xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision c5b483d5)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12 
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 
23 #define DM_MSG_PREFIX "cache"
24 
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 	"A percentage of time allocated for copying to and/or from cache");
27 
28 /*----------------------------------------------------------------*/
29 
30 /*
31  * Glossary:
32  *
33  * oblock: index of an origin block
34  * cblock: index of a cache block
35  * promotion: movement of a block from origin to cache
36  * demotion: movement of a block from cache to origin
37  * migration: movement of a block between the origin and cache device,
38  *	      either direction
39  */
40 
41 /*----------------------------------------------------------------*/
42 
43 /*
44  * Represents a chunk of future work.  'input' allows continuations to pass
45  * values between themselves, typically error values.
46  */
47 struct continuation {
48 	struct work_struct ws;
49 	blk_status_t input;
50 };
51 
52 static inline void init_continuation(struct continuation *k,
53 				     void (*fn)(struct work_struct *))
54 {
55 	INIT_WORK(&k->ws, fn);
56 	k->input = 0;
57 }
58 
59 static inline void queue_continuation(struct workqueue_struct *wq,
60 				      struct continuation *k)
61 {
62 	queue_work(wq, &k->ws);
63 }
64 
65 /*----------------------------------------------------------------*/
66 
67 /*
68  * The batcher collects together pieces of work that need a particular
69  * operation to occur before they can proceed (typically a commit).
70  */
71 struct batcher {
72 	/*
73 	 * The operation that everyone is waiting for.
74 	 */
75 	blk_status_t (*commit_op)(void *context);
76 	void *commit_context;
77 
78 	/*
79 	 * This is how bios should be issued once the commit op is complete
80 	 * (accounted_request).
81 	 */
82 	void (*issue_op)(struct bio *bio, void *context);
83 	void *issue_context;
84 
85 	/*
86 	 * Queued work gets put on here after commit.
87 	 */
88 	struct workqueue_struct *wq;
89 
90 	spinlock_t lock;
91 	struct list_head work_items;
92 	struct bio_list bios;
93 	struct work_struct commit_work;
94 
95 	bool commit_scheduled;
96 };
97 
98 static void __commit(struct work_struct *_ws)
99 {
100 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 	blk_status_t r;
102 	struct list_head work_items;
103 	struct work_struct *ws, *tmp;
104 	struct continuation *k;
105 	struct bio *bio;
106 	struct bio_list bios;
107 
108 	INIT_LIST_HEAD(&work_items);
109 	bio_list_init(&bios);
110 
111 	/*
112 	 * We have to grab these before the commit_op to avoid a race
113 	 * condition.
114 	 */
115 	spin_lock_irq(&b->lock);
116 	list_splice_init(&b->work_items, &work_items);
117 	bio_list_merge(&bios, &b->bios);
118 	bio_list_init(&b->bios);
119 	b->commit_scheduled = false;
120 	spin_unlock_irq(&b->lock);
121 
122 	r = b->commit_op(b->commit_context);
123 
124 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 		k = container_of(ws, struct continuation, ws);
126 		k->input = r;
127 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 		queue_work(b->wq, ws);
129 	}
130 
131 	while ((bio = bio_list_pop(&bios))) {
132 		if (r) {
133 			bio->bi_status = r;
134 			bio_endio(bio);
135 		} else
136 			b->issue_op(bio, b->issue_context);
137 	}
138 }
139 
140 static void batcher_init(struct batcher *b,
141 			 blk_status_t (*commit_op)(void *),
142 			 void *commit_context,
143 			 void (*issue_op)(struct bio *bio, void *),
144 			 void *issue_context,
145 			 struct workqueue_struct *wq)
146 {
147 	b->commit_op = commit_op;
148 	b->commit_context = commit_context;
149 	b->issue_op = issue_op;
150 	b->issue_context = issue_context;
151 	b->wq = wq;
152 
153 	spin_lock_init(&b->lock);
154 	INIT_LIST_HEAD(&b->work_items);
155 	bio_list_init(&b->bios);
156 	INIT_WORK(&b->commit_work, __commit);
157 	b->commit_scheduled = false;
158 }
159 
160 static void async_commit(struct batcher *b)
161 {
162 	queue_work(b->wq, &b->commit_work);
163 }
164 
165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 	bool commit_scheduled;
168 
169 	spin_lock_irq(&b->lock);
170 	commit_scheduled = b->commit_scheduled;
171 	list_add_tail(&k->ws.entry, &b->work_items);
172 	spin_unlock_irq(&b->lock);
173 
174 	if (commit_scheduled)
175 		async_commit(b);
176 }
177 
178 /*
179  * Bios are errored if commit failed.
