration *mg)
1124 {
1125 	struct cache *cache = mg->cache;
1126 	const char *dev_name = cache_device_name(cache);
1127 
1128 	if (mg->writeback) {
1129 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1130 		set_dirty(cache, mg->old_oblock, mg->cblock);
1131 		cell_defer(cache, mg->old_ocell, false);
1132 
1133 	} else if (mg->demote) {
1134 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1135 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1136 
1137 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1138 		if (mg->promote)
1139 			cell_defer(cache, mg->new_ocell, true);
1140 	} else {
1141 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1142 		policy_remove_mapping(cache->policy, mg->new_oblock);
1143 		cell_defer(cache, mg->new_ocell, true);
1144 	}
1145 
1146 	free_io_migration(mg);
1147 }
1148 
1149 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1150 {
1151 	int r;
1152 	unsigned long flags;
1153 	struct cache *cache = mg->cache;
1154 
1155 	if (mg->writeback) {
1156 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1157 		cell_defer(cache, mg->old_ocell, false);
1158 		free_io_migration(mg);
1159 		return;
1160 
1161 	} else if (mg->demote) {
1162 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1163 		if (r) {
1164 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1165 				    cache_device_name(cache));
1166 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1167 			policy_force_mapping(cache->policy, mg->new_oblock,
1168 					     mg->old_oblock);
1169 			if (mg->promote)
1170 				cell_defer(cache, mg->new_ocell, true);
1171 			free_io_migration(mg);
1172 			return;
1173 		}
1174 	} else {
1175 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1176 		if (r) {
1177 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1178 				    cache_device_name(cache));
1179 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1180 			policy_remove_mapping(cache->policy, mg->new_oblock);
1181 			free_io_migration(mg);
1182 			return;
1183 		}
1184 	}
1185 
1186 	spin_lock_irqsave(&cache->lock, flags);
1187 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1188 	cache->commit_requested = true;
1189 	spin_unlock_irqrestore(&cache->lock, flags);
1190 }
1191 
1192 static void migration_success_post_commit(struct dm_cache_migration *mg)
1193 {
1194 	unsigned long flags;
1195 	struct cache *cache = mg->cache;
1196 
1197 	if (mg->writeback) {
1198 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1199 			     cache_device_name(cache));
1200 		return;
1201 
1202 	} else if (mg->demote) {
1203 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1204 
1205 		if (mg->promote) {
1206 			mg->demote = false;
1207 
1208 			spin_lock_irqsave(&cache->lock, flags);
1209 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1210 			spin_unlock_irqrestore(&cache->lock, flags);
1211 
1212 		} else {
1213 			if (mg->invalidate)
1214 				policy_remove_mapping(cache->policy, mg->old_oblock);
1215 			free_io_migration(mg);
1216 		}
1217 
1218 	} else {
1219 		if (mg->requeue_holder) {
1220 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1221 			cell_defer(cache, mg->new_ocell, true);
1222 		} else {
1223 			/*
1224 			 * The block was promoted via an overwrite, so it's dirty.
1225 			 */
1226 			set_dirty(cache, mg->new_oblock, mg->cblock);
1227 			bio_endio(mg->new_ocell->holder);
1228 			cell_defer(cache, mg->new_ocell, false);
1229 		}
1230 		free_io_migration(mg);
1231 	}
1232 }
1233 
1234 static void copy_complete(int read_err, unsigned long write_err, void *context)
1235 {
1236 	unsigned long flags;
1237 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1238 	struct cache *cache = mg->cache;
1239 
1240 	if (read_err || write_err)
1241 		mg->err = true;
1242 
1243 	spin_lock_irqsave(&cache->lock, flags);
1244 	list_add_tail(&mg->list, &cache->completed_migrations);
1245 	spin_unlock_irqrestore(&cache->lock, flags);
1246 
1247 	wake_worker(cache);
1248 }
1249 
1250 static void issue_copy(struct dm_cache_migration *mg)
1251 {
1252 	int r;
1253 	struct dm_io_region o_region, c_region;
1254 	struct cache *cache = mg->cache;
1255 	sector_t cblock = from_cblock(mg->cblock);
1256 
1257 	o_region.bdev = cache->origin_dev->bdev;
1258 	o_region.count = cache->sectors_per_block;
1259 
1260 	c_region.bdev = cache->cache_dev->bdev;
1261 	c_region.sector = cblock * cache->sectors_per_block;
1262 	c_region.count = cache->sectors_per_block;
1263 
1264 	if (mg->writeback || mg->demote) {
1265 		/* demote */
1266 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1267 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1268 	} else {
1269 		/* promote */
1270 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1271 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1272 	}
1273 
1274 	if (r < 0) {
1275 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1276 		migration_failure(mg);
1277 	}
1278 }
1279 
1280 static void overwrite_endio(struct bio *bio)
1281 {
1282 	struct dm_cache_migration *mg = bio->bi_private;
1283 	struct cache *cache = mg->cache;
1284 	size_t pb_data_size = get_per_bio_data_size(cache);
1285 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1286 	unsigned long flags;
1287 
1288 	dm_unhook_bio(&pb->hook_info, bio);
1289 
1290 	if (bio->bi_error)
1291 		mg->err = true;
1292 
1293 	mg->requeue_holder = false;
1294 
1295 	spin_lock_irqsave(&cache->lock, flags);
1296 	list_add_tail(&mg->list, &cache->completed_migrations);
1297 	spin_unlock_irqrestore(&cache->lock, flags);
1298 
1299 	wake_worker(cache);
1300 }
1301 
1302 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1303 {
1304 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1305 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1306 
1307 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1308 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1309 
1310 	/*
1311 	 * No need to inc_ds() here, since the cell will be held for the
1312 	 * duration of the io.
1313 	 */
1314 	accounted_request(mg->cache, bio);
1315 }
1316 
1317 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1318 {
1319 	return (bio_data_dir(bio) == WRITE) &&
1320 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1321 }
1322 
1323 static void avoid_copy(struct dm_cache_migration *mg)
1324 {
1325 	atomic_inc(&mg->cache->stats.copies_avoided);
1326 	migration_success_pre_commit(mg);
1327 }
1328 
1329 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1330 				     dm_dblock_t *b, dm_dblock_t *e)
1331 {
1332 	sector_t sb = bio->bi_iter.bi_sector;
1333 	sector_t se = bio_end_sector(bio);
1334 
1335 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1336 
1337 	if (se - sb < cache->discard_block_size)
1338 		*e = *b;
1339 	else
1340 		*e = to_dblock(block_div(se, cache->discard_block_size));
1341 }
1342 
1343 static void issue_discard(struct dm_cache_migration *mg)
1344 {
1345 	dm_dblock_t b, e;
1346 	struct bio *bio = mg->new_ocell->holder;
1347 	struct cache *cache = mg->cache;
1348 
1349 	calc_discard_block_range(cache, bio, &b, &e);
1350 	while (b != e) {
1351 		set_discard(cache, b);
1352 		b = to_dblock(from_dblock(b) + 1);
1353 	}
1354 
1355 	bio_endio(bio);
1356 	cell_defer(cache, mg->new_ocell, false);
1357 	free_migration(mg);
1358 	wake_worker(cache);
1359 }
1360 
1361 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1362 {
1363 	bool avoid;
1364 	struct cache *cache = mg->cache;
1365 
1366 	if (mg->discard) {
1367 		issue_discard(mg);
1368 		return;
1369 	}
1370 
1371 	if (mg->writeback || mg->demote)
1372 		avoid = !is_dirty(cache, mg->cblock) ||
1373 			is_discarded_oblock(cache, mg->old_oblock);
1374 	else {
1375 		struct bio *bio = mg->new_ocell->holder;
1376 
1377 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1378 
1379 		if (writeback_mode(&cache->features) &&
1380 		    !avoid && bio_writes_complete_block(cache, bio)) {
1381 			issue_overwrite(mg, bio);
1382 			return;
1383 		}
1384 	}
1385 
1386 	avoid ? avoid_copy(mg) : issue_copy(mg);
1387 }
1388 
1389 static void complete_migration(struct dm_cache_migration *mg)
1390 {
1391 	if (mg->err)
1392 		migration_failure(mg);
1393 	else
1394 		migration_success_pre_commit(mg);
1395 }
1396 
1397 static void process_migrations(struct cache *cache, struct list_head *head,
1398 			       void (*fn)(struct dm_cache_migration *))
1399 {
1400 	unsigned long flags;
1401 	struct list_head list;
1402 	struct dm_cache_migration *mg, *tmp;
1403 
1404 	INIT_LIST_HEAD(&list);
1405 	spin_lock_irqsave(&cache->lock, flags);
1406 	list_splice_init(head, &list);
1407 	spin_unlock_irqrestore(&cache->lock, flags);
1408 
1409 	list_for_each_entry_safe(mg, tmp, &list, list)
1410 		fn(mg);
1411 }
1412 
1413 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1414 {
1415 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1416 }
1417 
1418 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1419 {
1420 	unsigned long flags;
1421 	struct cache *cache = mg->cache;
1422 
1423 	spin_lock_irqsave(&cache->lock, flags);
1424 	__queue_quiesced_migration(mg);
1425 	spin_unlock_irqrestore(&cache->lock, flags);
1426 
1427 	wake_worker(cache);
1428 }
1429 
1430 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1431 {
1432 	unsigned long flags;
1433 	struct dm_cache_migration *mg, *tmp;
1434 
1435 	spin_lock_irqsave(&cache->lock, flags);
1436 	list_for_each_entry_safe(mg, tmp, work, list)
1437 		__queue_quiesced_migration(mg);
1438 	spin_unlock_irqrestore(&cache->lock, flags);
1439 
1440 	wake_worker(cache);
1441 }
1442 
1443 static void check_for_quiesced_migrations(struct cache *cache,
1444 					  struct per_bio_data *pb)
1445 {
1446 	struct list_head work;
1447 
1448 	if (!pb->all_io_entry)
1449 		return;
1450 
1451 	INIT_LIST_HEAD(&work);
1452 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1453 
1454 	if (!list_empty(&work))
1455 		queue_quiesced_migrations(cache, &work);
1456 }
1457 
1458 static void quiesce_migration(struct dm_cache_migration *mg)
1459 {
1460 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1461 		queue_quiesced_migration(mg);
1462 }
1463 
1464 static void promote(struct cache *cache, struct prealloc *structs,
1465 		    dm_oblock_t oblock, dm_cblock_t cblock,
1466 		    struct dm_bio_prison_cell *cell)
1467 {
1468 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1469 
1470 	mg->err = false;
1471 	mg->discard = false;
1472 	mg->writeback = false;
1473 	mg->demote = false;
1474 	mg->promote = true;
1475 	mg->requeue_holder = true;
1476 	mg->invalidate = false;
1477 	mg->cache = cache;
1478 	mg->new_oblock = oblock;
1479 	mg->cblock = cblock;
1480 	mg->old_ocell = NULL;
1481 	mg->new_ocell = cell;
1482 	mg->start_jiffies = jiffies;
1483 
1484 	inc_io_migrations(cache);
1485 	quiesce_migration(mg);
1486 }
1487 
1488 static void writeback(struct cache *cache, struct prealloc *structs,
1489 		      dm_oblock_t oblock, dm_cblock_t cblock,
1490 		      struct dm_bio_prison_cell *cell)
1491 {
1492 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1493 
1494 	mg->err = false;
1495 	mg->discard = false;
1496 	mg->writeback = true;
1497 	mg->demote = false;
1498 	mg->promote = false;
1499 	mg->requeue_holder = true;
1500 	mg->invalidate = false;
1501 	mg->cache = cache;
1502 	mg->old_oblock = oblock;
1503 	mg->cblock = cblock;
1504 	mg->old_ocell = cell;
1505 	mg->new_ocell = NULL;
1506 	mg->start_jiffies = jiffies;
1507 
1508 	inc_io_migrations(cache);
1509 	quiesce_migration(mg);
1510 }
1511 
1512 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1513 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1514 				dm_cblock_t cblock,
1515 				struct dm_bio_prison_cell *old_ocell,
1516 				struct dm_bio_prison_cell *new_ocell)
1517 {
1518 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1519 
1520 	mg->err = false;
1521 	mg->discard = false;
1522 	mg->writeback = false;
1523 	mg->demote = true;
1524 	mg->promote = true;
1525 	mg->requeue_holder = true;
1526 	mg->invalidate = false;
1527 	mg->cache = cache;
1528 	mg->old_oblock = old_oblock;
1529 	mg->new_oblock = new_oblock;
1530 	mg->cblock = cblock;
1531 	mg->old_ocell = old_ocell;
1532 	mg->new_ocell = new_ocell;
1533 	mg->start_jiffies = jiffies;
1534 
1535 	inc_io_migrations(cache);
1536 	quiesce_migration(mg);
1537 }
1538 
1539 /*
1540  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1541  * block are thrown away.
