xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision e23feb16)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68 
69 /*
70  * The block size of the device holding cache data must be
71  * between 32KB and 1GB.
72  */
73 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
74 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
75 
76 /*
77  * FIXME: the cache is read/write for the time being.
78  */
79 enum cache_mode {
80 	CM_WRITE,		/* metadata may be changed */
81 	CM_READ_ONLY,		/* metadata may not be changed */
82 };
83 
84 struct cache_features {
85 	enum cache_mode mode;
86 	bool write_through:1;
87 };
88 
89 struct cache_stats {
90 	atomic_t read_hit;
91 	atomic_t read_miss;
92 	atomic_t write_hit;
93 	atomic_t write_miss;
94 	atomic_t demotion;
95 	atomic_t promotion;
96 	atomic_t copies_avoided;
97 	atomic_t cache_cell_clash;
98 	atomic_t commit_count;
99 	atomic_t discard_count;
100 };
101 
102 struct cache {
103 	struct dm_target *ti;
104 	struct dm_target_callbacks callbacks;
105 
106 	struct dm_cache_metadata *cmd;
107 
108 	/*
109 	 * Metadata is written to this device.
110 	 */
111 	struct dm_dev *metadata_dev;
112 
113 	/*
114 	 * The slower of the two data devices.  Typically a spindle.
115 	 */
116 	struct dm_dev *origin_dev;
117 
118 	/*
119 	 * The faster of the two data devices.  Typically an SSD.
120 	 */
121 	struct dm_dev *cache_dev;
122 
123 	/*
124 	 * Size of the origin device in _complete_ blocks and native sectors.
125 	 */
126 	dm_oblock_t origin_blocks;
127 	sector_t origin_sectors;
128 
129 	/*
130 	 * Size of the cache device in blocks.
131 	 */
132 	dm_cblock_t cache_size;
133 
134 	/*
135 	 * Fields for converting from sectors to blocks.
136 	 */
137 	uint32_t sectors_per_block;
138 	int sectors_per_block_shift;
139 
140 	spinlock_t lock;
141 	struct bio_list deferred_bios;
142 	struct bio_list deferred_flush_bios;
143 	struct bio_list deferred_writethrough_bios;
144 	struct list_head quiesced_migrations;
145 	struct list_head completed_migrations;
146 	struct list_head need_commit_migrations;
147 	sector_t migration_threshold;
148 	wait_queue_head_t migration_wait;
149 	atomic_t nr_migrations;
150 
151 	/*
152 	 * cache_size entries, dirty if set
153 	 */
154 	dm_cblock_t nr_dirty;
155 	unsigned long *dirty_bitset;
156 
157 	/*
158 	 * origin_blocks entries, discarded if set.
159 	 */
160 	dm_dblock_t discard_nr_blocks;
161 	unsigned long *discard_bitset;
162 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
163 
164 	/*
165 	 * Rather than reconstructing the table line for the status we just
166 	 * save it and regurgitate.
167 	 */
168 	unsigned nr_ctr_args;
169 	const char **ctr_args;
170 
171 	struct dm_kcopyd_client *copier;
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 
175 	struct delayed_work waker;
176 	unsigned long last_commit_jiffies;
177 
178 	struct dm_bio_prison *prison;
179 	struct dm_deferred_set *all_io_ds;
180 
181 	mempool_t *migration_pool;
182 	struct dm_cache_migration *next_migration;
183 
184 	struct dm_cache_policy *policy;
185 	unsigned policy_nr_args;
186 
187 	bool need_tick_bio:1;
188 	bool sized:1;
189 	bool quiescing:1;
190 	bool commit_requested:1;
191 	bool loaded_mappings:1;
192 	bool loaded_discards:1;
193 
194 	/*
195 	 * Cache features such as write-through.
196 	 */
197 	struct cache_features features;
198 
199 	struct cache_stats stats;
200 };
201 
202 struct per_bio_data {
203 	bool tick:1;
204 	unsigned req_nr:2;
205 	struct dm_deferred_entry *all_io_entry;
206 
207 	/*
208 	 * writethrough fields.  These MUST remain at the end of this
209 	 * structure and the 'cache' member must be the first as it
210 	 * is used to determine the offset of the writethrough fields.
211 	 */
212 	struct cache *cache;
213 	dm_cblock_t cblock;
214 	bio_end_io_t *saved_bi_end_io;
215 	struct dm_bio_details bio_details;
216 };
217 
218 struct dm_cache_migration {
219 	struct list_head list;
220 	struct cache *cache;
221 
222 	unsigned long start_jiffies;
223 	dm_oblock_t old_oblock;
224 	dm_oblock_t new_oblock;
225 	dm_cblock_t cblock;
226 
227 	bool err:1;
228 	bool writeback:1;
229 	bool demote:1;
230 	bool promote:1;
231 
232 	struct dm_bio_prison_cell *old_ocell;
233 	struct dm_bio_prison_cell *new_ocell;
234 };
235 
236 /*
237  * Processing a bio in the worker thread may require these memory
238  * allocations.  We prealloc to avoid deadlocks (the same worker thread
239  * frees them back to the mempool).
240  */
241 struct prealloc {
242 	struct dm_cache_migration *mg;
243 	struct dm_bio_prison_cell *cell1;
244 	struct dm_bio_prison_cell *cell2;
245 };
246 
247 static void wake_worker(struct cache *cache)
248 {
249 	queue_work(cache->wq, &cache->worker);
250 }
251 
252 /*----------------------------------------------------------------*/
253 
254 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
255 {
256 	/* FIXME: change to use a local slab. */
257 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
258 }
259 
260 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
261 {
262 	dm_bio_prison_free_cell(cache->prison, cell);
263 }
264 
265 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
266 {
267 	if (!p->mg) {
268 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
269 		if (!p->mg)
270 			return -ENOMEM;
271 	}
272 
273 	if (!p->cell1) {
274 		p->cell1 = alloc_prison_cell(cache);
275 		if (!p->cell1)
276 			return -ENOMEM;
277 	}
278 
279 	if (!p->cell2) {
280 		p->cell2 = alloc_prison_cell(cache);
281 		if (!p->cell2)
282 			return -ENOMEM;
283 	}
284 
285 	return 0;
286 }
287 
288 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
289 {
290 	if (p->cell2)
291 		free_prison_cell(cache, p->cell2);
292 
293 	if (p->cell1)
294 		free_prison_cell(cache, p->cell1);
295 
296 	if (p->mg)
297 		mempool_free(p->mg, cache->migration_pool);
298 }
299 
300 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
301 {
302 	struct dm_cache_migration *mg = p->mg;
303 
304 	BUG_ON(!mg);
305 	p->mg = NULL;
306 
307 	return mg;
308 }
309 
310 /*
311  * You must have a cell within the prealloc struct to return.  If not this
312  * function will BUG() rather than returning NULL.
313  */
314 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
315 {
316 	struct dm_bio_prison_cell *r = NULL;
317 
318 	if (p->cell1) {
319 		r = p->cell1;
320 		p->cell1 = NULL;
321 
322 	} else if (p->cell2) {
323 		r = p->cell2;
324 		p->cell2 = NULL;
325 	} else
326 		BUG();
327 
328 	return r;
329 }
330 
331 /*
332  * You can't have more than two cells in a prealloc struct.  BUG() will be
333  * called if you try and overfill.
334  */
335 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
336 {
337 	if (!p->cell2)
338 		p->cell2 = cell;
339 
340 	else if (!p->cell1)
341 		p->cell1 = cell;
342 
343 	else
344 		BUG();
345 }
346 
347 /*----------------------------------------------------------------*/
348 
349 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
350 {
351 	key->virtual = 0;
352 	key->dev = 0;
353 	key->block = from_oblock(oblock);
354 }
355 
356 /*
357  * The caller hands in a preallocated cell, and a free function for it.
358  * The cell will be freed if there's an error, or if it wasn't used because
359  * a cell with that key already exists.