180  */
181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183        bool commit_scheduled;
184 
185        spin_lock_irq(&b->lock);
186        commit_scheduled = b->commit_scheduled;
187        bio_list_add(&b->bios, bio);
188        spin_unlock_irq(&b->lock);
189 
190        if (commit_scheduled)
191 	       async_commit(b);
192 }
193 
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
197 static void schedule_commit(struct batcher *b)
198 {
199 	bool immediate;
200 
201 	spin_lock_irq(&b->lock);
202 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 	b->commit_scheduled = true;
204 	spin_unlock_irq(&b->lock);
205 
206 	if (immediate)
207 		async_commit(b);
208 }
209 
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216 	bio_end_io_t *bi_end_io;
217 };
218 
219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 			bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 	h->bi_end_io = bio->bi_end_io;
223 
224 	bio->bi_end_io = bi_end_io;
225 	bio->bi_private = bi_private;
226 }
227 
228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 	bio->bi_end_io = h->bi_end_io;
231 }
232 
233 /*----------------------------------------------------------------*/
234 
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238 
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245 
246 enum cache_metadata_mode {
247 	CM_WRITE,		/* metadata may be changed */
248 	CM_READ_ONLY,		/* metadata may not be changed */
249 	CM_FAIL
250 };
251 
252 enum cache_io_mode {
253 	/*
254 	 * Data is written to cached blocks only.  These blocks are marked
255 	 * dirty.  If you lose the cache device you will lose data.
256 	 * Potential performance increase for both reads and writes.
257 	 */
258 	CM_IO_WRITEBACK,
259 
260 	/*
261 	 * Data is written to both cache and origin.  Blocks are never
262 	 * dirty.  Potential performance benfit for reads only.
263 	 */
264 	CM_IO_WRITETHROUGH,
265 
266 	/*
267 	 * A degraded mode useful for various cache coherency situations
268 	 * (eg, rolling back snapshots).  Reads and writes always go to the
269 	 * origin.  If a write goes to a cached oblock, then the cache
270 	 * block is invalidated.
271 	 */
272 	CM_IO_PASSTHROUGH
273 };
274 
275 struct cache_features {
276 	enum cache_metadata_mode mode;
277 	enum cache_io_mode io_mode;
278 	unsigned metadata_version;
279 	bool discard_passdown:1;
280 };
281 
282 struct cache_stats {
283 	atomic_t read_hit;
284 	atomic_t read_miss;
285 	atomic_t write_hit;
286 	atomic_t write_miss;
287 	atomic_t demotion;
288 	atomic_t promotion;
289 	atomic_t writeback;
290 	atomic_t copies_avoided;
291 	atomic_t cache_cell_clash;
292 	atomic_t commit_count;
293 	atomic_t discard_count;
294 };
295 
296 struct cache {
297 	struct dm_target *ti;
298 	spinlock_t lock;
299 
300 	/*
301 	 * Fields for converting from sectors to blocks.
302 	 */
303 	int sectors_per_block_shift;
304 	sector_t sectors_per_block;
305 
306 	struct dm_cache_metadata *cmd;
307 
308 	/*
309 	 * Metadata is written to this device.
310 	 */
311 	struct dm_dev *metadata_dev;
312 
313 	/*
314 	 * The slower of the two data devices.  Typically a spindle.