1542  */
1543 static void invalidate(struct cache *cache, struct prealloc *structs,
1544 		       dm_oblock_t oblock, dm_cblock_t cblock,
1545 		       struct dm_bio_prison_cell *cell)
1546 {
1547 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1548 
1549 	mg->err = false;
1550 	mg->discard = false;
1551 	mg->writeback = false;
1552 	mg->demote = true;
1553 	mg->promote = false;
1554 	mg->requeue_holder = true;
1555 	mg->invalidate = true;
1556 	mg->cache = cache;
1557 	mg->old_oblock = oblock;
1558 	mg->cblock = cblock;
1559 	mg->old_ocell = cell;
1560 	mg->new_ocell = NULL;
1561 	mg->start_jiffies = jiffies;
1562 
1563 	inc_io_migrations(cache);
1564 	quiesce_migration(mg);
1565 }
1566 
1567 static void discard(struct cache *cache, struct prealloc *structs,
1568 		    struct dm_bio_prison_cell *cell)
1569 {
1570 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1571 
1572 	mg->err = false;
1573 	mg->discard = true;
1574 	mg->writeback = false;
1575 	mg->demote = false;
1576 	mg->promote = false;
1577 	mg->requeue_holder = false;
1578 	mg->invalidate = false;
1579 	mg->cache = cache;
1580 	mg->old_ocell = NULL;
1581 	mg->new_ocell = cell;
1582 	mg->start_jiffies = jiffies;
1583 
1584 	quiesce_migration(mg);
1585 }
1586 
1587 /*----------------------------------------------------------------
1588  * bio processing
1589  *--------------------------------------------------------------*/
1590 static void defer_bio(struct cache *cache, struct bio *bio)
1591 {
1592 	unsigned long flags;
1593 
1594 	spin_lock_irqsave(&cache->lock, flags);
1595 	bio_list_add(&cache->deferred_bios, bio);
1596 	spin_unlock_irqrestore(&cache->lock, flags);
1597 
1598 	wake_worker(cache);
1599 }
1600 
1601 static void process_flush_bio(struct cache *cache, struct bio *bio)
1602 {
1603 	size_t pb_data_size = get_per_bio_data_size(cache);
1604 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1605 
1606 	BUG_ON(bio->bi_iter.bi_size);
1607 	if (!pb->req_nr)
1608 		remap_to_origin(cache, bio);
1609 	else
1610 		remap_to_cache(cache, bio, 0);
1611 
1612 	/*
1613 	 * REQ_FLUSH is not directed at any particular block so we don't
1614 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1615 	 * by dm-core.
1616 	 */
1617 	issue(cache, bio);
1618 }
1619 
1620 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1621 				struct bio *bio)
1622 {
1623 	int r;
1624 	dm_dblock_t b, e;
1625 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1626 
1627 	calc_discard_block_range(cache, bio, &b, &e);
1628 	if (b == e) {
1629 		bio_endio(bio);
1630 		return;
1631 	}
1632 
1633 	cell_prealloc = prealloc_get_cell(structs);
1634 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1635 			     (cell_free_fn) prealloc_put_cell,
1636 			     structs, &new_ocell);
1637 	if (r > 0)
1638 		return;
1639 
1640 	discard(cache, structs, new_ocell);
1641 }
1642 
1643 static bool spare_migration_bandwidth(struct cache *cache)
1644 {
1645 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1646 		cache->sectors_per_block;
1647 	return current_volume < cache->migration_threshold;
1648 }
1649 
1650 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1651 {
1652 	atomic_inc(bio_data_dir(bio) == READ ?
1653 		   &cache->stats.read_hit : &cache->stats.write_hit);
1654 }
1655 
1656 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1657 {
1658 	atomic_inc(bio_data_dir(bio) == READ ?
1659 		   &cache->stats.read_miss : &cache->stats.write_miss);
1660 }
1661 
1662 /*----------------------------------------------------------------*/
1663 
1664 struct inc_detail {
1665 	struct cache *cache;
1666 	struct bio_list bios_for_issue;
1667 	struct bio_list unhandled_bios;
1668 	bool any_writes;
1669 };
1670 
1671 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1672 {
1673 	struct bio *bio;
1674 	struct inc_detail *detail = context;
1675 	struct cache *cache = detail->cache;
1676 
1677 	inc_ds(cache, cell->holder, cell);
1678 	if (bio_data_dir(cell->holder) == WRITE)
1679 		detail->any_writes = true;
1680 
1681 	while ((bio = bio_list_pop(&cell->bios))) {
1682 		if (discard_or_flush(bio)) {
1683 			bio_list_add(&detail->unhandled_bios, bio);
1684 			continue;
1685 		}
1686 
1687 		if (bio_data_dir(bio) == WRITE)
1688 			detail->any_writes = true;
1689 
1690 		bio_list_add(&detail->bios_for_issue, bio);
1691 		inc_ds(cache, bio, cell);
1692 	}
1693 }
1694 
1695 // FIXME: refactor these two
1696 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1697 					       struct dm_bio_prison_cell *cell,
1698 					       dm_oblock_t oblock, bool issue_holder)
1699 {
1700 	struct bio *bio;
1701 	unsigned long flags;
1702 	struct inc_detail detail;
1703 
1704 	detail.cache = cache;
1705 	bio_list_init(&detail.bios_for_issue);
1706 	bio_list_init(&detail.unhandled_bios);
1707 	detail.any_writes = false;
1708 
1709 	spin_lock_irqsave(&cache->lock, flags);
1710 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1711 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1712 	spin_unlock_irqrestore(&cache->lock, flags);
1713 
1714 	remap_to_origin(cache, cell->holder);
1715 	if (issue_holder)
1716 		issue(cache, cell->holder);
1717 	else
1718 		accounted_begin(cache, cell->holder);
1719 
1720 	if (detail.any_writes)
1721 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1722 
1723 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1724 		remap_to_origin(cache, bio);
1725 		issue(cache, bio);
1726 	}
1727 
1728 	free_prison_cell(cache, cell);
1729 }
1730 
1731 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1732 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1733 {
1734 	struct bio *bio;
1735 	unsigned long flags;
1736 	struct inc_detail detail;
1737 
1738 	detail.cache = cache;
1739 	bio_list_init(&detail.bios_for_issue);
1740 	bio_list_init(&detail.unhandled_bios);
1741 	detail.any_writes = false;
1742 
1743 	spin_lock_irqsave(&cache->lock, flags);
1744 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1745 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1746 	spin_unlock_irqrestore(&cache->lock, flags);
1747 
1748 	remap_to_cache(cache, cell->holder, cblock);
1749 	if (issue_holder)
1750 		issue(cache, cell->holder);
1751 	else
1752 		accounted_begin(cache, cell->holder);
1753 
1754 	if (detail.any_writes) {
1755 		set_dirty(cache, oblock, cblock);
1756 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1757 	}
1758 
1759 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1760 		remap_to_cache(cache, bio, cblock);
1761 		issue(cache, bio);
1762 	}
1763 
1764 	free_prison_cell(cache, cell);
1765 }
1766 
1767 /*----------------------------------------------------------------*/
1768 
1769 struct old_oblock_lock {
1770 	struct policy_locker locker;
1771 	struct cache *cache;
1772 	struct prealloc *structs;
1773 	struct dm_bio_prison_cell *cell;
1774 };
1775 
1776 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1777 {
1778 	/* This should never be called */
1779 	BUG();
1780 	return 0;
1781 }
1782 
1783 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1784 {
1785 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1786 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1787 
1788 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1789 			  (cell_free_fn) prealloc_put_cell,
1790 			  l->structs, &l->cell);
1791 }
1792 
1793 static void process_cell(struct cache *cache, struct prealloc *structs,
1794 			 struct dm_bio_prison_cell *new_ocell)
1795 {
1796 	int r;
1797 	bool release_cell = true;
1798 	struct bio *bio = new_ocell->holder;
1799 	dm_oblock_t block = get_bio_block(cache, bio);
1800 	struct policy_result lookup_result;
1801 	bool passthrough = passthrough_mode(&cache->features);
1802 	bool fast_promotion, can_migrate;
1803 	struct old_oblock_lock ool;
1804 
1805 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1806 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1807 
1808 	ool.locker.fn = cell_locker;
1809 	ool.cache = cache;
1810 	ool.structs = structs;
1811 	ool.cell = NULL;
1812 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1813 		       bio, &ool.locker, &lookup_result);
1814 
1815 	if (r == -EWOULDBLOCK)
1816 		/* migration has been denied */
1817 		lookup_result.op = POLICY_MISS;
1818 
1819 	switch (lookup_result.op) {
1820 	case POLICY_HIT:
1821 		if (passthrough) {
1822 			inc_miss_counter(cache, bio);
1823 
1824 			/*
1825 			 * Passthrough always maps to the origin,
1826 			 * invalidating any cache blocks that are written
1827 			 * to.