360  */
361 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
362 
363 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
364 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
365 		      cell_free_fn free_fn, void *free_context,
366 		      struct dm_bio_prison_cell **cell_result)
367 {
368 	int r;
369 	struct dm_cell_key key;
370 
371 	build_key(oblock, &key);
372 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
373 	if (r)
374 		free_fn(free_context, cell_prealloc);
375 
376 	return r;
377 }
378 
379 static int get_cell(struct cache *cache,
380 		    dm_oblock_t oblock,
381 		    struct prealloc *structs,
382 		    struct dm_bio_prison_cell **cell_result)
383 {
384 	int r;
385 	struct dm_cell_key key;
386 	struct dm_bio_prison_cell *cell_prealloc;
387 
388 	cell_prealloc = prealloc_get_cell(structs);
389 
390 	build_key(oblock, &key);
391 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
392 	if (r)
393 		prealloc_put_cell(structs, cell_prealloc);
394 
395 	return r;
396 }
397 
398 /*----------------------------------------------------------------*/
399 
400 static bool is_dirty(struct cache *cache, dm_cblock_t b)
401 {
402 	return test_bit(from_cblock(b), cache->dirty_bitset);
403 }
404 
405 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
406 {
407 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
408 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
409 		policy_set_dirty(cache->policy, oblock);
410 	}
411 }
412 
413 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
414 {
415 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
416 		policy_clear_dirty(cache->policy, oblock);
417 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
418 		if (!from_cblock(cache->nr_dirty))
419 			dm_table_event(cache->ti->table);
420 	}
421 }
422 
423 /*----------------------------------------------------------------*/
424 
425 static bool block_size_is_power_of_two(struct cache *cache)
426 {
427 	return cache->sectors_per_block_shift >= 0;
428 }
429 
430 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
431 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
432 __always_inline
433 #endif
434 static dm_block_t block_div(dm_block_t b, uint32_t n)
435 {
436 	do_div(b, n);
437 
438 	return b;
439 }
440 
441 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
442 {
443 	uint32_t discard_blocks = cache->discard_block_size;
444 	dm_block_t b = from_oblock(oblock);
445 
446 	if (!block_size_is_power_of_two(cache))
447 		discard_blocks = discard_blocks / cache->sectors_per_block;
448 	else
449 		discard_blocks >>= cache->sectors_per_block_shift;
450 
451 	b = block_div(b, discard_blocks);
452 
453 	return to_dblock(b);
454 }
455 
456 static void set_discard(struct cache *cache, dm_dblock_t b)
457 {
458 	unsigned long flags;
459 
460 	atomic_inc(&cache->stats.discard_count);
461 
462 	spin_lock_irqsave(&cache->lock, flags);
463 	set_bit(from_dblock(b), cache->discard_bitset);
464 	spin_unlock_irqrestore(&cache->lock, flags);
465 }
466 
467 static void clear_discard(struct cache *cache, dm_dblock_t b)
468 {
469 	unsigned long flags;
470 
471 	spin_lock_irqsave(&cache->lock, flags);
472 	clear_bit(from_dblock(b), cache->discard_bitset);
473 	spin_unlock_irqrestore(&cache->lock, flags);
474 }
475 
476 static bool is_discarded(struct cache *cache, dm_dblock_t b)
477 {
478 	int r;
479 	unsigned long flags;
480 
481 	spin_lock_irqsave(&cache->lock, flags);
482 	r = test_bit(from_dblock(b), cache->discard_bitset);
483 	spin_unlock_irqrestore(&cache->lock, flags);
484 
485 	return r;
486 }
487 
488 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
489 {
490 	int r;
491 	unsigned long flags;
492 
493 	spin_lock_irqsave(&cache->lock, flags);
494 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
495 		     cache->discard_bitset);
496 	spin_unlock_irqrestore(&cache->lock, flags);
497 
498 	return r;
499 }
500 
501 /*----------------------------------------------------------------*/
502 
503 static void load_stats(struct cache *cache)
504 {
505 	struct dm_cache_statistics stats;
506 
507 	dm_cache_metadata_get_stats(cache->cmd, &stats);
508 	atomic_set(&cache->stats.read_hit, stats.read_hits);
509 	atomic_set(&cache->stats.read_miss, stats.read_misses);
510 	atomic_set(&cache->stats.write_hit, stats.write_hits);
511 	atomic_set(&cache->stats.write_miss, stats.write_misses);
512 }
513 
514 static void save_stats(struct cache *cache)
515 {
516 	struct dm_cache_statistics stats;
517 
518 	stats.read_hits = atomic_read(&cache->stats.read_hit);
519 	stats.read_misses = atomic_read(&cache->stats.read_miss);
520 	stats.write_hits = atomic_read(&cache->stats.write_hit);
521 	stats.write_misses = atomic_read(&cache->stats.write_miss);
522 
523 	dm_cache_metadata_set_stats(cache->cmd, &stats);
524 }
525 
526 /*----------------------------------------------------------------
527  * Per bio data
528  *--------------------------------------------------------------*/
529 
530 /*
531  * If using writeback, leave out struct per_bio_data's writethrough fields.
532  */
533 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
534 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
535 
536 static size_t get_per_bio_data_size(struct cache *cache)
537 {
538 	return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
539 }
540 
541 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
542 {
543 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
544 	BUG_ON(!pb);
545 	return pb;
546 }
547 
548 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
549 {
550 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
551 
552 	pb->tick = false;
553 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
554 	pb->all_io_entry = NULL;
555 
556 	return pb;
557 }
558 
559 /*----------------------------------------------------------------
560  * Remapping
561  *--------------------------------------------------------------*/
562 static void remap_to_origin(struct cache *cache, struct bio *bio)
563 {
564 	bio->bi_bdev = cache->origin_dev->bdev;
565 }
566 
567 static void remap_to_cache(struct cache *cache, struct bio *bio,
568 			   dm_cblock_t cblock)
569 {
570 	sector_t bi_sector = bio->bi_sector;
571 
572 	bio->bi_bdev = cache->cache_dev->bdev;
573 	if (!block_size_is_power_of_two(cache))
574 		bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
575 				sector_div(bi_sector, cache->sectors_per_block);
576 	else
577 		bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
578 				(bi_sector & (cache->sectors_per_block - 1));
579 }
580 
581 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
582 {
583 	unsigned long flags;
584 	size_t pb_data_size = get_per_bio_data_size(cache);
585 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
586 
587 	spin_lock_irqsave(&cache->lock, flags);
588 	if (cache->need_tick_bio &&
589 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
590 		pb->tick = true;
591 		cache->need_tick_bio = false;
592 	}
593 	spin_unlock_irqrestore(&cache->lock, flags);
594 }
595 
596 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
597 				  dm_oblock_t oblock)
598 {
599 	check_if_tick_bio_needed(cache, bio);
600 	remap_to_origin(cache, bio);
601 	if (bio_data_dir(bio) == WRITE)
602 		clear_discard(cache, oblock_to_dblock(cache, oblock));
603 }
604 
605 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
606 				 dm_oblock_t oblock, dm_cblock_t cblock)
607 {
608 	remap_to_cache(cache, bio, cblock);
609 	if (bio_data_dir(bio) == WRITE) {
610 		set_dirty(cache, oblock, cblock);
611 		clear_discard(cache, oblock_to_dblock(cache, oblock));
612 	}
613 }
614 
615 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
616 {
617 	sector_t block_nr = bio->bi_sector;
618 
619 	if (!block_size_is_power_of_two(cache))
620 		(void) sector_div(block_nr, cache->sectors_per_block);
621 	else
622 		block_nr >>= cache->sectors_per_block_shift;
623 
624 	return to_oblock(block_nr);
625 }
626 
627 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
628 {
629 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
630 }
631 
632 static void issue(struct cache *cache, struct bio *bio)
633 {
634 	unsigned long flags;
635 
636 	if (!bio_triggers_commit(cache, bio)) {
637 		generic_make_request(bio);
638 		return;
639 	}
640 
641 	/*
642 	 * Batch together any bios that trigger commits and then issue a
643 	 * single commit for them in do_worker().
644 	 */
645 	spin_lock_irqsave(&cache->lock, flags);
646 	cache->commit_requested = true;
647 	bio_list_add(&cache->deferred_flush_bios, bio);
648 	spin_unlock_irqrestore(&cache->lock, flags);
649 }
650 
651 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&cache->lock, flags);
656 	bio_list_add(&cache->deferred_writethrough_bios, bio);
657 	spin_unlock_irqrestore(&cache->lock, flags);
658 
659 	wake_worker(cache);
660 }
661 
662 static void writethrough_endio(struct bio *bio, int err)
663 {
664 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
665 	bio->bi_end_io = pb->saved_bi_end_io;
666 
667 	if (err) {
668 		bio_endio(bio, err);
669 		return;
670 	}
671 
672 	dm_bio_restore(&pb->bio_details, bio);
673 	remap_to_cache(pb->cache, bio, pb->cblock);
674 
675 	/*
676 	 * We can't issue this bio directly, since we're in interrupt
677 	 * context.  So it gets put on a bio list for processing by the
678 	 * worker thread.
679 	 */
680 	defer_writethrough_bio(pb->cache, bio);
681 }
682 
683 /*
684  * When running in writethrough mode we need to send writes to clean blocks
685  * to both the cache and origin devices.  In future we'd like to clone the
686  * bio and send them in parallel, but for now we're doing them in
687  * series as this is easier.
688  */
689 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
690 				       dm_oblock_t oblock, dm_cblock_t cblock)
691 {
692 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
693 
694 	pb->cache = cache;
695 	pb->cblock = cblock;
696 	pb->saved_bi_end_io = bio->bi_end_io;
697 	dm_bio_record(&pb->bio_details, bio);
698 	bio->bi_end_io = writethrough_endio;
699 
700 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
701 }
702 
703 /*----------------------------------------------------------------
704  * Migration processing
705  *
706  * Migration covers moving data from the origin device to the cache, or
707  * vice versa.
708  *--------------------------------------------------------------*/
709 static void free_migration(struct dm_cache_migration *mg)
710 {
711 	mempool_free(mg, mg->cache->migration_pool);
712 }
713 
714 static void inc_nr_migrations(struct cache *cache)
715 {
716 	atomic_inc(&cache->nr_migrations);
717 }
718 
719 static void dec_nr_migrations(struct cache *cache)
720 {
721 	atomic_dec(&cache->nr_migrations);
722 
723 	/*
724 	 * Wake the worker in case we're suspending the target.