315 	 */
316 	struct dm_dev *origin_dev;
317 
318 	/*
319 	 * The faster of the two data devices.  Typically an SSD.
320 	 */
321 	struct dm_dev *cache_dev;
322 
323 	/*
324 	 * Size of the origin device in _complete_ blocks and native sectors.
325 	 */
326 	dm_oblock_t origin_blocks;
327 	sector_t origin_sectors;
328 
329 	/*
330 	 * Size of the cache device in blocks.
331 	 */
332 	dm_cblock_t cache_size;
333 
334 	/*
335 	 * Invalidation fields.
336 	 */
337 	spinlock_t invalidation_lock;
338 	struct list_head invalidation_requests;
339 
340 	sector_t migration_threshold;
341 	wait_queue_head_t migration_wait;
342 	atomic_t nr_allocated_migrations;
343 
344 	/*
345 	 * The number of in flight migrations that are performing
346 	 * background io. eg, promotion, writeback.
347 	 */
348 	atomic_t nr_io_migrations;
349 
350 	struct bio_list deferred_bios;
351 
352 	struct rw_semaphore quiesce_lock;
353 
354 	/*
355 	 * origin_blocks entries, discarded if set.
356 	 */
357 	dm_dblock_t discard_nr_blocks;
358 	unsigned long *discard_bitset;
359 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
360 
361 	/*
362 	 * Rather than reconstructing the table line for the status we just
363 	 * save it and regurgitate.
364 	 */
365 	unsigned nr_ctr_args;
366 	const char **ctr_args;
367 
368 	struct dm_kcopyd_client *copier;
369 	struct work_struct deferred_bio_worker;
370 	struct work_struct migration_worker;
371 	struct workqueue_struct *wq;
372 	struct delayed_work waker;
373 	struct dm_bio_prison_v2 *prison;
374 
375 	/*
376 	 * cache_size entries, dirty if set
377 	 */
378 	unsigned long *dirty_bitset;
379 	atomic_t nr_dirty;
380 
381 	unsigned policy_nr_args;
382 	struct dm_cache_policy *policy;
383 
384 	/*
385 	 * Cache features such as write-through.
386 	 */
387 	struct cache_features features;
388 
389 	struct cache_stats stats;
390 
391 	bool need_tick_bio:1;
392 	bool sized:1;
393 	bool invalidate:1;
394 	bool commit_requested:1;
395 	bool loaded_mappings:1;
396 	bool loaded_discards:1;
397 
398 	struct rw_semaphore background_work_lock;
399 
400 	struct batcher committer;
401 	struct work_struct commit_ws;
402 
403 	struct dm_io_tracker tracker;
404 
405 	mempool_t migration_pool;
406 
407 	struct bio_set bs;
408 };
409 
410 struct per_bio_data {
411 	bool tick:1;
412 	unsigned req_nr:2;
413 	struct dm_bio_prison_cell_v2 *cell;
414 	struct dm_hook_info hook_info;
415 	sector_t len;
416 };
417 
418 struct dm_cache_migration {
419 	struct continuation k;
420 	struct cache *cache;
421 
422 	struct policy_work *op;
423 	struct bio *overwrite_bio;
424 	struct dm_bio_prison_cell_v2 *cell;
425 
426 	dm_cblock_t invalidate_cblock;
427 	dm_oblock_t invalidate_oblock;
428 };
429 
430 /*----------------------------------------------------------------*/
431 
432 static bool writethrough_mode(struct cache *cache)
433 {
434 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436 
437 static bool writeback_mode(struct cache *cache)
438 {
439 	return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441 
442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446 
447 /*----------------------------------------------------------------*/
448 
449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 	queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453 
454 static void wake_migration_worker(struct cache *cache)
455 {
456 	if (passthrough_mode(cache))
457 		return;
458 
459 	queue_work(cache->wq, &cache->migration_worker);
460 }
461 
462 /*----------------------------------------------------------------*/
463 
464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468 
469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 	dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473 
474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 	struct dm_cache_migration *mg;
477 
478 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479 
480 	memset(mg, 0, sizeof(*mg));
481 
482 	mg->cache = cache;
483 	atomic_inc(&cache->nr_allocated_migrations);
484 
485 	return mg;
486 }
487 
488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 	struct cache *cache = mg->cache;
491 
492 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 		wake_up(&cache->migration_wait);
494 
495 	mempool_free(mg, &cache->migration_pool);
496 }
497 
498 /*----------------------------------------------------------------*/
499 
500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 	return to_oblock(from_oblock(b) + 1ull);
503 }
504 
505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 	key->virtual = 0;
508 	key->dev = 0;
509 	key->block_begin = from_oblock(begin);
510 	key->block_end = from_oblock(end);
511 }
512 
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519 
520 static unsigned lock_level(struct bio *bio)
521 {
522 	return bio_data_dir(bio) == WRITE ?