1828 			 */
1829 
1830 			if (bio_data_dir(bio) == WRITE) {
1831 				atomic_inc(&cache->stats.demotion);
1832 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1833 				release_cell = false;
1834 
1835 			} else {
1836 				/* FIXME: factor out issue_origin() */
1837 				remap_to_origin_clear_discard(cache, bio, block);
1838 				inc_and_issue(cache, bio, new_ocell);
1839 			}
1840 		} else {
1841 			inc_hit_counter(cache, bio);
1842 
1843 			if (bio_data_dir(bio) == WRITE &&
1844 			    writethrough_mode(&cache->features) &&
1845 			    !is_dirty(cache, lookup_result.cblock)) {
1846 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1847 				inc_and_issue(cache, bio, new_ocell);
1848 
1849 			} else {
1850 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1851 				release_cell = false;
1852 			}
1853 		}
1854 
1855 		break;
1856 
1857 	case POLICY_MISS:
1858 		inc_miss_counter(cache, bio);
1859 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1860 		release_cell = false;
1861 		break;
1862 
1863 	case POLICY_NEW:
1864 		atomic_inc(&cache->stats.promotion);
1865 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1866 		release_cell = false;
1867 		break;
1868 
1869 	case POLICY_REPLACE:
1870 		atomic_inc(&cache->stats.demotion);
1871 		atomic_inc(&cache->stats.promotion);
1872 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1873 				    block, lookup_result.cblock,
1874 				    ool.cell, new_ocell);
1875 		release_cell = false;
1876 		break;
1877 
1878 	default:
1879 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1880 			    cache_device_name(cache), __func__,
1881 			    (unsigned) lookup_result.op);
1882 		bio_io_error(bio);
1883 	}
1884 
1885 	if (release_cell)
1886 		cell_defer(cache, new_ocell, false);
1887 }
1888 
1889 static void process_bio(struct cache *cache, struct prealloc *structs,
1890 			struct bio *bio)
1891 {
1892 	int r;
1893 	dm_oblock_t block = get_bio_block(cache, bio);
1894 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1895 
1896 	/*
1897 	 * Check to see if that block is currently migrating.
1898 	 */
1899 	cell_prealloc = prealloc_get_cell(structs);
1900 	r = bio_detain(cache, block, bio, cell_prealloc,
1901 		       (cell_free_fn) prealloc_put_cell,
1902 		       structs, &new_ocell);
1903 	if (r > 0)
1904 		return;
1905 
1906 	process_cell(cache, structs, new_ocell);
1907 }
1908 
1909 static int need_commit_due_to_time(struct cache *cache)
1910 {
1911 	return jiffies < cache->last_commit_jiffies ||
1912 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1913 }
1914 
1915 /*
1916  * A non-zero return indicates read_only or fail_io mode.
1917  */
1918 static int commit(struct cache *cache, bool clean_shutdown)
1919 {
1920 	int r;
1921 
1922 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1923 		return -EINVAL;
1924 
1925 	atomic_inc(&cache->stats.commit_count);
1926 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1927 	if (r)
1928 		metadata_operation_failed(cache, "dm_cache_commit", r);
1929 
1930 	return r;
1931 }
1932 
1933 static int commit_if_needed(struct cache *cache)
1934 {
1935 	int r = 0;
1936 
1937 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1938 	    dm_cache_changed_this_transaction(cache->cmd)) {
1939 		r = commit(cache, false);
1940 		cache->commit_requested = false;
1941 		cache->last_commit_jiffies = jiffies;
1942 	}
1943 
1944 	return r;
1945 }
1946 
1947 static void process_deferred_bios(struct cache *cache)
1948 {
1949 	bool prealloc_used = false;
1950 	unsigned long flags;
1951 	struct bio_list bios;
1952 	struct bio *bio;
1953 	struct prealloc structs;
1954 
1955 	memset(&structs, 0, sizeof(structs));
1956 	bio_list_init(&bios);
1957 
1958 	spin_lock_irqsave(&cache->lock, flags);
1959 	bio_list_merge(&bios, &cache->deferred_bios);
1960 	bio_list_init(&cache->deferred_bios);
1961 	spin_unlock_irqrestore(&cache->lock, flags);
1962 
1963 	while (!bio_list_empty(&bios)) {
1964 		/*
1965 		 * If we've got no free migration structs, and processing
1966 		 * this bio might require one, we pause until there are some
1967 		 * prepared mappings to process.
1968 		 */
1969 		prealloc_used = true;
1970 		if (prealloc_data_structs(cache, &structs)) {
1971 			spin_lock_irqsave(&cache->lock, flags);
1972 			bio_list_merge(&cache->deferred_bios, &bios);
1973 			spin_unlock_irqrestore(&cache->lock, flags);
1974 			break;
1975 		}
1976 
1977 		bio = bio_list_pop(&bios);
1978 
1979 		if (bio->bi_rw & REQ_FLUSH)
1980 			process_flush_bio(cache, bio);
1981 		else if (bio->bi_rw & REQ_DISCARD)
1982 			process_discard_bio(cache, &structs, bio);
1983 		else
1984 			process_bio(cache, &structs, bio);
1985 	}
1986 
1987 	if (prealloc_used)
1988 		prealloc_free_structs(cache, &structs);
1989 }
1990 
1991 static void process_deferred_cells(struct cache *cache)
1992 {
1993 	bool prealloc_used = false;
1994 	unsigned long flags;
1995 	struct dm_bio_prison_cell *cell, *tmp;
1996 	struct list_head cells;
1997 	struct prealloc structs;
1998 
1999 	memset(&structs, 0, sizeof(structs));
2000 
2001 	INIT_LIST_HEAD(&cells);
2002 
2003 	spin_lock_irqsave(&cache->lock, flags);
2004 	list_splice_init(&cache->deferred_cells, &cells);
2005 	spin_unlock_irqrestore(&cache->lock, flags);
2006 
2007 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2008 		/*
2009 		 * If we've got no free migration structs, and processing
2010 		 * this bio might require one, we pause until there are some
2011 		 * prepared mappings to process.
2012 		 */
2013 		prealloc_used = true;
2014 		if (prealloc_data_structs(cache, &structs)) {
2015 			spin_lock_irqsave(&cache->lock, flags);
2016 			list_splice(&cells, &cache->deferred_cells);
2017 			spin_unlock_irqrestore(&cache->lock, flags);
2018 			break;
2019 		}
2020 
2021 		process_cell(cache, &structs, cell);
2022 	}
2023 
2024 	if (prealloc_used)
2025 		prealloc_free_structs(cache, &structs);
2026 }
2027 
2028 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2029 {
2030 	unsigned long flags;
2031 	struct bio_list bios;
2032 	struct bio *bio;
2033 
2034 	bio_list_init(&bios);
2035 
2036 	spin_lock_irqsave(&cache->lock, flags);
2037 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2038 	bio_list_init(&cache->deferred_flush_bios);
2039 	spin_unlock_irqrestore(&cache->lock, flags);
2040 
2041 	/*
2042 	 * These bios have already been through inc_ds()
2043 	 */
2044 	while ((bio = bio_list_pop(&bios)))
2045 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2046 }
2047 
2048 static void process_deferred_writethrough_bios(struct cache *cache)
2049 {
2050 	unsigned long flags;
2051 	struct bio_list bios;
2052 	struct bio *bio;
2053 
2054 	bio_list_init(&bios);
2055 
2056 	spin_lock_irqsave(&cache->lock, flags);
2057 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2058 	bio_list_init(&cache->deferred_writethrough_bios);
2059 	spin_unlock_irqrestore(&cache->lock, flags);
2060 
2061 	/*
2062 	 * These bios have already been through inc_ds()
2063 	 */
2064 	while ((bio = bio_list_pop(&bios)))
2065 		accounted_request(cache, bio);
2066 }
2067 
2068 static void writeback_some_dirty_blocks(struct cache *cache)
2069 {
2070 	bool prealloc_used = false;
2071 	dm_oblock_t oblock;
2072 	dm_cblock_t cblock;
2073 	struct prealloc structs;
2074 	struct dm_bio_prison_cell *old_ocell;
2075 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2076 
2077 	memset(&structs, 0, sizeof(structs));
2078 
2079 	while (spare_migration_bandwidth(cache)) {
2080 		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2081 			break; /* no work to do */
2082 
2083 		prealloc_used = true;
2084 		if (prealloc_data_structs(cache, &structs) ||
2085 		    get_cell(cache, oblock, &structs, &old_ocell)) {
2086 			policy_set_dirty(cache->policy, oblock);
2087 			break;
2088 		}
2089 
2090 		writeback(cache, &structs, oblock, cblock, old_ocell);
2091 	}
2092 
2093 	if (prealloc_used)
2094 		prealloc_free_structs(cache, &structs);
2095 }
2096 
2097 /*----------------------------------------------------------------
2098  * Invalidations.