725 	 */
726 	wake_up(&cache->migration_wait);
727 }
728 
729 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
730 			 bool holder)
731 {
732 	(holder ? dm_cell_release : dm_cell_release_no_holder)
733 		(cache->prison, cell, &cache->deferred_bios);
734 	free_prison_cell(cache, cell);
735 }
736 
737 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
738 		       bool holder)
739 {
740 	unsigned long flags;
741 
742 	spin_lock_irqsave(&cache->lock, flags);
743 	__cell_defer(cache, cell, holder);
744 	spin_unlock_irqrestore(&cache->lock, flags);
745 
746 	wake_worker(cache);
747 }
748 
749 static void cleanup_migration(struct dm_cache_migration *mg)
750 {
751 	dec_nr_migrations(mg->cache);
752 	free_migration(mg);
753 }
754 
755 static void migration_failure(struct dm_cache_migration *mg)
756 {
757 	struct cache *cache = mg->cache;
758 
759 	if (mg->writeback) {
760 		DMWARN_LIMIT("writeback failed; couldn't copy block");
761 		set_dirty(cache, mg->old_oblock, mg->cblock);
762 		cell_defer(cache, mg->old_ocell, false);
763 
764 	} else if (mg->demote) {
765 		DMWARN_LIMIT("demotion failed; couldn't copy block");
766 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
767 
768 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
769 		if (mg->promote)
770 			cell_defer(cache, mg->new_ocell, 1);
771 	} else {
772 		DMWARN_LIMIT("promotion failed; couldn't copy block");
773 		policy_remove_mapping(cache->policy, mg->new_oblock);
774 		cell_defer(cache, mg->new_ocell, 1);
775 	}
776 
777 	cleanup_migration(mg);
778 }
779 
780 static void migration_success_pre_commit(struct dm_cache_migration *mg)
781 {
782 	unsigned long flags;
783 	struct cache *cache = mg->cache;
784 
785 	if (mg->writeback) {
786 		cell_defer(cache, mg->old_ocell, false);
787 		clear_dirty(cache, mg->old_oblock, mg->cblock);
788 		cleanup_migration(mg);
789 		return;
790 
791 	} else if (mg->demote) {
792 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
793 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
794 			policy_force_mapping(cache->policy, mg->new_oblock,
795 					     mg->old_oblock);
796 			if (mg->promote)
797 				cell_defer(cache, mg->new_ocell, true);
798 			cleanup_migration(mg);
799 			return;
800 		}
801 	} else {
802 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
803 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
804 			policy_remove_mapping(cache->policy, mg->new_oblock);
805 			cleanup_migration(mg);
806 			return;
807 		}
808 	}
809 
810 	spin_lock_irqsave(&cache->lock, flags);
811 	list_add_tail(&mg->list, &cache->need_commit_migrations);
812 	cache->commit_requested = true;
813 	spin_unlock_irqrestore(&cache->lock, flags);
814 }
815 
816 static void migration_success_post_commit(struct dm_cache_migration *mg)
817 {
818 	unsigned long flags;
819 	struct cache *cache = mg->cache;
820 
821 	if (mg->writeback) {
822 		DMWARN("writeback unexpectedly triggered commit");
823 		return;
824 
825 	} else if (mg->demote) {
826 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
827 
828 		if (mg->promote) {
829 			mg->demote = false;
830 
831 			spin_lock_irqsave(&cache->lock, flags);
832 			list_add_tail(&mg->list, &cache->quiesced_migrations);
833 			spin_unlock_irqrestore(&cache->lock, flags);
834 
835 		} else
836 			cleanup_migration(mg);
837 
838 	} else {
839 		cell_defer(cache, mg->new_ocell, true);
840 		clear_dirty(cache, mg->new_oblock, mg->cblock);
841 		cleanup_migration(mg);
842 	}
843 }
844 
845 static void copy_complete(int read_err, unsigned long write_err, void *context)
846 {
847 	unsigned long flags;
848 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
849 	struct cache *cache = mg->cache;
850 
851 	if (read_err || write_err)
852 		mg->err = true;
853 
854 	spin_lock_irqsave(&cache->lock, flags);
855 	list_add_tail(&mg->list, &cache->completed_migrations);
856 	spin_unlock_irqrestore(&cache->lock, flags);
857 
858 	wake_worker(cache);
859 }
860 
861 static void issue_copy_real(struct dm_cache_migration *mg)
862 {
863 	int r;
864 	struct dm_io_region o_region, c_region;
865 	struct cache *cache = mg->cache;
866 
867 	o_region.bdev = cache->origin_dev->bdev;
868 	o_region.count = cache->sectors_per_block;
869 
870 	c_region.bdev = cache->cache_dev->bdev;
871 	c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
872 	c_region.count = cache->sectors_per_block;
873 
874 	if (mg->writeback || mg->demote) {
875 		/* demote */
876 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
877 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
878 	} else {
879 		/* promote */
880 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
881 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
882 	}
883 
884 	if (r < 0)
885 		migration_failure(mg);
886 }
887 
888 static void avoid_copy(struct dm_cache_migration *mg)
889 {
890 	atomic_inc(&mg->cache->stats.copies_avoided);
891 	migration_success_pre_commit(mg);
892 }
893 
894 static void issue_copy(struct dm_cache_migration *mg)
895 {
896 	bool avoid;
897 	struct cache *cache = mg->cache;
898 
899 	if (mg->writeback || mg->demote)
900 		avoid = !is_dirty(cache, mg->cblock) ||
901 			is_discarded_oblock(cache, mg->old_oblock);
902 	else
903 		avoid = is_discarded_oblock(cache, mg->new_oblock);
904 
905 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
906 }
907 
908 static void complete_migration(struct dm_cache_migration *mg)
909 {
910 	if (mg->err)
911 		migration_failure(mg);
912 	else
913 		migration_success_pre_commit(mg);
914 }
915 
916 static void process_migrations(struct cache *cache, struct list_head *head,
917 			       void (*fn)(struct dm_cache_migration *))
918 {
919 	unsigned long flags;
920 	struct list_head list;
921 	struct dm_cache_migration *mg, *tmp;
922 
923 	INIT_LIST_HEAD(&list);
924 	spin_lock_irqsave(&cache->lock, flags);
925 	list_splice_init(head, &list);
926 	spin_unlock_irqrestore(&cache->lock, flags);
927 
928 	list_for_each_entry_safe(mg, tmp, &list, list)
929 		fn(mg);
930 }
931 
932 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
933 {
934 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
935 }
936 
937 static void queue_quiesced_migration(struct dm_cache_migration *mg)
938 {
939 	unsigned long flags;
940 	struct cache *cache = mg->cache;
941 
942 	spin_lock_irqsave(&cache->lock, flags);
943 	__queue_quiesced_migration(mg);
944 	spin_unlock_irqrestore(&cache->lock, flags);
945 
946 	wake_worker(cache);
947 }
948 
949 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
950 {
951 	unsigned long flags;
952 	struct dm_cache_migration *mg, *tmp;
953 
954 	spin_lock_irqsave(&cache->lock, flags);
955 	list_for_each_entry_safe(mg, tmp, work, list)
956 		__queue_quiesced_migration(mg);
957 	spin_unlock_irqrestore(&cache->lock, flags);
958 
959 	wake_worker(cache);
960 }
961 
962 static void check_for_quiesced_migrations(struct cache *cache,
963 					  struct per_bio_data *pb)
964 {
965 	struct list_head work;
966 
967 	if (!pb->all_io_entry)
968 		return;
969 
970 	INIT_LIST_HEAD(&work);
971 	if (pb->all_io_entry)
972 		dm_deferred_entry_dec(pb->all_io_entry, &work);
973 
974 	if (!list_empty(&work))
975 		queue_quiesced_migrations(cache, &work);
976 }
977 
978 static void quiesce_migration(struct dm_cache_migration *mg)
979 {
980 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
981 		queue_quiesced_migration(mg);
982 }
983 
984 static void promote(struct cache *cache, struct prealloc *structs,
985 		    dm_oblock_t oblock, dm_cblock_t cblock,
986 		    struct dm_bio_prison_cell *cell)
987 {
988 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
989 
990 	mg->err = false;
991 	mg->writeback = false;
992 	mg->demote = false;
993 	mg->promote = true;
994 	mg->cache = cache;
995 	mg->new_oblock = oblock;
996 	mg->cblock = cblock;
997 	mg->old_ocell = NULL;
998 	mg->new_ocell = cell;
999 	mg->start_jiffies = jiffies;
1000 
1001 	inc_nr_migrations(cache);
1002 	quiesce_migration(mg);
1003 }
1004 
1005 static void writeback(struct cache *cache, struct prealloc *structs,
1006 		      dm_oblock_t oblock, dm_cblock_t cblock,
1007 		      struct dm_bio_prison_cell *cell)
1008 {
1009 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1010 
1011 	mg->err = false;
1012 	mg->writeback = true;
1013 	mg->demote = false;
1014 	mg->promote = false;
1015 	mg->cache = cache;
1016 	mg->old_oblock = oblock;
1017 	mg->cblock = cblock;
1018 	mg->old_ocell = cell;
1019 	mg->new_ocell = NULL;
1020 	mg->start_jiffies = jiffies;
1021 
1022 	inc_nr_migrations(cache);
1023 	quiesce_migration(mg);
1024 }
1025 
1026 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1027 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1028 				dm_cblock_t cblock,
1029 				struct dm_bio_prison_cell *old_ocell,
1030 				struct dm_bio_prison_cell *new_ocell)
1031 {
1032 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1033 
1034 	mg->err = false;
1035 	mg->writeback = false;
1036 	mg->demote = true;
1037 	mg->promote = true;
1038 	mg->cache = cache;
1039 	mg->old_oblock = old_oblock;
1040 	mg->new_oblock = new_oblock;
1041 	mg->cblock = cblock;
1042 	mg->old_ocell = old_ocell;
1043 	mg->new_ocell = new_ocell;
1044 	mg->start_jiffies = jiffies;
1045 
1046 	inc_nr_migrations(cache);
1047 	quiesce_migration(mg);
1048 }
1049 
1050 /*----------------------------------------------------------------
1051  * bio processing
1052  *--------------------------------------------------------------*/
1053 static void defer_bio(struct cache *cache, struct bio *bio)
1054 {
1055 	unsigned long flags;
1056 
1057 	spin_lock_irqsave(&cache->lock, flags);
1058 	bio_list_add(&cache->deferred_bios, bio);
1059 	spin_unlock_irqrestore(&cache->lock, flags);
1060 
1061 	wake_worker(cache);
1062 }
1063 
1064 static void process_flush_bio(struct cache *cache, struct bio *bio)
1065 {
1066 	size_t pb_data_size = get_per_bio_data_size(cache);
1067 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1068 
1069 	BUG_ON(bio->bi_size);
1070 	if (!pb->req_nr)
1071 		remap_to_origin(cache, bio);
1072 	else
1073 		remap_to_cache(cache, bio, 0);
1074 
1075 	issue(cache, bio);
1076 }
1077 
1078 /*
1079  * People generally discard large parts of a device, eg, the whole device
1080  * when formatting.  Splitting these large discards up into cache block
1081  * sized ios and then quiescing (always neccessary for discard) takes too
1082  * long.