523 		WRITE_LOCK_LEVEL :
524 		READ_WRITE_LOCK_LEVEL;
525 }
526 
527 /*----------------------------------------------------------------
528  * Per bio data
529  *--------------------------------------------------------------*/
530 
531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 	BUG_ON(!pb);
535 	return pb;
536 }
537 
538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540 	struct per_bio_data *pb = get_per_bio_data(bio);
541 
542 	pb->tick = false;
543 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 	pb->cell = NULL;
545 	pb->len = 0;
546 
547 	return pb;
548 }
549 
550 /*----------------------------------------------------------------*/
551 
552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554 	spin_lock_irq(&cache->lock);
555 	bio_list_add(&cache->deferred_bios, bio);
556 	spin_unlock_irq(&cache->lock);
557 
558 	wake_deferred_bio_worker(cache);
559 }
560 
561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563 	spin_lock_irq(&cache->lock);
564 	bio_list_merge(&cache->deferred_bios, bios);
565 	bio_list_init(bios);
566 	spin_unlock_irq(&cache->lock);
567 
568 	wake_deferred_bio_worker(cache);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575 	bool r;
576 	struct per_bio_data *pb;
577 	struct dm_cell_key_v2 key;
578 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580 
581 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582 
583 	build_key(oblock, end, &key);
584 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 	if (!r) {
586 		/*
587 		 * Failed to get the lock.
588 		 */
589 		free_prison_cell(cache, cell_prealloc);
590 		return r;
591 	}
592 
593 	if (cell != cell_prealloc)
594 		free_prison_cell(cache, cell_prealloc);
595 
596 	pb = get_per_bio_data(bio);
597 	pb->cell = cell;
598 
599 	return r;
600 }
601 
602 /*----------------------------------------------------------------*/
603 
604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606 	return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608 
609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 		atomic_inc(&cache->nr_dirty);
613 		policy_set_dirty(cache->policy, cblock);
614 	}
615 }
616 
617 /*
618  * These two are called when setting after migrations to force the policy
619  * and dirty bitset to be in sync.