2099  * Dropping something from the cache *without* writing back.
2100  *--------------------------------------------------------------*/
2101 
2102 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2103 {
2104 	int r = 0;
2105 	uint64_t begin = from_cblock(req->cblocks->begin);
2106 	uint64_t end = from_cblock(req->cblocks->end);
2107 
2108 	while (begin != end) {
2109 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2110 		if (!r) {
2111 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2112 			if (r) {
2113 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2114 				break;
2115 			}
2116 
2117 		} else if (r == -ENODATA) {
2118 			/* harmless, already unmapped */
2119 			r = 0;
2120 
2121 		} else {
2122 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2123 			break;
2124 		}
2125 
2126 		begin++;
2127         }
2128 
2129 	cache->commit_requested = true;
2130 
2131 	req->err = r;
2132 	atomic_set(&req->complete, 1);
2133 
2134 	wake_up(&req->result_wait);
2135 }
2136 
2137 static void process_invalidation_requests(struct cache *cache)
2138 {
2139 	struct list_head list;
2140 	struct invalidation_request *req, *tmp;
2141 
2142 	INIT_LIST_HEAD(&list);
2143 	spin_lock(&cache->invalidation_lock);
2144 	list_splice_init(&cache->invalidation_requests, &list);
2145 	spin_unlock(&cache->invalidation_lock);
2146 
2147 	list_for_each_entry_safe (req, tmp, &list, list)
2148 		process_invalidation_request(cache, req);
2149 }
2150 
2151 /*----------------------------------------------------------------
2152  * Main worker loop
2153  *--------------------------------------------------------------*/
2154 static bool is_quiescing(struct cache *cache)
2155 {
2156 	return atomic_read(&cache->quiescing);
2157 }
2158 
2159 static void ack_quiescing(struct cache *cache)
2160 {
2161 	if (is_quiescing(cache)) {
2162 		atomic_inc(&cache->quiescing_ack);
2163 		wake_up(&cache->quiescing_wait);
2164 	}
2165 }
2166 
2167 static void wait_for_quiescing_ack(struct cache *cache)
2168 {
2169 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2170 }
2171 
2172 static void start_quiescing(struct cache *cache)
2173 {
2174 	atomic_inc(&cache->quiescing);
2175 	wait_for_quiescing_ack(cache);
2176 }
2177 
2178 static void stop_quiescing(struct cache *cache)
2179 {
2180 	atomic_set(&cache->quiescing, 0);
2181 	atomic_set(&cache->quiescing_ack, 0);
2182 }
2183 
2184 static void wait_for_migrations(struct cache *cache)
2185 {
2186 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2187 }
2188 
2189 static void stop_worker(struct cache *cache)
2190 {
2191 	cancel_delayed_work(&cache->waker);
2192 	flush_workqueue(cache->wq);
2193 }
2194 
2195 static void requeue_deferred_cells(struct cache *cache)
2196 {
2197 	unsigned long flags;
2198 	struct list_head cells;
2199 	struct dm_bio_prison_cell *cell, *tmp;
2200 
2201 	INIT_LIST_HEAD(&cells);
2202 	spin_lock_irqsave(&cache->lock, flags);
2203 	list_splice_init(&cache->deferred_cells, &cells);
2204 	spin_unlock_irqrestore(&cache->lock, flags);
2205 
2206 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2207 		cell_requeue(cache, cell);
2208 }
2209 
2210 static void requeue_deferred_bios(struct cache *cache)
2211 {
2212 	struct bio *bio;
2213 	struct bio_list bios;
2214 
2215 	bio_list_init(&bios);
2216 	bio_list_merge(&bios, &cache->deferred_bios);
2217 	bio_list_init(&cache->deferred_bios);
2218 
2219 	while ((bio = bio_list_pop(&bios))) {
2220 		bio->bi_error = DM_ENDIO_REQUEUE;
2221 		bio_endio(bio);
2222 	}
2223 }
2224 
2225 static int more_work(struct cache *cache)
2226 {
2227 	if (is_quiescing(cache))
2228 		return !list_empty(&cache->quiesced_migrations) ||
2229 			!list_empty(&cache->completed_migrations) ||
2230 			!list_empty(&cache->need_commit_migrations);
2231 	else
2232 		return !bio_list_empty(&cache->deferred_bios) ||
2233 			!list_empty(&cache->deferred_cells) ||
2234 			!bio_list_empty(&cache->deferred_flush_bios) ||
2235 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2236 			!list_empty(&cache->quiesced_migrations) ||
2237 			!list_empty(&cache->completed_migrations) ||
2238 			!list_empty(&cache->need_commit_migrations) ||
2239 			cache->invalidate;
2240 }
2241 
2242 static void do_worker(struct work_struct *ws)
2243 {
2244 	struct cache *cache = container_of(ws, struct cache, worker);
2245 
2246 	do {
2247 		if (!is_quiescing(cache)) {
2248 			writeback_some_dirty_blocks(cache);
2249 			process_deferred_writethrough_bios(cache);
2250 			process_deferred_bios(cache);
2251 			process_deferred_cells(cache);
2252 			process_invalidation_requests(cache);
2253 		}
2254 
2255 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2256 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2257 
2258 		if (commit_if_needed(cache)) {
2259 			process_deferred_flush_bios(cache, false);
2260 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2261 		} else {
2262 			process_deferred_flush_bios(cache, true);
2263 			process_migrations(cache, &cache->need_commit_migrations,
2264 					   migration_success_post_commit);
2265 		}
2266 
2267 		ack_quiescing(cache);
2268 
2269 	} while (more_work(cache));
2270 }
2271 
2272 /*
2273  * We want to commit periodically so that not too much
2274  * unwritten metadata builds up.
2275  */
2276 static void do_waker(struct work_struct *ws)
2277 {
2278 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2279 	policy_tick(cache->policy, true);
2280 	wake_worker(cache);
2281 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2282 }
2283 
2284 /*----------------------------------------------------------------*/
2285 
2286 static int is_congested(struct dm_dev *dev, int bdi_bits)
2287 {
2288 	struct request_queue *q = bdev_get_queue(dev->bdev);
2289 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2290 }
2291 
2292 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2293 {
2294 	struct cache *cache = container_of(cb, struct cache, callbacks);
2295 
2296 	return is_congested(cache->origin_dev, bdi_bits) ||
2297 		is_congested(cache->cache_dev, bdi_bits);
2298 }
2299 
2300 /*----------------------------------------------------------------
2301  * Target methods
2302  *--------------------------------------------------------------*/
2303 
2304 /*
2305  * This function gets called on the error paths of the constructor, so we
2306  * have to cope with a partially initialised struct.
2307  */
2308 static void destroy(struct cache *cache)
2309 {
2310 	unsigned i;
2311 
2312 	if (cache->migration_pool)
2313 		mempool_destroy(cache->migration_pool);
2314 
2315 	if (cache->all_io_ds)
2316 		dm_deferred_set_destroy(cache->all_io_ds);
2317 
2318 	if (cache->prison)
2319 		dm_bio_prison_destroy(cache->prison);
2320 
2321 	if (cache->wq)
2322 		destroy_workqueue(cache->wq);
2323 
2324 	if (cache->dirty_bitset)
2325 		free_bitset(cache->dirty_bitset);
2326 
2327 	if (cache->discard_bitset)
2328 		free_bitset(cache->discard_bitset);
2329 
2330 	if (cache->copier)
2331 		dm_kcopyd_client_destroy(cache->copier);
2332 
2333 	if (cache->cmd)
2334 		dm_cache_metadata_close(cache->cmd);
2335 
2336 	if (cache->metadata_dev)
2337 		dm_put_device(cache->ti, cache->metadata_dev);
2338 
2339 	if (cache->origin_dev)
2340 		dm_put_device(cache->ti, cache->origin_dev);
2341 
2342 	if (cache->cache_dev)
2343 		dm_put_device(cache->ti, cache->cache_dev);
2344 
2345 	if (cache->policy)
2346 		dm_cache_policy_destroy(cache->policy);
2347 
2348 	for (i = 0; i < cache->nr_ctr_args ; i++)
2349 		kfree(cache->ctr_args[i]);
2350 	kfree(cache->ctr_args);
2351 
2352 	kfree(cache);
2353 }
2354 
2355 static void cache_dtr(struct dm_target *ti)
2356 {
2357 	struct cache *cache = ti->private;
2358 
2359 	destroy(cache);
2360 }
2361 
2362 static sector_t get_dev_size(struct dm_dev *dev)
2363 {
2364 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2365 }
2366 
2367 /*----------------------------------------------------------------*/
2368 
2369 /*
2370  * Construct a cache device mapping.
2371  *
2372  * cache <metadata dev> <cache dev> <origin dev> <block size>
2373  *       <#feature args> [<feature arg>]*
2374  *       <policy> <#policy args> [<policy arg>]*
2375  *
2376  * metadata dev    : fast device holding the persistent metadata
2377  * cache dev	   : fast device holding cached data blocks
2378  * origin dev	   : slow device holding original data blocks
2379  * block size	   : cache unit size in sectors
2380  *
2381  * #feature args   : number of feature arguments passed
2382  * feature args    : writethrough.  (The default is writeback.)
2383  *
2384  * policy	   : the replacement policy to use
2385  * #policy args    : an even number of policy arguments corresponding
2386  *		     to key/value pairs passed to the policy
2387  * policy args	   : key/value pairs passed to the policy
2388  *		     E.g. 'sequential_threshold 1024'
2389  *		     See cache-policies.txt for details.
2390  *
2391  * Optional feature arguments are:
2392  *   writethrough  : write through caching that prohibits cache block
2393  *		     content from being different from origin block content.
2394  *		     Without this argument, the default behaviour is to write
2395  *		     back cache block contents later for performance reasons,
2396  *		     so they may differ from the corresponding origin blocks.