1083  *
1084  * We keep it simple, and allow any size of discard to come in, and just
1085  * mark off blocks on the discard bitset.  No passdown occurs!
1086  *
1087  * To implement passdown we need to change the bio_prison such that a cell
1088  * can have a key that spans many blocks.
1089  */
1090 static void process_discard_bio(struct cache *cache, struct bio *bio)
1091 {
1092 	dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1093 						  cache->discard_block_size);
1094 	dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1095 	dm_block_t b;
1096 
1097 	end_block = block_div(end_block, cache->discard_block_size);
1098 
1099 	for (b = start_block; b < end_block; b++)
1100 		set_discard(cache, to_dblock(b));
1101 
1102 	bio_endio(bio, 0);
1103 }
1104 
1105 static bool spare_migration_bandwidth(struct cache *cache)
1106 {
1107 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1108 		cache->sectors_per_block;
1109 	return current_volume < cache->migration_threshold;
1110 }
1111 
1112 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1113 			       dm_cblock_t cblock)
1114 {
1115 	return bio_data_dir(bio) == WRITE &&
1116 		cache->features.write_through && !is_dirty(cache, cblock);
1117 }
1118 
1119 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1120 {
1121 	atomic_inc(bio_data_dir(bio) == READ ?
1122 		   &cache->stats.read_hit : &cache->stats.write_hit);
1123 }
1124 
1125 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1126 {
1127 	atomic_inc(bio_data_dir(bio) == READ ?
1128 		   &cache->stats.read_miss : &cache->stats.write_miss);
1129 }
1130 
1131 static void process_bio(struct cache *cache, struct prealloc *structs,
1132 			struct bio *bio)
1133 {
1134 	int r;
1135 	bool release_cell = true;
1136 	dm_oblock_t block = get_bio_block(cache, bio);
1137 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1138 	struct policy_result lookup_result;
1139 	size_t pb_data_size = get_per_bio_data_size(cache);
1140 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1141 	bool discarded_block = is_discarded_oblock(cache, block);
1142 	bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1143 
1144 	/*
1145 	 * Check to see if that block is currently migrating.
1146 	 */
1147 	cell_prealloc = prealloc_get_cell(structs);
1148 	r = bio_detain(cache, block, bio, cell_prealloc,
1149 		       (cell_free_fn) prealloc_put_cell,
1150 		       structs, &new_ocell);
1151 	if (r > 0)
1152 		return;
1153 
1154 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1155 		       bio, &lookup_result);
1156 
1157 	if (r == -EWOULDBLOCK)
1158 		/* migration has been denied */
1159 		lookup_result.op = POLICY_MISS;
1160 
1161 	switch (lookup_result.op) {
1162 	case POLICY_HIT:
1163 		inc_hit_counter(cache, bio);
1164 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1165 
1166 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
1167 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1168 		else
1169 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1170 
1171 		issue(cache, bio);
1172 		break;
1173 
1174 	case POLICY_MISS:
1175 		inc_miss_counter(cache, bio);
1176 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1177 		remap_to_origin_clear_discard(cache, bio, block);
1178 		issue(cache, bio);
1179 		break;
1180 
1181 	case POLICY_NEW:
1182 		atomic_inc(&cache->stats.promotion);
1183 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1184 		release_cell = false;
1185 		break;
1186 
1187 	case POLICY_REPLACE:
1188 		cell_prealloc = prealloc_get_cell(structs);
1189 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1190 			       (cell_free_fn) prealloc_put_cell,
1191 			       structs, &old_ocell);
1192 		if (r > 0) {
1193 			/*
1194 			 * We have to be careful to avoid lock inversion of
1195 			 * the cells.  So we back off, and wait for the
1196 			 * old_ocell to become free.
1197 			 */
1198 			policy_force_mapping(cache->policy, block,
1199 					     lookup_result.old_oblock);
1200 			atomic_inc(&cache->stats.cache_cell_clash);
1201 			break;
1202 		}
1203 		atomic_inc(&cache->stats.demotion);
1204 		atomic_inc(&cache->stats.promotion);
1205 
1206 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1207 				    block, lookup_result.cblock,
1208 				    old_ocell, new_ocell);
1209 		release_cell = false;
1210 		break;
1211 
1212 	default:
1213 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1214 			    (unsigned) lookup_result.op);
1215 		bio_io_error(bio);
1216 	}
1217 
1218 	if (release_cell)
1219 		cell_defer(cache, new_ocell, false);
1220 }
1221 
1222 static int need_commit_due_to_time(struct cache *cache)
1223 {
1224 	return jiffies < cache->last_commit_jiffies ||
1225 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1226 }
1227 
1228 static int commit_if_needed(struct cache *cache)
1229 {
1230 	if (dm_cache_changed_this_transaction(cache->cmd) &&
1231 	    (cache->commit_requested || need_commit_due_to_time(cache))) {
1232 		atomic_inc(&cache->stats.commit_count);
1233 		cache->last_commit_jiffies = jiffies;
1234 		cache->commit_requested = false;
1235 		return dm_cache_commit(cache->cmd, false);
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static void process_deferred_bios(struct cache *cache)
1242 {
1243 	unsigned long flags;
1244 	struct bio_list bios;
1245 	struct bio *bio;
1246 	struct prealloc structs;
1247 
1248 	memset(&structs, 0, sizeof(structs));
1249 	bio_list_init(&bios);
1250 
1251 	spin_lock_irqsave(&cache->lock, flags);
1252 	bio_list_merge(&bios, &cache->deferred_bios);
1253 	bio_list_init(&cache->deferred_bios);
1254 	spin_unlock_irqrestore(&cache->lock, flags);
1255 
1256 	while (!bio_list_empty(&bios)) {
1257 		/*
1258 		 * If we've got no free migration structs, and processing
1259 		 * this bio might require one, we pause until there are some
1260 		 * prepared mappings to process.
1261 		 */
1262 		if (prealloc_data_structs(cache, &structs)) {
1263 			spin_lock_irqsave(&cache->lock, flags);
1264 			bio_list_merge(&cache->deferred_bios, &bios);
1265 			spin_unlock_irqrestore(&cache->lock, flags);
1266 			break;
1267 		}
1268 
1269 		bio = bio_list_pop(&bios);
1270 
1271 		if (bio->bi_rw & REQ_FLUSH)
1272 			process_flush_bio(cache, bio);
1273 		else if (bio->bi_rw & REQ_DISCARD)
1274 			process_discard_bio(cache, bio);
1275 		else
1276 			process_bio(cache, &structs, bio);
1277 	}
1278 
1279 	prealloc_free_structs(cache, &structs);
1280 }
1281 
1282 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1283 {
1284 	unsigned long flags;
1285 	struct bio_list bios;
1286 	struct bio *bio;
1287 
1288 	bio_list_init(&bios);
1289 
1290 	spin_lock_irqsave(&cache->lock, flags);
1291 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1292 	bio_list_init(&cache->deferred_flush_bios);
1293 	spin_unlock_irqrestore(&cache->lock, flags);
1294 
1295 	while ((bio = bio_list_pop(&bios)))
1296 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1297 }
1298 
1299 static void process_deferred_writethrough_bios(struct cache *cache)
1300 {
1301 	unsigned long flags;
1302 	struct bio_list bios;
1303 	struct bio *bio;
1304 
1305 	bio_list_init(&bios);
1306 
1307 	spin_lock_irqsave(&cache->lock, flags);
1308 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1309 	bio_list_init(&cache->deferred_writethrough_bios);
1310 	spin_unlock_irqrestore(&cache->lock, flags);
1311 
1312 	while ((bio = bio_list_pop(&bios)))
1313 		generic_make_request(bio);
1314 }
1315 
1316 static void writeback_some_dirty_blocks(struct cache *cache)
1317 {
1318 	int r = 0;
1319 	dm_oblock_t oblock;
1320 	dm_cblock_t cblock;
1321 	struct prealloc structs;
1322 	struct dm_bio_prison_cell *old_ocell;
1323 
1324 	memset(&structs, 0, sizeof(structs));
1325 
1326 	while (spare_migration_bandwidth(cache)) {