620  */
621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 		atomic_inc(&cache->nr_dirty);
625 	policy_set_dirty(cache->policy, cblock);
626 }
627 
628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 		if (atomic_dec_return(&cache->nr_dirty) == 0)
632 			dm_table_event(cache->ti->table);
633 	}
634 
635 	policy_clear_dirty(cache->policy, cblock);
636 }
637 
638 /*----------------------------------------------------------------*/
639 
640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642 	return cache->sectors_per_block_shift >= 0;
643 }
644 
645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647 	do_div(b, n);
648 
649 	return b;
650 }
651 
652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654 	dm_block_t oblocks = cache->discard_block_size;
655 
656 	if (block_size_is_power_of_two(cache))
657 		oblocks >>= cache->sectors_per_block_shift;
658 	else
659 		oblocks = block_div(oblocks, cache->sectors_per_block);
660 
661 	return oblocks;
662 }
663 
664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666 	return to_dblock(block_div(from_oblock(oblock),
667 				   oblocks_per_dblock(cache)));
668 }
669 
670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 	atomic_inc(&cache->stats.discard_count);
674 
675 	spin_lock_irq(&cache->lock);
676 	set_bit(from_dblock(b), cache->discard_bitset);
677 	spin_unlock_irq(&cache->lock);
678 }
679 
680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682 	spin_lock_irq(&cache->lock);
683 	clear_bit(from_dblock(b), cache->discard_bitset);
684 	spin_unlock_irq(&cache->lock);
685 }
686 
687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689 	int r;
690 	spin_lock_irq(&cache->lock);
691 	r = test_bit(from_dblock(b), cache->discard_bitset);
692 	spin_unlock_irq(&cache->lock);
693 
694 	return r;
695 }
696 
697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699 	int r;
700 	spin_lock_irq(&cache->lock);
701 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 		     cache->discard_bitset);
703 	spin_unlock_irq(&cache->lock);
704 
705 	return r;
706 }
707 
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 	bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715 
716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 			   dm_cblock_t cblock)
718 {
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 	sector_t block = from_cblock(cblock);
721 
722 	bio_set_dev(bio, cache->cache_dev->bdev);
723 	if (!block_size_is_power_of_two(cache))
724 		bio->bi_iter.bi_sector =
725 			(block * cache->sectors_per_block) +
726 			sector_div(bi_sector, cache->sectors_per_block);
727 	else
728 		bio->bi_iter.bi_sector =
729 			(block << cache->sectors_per_block_shift) |
730 			(bi_sector & (cache->sectors_per_block - 1));
731 }
732 
733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 	struct per_bio_data *pb;
736 
737 	spin_lock_irq(&cache->lock);
738 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 	    bio_op(bio) != REQ_OP_DISCARD) {
740 		pb = get_per_bio_data(bio);
741 		pb->tick = true;
742 		cache->need_tick_bio = false;
743 	}
744 	spin_unlock_irq(&cache->lock);
745 }
746 
747 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 					    dm_oblock_t oblock, bool bio_has_pbd)
749 {
750 	if (bio_has_pbd)
751 		check_if_tick_bio_needed(cache, bio);
752 	remap_to_origin(cache, bio);
753 	if (bio_data_dir(bio) == WRITE)
754 		clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756 
757 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
758 					  dm_oblock_t oblock)
759 {
760 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
761 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
762 }
763 
764 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 				 dm_oblock_t oblock, dm_cblock_t cblock)
766 {
767 	check_if_tick_bio_needed(cache, bio);
768 	remap_to_cache(cache, bio, cblock);
769 	if (bio_data_dir(bio) == WRITE) {
770 		set_dirty(cache, cblock);
771 		clear_discard(cache, oblock_to_dblock(cache, oblock));
772 	}
773 }
774 
775 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776 {
777 	sector_t block_nr = bio->bi_iter.bi_sector;
778 
779 	if (!block_size_is_power_of_two(cache))
780 		(void) sector_div(block_nr, cache->sectors_per_block);
781 	else
782 		block_nr >>= cache->sectors_per_block_shift;
783 
784 	return to_oblock(block_nr);
785 }
786 
787 static bool accountable_bio(struct cache *cache, struct bio *bio)
788 {
789 	return bio_op(bio) != REQ_OP_DISCARD;
790 }
791 
792 static void accounted_begin(struct cache *cache, struct bio *bio)
793 {
794 	struct per_bio_data *pb;
795 
796 	if (accountable_bio(cache, bio)) {
797 		pb = get_per_bio_data(bio);
798 		pb->len = bio_sectors(bio);
799 		dm_iot_io_begin(&cache->tracker, pb->len);
800 	}
801 }
802 
803 static void accounted_complete(struct cache *cache, struct bio *bio)
804 {
805 	struct per_bio_data *pb = get_per_bio_data(bio);
806 
807 	dm_iot_io_end(&cache->tracker, pb->len);
808 }
809 
810 static void accounted_request(struct cache *cache, struct bio *bio)
811 {
812 	accounted_begin(cache, bio);
813 	submit_bio_noacct(bio);
814 }
815 
816 static void issue_op(struct bio *bio, void *context)
817 {
818 	struct cache *cache = context;
819 	accounted_request(cache, bio);
820 }
821 
822 /*
823  * When running in writethrough mode we need to send writes to clean blocks
824  * to both the cache and origin devices.  Clone the bio and send them in parallel.