2397  */
2398 struct cache_args {
2399 	struct dm_target *ti;
2400 
2401 	struct dm_dev *metadata_dev;
2402 
2403 	struct dm_dev *cache_dev;
2404 	sector_t cache_sectors;
2405 
2406 	struct dm_dev *origin_dev;
2407 	sector_t origin_sectors;
2408 
2409 	uint32_t block_size;
2410 
2411 	const char *policy_name;
2412 	int policy_argc;
2413 	const char **policy_argv;
2414 
2415 	struct cache_features features;
2416 };
2417 
2418 static void destroy_cache_args(struct cache_args *ca)
2419 {
2420 	if (ca->metadata_dev)
2421 		dm_put_device(ca->ti, ca->metadata_dev);
2422 
2423 	if (ca->cache_dev)
2424 		dm_put_device(ca->ti, ca->cache_dev);
2425 
2426 	if (ca->origin_dev)
2427 		dm_put_device(ca->ti, ca->origin_dev);
2428 
2429 	kfree(ca);
2430 }
2431 
2432 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2433 {
2434 	if (!as->argc) {
2435 		*error = "Insufficient args";
2436 		return false;
2437 	}
2438 
2439 	return true;
2440 }
2441 
2442 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2443 			      char **error)
2444 {
2445 	int r;
2446 	sector_t metadata_dev_size;
2447 	char b[BDEVNAME_SIZE];
2448 
2449 	if (!at_least_one_arg(as, error))
2450 		return -EINVAL;
2451 
2452 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2453 			  &ca->metadata_dev);
2454 	if (r) {
2455 		*error = "Error opening metadata device";
2456 		return r;
2457 	}
2458 
2459 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2460 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2461 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2462 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2463 
2464 	return 0;
2465 }
2466 
2467 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2468 			   char **error)
2469 {
2470 	int r;
2471 
2472 	if (!at_least_one_arg(as, error))
2473 		return -EINVAL;
2474 
2475 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2476 			  &ca->cache_dev);
2477 	if (r) {
2478 		*error = "Error opening cache device";
2479 		return r;
2480 	}
2481 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2482 
2483 	return 0;
2484 }
2485 
2486 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2487 			    char **error)
2488 {
2489 	int r;
2490 
2491 	if (!at_least_one_arg(as, error))
2492 		return -EINVAL;
2493 
2494 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2495 			  &ca->origin_dev);
2496 	if (r) {
2497 		*error = "Error opening origin device";
2498 		return r;
2499 	}
2500 
2501 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2502 	if (ca->ti->len > ca->origin_sectors) {
2503 		*error = "Device size larger than cached device";
2504 		return -EINVAL;
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2511 			    char **error)
2512 {
2513 	unsigned long block_size;
2514 
2515 	if (!at_least_one_arg(as, error))
2516 		return -EINVAL;
2517 
2518 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2519 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2520 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2521 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2522 		*error = "Invalid data block size";
2523 		return -EINVAL;
2524 	}
2525 
2526 	if (block_size > ca->cache_sectors) {
2527 		*error = "Data block size is larger than the cache device";
2528 		return -EINVAL;
2529 	}
2530 
2531 	ca->block_size = block_size;
2532 
2533 	return 0;
2534 }
2535 
2536 static void init_features(struct cache_features *cf)
2537 {
2538 	cf->mode = CM_WRITE;
2539 	cf->io_mode = CM_IO_WRITEBACK;
2540 }
2541 
2542 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2543 			  char **error)
2544 {
2545 	static struct dm_arg _args[] = {
2546 		{0, 1, "Invalid number of cache feature arguments"},
2547 	};
2548 
2549 	int r;
2550 	unsigned argc;
2551 	const char *arg;
2552 	struct cache_features *cf = &ca->features;
2553 
2554 	init_features(cf);
2555 
2556 	r = dm_read_arg_group(_args, as, &argc, error);
2557 	if (r)
2558 		return -EINVAL;
2559 
2560 	while (argc--) {
2561 		arg = dm_shift_arg(as);
2562 
2563 		if (!strcasecmp(arg, "writeback"))
2564 			cf->io_mode = CM_IO_WRITEBACK;
2565 
2566 		else if (!strcasecmp(arg, "writethrough"))
2567 			cf->io_mode = CM_IO_WRITETHROUGH;
2568 
2569 		else if (!strcasecmp(arg, "passthrough"))
2570 			cf->io_mode = CM_IO_PASSTHROUGH;
2571 
2572 		else {
2573 			*error = "Unrecognised cache feature requested";
2574 			return -EINVAL;
2575 		}
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2582 			char **error)
2583 {
2584 	static struct dm_arg _args[] = {
2585 		{0, 1024, "Invalid number of policy arguments"},
2586 	};
2587 
2588 	int r;
2589 
2590 	if (!at_least_one_arg(as, error))
2591 		return -EINVAL;
2592 
2593 	ca->policy_name = dm_shift_arg(as);
2594 
2595 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2596 	if (r)
2597 		return -EINVAL;
2598 
2599 	ca->policy_argv = (const char **)as->argv;
2600 	dm_consume_args(as, ca->policy_argc);
2601 
2602 	return 0;
2603 }
2604 
2605 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2606 			    char **error)
2607 {
2608 	int r;
2609 	struct dm_arg_set as;
2610 
2611 	as.argc = argc;
2612 	as.argv = argv;
2613 
2614 	r = parse_metadata_dev(ca, &as, error);
2615 	if (r)
2616 		return r;
2617 
2618 	r = parse_cache_dev(ca, &as, error);
2619 	if (r)
2620 		return r;
2621 
2622 	r = parse_origin_dev(ca, &as, error);
2623 	if (r)
2624 		return r;
2625 
2626 	r = parse_block_size(ca, &as, error);
2627 	if (r)
2628 		return r;
2629 
2630 	r = parse_features(ca, &as, error);
2631 	if (r)
2632 		return r;
2633 
2634 	r = parse_policy(ca, &as, error);
2635 	if (r)
2636 		return r;
2637 
2638 	return 0;
2639 }
2640 
2641 /*----------------------------------------------------------------*/
2642 
2643 static struct kmem_cache *migration_cache;
2644 
2645 #define NOT_CORE_OPTION 1
2646 
2647 static int process_config_option(struct cache *cache, const char *key, const char *value)
2648 {
2649 	unsigned long tmp;
2650 
2651 	if (!strcasecmp(key, "migration_threshold")) {
2652 		if (kstrtoul(value, 10, &tmp))
2653 			return -EINVAL;
2654 
2655 		cache->migration_threshold = tmp;
2656 		return 0;
2657 	}
2658 
2659 	return NOT_CORE_OPTION;
2660 }
2661 
2662 static int set_config_value(struct cache *cache, const char *key, const char *value)
2663 {
2664 	int r = process_config_option(cache, key, value);
2665 
2666 	if (r == NOT_CORE_OPTION)
2667 		r = policy_set_config_value(cache->policy, key, value);
2668 
2669 	if (r)
2670 		DMWARN("bad config value for %s: %s", key, value);
2671 
2672 	return r;
2673 }
2674 
2675 static int set_config_values(struct cache *cache, int argc, const char **argv)
2676 {
2677 	int r = 0;
2678 
2679 	if (argc & 1) {
2680 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2681 		return -EINVAL;
2682 	}
2683 
2684 	while (argc) {
2685 		r = set_config_value(cache, argv[0], argv[1]);
2686 		if (r)
2687 			break;
2688 
2689 		argc -= 2;
2690 		argv += 2;
2691 	}
2692 
2693 	return r;
2694 }
2695 
2696 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2697 			       char **error)
2698 {
2699 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2700 							   cache->cache_size,
2701 							   cache->origin_sectors,
2702 							   cache->sectors_per_block);
2703 	if (IS_ERR(p)) {
2704 		*error = "Error creating cache's policy";
2705 		return PTR_ERR(p);
2706 	}
2707 	cache->policy = p;
2708 
2709 	return 0;
2710 }
2711 
2712 /*
2713  * We want the discard block size to be at least the size of the cache
2714  * block size and have no more than 2^14 discard blocks across the origin.