1327 		if (prealloc_data_structs(cache, &structs))
1328 			break;
1329 
1330 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1331 		if (r)
1332 			break;
1333 
1334 		r = get_cell(cache, oblock, &structs, &old_ocell);
1335 		if (r) {
1336 			policy_set_dirty(cache->policy, oblock);
1337 			break;
1338 		}
1339 
1340 		writeback(cache, &structs, oblock, cblock, old_ocell);
1341 	}
1342 
1343 	prealloc_free_structs(cache, &structs);
1344 }
1345 
1346 /*----------------------------------------------------------------
1347  * Main worker loop
1348  *--------------------------------------------------------------*/
1349 static void start_quiescing(struct cache *cache)
1350 {
1351 	unsigned long flags;
1352 
1353 	spin_lock_irqsave(&cache->lock, flags);
1354 	cache->quiescing = 1;
1355 	spin_unlock_irqrestore(&cache->lock, flags);
1356 }
1357 
1358 static void stop_quiescing(struct cache *cache)
1359 {
1360 	unsigned long flags;
1361 
1362 	spin_lock_irqsave(&cache->lock, flags);
1363 	cache->quiescing = 0;
1364 	spin_unlock_irqrestore(&cache->lock, flags);
1365 }
1366 
1367 static bool is_quiescing(struct cache *cache)
1368 {
1369 	int r;
1370 	unsigned long flags;
1371 
1372 	spin_lock_irqsave(&cache->lock, flags);
1373 	r = cache->quiescing;
1374 	spin_unlock_irqrestore(&cache->lock, flags);
1375 
1376 	return r;
1377 }
1378 
1379 static void wait_for_migrations(struct cache *cache)
1380 {
1381 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1382 }
1383 
1384 static void stop_worker(struct cache *cache)
1385 {
1386 	cancel_delayed_work(&cache->waker);
1387 	flush_workqueue(cache->wq);
1388 }
1389 
1390 static void requeue_deferred_io(struct cache *cache)
1391 {
1392 	struct bio *bio;
1393 	struct bio_list bios;
1394 
1395 	bio_list_init(&bios);
1396 	bio_list_merge(&bios, &cache->deferred_bios);
1397 	bio_list_init(&cache->deferred_bios);
1398 
1399 	while ((bio = bio_list_pop(&bios)))
1400 		bio_endio(bio, DM_ENDIO_REQUEUE);
1401 }
1402 
1403 static int more_work(struct cache *cache)
1404 {
1405 	if (is_quiescing(cache))
1406 		return !list_empty(&cache->quiesced_migrations) ||
1407 			!list_empty(&cache->completed_migrations) ||
1408 			!list_empty(&cache->need_commit_migrations);
1409 	else
1410 		return !bio_list_empty(&cache->deferred_bios) ||
1411 			!bio_list_empty(&cache->deferred_flush_bios) ||
1412 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1413 			!list_empty(&cache->quiesced_migrations) ||
1414 			!list_empty(&cache->completed_migrations) ||
1415 			!list_empty(&cache->need_commit_migrations);
1416 }
1417 
1418 static void do_worker(struct work_struct *ws)
1419 {
1420 	struct cache *cache = container_of(ws, struct cache, worker);
1421 
1422 	do {
1423 		if (!is_quiescing(cache))
1424 			process_deferred_bios(cache);
1425 
1426 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1427 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1428 
1429 		writeback_some_dirty_blocks(cache);
1430 
1431 		process_deferred_writethrough_bios(cache);
1432 
1433 		if (commit_if_needed(cache)) {
1434 			process_deferred_flush_bios(cache, false);
1435 
1436 			/*
1437 			 * FIXME: rollback metadata or just go into a
1438 			 * failure mode and error everything
1439 			 */
1440 		} else {
1441 			process_deferred_flush_bios(cache, true);
1442 			process_migrations(cache, &cache->need_commit_migrations,
1443 					   migration_success_post_commit);
1444 		}
1445 	} while (more_work(cache));
1446 }
1447 
1448 /*
1449  * We want to commit periodically so that not too much
1450  * unwritten metadata builds up.
1451  */
1452 static void do_waker(struct work_struct *ws)
1453 {
1454 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1455 	policy_tick(cache->policy);
1456 	wake_worker(cache);
1457 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1458 }
1459 
1460 /*----------------------------------------------------------------*/
1461 
1462 static int is_congested(struct dm_dev *dev, int bdi_bits)
1463 {
1464 	struct request_queue *q = bdev_get_queue(dev->bdev);
1465 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1466 }
1467 
1468 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1469 {
1470 	struct cache *cache = container_of(cb, struct cache, callbacks);
1471 
1472 	return is_congested(cache->origin_dev, bdi_bits) ||
1473 		is_congested(cache->cache_dev, bdi_bits);
1474 }
1475 
1476 /*----------------------------------------------------------------
1477  * Target methods
1478  *--------------------------------------------------------------*/
1479 
1480 /*
1481  * This function gets called on the error paths of the constructor, so we
1482  * have to cope with a partially initialised struct.
1483  */
1484 static void destroy(struct cache *cache)
1485 {
1486 	unsigned i;
1487 
1488 	if (cache->next_migration)
1489 		mempool_free(cache->next_migration, cache->migration_pool);
1490 
1491 	if (cache->migration_pool)
1492 		mempool_destroy(cache->migration_pool);
1493 
1494 	if (cache->all_io_ds)
1495 		dm_deferred_set_destroy(cache->all_io_ds);
1496 
1497 	if (cache->prison)
1498 		dm_bio_prison_destroy(cache->prison);
1499 
1500 	if (cache->wq)
1501 		destroy_workqueue(cache->wq);
1502 
1503 	if (cache->dirty_bitset)
1504 		free_bitset(cache->dirty_bitset);
1505 
1506 	if (cache->discard_bitset)
1507 		free_bitset(cache->discard_bitset);
1508 
1509 	if (cache->copier)
1510 		dm_kcopyd_client_destroy(cache->copier);
1511 
1512 	if (cache->cmd)
1513 		dm_cache_metadata_close(cache->cmd);
1514 
1515 	if (cache->metadata_dev)
1516 		dm_put_device(cache->ti, cache->metadata_dev);
1517 
1518 	if (cache->origin_dev)
1519 		dm_put_device(cache->ti, cache->origin_dev);
1520 
1521 	if (cache->cache_dev)
1522 		dm_put_device(cache->ti, cache->cache_dev);
1523 
1524 	if (cache->policy)
1525 		dm_cache_policy_destroy(cache->policy);
1526 
1527 	for (i = 0; i < cache->nr_ctr_args ; i++)
1528 		kfree(cache->ctr_args[i]);
1529 	kfree(cache->ctr_args);
1530 
1531 	kfree(cache);
1532 }
1533 
1534 static void cache_dtr(struct dm_target *ti)
1535 {
1536 	struct cache *cache = ti->private;
1537 
1538 	destroy(cache);
1539 }
1540 
1541 static sector_t get_dev_size(struct dm_dev *dev)
1542 {
1543 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1544 }
1545 
1546 /*----------------------------------------------------------------*/
1547 
1548 /*
1549  * Construct a cache device mapping.
1550  *
1551  * cache <metadata dev> <cache dev> <origin dev> <block size>
1552  *       <#feature args> [<feature arg>]*
1553  *       <policy> <#policy args> [<policy arg>]*
1554  *
1555  * metadata dev    : fast device holding the persistent metadata
1556  * cache dev	   : fast device holding cached data blocks
1557  * origin dev	   : slow device holding original data blocks
1558  * block size	   : cache unit size in sectors
1559  *
1560  * #feature args   : number of feature arguments passed
1561  * feature args    : writethrough.  (The default is writeback.)
1562  *
1563  * policy	   : the replacement policy to use
1564  * #policy args    : an even number of policy arguments corresponding
1565  *		     to key/value pairs passed to the policy
1566  * policy args	   : key/value pairs passed to the policy
1567  *		     E.g. 'sequential_threshold 1024'
1568  *		     See cache-policies.txt for details.
1569  *
1570  * Optional feature arguments are:
1571  *   writethrough  : write through caching that prohibits cache block
1572  *		     content from being different from origin block content.
1573  *		     Without this argument, the default behaviour is to write
1574  *		     back cache block contents later for performance reasons,
1575  *		     so they may differ from the corresponding origin blocks.