825  */
826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
827 				      dm_oblock_t oblock, dm_cblock_t cblock)
828 {
829 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
830 
831 	BUG_ON(!origin_bio);
832 
833 	bio_chain(origin_bio, bio);
834 	/*
835 	 * Passing false to __remap_to_origin_clear_discard() skips
836 	 * all code that might use per_bio_data (since clone doesn't have it)
837 	 */
838 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
839 	submit_bio(origin_bio);
840 
841 	remap_to_cache(cache, bio, cblock);
842 }
843 
844 /*----------------------------------------------------------------
845  * Failure modes
846  *--------------------------------------------------------------*/
847 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
848 {
849 	return cache->features.mode;
850 }
851 
852 static const char *cache_device_name(struct cache *cache)
853 {
854 	return dm_table_device_name(cache->ti->table);
855 }
856 
857 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
858 {
859 	const char *descs[] = {
860 		"write",
861 		"read-only",
862 		"fail"
863 	};
864 
865 	dm_table_event(cache->ti->table);
866 	DMINFO("%s: switching cache to %s mode",
867 	       cache_device_name(cache), descs[(int)mode]);
868 }
869 
870 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
871 {
872 	bool needs_check;
873 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
874 
875 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
876 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
877 		      cache_device_name(cache));
878 		new_mode = CM_FAIL;
879 	}
880 
881 	if (new_mode == CM_WRITE && needs_check) {
882 		DMERR("%s: unable to switch cache to write mode until repaired.",
883 		      cache_device_name(cache));
884 		if (old_mode != new_mode)
885 			new_mode = old_mode;
886 		else
887 			new_mode = CM_READ_ONLY;
888 	}
889 
890 	/* Never move out of fail mode */
891 	if (old_mode == CM_FAIL)
892 		new_mode = CM_FAIL;
893 
894 	switch (new_mode) {
895 	case CM_FAIL:
896 	case CM_READ_ONLY:
897 		dm_cache_metadata_set_read_only(cache->cmd);
898 		break;
899 
900 	case CM_WRITE:
901 		dm_cache_metadata_set_read_write(cache->cmd);
902 		break;
903 	}
904 
905 	cache->features.mode = new_mode;
906 
907 	if (new_mode != old_mode)
908 		notify_mode_switch(cache, new_mode);
909 }
910 
911 static void abort_transaction(struct cache *cache)
912 {
913 	const char *dev_name = cache_device_name(cache);
914 
915 	if (get_cache_mode(cache) >= CM_READ_ONLY)
916 		return;
917 
918 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
919 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
920 		set_cache_mode(cache, CM_FAIL);
921 	}
922 
923 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
924 	if (dm_cache_metadata_abort(cache->cmd)) {
925 		DMERR("%s: failed to abort metadata transaction", dev_name);
926 		set_cache_mode(cache, CM_FAIL);
927 	}
928 }
929 
930 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
931 {
932 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
933 		    cache_device_name(cache), op, r);
934 	abort_transaction(cache);
935 	set_cache_mode(cache, CM_READ_ONLY);
936 }
937 
938 /*----------------------------------------------------------------*/
939 
940 static void load_stats(struct cache *cache)
941 {
942 	struct dm_cache_statistics stats;
943 
944 	dm_cache_metadata_get_stats(cache->cmd, &stats);
945 	atomic_set(&cache->stats.read_hit, stats.read_hits);
946 	atomic_set(&cache->stats.read_miss, stats.read_misses);
947 	atomic_set(&cache->stats.write_hit, stats.write_hits);
948 	atomic_set(&cache->stats.write_miss, stats.write_misses);
949 }
950 