2715  */
2716 #define MAX_DISCARD_BLOCKS (1 << 14)
2717 
2718 static bool too_many_discard_blocks(sector_t discard_block_size,
2719 				    sector_t origin_size)
2720 {
2721 	(void) sector_div(origin_size, discard_block_size);
2722 
2723 	return origin_size > MAX_DISCARD_BLOCKS;
2724 }
2725 
2726 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2727 					     sector_t origin_size)
2728 {
2729 	sector_t discard_block_size = cache_block_size;
2730 
2731 	if (origin_size)
2732 		while (too_many_discard_blocks(discard_block_size, origin_size))
2733 			discard_block_size *= 2;
2734 
2735 	return discard_block_size;
2736 }
2737 
2738 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2739 {
2740 	dm_block_t nr_blocks = from_cblock(size);
2741 
2742 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2743 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2744 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2745 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2746 			     (unsigned long long) nr_blocks);
2747 
2748 	cache->cache_size = size;
2749 }
2750 
2751 #define DEFAULT_MIGRATION_THRESHOLD 2048
2752 
2753 static int cache_create(struct cache_args *ca, struct cache **result)
2754 {
2755 	int r = 0;
2756 	char **error = &ca->ti->error;
2757 	struct cache *cache;
2758 	struct dm_target *ti = ca->ti;
2759 	dm_block_t origin_blocks;
2760 	struct dm_cache_metadata *cmd;
2761 	bool may_format = ca->features.mode == CM_WRITE;
2762 
2763 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2764 	if (!cache)
2765 		return -ENOMEM;
2766 
2767 	cache->ti = ca->ti;
2768 	ti->private = cache;
2769 	ti->num_flush_bios = 2;
2770 	ti->flush_supported = true;
2771 
2772 	ti->num_discard_bios = 1;
2773 	ti->discards_supported = true;
2774 	ti->discard_zeroes_data_unsupported = true;
2775 	ti->split_discard_bios = false;
2776 
2777 	cache->features = ca->features;
2778 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2779 
2780 	cache->callbacks.congested_fn = cache_is_congested;
2781 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2782 
2783 	cache->metadata_dev = ca->metadata_dev;
2784 	cache->origin_dev = ca->origin_dev;
2785 	cache->cache_dev = ca->cache_dev;
2786 
2787 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2788 
2789 	/* FIXME: factor out this whole section */
2790 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2791 	origin_blocks = block_div(origin_blocks, ca->block_size);
2792 	cache->origin_blocks = to_oblock(origin_blocks);
2793 
2794 	cache->sectors_per_block = ca->block_size;
2795 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2796 		r = -EINVAL;
2797 		goto bad;
2798 	}
2799 
2800 	if (ca->block_size & (ca->block_size - 1)) {
2801 		dm_block_t cache_size = ca->cache_sectors;
2802 
2803 		cache->sectors_per_block_shift = -1;
2804 		cache_size = block_div(cache_size, ca->block_size);
2805 		set_cache_size(cache, to_cblock(cache_size));
2806 	} else {
2807 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2808 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2809 	}
2810 
2811 	r = create_cache_policy(cache, ca, error);
2812 	if (r)
2813 		goto bad;
2814 
2815 	cache->policy_nr_args = ca->policy_argc;
2816 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2817 
2818 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2819 	if (r) {
2820 		*error = "Error setting cache policy's config values";
2821 		goto bad;
2822 	}
2823 
2824 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2825 				     ca->block_size, may_format,
2826 				     dm_cache_policy_get_hint_size(cache->policy));
2827 	if (IS_ERR(cmd)) {
2828 		*error = "Error creating metadata object";
2829 		r = PTR_ERR(cmd);
2830 		goto bad;
2831 	}
2832 	cache->cmd = cmd;
2833 	set_cache_mode(cache, CM_WRITE);
2834 	if (get_cache_mode(cache) != CM_WRITE) {
2835 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2836 		r = -EINVAL;
2837 		goto bad;
2838 	}
2839 
2840 	if (passthrough_mode(&cache->features)) {
2841 		bool all_clean;
2842 
2843 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2844 		if (r) {
2845 			*error = "dm_cache_metadata_all_clean() failed";
2846 			goto bad;
2847 		}
2848 
2849 		if (!all_clean) {
2850 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2851 			r = -EINVAL;
2852 			goto bad;
2853 		}
2854 	}
2855 
2856 	spin_lock_init(&cache->lock);
2857 	INIT_LIST_HEAD(&cache->deferred_cells);
2858 	bio_list_init(&cache->deferred_bios);
2859 	bio_list_init(&cache->deferred_flush_bios);
2860 	bio_list_init(&cache->deferred_writethrough_bios);
2861 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2862 	INIT_LIST_HEAD(&cache->completed_migrations);
2863 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2864 	atomic_set(&cache->nr_allocated_migrations, 0);
2865 	atomic_set(&cache->nr_io_migrations, 0);
2866 	init_waitqueue_head(&cache->migration_wait);
2867 
2868 	init_waitqueue_head(&cache->quiescing_wait);
2869 	atomic_set(&cache->quiescing, 0);
2870 	atomic_set(&cache->quiescing_ack, 0);
2871 
2872 	r = -ENOMEM;
2873 	atomic_set(&cache->nr_dirty, 0);
2874 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2875 	if (!cache->dirty_bitset) {
2876 		*error = "could not allocate dirty bitset";
2877 		goto bad;
2878 	}
2879 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2880 
2881 	cache->discard_block_size =
2882 		calculate_discard_block_size(cache->sectors_per_block,
2883 					     cache->origin_sectors);
2884 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2885 							      cache->discard_block_size));
2886 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2887 	if (!cache->discard_bitset) {
2888 		*error = "could not allocate discard bitset";
2889 		goto bad;
2890 	}
2891 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2892 
2893 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2894 	if (IS_ERR(cache->copier)) {
2895 		*error = "could not create kcopyd client";
2896 		r = PTR_ERR(cache->copier);
2897 		goto bad;
2898 	}
2899 
2900 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2901 	if (!cache->wq) {
2902 		*error = "could not create workqueue for metadata object";
2903 		goto bad;
2904 	}
2905 	INIT_WORK(&cache->worker, do_worker);
2906 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2907 	cache->last_commit_jiffies = jiffies;
2908 
2909 	cache->prison = dm_bio_prison_create();
2910 	if (!cache->prison) {
2911 		*error = "could not create bio prison";
2912 		goto bad;
2913 	}
2914 
2915 	cache->all_io_ds = dm_deferred_set_create();
2916 	if (!cache->all_io_ds) {
2917 		*error = "could not create all_io deferred set";
2918 		goto bad;
2919 	}
2920 
2921 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2922 							 migration_cache);
2923 	if (!cache->migration_pool) {
2924 		*error = "Error creating cache's migration mempool";
2925 		goto bad;
2926 	}
2927 
2928 	cache->need_tick_bio = true;
2929 	cache->sized = false;
2930 	cache->invalidate = false;
2931 	cache->commit_requested = false;
2932 	cache->loaded_mappings = false;
2933 	cache->loaded_discards = false;
2934 
2935 	load_stats(cache);
2936 
2937 	atomic_set(&cache->stats.demotion, 0);
2938 	atomic_set(&cache->stats.promotion, 0);
2939 	atomic_set(&cache->stats.copies_avoided, 0);
2940 	atomic_set(&cache->stats.cache_cell_clash, 0);
2941 	atomic_set(&cache->stats.commit_count, 0);
2942 	atomic_set(&cache->stats.discard_count, 0);
2943 
2944 	spin_lock_init(&cache->invalidation_lock);
2945 	INIT_LIST_HEAD(&cache->invalidation_requests);
2946 
2947 	iot_init(&cache->origin_tracker);
2948 
2949 	*result = cache;
2950 	return 0;
2951 
2952 bad:
2953 	destroy(cache);
2954 	return r;
2955 }
2956 
2957 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2958 {
2959 	unsigned i;
2960 	const char **copy;
2961 
2962 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2963 	if (!copy)
2964 		return -ENOMEM;
2965 	for (i = 0; i < argc; i++) {
2966 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2967 		if (!copy[i]) {
2968 			while (i--)
2969 				kfree(copy[i]);
2970 			kfree(copy);
2971 			return -ENOMEM;
2972 		}
2973 	}
2974 
2975 	cache->nr_ctr_args = argc;
2976 	cache->ctr_args = copy;
2977 
2978 	return 0;
2979 }
2980 
2981 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2982 {
2983 	int r = -EINVAL;
2984 	struct cache_args *ca;
2985 	struct cache *cache = NULL;
2986 
2987 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2988 	if (!ca) {
2989 		ti->error = "Error allocating memory for cache";
2990 		return -ENOMEM;
2991 	}
2992 	ca->ti = ti;
2993 
2994 	r = parse_cache_args(ca, argc, argv, &ti->error);
2995 	if (r)
2996 		goto out;
2997 
2998 	r = cache_create(ca, &cache);
2999 	if (r)
3000 		goto out;
3001 
3002 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3003 	if (r) {
3004 		destroy(cache);
3005 		goto out;
3006 	}
3007 
3008 	ti->private = cache;
3009 
3010 out:
3011 	destroy_cache_args(ca);
3012 	return r;
3013 }
3014 
3015 /*----------------------------------------------------------------*/
3016 
3017 static int cache_map(struct dm_target *ti, struct bio *bio)
3018 {
3019 	struct cache *cache = ti->private;
3020 
3021 	int r;
3022 	struct dm_bio_prison_cell *cell = NULL;
3023 	dm_oblock_t block = get_bio_block(cache, bio);
3024 	size_t pb_data_size = get_per_bio_data_size(cache);
3025 	bool can_migrate = false;
3026 	bool fast_promotion;
3027 	struct policy_result lookup_result;
3028 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3029 	struct old_oblock_lock ool;
3030 
3031 	ool.locker.fn = null_locker;
3032 
3033 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3034 		/*
3035 		 * This can only occur if the io goes to a partial block at
3036 		 * the end of the origin device.  We don't cache these.
3037 		 * Just remap to the origin and carry on.
3038 		 */
3039 		remap_to_origin(cache, bio);
3040 		accounted_begin(cache, bio);
3041 		return DM_MAPIO_REMAPPED;
3042 	}
3043 
3044 	if (discard_or_flush(bio)) {
3045 		defer_bio(cache, bio);
3046 		return DM_MAPIO_SUBMITTED;
3047 	}
3048 
3049 	/*
3050 	 * Check to see if that block is currently migrating.
3051 	 */
3052 	cell = alloc_prison_cell(cache);
3053 	if (!cell) {
3054 		defer_bio(cache, bio);
3055 		return DM_MAPIO_SUBMITTED;
3056 	}
3057 
3058 	r = bio_detain(cache, block, bio, cell,
3059 		       (cell_free_fn) free_prison_cell,
3060 		       cache, &cell);
3061 	if (r) {
3062 		if (r < 0)
3063 			defer_bio(cache, bio);
3064 
3065 		return DM_MAPIO_SUBMITTED;
3066 	}
3067 
3068 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3069 
3070 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3071 		       bio, &ool.locker, &lookup_result);
3072 	if (r == -EWOULDBLOCK) {
3073 		cell_defer(cache, cell, true);
3074 		return DM_MAPIO_SUBMITTED;
3075 
3076 	} else if (r) {
3077 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3078 			    cache_device_name(cache), r);
3079 		cell_defer(cache, cell, false);
3080 		bio_io_error(bio);
3081 		return DM_MAPIO_SUBMITTED;
3082 	}
3083 
3084 	r = DM_MAPIO_REMAPPED;
3085 	switch (lookup_result.op) {
3086 	case POLICY_HIT:
3087 		if (passthrough_mode(&cache->features)) {
3088 			if (bio_data_dir(bio) == WRITE) {
3089 				/*
3090 				 * We need to invalidate this block, so
3091 				 * defer for the worker thread.
3092 				 */
3093 				cell_defer(cache, cell, true);
3094 				r = DM_MAPIO_SUBMITTED;
3095 
3096 			} else {
3097 				inc_miss_counter(cache, bio);
3098 				remap_to_origin_clear_discard(cache, bio, block);
3099 				accounted_begin(cache, bio);
3100 				inc_ds(cache, bio, cell);
3101 				// FIXME: we want to remap hits or misses straight
3102 				// away rather than passing over to the worker.