1576  */
1577 struct cache_args {
1578 	struct dm_target *ti;
1579 
1580 	struct dm_dev *metadata_dev;
1581 
1582 	struct dm_dev *cache_dev;
1583 	sector_t cache_sectors;
1584 
1585 	struct dm_dev *origin_dev;
1586 	sector_t origin_sectors;
1587 
1588 	uint32_t block_size;
1589 
1590 	const char *policy_name;
1591 	int policy_argc;
1592 	const char **policy_argv;
1593 
1594 	struct cache_features features;
1595 };
1596 
1597 static void destroy_cache_args(struct cache_args *ca)
1598 {
1599 	if (ca->metadata_dev)
1600 		dm_put_device(ca->ti, ca->metadata_dev);
1601 
1602 	if (ca->cache_dev)
1603 		dm_put_device(ca->ti, ca->cache_dev);
1604 
1605 	if (ca->origin_dev)
1606 		dm_put_device(ca->ti, ca->origin_dev);
1607 
1608 	kfree(ca);
1609 }
1610 
1611 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1612 {
1613 	if (!as->argc) {
1614 		*error = "Insufficient args";
1615 		return false;
1616 	}
1617 
1618 	return true;
1619 }
1620 
1621 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1622 			      char **error)
1623 {
1624 	int r;
1625 	sector_t metadata_dev_size;
1626 	char b[BDEVNAME_SIZE];
1627 
1628 	if (!at_least_one_arg(as, error))
1629 		return -EINVAL;
1630 
1631 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1632 			  &ca->metadata_dev);
1633 	if (r) {
1634 		*error = "Error opening metadata device";
1635 		return r;
1636 	}
1637 
1638 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1639 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1640 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1641 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1642 
1643 	return 0;
1644 }
1645 
1646 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1647 			   char **error)
1648 {
1649 	int r;
1650 
1651 	if (!at_least_one_arg(as, error))
1652 		return -EINVAL;
1653 
1654 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1655 			  &ca->cache_dev);
1656 	if (r) {
1657 		*error = "Error opening cache device";
1658 		return r;
1659 	}
1660 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1661 
1662 	return 0;
1663 }
1664 
1665 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1666 			    char **error)
1667 {
1668 	int r;
1669 
1670 	if (!at_least_one_arg(as, error))
1671 		return -EINVAL;
1672 
1673 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1674 			  &ca->origin_dev);
1675 	if (r) {
1676 		*error = "Error opening origin device";
1677 		return r;
1678 	}
1679 
1680 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1681 	if (ca->ti->len > ca->origin_sectors) {
1682 		*error = "Device size larger than cached device";
1683 		return -EINVAL;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1690 			    char **error)
1691 {
1692 	unsigned long block_size;
1693 
1694 	if (!at_least_one_arg(as, error))
1695 		return -EINVAL;
1696 
1697 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1698 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1699 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1700 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1701 		*error = "Invalid data block size";
1702 		return -EINVAL;
1703 	}
1704 
1705 	if (block_size > ca->cache_sectors) {
1706 		*error = "Data block size is larger than the cache device";
1707 		return -EINVAL;
1708 	}
1709 
1710 	ca->block_size = block_size;
1711 
1712 	return 0;
1713 }
1714 
1715 static void init_features(struct cache_features *cf)
1716 {
1717 	cf->mode = CM_WRITE;
1718 	cf->write_through = false;
1719 }
1720 
1721 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1722 			  char **error)
1723 {
1724 	static struct dm_arg _args[] = {
1725 		{0, 1, "Invalid number of cache feature arguments"},
1726 	};
1727 
1728 	int r;
1729 	unsigned argc;
1730 	const char *arg;
1731 	struct cache_features *cf = &ca->features;
1732 
1733 	init_features(cf);
1734 
1735 	r = dm_read_arg_group(_args, as, &argc, error);
1736 	if (r)
1737 		return -EINVAL;
1738 
1739 	while (argc--) {
1740 		arg = dm_shift_arg(as);
1741 
1742 		if (!strcasecmp(arg, "writeback"))
1743 			cf->write_through = false;
1744 
1745 		else if (!strcasecmp(arg, "writethrough"))
1746 			cf->write_through = true;
1747 
1748 		else {
1749 			*error = "Unrecognised cache feature requested";
1750 			return -EINVAL;
1751 		}
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1758 			char **error)
1759 {
1760 	static struct dm_arg _args[] = {
1761 		{0, 1024, "Invalid number of policy arguments"},
1762 	};
1763 
1764 	int r;
1765 
1766 	if (!at_least_one_arg(as, error))
1767 		return -EINVAL;
1768 
1769 	ca->policy_name = dm_shift_arg(as);
1770 
1771 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1772 	if (r)
1773 		return -EINVAL;
1774 
1775 	ca->policy_argv = (const char **)as->argv;
1776 	dm_consume_args(as, ca->policy_argc);
1777 
1778 	return 0;
1779 }
1780 
1781 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1782 			    char **error)
1783 {
1784 	int r;
1785 	struct dm_arg_set as;
1786 
1787 	as.argc = argc;
1788 	as.argv = argv;
1789 
1790 	r = parse_metadata_dev(ca, &as, error);
1791 	if (r)
1792 		return r;
1793 
1794 	r = parse_cache_dev(ca, &as, error);
1795 	if (r)
1796 		return r;
1797 
1798 	r = parse_origin_dev(ca, &as, error);
1799 	if (r)
1800 		return r;
1801 
1802 	r = parse_block_size(ca, &as, error);
1803 	if (r)
1804 		return r;
1805 
1806 	r = parse_features(ca, &as, error);
1807 	if (r)
1808 		return r;
1809 
1810 	r = parse_policy(ca, &as, error);
1811 	if (r)
1812 		return r;
1813 
1814 	return 0;
1815 }
1816 
1817 /*----------------------------------------------------------------*/
1818 
1819 static struct kmem_cache *migration_cache;
1820 
1821 #define NOT_CORE_OPTION 1
1822 
1823 static int process_config_option(struct cache *cache, const char *key, const char *value)
1824 {
1825 	unsigned long tmp;
1826 
1827 	if (!strcasecmp(key, "migration_threshold")) {
1828 		if (kstrtoul(value, 10, &tmp))
1829 			return -EINVAL;
1830 
1831 		cache->migration_threshold = tmp;
1832 		return 0;
1833 	}
1834 
1835 	return NOT_CORE_OPTION;
1836 }
1837 
1838 static int set_config_value(struct cache *cache, const char *key, const char *value)
1839 {
1840 	int r = process_config_option(cache, key, value);
1841 
1842 	if (r == NOT_CORE_OPTION)
1843 		r = policy_set_config_value(cache->policy, key, value);
1844 
1845 	if (r)
1846 		DMWARN("bad config value for %s: %s", key, value);
1847 
1848 	return r;
1849 }
1850 
1851 static int set_config_values(struct cache *cache, int argc, const char **argv)
1852 {
1853 	int r = 0;
1854 
1855 	if (argc & 1) {
1856 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1857 		return -EINVAL;
1858 	}
1859 
1860 	while (argc) {
1861 		r = set_config_value(cache, argv[0], argv[1]);
1862 		if (r)
1863 			break;
1864 
1865 		argc -= 2;
1866 		argv += 2;
1867 	}
1868 
1869 	return r;
1870 }
1871 
1872 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1873 			       char **error)
1874 {
1875 	cache->policy =	dm_cache_policy_create(ca->policy_name,
1876 					       cache->cache_size,
1877 					       cache->origin_sectors,
1878 					       cache->sectors_per_block);
1879 	if (!cache->policy) {
1880 		*error = "Error creating cache's policy";
1881 		return -ENOMEM;
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * We want the discard block size to be a power of two, at least the size
1889  * of the cache block size, and have no more than 2^14 discard blocks
1890  * across the origin.
1891  */
1892 #define MAX_DISCARD_BLOCKS (1 << 14)
1893 
1894 static bool too_many_discard_blocks(sector_t discard_block_size,
1895 				    sector_t origin_size)
1896 {
1897 	(void) sector_div(origin_size, discard_block_size);
1898 
1899 	return origin_size > MAX_DISCARD_BLOCKS;
1900 }
1901 
1902 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1903 					     sector_t origin_size)
1904 {
1905 	sector_t discard_block_size;
1906 
1907 	discard_block_size = roundup_pow_of_two(cache_block_size);
1908 
1909 	if (origin_size)
1910 		while (too_many_discard_blocks(discard_block_size, origin_size))
1911 			discard_block_size *= 2;
1912 
1913 	return discard_block_size;
1914 }
1915 
1916 #define DEFAULT_MIGRATION_THRESHOLD 2048
1917 
1918 static int cache_create(struct cache_args *ca, struct cache **result)
1919 {
1920 	int r = 0;
1921 	char **error = &ca->ti->error;
1922 	struct cache *cache;
1923 	struct dm_target *ti = ca->ti;
1924 	dm_block_t origin_blocks;
1925 	struct dm_cache_metadata *cmd;
1926 	bool may_format = ca->features.mode == CM_WRITE;
1927 
1928 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1929 	if (!cache)
1930 		return -ENOMEM;
1931 
1932 	cache->ti = ca->ti;
1933 	ti->private = cache;
1934 	ti->num_flush_bios = 2;
1935 	ti->flush_supported = true;
1936 
1937 	ti->num_discard_bios = 1;
1938 	ti->discards_supported = true;
1939 	ti->discard_zeroes_data_unsupported = true;
1940 
1941 	cache->features = ca->features;
1942 	ti->per_bio_data_size = get_per_bio_data_size(cache);
1943 
1944 	cache->callbacks.congested_fn = cache_is_congested;
1945 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1946 
1947 	cache->metadata_dev = ca->metadata_dev;
1948 	cache->origin_dev = ca->origin_dev;
1949 	cache->cache_dev = ca->cache_dev;
1950 
1951 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1952 
1953 	/* FIXME: factor out this whole section */
1954 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
1955 	origin_blocks = block_div(origin_blocks, ca->block_size);
1956 	cache->origin_blocks = to_oblock(origin_blocks);
1957 
1958 	cache->sectors_per_block = ca->block_size;
1959 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1960 		r = -EINVAL;
1961 		goto bad;
1962 	}
1963 
1964 	if (ca->block_size & (ca->block_size - 1)) {
1965 		dm_block_t cache_size = ca->cache_sectors;
1966 
1967 		cache->sectors_per_block_shift = -1;
1968 		cache_size = block_div(cache_size, ca->block_size);
1969 		cache->cache_size = to_cblock(cache_size);
1970 	} else {
1971 		cache->sectors_per_block_shift = __ffs(ca->block_size);
1972 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1973 	}
1974 
1975 	r = create_cache_policy(cache, ca, error);
1976 	if (r)
1977 		goto bad;
1978 
1979 	cache->policy_nr_args = ca->policy_argc;
1980 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1981 
1982 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