951 static void save_stats(struct cache *cache)
952 {
953 	struct dm_cache_statistics stats;
954 
955 	if (get_cache_mode(cache) >= CM_READ_ONLY)
956 		return;
957 
958 	stats.read_hits = atomic_read(&cache->stats.read_hit);
959 	stats.read_misses = atomic_read(&cache->stats.read_miss);
960 	stats.write_hits = atomic_read(&cache->stats.write_hit);
961 	stats.write_misses = atomic_read(&cache->stats.write_miss);
962 
963 	dm_cache_metadata_set_stats(cache->cmd, &stats);
964 }
965 
966 static void update_stats(struct cache_stats *stats, enum policy_operation op)
967 {
968 	switch (op) {
969 	case POLICY_PROMOTE:
970 		atomic_inc(&stats->promotion);
971 		break;
972 
973 	case POLICY_DEMOTE:
974 		atomic_inc(&stats->demotion);
975 		break;
976 
977 	case POLICY_WRITEBACK:
978 		atomic_inc(&stats->writeback);
979 		break;
980 	}
981 }
982 
983 /*----------------------------------------------------------------
984  * Migration processing
985  *
986  * Migration covers moving data from the origin device to the cache, or
987  * vice versa.
988  *--------------------------------------------------------------*/
989 
990 static void inc_io_migrations(struct cache *cache)
991 {
992 	atomic_inc(&cache->nr_io_migrations);
993 }
994 
995 static void dec_io_migrations(struct cache *cache)
996 {
997 	atomic_dec(&cache->nr_io_migrations);
998 }
999 
1000 static bool discard_or_flush(struct bio *bio)
1001 {
1002 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1003 }
1004 
1005 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1006 				     dm_dblock_t *b, dm_dblock_t *e)
1007 {
1008 	sector_t sb = bio->bi_iter.bi_sector;
1009 	sector_t se = bio_end_sector(bio);
1010 
1011 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1012 
1013 	if (se - sb < cache->discard_block_size)
1014 		*e = *b;
1015 	else
1016 		*e = to_dblock(block_div(se, cache->discard_block_size));
1017 }
1018 
1019 /*----------------------------------------------------------------*/
1020 
1021 static void prevent_background_work(struct cache *cache)
1022 {
1023 	lockdep_off();
1024 	down_write(&cache->background_work_lock);
1025 	lockdep_on();
1026 }
1027 
1028 static void allow_background_work(struct cache *cache)
1029 {
1030 	lockdep_off();
1031 	up_write(&cache->background_work_lock);
1032 	lockdep_on();
1033 }
1034 
1035 static bool background_work_begin(struct cache *cache)
1036 {
1037 	bool r;
1038 
1039 	lockdep_off();
1040 	r = down_read_trylock(&cache->background_work_lock);
1041 	lockdep_on();
1042 
1043 	return r;
1044 }
1045 
1046 static void background_work_end(struct cache *cache)
1047 {
1048 	lockdep_off();
1049 	up_read(&cache->background_work_lock);
1050 	lockdep_on();
1051 }
1052 
1053 /*----------------------------------------------------------------*/
1054 
1055 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1056 {
1057 	return (bio_data_dir(bio) == WRITE) &&
1058 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1059 }
1060 
1061 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1062 {
1063 	return writeback_mode(cache) &&
1064 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1065 }
1066 
1067 static void quiesce(struct dm_cache_migration *mg,
1068 		    void (*continuation)(struct work_struct *))
1069 {
1070 	init_continuation(&mg->k, continuation);
1071 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1072 }
1073 
1074 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1075 {
1076 	struct continuation *k = container_of(ws, struct continuation, ws);
1077 	return container_of(k, struct dm_cache_migration, k);
1078 }
1079 
1080 static void copy_complete(int read_err, unsigned long write_err, void *context)
1081 {