3103 				cell_defer(cache, cell, false);
3104 			}
3105 
3106 		} else {
3107 			inc_hit_counter(cache, bio);
3108 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3109 			    !is_dirty(cache, lookup_result.cblock)) {
3110 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3111 				accounted_begin(cache, bio);
3112 				inc_ds(cache, bio, cell);
3113 				cell_defer(cache, cell, false);
3114 
3115 			} else
3116 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3117 		}
3118 		break;
3119 
3120 	case POLICY_MISS:
3121 		inc_miss_counter(cache, bio);
3122 		if (pb->req_nr != 0) {
3123 			/*
3124 			 * This is a duplicate writethrough io that is no
3125 			 * longer needed because the block has been demoted.
3126 			 */
3127 			bio_endio(bio);
3128 			// FIXME: remap everything as a miss
3129 			cell_defer(cache, cell, false);
3130 			r = DM_MAPIO_SUBMITTED;
3131 
3132 		} else
3133 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3134 		break;
3135 
3136 	default:
3137 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3138 			    cache_device_name(cache), __func__,
3139 			    (unsigned) lookup_result.op);
3140 		cell_defer(cache, cell, false);
3141 		bio_io_error(bio);
3142 		r = DM_MAPIO_SUBMITTED;
3143 	}
3144 
3145 	return r;
3146 }
3147 
3148 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3149 {
3150 	struct cache *cache = ti->private;
3151 	unsigned long flags;
3152 	size_t pb_data_size = get_per_bio_data_size(cache);
3153 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3154 
3155 	if (pb->tick) {
3156 		policy_tick(cache->policy, false);
3157 
3158 		spin_lock_irqsave(&cache->lock, flags);
3159 		cache->need_tick_bio = true;
3160 		spin_unlock_irqrestore(&cache->lock, flags);
3161 	}
3162 
3163 	check_for_quiesced_migrations(cache, pb);
3164 	accounted_complete(cache, bio);
3165 
3166 	return 0;
3167 }
3168 
3169 static int write_dirty_bitset(struct cache *cache)
3170 {
3171 	unsigned i, r;
3172 
3173 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3174 		return -EINVAL;
3175 
3176 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3177 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3178 				       is_dirty(cache, to_cblock(i)));
3179 		if (r) {
3180 			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3181 			return r;
3182 		}
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static int write_discard_bitset(struct cache *cache)
3189 {
3190 	unsigned i, r;
3191 
3192 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3193 		return -EINVAL;
3194 
3195 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3196 					   cache->discard_nr_blocks);
3197 	if (r) {
3198 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3199 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3200 		return r;
3201 	}
3202 
3203 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3204 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3205 					 is_discarded(cache, to_dblock(i)));
3206 		if (r) {
3207 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3208 			return r;
3209 		}
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 static int write_hints(struct cache *cache)
3216 {
3217 	int r;
3218 
3219 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3220 		return -EINVAL;
3221 
3222 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3223 	if (r) {
3224 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3225 		return r;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 /*
3232  * returns true on success
3233  */
3234 static bool sync_metadata(struct cache *cache)
3235 {
3236 	int r1, r2, r3, r4;
3237 
3238 	r1 = write_dirty_bitset(cache);
3239 	if (r1)
3240 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3241 
3242 	r2 = write_discard_bitset(cache);
3243 	if (r2)
3244 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3245 
3246 	save_stats(cache);
3247 
3248 	r3 = write_hints(cache);
3249 	if (r3)
3250 		DMERR("%s: could not write hints", cache_device_name(cache));
3251 
3252 	/*
3253 	 * If writing the above metadata failed, we still commit, but don't
3254 	 * set the clean shutdown flag.  This will effectively force every
3255 	 * dirty bit to be set on reload.
3256 	 */
3257 	r4 = commit(cache, !r1 && !r2 && !r3);
3258 	if (r4)
3259 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3260 
3261 	return !r1 && !r2 && !r3 && !r4;
3262 }
3263 
3264 static void cache_postsuspend(struct dm_target *ti)
3265 {
3266 	struct cache *cache = ti->private;
3267 
3268 	start_quiescing(cache);
3269 	wait_for_migrations(cache);
3270 	stop_worker(cache);
3271 	requeue_deferred_bios(cache);
3272 	requeue_deferred_cells(cache);
3273 	stop_quiescing(cache);
3274 
3275 	if (get_cache_mode(cache) == CM_WRITE)
3276 		(void) sync_metadata(cache);
3277 }
3278 
3279 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3280 			bool dirty, uint32_t hint, bool hint_valid)
3281 {
3282 	int r;
3283 	struct cache *cache = context;
3284 
3285 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3286 	if (r)
3287 		return r;
3288 
3289 	if (dirty)
3290 		set_dirty(cache, oblock, cblock);
3291 	else
3292 		clear_dirty(cache, oblock, cblock);
3293 
3294 	return 0;
3295 }
3296 
3297 /*
3298  * The discard block size in the on disk metadata is not
3299  * neccessarily the same as we're currently using.  So we have to
3300  * be careful to only set the discarded attribute if we know it
3301  * covers a complete block of the new size.
3302  */
3303 struct discard_load_info {
3304 	struct cache *cache;
3305 
3306 	/*
3307 	 * These blocks are sized using the on disk dblock size, rather
3308 	 * than the current one.
3309 	 */
3310 	dm_block_t block_size;
3311 	dm_block_t discard_begin, discard_end;
3312 };
3313 
3314 static void discard_load_info_init(struct cache *cache,
3315 				   struct discard_load_info *li)
3316 {
3317 	li->cache = cache;
3318 	li->discard_begin = li->discard_end = 0;
3319 }
3320 
3321 static void set_discard_range(struct discard_load_info *li)
3322 {
3323 	sector_t b, e;
3324 
3325 	if (li->discard_begin == li->discard_end)
3326 		return;
3327 
3328 	/*
3329 	 * Convert to sectors.
3330 	 */
3331 	b = li->discard_begin * li->block_size;
3332 	e = li->discard_end * li->block_size;
3333 
3334 	/*
3335 	 * Then convert back to the current dblock size.
3336 	 */
3337 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3338 	sector_div(e, li->cache->discard_block_size);
3339 
3340 	/*
3341 	 * The origin may have shrunk, so we need to check we're still in
3342 	 * bounds.
3343 	 */
3344 	if (e > from_dblock(li->cache->discard_nr_blocks))
3345 		e = from_dblock(li->cache->discard_nr_blocks);
3346 
3347 	for (; b < e; b++)
3348 		set_discard(li->cache, to_dblock(b));
3349 }
3350 
3351 static int load_discard(void *context, sector_t discard_block_size,
3352 			dm_dblock_t dblock, bool discard)
3353 {
3354 	struct discard_load_info *li = context;
3355 
3356 	li->block_size = discard_block_size;
3357 
3358 	if (discard) {
3359 		if (from_dblock(dblock) == li->discard_end)
3360 			/*
3361 			 * We're already in a discard range, just extend it.
3362 			 */
3363 			li->discard_end = li->discard_end + 1ULL;
3364 
3365 		else {
3366 			/*
3367 			 * Emit the old range and start a new one.
3368 			 */
3369 			set_discard_range(li);
3370 			li->discard_begin = from_dblock(dblock);
3371 			li->discard_end = li->discard_begin + 1ULL;
3372 		}
3373 	} else {
3374 		set_discard_range(li);
3375 		li->discard_begin = li->discard_end = 0;
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3382 {
3383 	sector_t size = get_dev_size(cache->cache_dev);
3384 	(void) sector_div(size, cache->sectors_per_block);
3385 	return to_cblock(size);
3386 }
3387 
3388 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3389 {
3390 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3391 		return true;
3392 
3393 	/*
3394 	 * We can't drop a dirty block when shrinking the cache.
3395 	 */
3396 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3397 		new_size = to_cblock(from_cblock(new_size) + 1);
3398 		if (is_dirty(cache, new_size)) {
3399 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3400 			      cache_device_name(cache),
3401 			      (unsigned long long) from_cblock(new_size));
3402 			return false;
3403 		}
3404 	}
3405 
3406 	return true;
3407 }
3408 
3409 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3410 {
3411 	int r;
3412 
3413 	r = dm_cache_resize(cache->cmd, new_size);
3414 	if (r) {
3415 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3416 		metadata_operation_failed(cache, "dm_cache_resize", r);
3417 		return r;
3418 	}
3419 
3420 	set_cache_size(cache, new_size);
3421 
3422 	return 0;
3423 }
3424 
3425 static int cache_preresume(struct dm_target *ti)
3426 {
3427 	int r = 0;
3428 	struct cache *cache = ti->private;
3429 	dm_cblock_t csize = get_cache_dev_size(cache);
3430 
3431 	/*
3432 	 * Check to see if the cache has resized.
3433 	 */
3434 	if (!cache->sized) {
3435 		r = resize_cache_dev(cache, csize);
3436 		if (r)
3437 			return r;
3438 
3439 		cache->sized = true;
3440 
3441 	} else if (csize != cache->cache_size) {
3442 		if (!can_resize(cache, csize))
3443 			return -EINVAL;
3444 
3445 		r = resize_cache_dev(cache, csize);
3446 		if (r)
3447 			return r;
3448 	}
3449 
3450 	if (!cache->loaded_mappings) {
3451 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3452 					   load_mapping, cache);
3453 		if (r) {
3454 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3455 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3456 			return r;
3457 		}
3458 
3459 		cache->loaded_mappings = true;
3460 	}
3461 
3462 	if (!cache->loaded_discards) {
3463 		struct discard_load_info li;
3464 
3465 		/*
3466 		 * The discard bitset could have been resized, or the
3467 		 * discard block size changed.  To be safe we start by
3468 		 * setting every dblock to not discarded.