1983 	if (r) {
1984 		*error = "Error setting cache policy's config values";
1985 		goto bad;
1986 	}
1987 
1988 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1989 				     ca->block_size, may_format,
1990 				     dm_cache_policy_get_hint_size(cache->policy));
1991 	if (IS_ERR(cmd)) {
1992 		*error = "Error creating metadata object";
1993 		r = PTR_ERR(cmd);
1994 		goto bad;
1995 	}
1996 	cache->cmd = cmd;
1997 
1998 	spin_lock_init(&cache->lock);
1999 	bio_list_init(&cache->deferred_bios);
2000 	bio_list_init(&cache->deferred_flush_bios);
2001 	bio_list_init(&cache->deferred_writethrough_bios);
2002 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2003 	INIT_LIST_HEAD(&cache->completed_migrations);
2004 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2005 	atomic_set(&cache->nr_migrations, 0);
2006 	init_waitqueue_head(&cache->migration_wait);
2007 
2008 	r = -ENOMEM;
2009 	cache->nr_dirty = 0;
2010 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2011 	if (!cache->dirty_bitset) {
2012 		*error = "could not allocate dirty bitset";
2013 		goto bad;
2014 	}
2015 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2016 
2017 	cache->discard_block_size =
2018 		calculate_discard_block_size(cache->sectors_per_block,
2019 					     cache->origin_sectors);
2020 	cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2021 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2022 	if (!cache->discard_bitset) {
2023 		*error = "could not allocate discard bitset";
2024 		goto bad;
2025 	}
2026 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2027 
2028 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2029 	if (IS_ERR(cache->copier)) {
2030 		*error = "could not create kcopyd client";
2031 		r = PTR_ERR(cache->copier);
2032 		goto bad;
2033 	}
2034 
2035 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2036 	if (!cache->wq) {
2037 		*error = "could not create workqueue for metadata object";
2038 		goto bad;
2039 	}
2040 	INIT_WORK(&cache->worker, do_worker);
2041 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2042 	cache->last_commit_jiffies = jiffies;
2043 
2044 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2045 	if (!cache->prison) {
2046 		*error = "could not create bio prison";
2047 		goto bad;
2048 	}
2049 
2050 	cache->all_io_ds = dm_deferred_set_create();
2051 	if (!cache->all_io_ds) {
2052 		*error = "could not create all_io deferred set";
2053 		goto bad;
2054 	}
2055 
2056 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2057 							 migration_cache);
2058 	if (!cache->migration_pool) {
2059 		*error = "Error creating cache's migration mempool";
2060 		goto bad;
2061 	}
2062 
2063 	cache->next_migration = NULL;
2064 
2065 	cache->need_tick_bio = true;
2066 	cache->sized = false;
2067 	cache->quiescing = false;
2068 	cache->commit_requested = false;
2069 	cache->loaded_mappings = false;
2070 	cache->loaded_discards = false;
2071 
2072 	load_stats(cache);
2073 
2074 	atomic_set(&cache->stats.demotion, 0);
2075 	atomic_set(&cache->stats.promotion, 0);
2076 	atomic_set(&cache->stats.copies_avoided, 0);
2077 	atomic_set(&cache->stats.cache_cell_clash, 0);
2078 	atomic_set(&cache->stats.commit_count, 0);
2079 	atomic_set(&cache->stats.discard_count, 0);
2080 
2081 	*result = cache;
2082 	return 0;
2083 
2084 bad:
2085 	destroy(cache);
2086 	return r;
2087 }
2088 
2089 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2090 {
2091 	unsigned i;
2092 	const char **copy;
2093 
2094 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2095 	if (!copy)
2096 		return -ENOMEM;
2097 	for (i = 0; i < argc; i++) {
2098 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2099 		if (!copy[i]) {
2100 			while (i--)
2101 				kfree(copy[i]);
2102 			kfree(copy);
2103 			return -ENOMEM;
2104 		}
2105 	}
2106 
2107 	cache->nr_ctr_args = argc;
2108 	cache->ctr_args = copy;
2109 
2110 	return 0;
2111 }
2112 
2113 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2114 {
2115 	int r = -EINVAL;
2116 	struct cache_args *ca;
2117 	struct cache *cache = NULL;
2118 
2119 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2120 	if (!ca) {
2121 		ti->error = "Error allocating memory for cache";
2122 		return -ENOMEM;
2123 	}
2124 	ca->ti = ti;
2125 
2126 	r = parse_cache_args(ca, argc, argv, &ti->error);
2127 	if (r)
2128 		goto out;
2129 
2130 	r = cache_create(ca, &cache);
2131 	if (r)
2132 		goto out;
2133 
2134 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2135 	if (r) {
2136 		destroy(cache);
2137 		goto out;
2138 	}
2139 
2140 	ti->private = cache;
2141 
2142 out:
2143 	destroy_cache_args(ca);
2144 	return r;
2145 }
2146 
2147 static int cache_map(struct dm_target *ti, struct bio *bio)
2148 {
2149 	struct cache *cache = ti->private;
2150 
2151 	int r;
2152 	dm_oblock_t block = get_bio_block(cache, bio);
2153 	size_t pb_data_size = get_per_bio_data_size(cache);
2154 	bool can_migrate = false;
2155 	bool discarded_block;
2156 	struct dm_bio_prison_cell *cell;
2157 	struct policy_result lookup_result;
2158 	struct per_bio_data *pb;
2159 
2160 	if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2161 		/*
2162 		 * This can only occur if the io goes to a partial block at
2163 		 * the end of the origin device.  We don't cache these.
2164 		 * Just remap to the origin and carry on.
2165 		 */
2166 		remap_to_origin_clear_discard(cache, bio, block);
2167 		return DM_MAPIO_REMAPPED;
2168 	}
2169 
2170 	pb = init_per_bio_data(bio, pb_data_size);
2171 
2172 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2173 		defer_bio(cache, bio);
2174 		return DM_MAPIO_SUBMITTED;
2175 	}
2176 
2177 	/*
2178 	 * Check to see if that block is currently migrating.
2179 	 */
2180 	cell = alloc_prison_cell(cache);
2181 	if (!cell) {
2182 		defer_bio(cache, bio);
2183 		return DM_MAPIO_SUBMITTED;
2184 	}
2185 
2186 	r = bio_detain(cache, block, bio, cell,
2187 		       (cell_free_fn) free_prison_cell,
2188 		       cache, &cell);
2189 	if (r) {
2190 		if (r < 0)
2191 			defer_bio(cache, bio);
2192 
2193 		return DM_MAPIO_SUBMITTED;
2194 	}
2195 
2196 	discarded_block = is_discarded_oblock(cache, block);
2197 
2198 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2199 		       bio, &lookup_result);
2200 	if (r == -EWOULDBLOCK) {
2201 		cell_defer(cache, cell, true);
2202 		return DM_MAPIO_SUBMITTED;
2203 
2204 	} else if (r) {
2205 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2206 		bio_io_error(bio);
2207 		return DM_MAPIO_SUBMITTED;
2208 	}
2209 
2210 	switch (lookup_result.op) {
2211 	case POLICY_HIT:
2212 		inc_hit_counter(cache, bio);
2213 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2214 
2215 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
2216 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2217 		else
2218 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2219 
2220 		cell_defer(cache, cell, false);
2221 		break;
2222 
2223 	case POLICY_MISS:
2224 		inc_miss_counter(cache, bio);
2225 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2226 
2227 		if (pb->req_nr != 0) {
2228 			/*
2229 			 * This is a duplicate writethrough io that is no
2230 			 * longer needed because the block has been demoted.
2231 			 */
2232 			bio_endio(bio, 0);
2233 			cell_defer(cache, cell, false);
2234 			return DM_MAPIO_SUBMITTED;
2235 		} else {
2236 			remap_to_origin_clear_discard(cache, bio, block);
2237 			cell_defer(cache, cell, false);
2238 		}
2239 		break;
2240 
2241 	default:
2242 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2243 			    (unsigned) lookup_result.op);
2244 		bio_io_error(bio);
2245 		return DM_MAPIO_SUBMITTED;
2246 	}
2247 
2248 	return DM_MAPIO_REMAPPED;
2249 }
2250 
2251 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2252 {
2253 	struct cache *cache = ti->private;
2254 	unsigned long flags;
2255 	size_t pb_data_size = get_per_bio_data_size(cache);
2256 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2257 
2258 	if (pb->tick) {
2259 		policy_tick(cache->policy);
2260 
2261 		spin_lock_irqsave(&cache->lock, flags);
2262 		cache->need_tick_bio = true;
2263 		spin_unlock_irqrestore(&cache->lock, flags);
2264 	}
2265 
2266 	check_for_quiesced_migrations(cache, pb);
2267 
2268 	return 0;
2269 }
2270 
2271 static int write_dirty_bitset(struct cache *cache)
2272 {
2273 	unsigned i, r;
2274 
2275 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2276 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2277 				       is_dirty(cache, to_cblock(i)));
2278 		if (r)
2279 			return r;
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 static int write_discard_bitset(struct cache *cache)
2286 {
2287 	unsigned i, r;
2288 
2289 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2290 					   cache->discard_nr_blocks);
2291 	if (r) {
2292 		DMERR("could not resize on-disk discard bitset");
2293 		return r;
2294 	}
2295 
2296 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2297 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2298 					 is_discarded(cache, to_dblock(i)));
2299 		if (r)
2300 			return r;
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2307 		     uint32_t hint)
2308 {
2309 	struct cache *cache = context;
2310 	return dm_cache_save_hint(cache->cmd, cblock, hint);
2311 }
2312 
2313 static int write_hints(struct cache *cache)
2314 {
2315 	int r;
2316 
2317 	r = dm_cache_begin_hints(cache->cmd, cache->policy);
2318 	if (r) {
2319 		DMERR("dm_cache_begin_hints failed");
2320 		return r;
2321 	}
2322 
2323 	r = policy_walk_mappings(cache->policy, save_hint, cache);
2324 	if (r)
2325 		DMERR("policy_walk_mappings failed");
2326 
2327 	return r;
2328 }
2329 
2330 /*
2331  * returns true on success
2332  */
2333 static bool sync_metadata(struct cache *cache)
2334 {
2335 	int r1, r2, r3, r4;
2336 
2337 	r1 = write_dirty_bitset(cache);
2338 	if (r1)
2339 		DMERR("could not write dirty bitset");
2340 
2341 	r2 = write_discard_bitset(cache);
2342 	if (r2)
2343 		DMERR("could not write discard bitset");
2344 
2345 	save_stats(cache);
2346 
2347 	r3 = write_hints(cache);
2348 	if (r3)
2349 		DMERR("could not write hints");
2350 
2351 	/*
2352 	 * If writing the above metadata failed, we still commit, but don't
2353 	 * set the clean shutdown flag.  This will effectively force every
2354 	 * dirty bit to be set on reload.
2355 	 */
2356 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2357 	if (r4)
2358 		DMERR("could not write cache metadata.  Data loss may occur.");
2359 
2360 	return !r1 && !r2 && !r3 && !r4;
2361 }
2362 
2363 static void cache_postsuspend(struct dm_target *ti)
2364 {
2365 	struct cache *cache = ti->private;
2366 
2367 	start_quiescing(cache);
2368 	wait_for_migrations(cache);
2369 	stop_worker(cache);
2370 	requeue_deferred_io(cache);
2371 	stop_quiescing(cache);
2372 
2373 	(void) sync_metadata(cache);
2374 }
2375 
2376 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2377 			bool dirty, uint32_t hint, bool hint_valid)
2378 {
2379 	int r;
2380 	struct cache *cache = context;
2381 
2382 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2383 	if (r)
2384 		return r;
2385 
2386 	if (dirty)
2387 		set_dirty(cache, oblock, cblock);
2388 	else
2389 		clear_dirty(cache, oblock, cblock);
2390 
2391 	return 0;
2392 }
2393 
2394 static int load_discard(void *context, sector_t discard_block_size,
2395 			dm_dblock_t dblock, bool discard)
2396 {
2397 	struct cache *cache = context;
2398 
2399 	/* FIXME: handle mis-matched block size */
2400 
2401 	if (discard)
2402 		set_discard(cache, dblock);
2403 	else
2404 		clear_discard(cache, dblock);
2405 
2406 	return 0;
2407 }
2408 
2409 static int cache_preresume(struct dm_target *ti)
2410 {
2411 	int r = 0;
2412 	struct cache *cache = ti->private;
2413 	sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2414 	(void) sector_div(actual_cache_size, cache->sectors_per_block);
2415 
2416 	/*
2417 	 * Check to see if the cache has resized.
2418 	 */
2419 	if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2420 		cache->cache_size = to_cblock(actual_cache_size);
2421 
2422 		r = dm_cache_resize(cache->cmd, cache->cache_size);
2423 		if (r) {
2424 			DMERR("could not resize cache metadata");
2425 			return r;
2426 		}
2427 
2428 		cache->sized = true;
2429 	}
2430 
2431 	if (!cache->loaded_mappings) {
2432 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2433 					   load_mapping, cache);
2434 		if (r) {
2435 			DMERR("could not load cache mappings");
2436 			return r;
2437 		}
2438 
2439 		cache->loaded_mappings = true;
2440 	}
2441 
2442 	if (!cache->loaded_discards) {
2443 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2444 		if (r) {
2445 			DMERR("could not load origin discards");
2446 			return r;
2447 		}
2448 
2449 		cache->loaded_discards = true;
2450 	}
2451 
2452 	return r;
2453 }
2454 
2455 static void cache_resume(struct dm_target *ti)
2456 {
2457 	struct cache *cache = ti->private;
2458 
2459 	cache->need_tick_bio = true;
2460 	do_waker(&cache->waker.work);
2461 }
2462 
2463 /*
2464  * Status format:
2465  *
2466  * <#used metadata blocks>/<#total metadata blocks>
2467  * <#read hits> <#read misses> <#write hits> <#write misses>
2468  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2469  * <#features> <features>*
2470  * <#core args> <core args>
2471  * <#policy args> <policy args>*
2472  */
2473 static void cache_status(struct dm_target *ti, status_type_t type,
2474 			 unsigned status_flags, char *result, unsigned maxlen)
2475 {
2476 	int r = 0;
2477 	unsigned i;
2478 	ssize_t sz = 0;
2479 	dm_block_t nr_free_blocks_metadata = 0;
2480 	dm_block_t nr_blocks_metadata = 0;
2481 	char buf[BDEVNAME_SIZE];
2482 	struct cache *cache = ti->private;
2483 	dm_cblock_t residency;
2484 
2485 	switch (type) {
2486 	case STATUSTYPE_INFO:
2487 		/* Commit to ensure statistics aren't out-of-date */
2488 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2489 			r = dm_cache_commit(cache->cmd, false);
2490 			if (r)
2491 				DMERR("could not commit metadata for accurate status");
2492 		}
2493 
2494 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2495 							   &nr_free_blocks_metadata);
2496 		if (r) {
2497 			DMERR("could not get metadata free block count");
2498 			goto err;
2499 		}
2500 
2501 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2502 		if (r) {
2503 			DMERR("could not get metadata device size");
2504 			goto err;
2505 		}
2506 
2507 		residency = policy_residency(cache->policy);
2508 
2509 		DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2510 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2511 		       (unsigned long long)nr_blocks_metadata,
2512 		       (unsigned) atomic_read(&cache->stats.read_hit),
2513 		       (unsigned) atomic_read(&cache->stats.read_miss),
2514 		       (unsigned) atomic_read(&cache->stats.write_hit),
2515 		       (unsigned) atomic_read(&cache->stats.write_miss),
2516 		       (unsigned) atomic_read(&cache->stats.demotion),
2517 		       (unsigned) atomic_read(&cache->stats.promotion),
2518 		       (unsigned long long) from_cblock(residency),
2519 		       cache->nr_dirty);
2520 
2521 		if (cache->features.write_through)
2522 			DMEMIT("1 writethrough ");
2523 		else
2524 			DMEMIT("0 ");
2525 
2526 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2527 		if (sz < maxlen) {
2528 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2529 			if (r)
2530 				DMERR("policy_emit_config_values returned %d", r);
2531 		}
2532 
2533 		break;
2534 
2535 	case STATUSTYPE_TABLE:
2536 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2537 		DMEMIT("%s ", buf);
2538 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2539 		DMEMIT("%s ", buf);
2540 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2541 		DMEMIT("%s", buf);
2542 
2543 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2544 			DMEMIT(" %s", cache->ctr_args[i]);
2545 		if (cache->nr_ctr_args)
2546 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2547 	}
2548 
2549 	return;
2550 
2551 err:
2552 	DMEMIT("Error");
2553 }
2554 
2555 /*
2556  * Supports <key> <value>.
2557  *
2558  * The key migration_threshold is supported by the cache target core.
2559  */
2560 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2561 {
2562 	struct cache *cache = ti->private;
2563 
2564 	if (argc != 2)
2565 		return -EINVAL;
2566 
2567 	return set_config_value(cache, argv[0], argv[1]);
2568 }
2569 
2570 static int cache_iterate_devices(struct dm_target *ti,
2571 				 iterate_devices_callout_fn fn, void *data)
2572 {
2573 	int r = 0;
2574 	struct cache *cache = ti->private;
2575 
2576 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2577 	if (!r)
2578 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
2579 
2580 	return r;
2581 }
2582 
2583 /*
2584  * We assume I/O is going to the origin (which is the volume
2585  * more likely to have restrictions e.g. by being striped).
2586  * (Looking up the exact location of the data would be expensive
2587  * and could always be out of date by the time the bio is submitted.)
2588  */
2589 static int cache_bvec_merge(struct dm_target *ti,
2590 			    struct bvec_merge_data *bvm,
2591 			    struct bio_vec *biovec, int max_size)
2592 {
2593 	struct cache *cache = ti->private;
2594 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2595 
2596 	if (!q->merge_bvec_fn)
2597 		return max_size;
2598 
2599 	bvm->bi_bdev = cache->origin_dev->bdev;
2600 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2601 }
2602 
2603 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2604 {
2605 	/*
2606 	 * FIXME: these limits may be incompatible with the cache device
2607 	 */
2608 	limits->max_discard_sectors = cache->discard_block_size * 1024;
2609 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2610 }
2611 
2612 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2613 {
2614 	struct cache *cache = ti->private;
2615 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2616 
2617 	/*
2618 	 * If the system-determined stacked limits are compatible with the
2619 	 * cache's blocksize (io_opt is a factor) do not override them.
2620 	 */
2621 	if (io_opt_sectors < cache->sectors_per_block ||
2622 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
2623 		blk_limits_io_min(limits, 0);
2624 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2625 	}
2626 	set_discard_limits(cache, limits);
2627 }
2628 
2629 /*----------------------------------------------------------------*/
2630 
2631 static struct target_type cache_target = {
2632 	.name = "cache",
2633 	.version = {1, 1, 1},
2634 	.module = THIS_MODULE,
2635 	.ctr = cache_ctr,
2636 	.dtr = cache_dtr,
2637 	.map = cache_map,
2638 	.end_io = cache_end_io,
2639 	.postsuspend = cache_postsuspend,
2640 	.preresume = cache_preresume,
2641 	.resume = cache_resume,
2642 	.status = cache_status,
2643 	.message = cache_message,
2644 	.iterate_devices = cache_iterate_devices,
2645 	.merge = cache_bvec_merge,
2646 	.io_hints = cache_io_hints,
2647 };
2648 
2649 static int __init dm_cache_init(void)
2650 {
2651 	int r;
2652 
2653 	r = dm_register_target(&cache_target);
2654 	if (r) {
2655 		DMERR("cache target registration failed: %d", r);
2656 		return r;
2657 	}
2658 
2659 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2660 	if (!migration_cache) {
2661 		dm_unregister_target(&cache_target);
2662 		return -ENOMEM;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static void __exit dm_cache_exit(void)
2669 {
2670 	dm_unregister_target(&cache_target);
2671 	kmem_cache_destroy(migration_cache);
2672 }
2673 
2674 module_init(dm_cache_init);
2675 module_exit(dm_cache_exit);
2676 
2677 MODULE_DESCRIPTION(DM_NAME " cache target");
2678 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2679 MODULE_LICENSE("GPL");
2680