3469 		 */
3470 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3471 
3472 		discard_load_info_init(cache, &li);
3473 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3474 		if (r) {
3475 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3476 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3477 			return r;
3478 		}
3479 		set_discard_range(&li);
3480 
3481 		cache->loaded_discards = true;
3482 	}
3483 
3484 	return r;
3485 }
3486 
3487 static void cache_resume(struct dm_target *ti)
3488 {
3489 	struct cache *cache = ti->private;
3490 
3491 	cache->need_tick_bio = true;
3492 	do_waker(&cache->waker.work);
3493 }
3494 
3495 /*
3496  * Status format:
3497  *
3498  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3499  * <cache block size> <#used cache blocks>/<#total cache blocks>
3500  * <#read hits> <#read misses> <#write hits> <#write misses>
3501  * <#demotions> <#promotions> <#dirty>
3502  * <#features> <features>*
3503  * <#core args> <core args>
3504  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3505  */
3506 static void cache_status(struct dm_target *ti, status_type_t type,
3507 			 unsigned status_flags, char *result, unsigned maxlen)
3508 {
3509 	int r = 0;
3510 	unsigned i;
3511 	ssize_t sz = 0;
3512 	dm_block_t nr_free_blocks_metadata = 0;
3513 	dm_block_t nr_blocks_metadata = 0;
3514 	char buf[BDEVNAME_SIZE];
3515 	struct cache *cache = ti->private;
3516 	dm_cblock_t residency;
3517 
3518 	switch (type) {
3519 	case STATUSTYPE_INFO:
3520 		if (get_cache_mode(cache) == CM_FAIL) {
3521 			DMEMIT("Fail");
3522 			break;
3523 		}
3524 
3525 		/* Commit to ensure statistics aren't out-of-date */
3526 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3527 			(void) commit(cache, false);
3528 
3529 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3530 		if (r) {
3531 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3532 			      cache_device_name(cache), r);
3533 			goto err;
3534 		}
3535 
3536 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3537 		if (r) {
3538 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3539 			      cache_device_name(cache), r);
3540 			goto err;
3541 		}
3542 
3543 		residency = policy_residency(cache->policy);
3544 
3545 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3546 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3547 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3548 		       (unsigned long long)nr_blocks_metadata,
3549 		       cache->sectors_per_block,
3550 		       (unsigned long long) from_cblock(residency),
3551 		       (unsigned long long) from_cblock(cache->cache_size),
3552 		       (unsigned) atomic_read(&cache->stats.read_hit),
3553 		       (unsigned) atomic_read(&cache->stats.read_miss),
3554 		       (unsigned) atomic_read(&cache->stats.write_hit),
3555 		       (unsigned) atomic_read(&cache->stats.write_miss),
3556 		       (unsigned) atomic_read(&cache->stats.demotion),
3557 		       (unsigned) atomic_read(&cache->stats.promotion),
3558 		       (unsigned long) atomic_read(&cache->nr_dirty));
3559 
3560 		if (writethrough_mode(&cache->features))
3561 			DMEMIT("1 writethrough ");
3562 
3563 		else if (passthrough_mode(&cache->features))
3564 			DMEMIT("1 passthrough ");
3565 
3566 		else if (writeback_mode(&cache->features))
3567 			DMEMIT("1 writeback ");
3568 
3569 		else {
3570 			DMERR("%s: internal error: unknown io mode: %d",
3571 			      cache_device_name(cache), (int) cache->features.io_mode);
3572 			goto err;
3573 		}
3574 
3575 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3576 
3577 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3578 		if (sz < maxlen) {
3579 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3580 			if (r)
3581 				DMERR("%s: policy_emit_config_values returned %d",
3582 				      cache_device_name(cache), r);
3583 		}
3584 
3585 		if (get_cache_mode(cache) == CM_READ_ONLY)
3586 			DMEMIT("ro ");
3587 		else
3588 			DMEMIT("rw ");
3589 
3590 		if (dm_cache_metadata_needs_check(cache->cmd))
3591 			DMEMIT("needs_check ");
3592 		else
3593 			DMEMIT("- ");
3594 
3595 		break;
3596 
3597 	case STATUSTYPE_TABLE:
3598 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3599 		DMEMIT("%s ", buf);
3600 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3601 		DMEMIT("%s ", buf);
3602 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3603 		DMEMIT("%s", buf);
3604 
3605 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3606 			DMEMIT(" %s", cache->ctr_args[i]);
3607 		if (cache->nr_ctr_args)
3608 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3609 	}
3610 
3611 	return;
3612 
3613 err:
3614 	DMEMIT("Error");
3615 }
3616 
3617 /*
3618  * A cache block range can take two forms:
3619  *
3620  * i) A single cblock, eg. '3456'
3621  * ii) A begin and end cblock with dots between, eg. 123-234
3622  */
3623 static int parse_cblock_range(struct cache *cache, const char *str,
3624 			      struct cblock_range *result)
3625 {
3626 	char dummy;
3627 	uint64_t b, e;
3628 	int r;
3629 
3630 	/*
3631 	 * Try and parse form (ii) first.
3632 	 */
3633 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3634 	if (r < 0)
3635 		return r;
3636 
3637 	if (r == 2) {
3638 		result->begin = to_cblock(b);
3639 		result->end = to_cblock(e);
3640 		return 0;
3641 	}
3642 
3643 	/*
3644 	 * That didn't work, try form (i).
3645 	 */
3646 	r = sscanf(str, "%llu%c", &b, &dummy);
3647 	if (r < 0)
3648 		return r;
3649 
3650 	if (r == 1) {
3651 		result->begin = to_cblock(b);
3652 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3653 		return 0;
3654 	}
3655 
3656 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3657 	return -EINVAL;
3658 }
3659 
3660 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3661 {
3662 	uint64_t b = from_cblock(range->begin);
3663 	uint64_t e = from_cblock(range->end);
3664 	uint64_t n = from_cblock(cache->cache_size);
3665 
3666 	if (b >= n) {
3667 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3668 		      cache_device_name(cache), b, n);
3669 		return -EINVAL;
3670 	}
3671 
3672 	if (e > n) {
3673 		DMERR("%s: end cblock out of range: %llu > %llu",
3674 		      cache_device_name(cache), e, n);
3675 		return -EINVAL;
3676 	}
3677 
3678 	if (b >= e) {
3679 		DMERR("%s: invalid cblock range: %llu >= %llu",
3680 		      cache_device_name(cache), b, e);
3681 		return -EINVAL;
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3688 {
3689 	struct invalidation_request req;
3690 
3691 	INIT_LIST_HEAD(&req.list);
3692 	req.cblocks = range;
3693 	atomic_set(&req.complete, 0);
3694 	req.err = 0;
3695 	init_waitqueue_head(&req.result_wait);
3696 
3697 	spin_lock(&cache->invalidation_lock);
3698 	list_add(&req.list, &cache->invalidation_requests);
3699 	spin_unlock(&cache->invalidation_lock);
3700 	wake_worker(cache);
3701 
3702 	wait_event(req.result_wait, atomic_read(&req.complete));
3703 	return req.err;
3704 }
3705 
3706 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3707 					      const char **cblock_ranges)
3708 {
3709 	int r = 0;
3710 	unsigned i;
3711 	struct cblock_range range;
3712 
3713 	if (!passthrough_mode(&cache->features)) {
3714 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3715 		      cache_device_name(cache));
3716 		return -EPERM;
3717 	}
3718 
3719 	for (i = 0; i < count; i++) {
3720 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3721 		if (r)
3722 			break;
3723 
3724 		r = validate_cblock_range(cache, &range);
3725 		if (r)
3726 			break;
3727 
3728 		/*
3729 		 * Pass begin and end origin blocks to the worker and wake it.
3730 		 */
3731 		r = request_invalidation(cache, &range);
3732 		if (r)
3733 			break;
3734 	}
3735 
3736 	return r;
3737 }
3738 
3739 /*
3740  * Supports
3741  *	"<key> <value>"
3742  * and
3743  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3744  *
3745  * The key migration_threshold is supported by the cache target core.
3746  */
3747 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3748 {
3749 	struct cache *cache = ti->private;
3750 
3751 	if (!argc)
3752 		return -EINVAL;
3753 
3754 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3755 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3756 		      cache_device_name(cache));
3757 		return -EOPNOTSUPP;
3758 	}
3759 
3760 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3761 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3762 
3763 	if (argc != 2)
3764 		return -EINVAL;
3765 
3766 	return set_config_value(cache, argv[0], argv[1]);
3767 }
3768 
3769 static int cache_iterate_devices(struct dm_target *ti,
3770 				 iterate_devices_callout_fn fn, void *data)
3771 {
3772 	int r = 0;
3773 	struct cache *cache = ti->private;
3774 
3775 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3776 	if (!r)
3777 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3778 
3779 	return r;
3780 }
3781 
3782 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3783 {
3784 	/*
3785 	 * FIXME: these limits may be incompatible with the cache device
3786 	 */
3787 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3788 					    cache->origin_sectors);
3789 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3790 }
3791 
3792 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3793 {
3794 	struct cache *cache = ti->private;
3795 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3796 
3797 	/*
3798 	 * If the system-determined stacked limits are compatible with the
3799 	 * cache's blocksize (io_opt is a factor) do not override them.
3800 	 */
3801 	if (io_opt_sectors < cache->sectors_per_block ||
3802 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3803 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3804 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3805 	}
3806 	set_discard_limits(cache, limits);
3807 }
3808 
3809 /*----------------------------------------------------------------*/
3810 
3811 static struct target_type cache_target = {
3812 	.name = "cache",
3813 	.version = {1, 8, 0},
3814 	.module = THIS_MODULE,
3815 	.ctr = cache_ctr,
3816 	.dtr = cache_dtr,
3817 	.map = cache_map,
3818 	.end_io = cache_end_io,
3819 	.postsuspend = cache_postsuspend,
3820 	.preresume = cache_preresume,
3821 	.resume = cache_resume,
3822 	.status = cache_status,
3823 	.message = cache_message,
3824 	.iterate_devices = cache_iterate_devices,
3825 	.io_hints = cache_io_hints,
3826 };
3827 
3828 static int __init dm_cache_init(void)
3829 {
3830 	int r;
3831 
3832 	r = dm_register_target(&cache_target);
3833 	if (r) {
3834 		DMERR("cache target registration failed: %d", r);
3835 		return r;
3836 	}
3837 
3838 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3839 	if (!migration_cache) {
3840 		dm_unregister_target(&cache_target);
3841 		return -ENOMEM;
3842 	}
3843 
3844 	return 0;
3845 }
3846 
3847 static void __exit dm_cache_exit(void)
3848 {
3849 	dm_unregister_target(&cache_target);
3850 	kmem_cache_destroy(migration_cache);
3851 }
3852 
3853 module_init(dm_cache_init);
3854 module_exit(dm_cache_exit);
3855 
3856 MODULE_DESCRIPTION(DM_NAME " cache target");
3857 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3858 MODULE_LICENSE("GPL");
3859