1082 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1083 
1084 	if (read_err || write_err)
1085 		mg->k.input = BLK_STS_IOERR;
1086 
1087 	queue_continuation(mg->cache->wq, &mg->k);
1088 }
1089 
1090 static void copy(struct dm_cache_migration *mg, bool promote)
1091 {
1092 	struct dm_io_region o_region, c_region;
1093 	struct cache *cache = mg->cache;
1094 
1095 	o_region.bdev = cache->origin_dev->bdev;
1096 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1097 	o_region.count = cache->sectors_per_block;
1098 
1099 	c_region.bdev = cache->cache_dev->bdev;
1100 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1101 	c_region.count = cache->sectors_per_block;
1102 
1103 	if (promote)
1104 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1105 	else
1106 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1107 }
1108 
1109 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1110 {
1111 	struct per_bio_data *pb = get_per_bio_data(bio);
1112 
1113 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1114 		free_prison_cell(cache, pb->cell);
1115 	pb->cell = NULL;
1116 }
1117 
1118 static void overwrite_endio(struct bio *bio)
1119 {
1120 	struct dm_cache_migration *mg = bio->bi_private;
1121 	struct cache *cache = mg->cache;
1122 	struct per_bio_data *pb = get_per_bio_data(bio);
1123 
1124 	dm_unhook_bio(&pb->hook_info, bio);
1125 
1126 	if (bio->bi_status)
1127 		mg->k.input = bio->bi_status;
1128 
1129 	queue_continuation(cache->wq, &mg->k);
1130 }
1131 
1132 static void overwrite(struct dm_cache_migration *mg,
1133 		      void (*continuation)(struct work_struct *))
1134 {
1135 	struct bio *bio = mg->overwrite_bio;
1136 	struct per_bio_data *pb = get_per_bio_data(bio);
1137 
1138 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1139 
1140 	/*
1141 	 * The overwrite bio is part of the copy operation, as such it does
1142 	 * not set/clear discard or dirty flags.
1143 	 */
1144 	if (mg->op->op == POLICY_PROMOTE)
1145 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1146 	else
1147 		remap_to_origin(mg->cache, bio);
1148 
1149 	init_continuation(&mg->k, continuation);
1150 	accounted_request(mg->cache, bio);
1151 }
1152 
1153 /*
1154  * Migration steps:
1155  *
1156  * 1) exclusive lock preventing WRITEs
1157  * 2) quiesce
1158  * 3) copy or issue overwrite bio
1159  * 4) upgrade to exclusive lock preventing READs and WRITEs
1160  * 5) quiesce
1161  * 6) update metadata and commit
1162  * 7) unlock
1163  */
1164 static void mg_complete(struct dm_cache_migration *mg, bool success)
1165 {
1166 	struct bio_list bios;
1167 	struct cache *cache = mg->cache;
1168 	struct policy_work *op = mg->op;
1169 	dm_cblock_t cblock = op->cblock;
1170 
1171 	if (success)
1172 		update_stats(&cache->stats, op->op);
1173 
1174 	switch (op->op) {
1175 	case POLICY_PROMOTE:
1176 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1177 		policy_complete_background_work(cache->policy, op, success);
1178 
1179 		if (mg->overwrite_bio) {
1180 			if (success)
1181 				force_set_dirty(cache, cblock);
1182 			else if (mg->k.input)
1183 				mg->overwrite_bio->bi_status = mg->k.input;
1184 			else
1185 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1186 			bio_endio(mg->overwrite_bio);
1187 		} else {
1188 			if (success)
1189 				force_clear_dirty(cache, cblock);
1190 			dec_io_migrations(cache);
1191 		}
1192 		break;
1193 
1194 	case POLICY_DEMOTE:
1195 		/*
1196 		 * We clear dirty here to update the nr_dirty counter.
1197 		 */
1198 		if (success)
1199 			force_clear_dirty(cache, cblock);
1200 		policy_complete_background_work(cache->policy, op, success);
1201 		dec_io_migrations(cache);
1202 		break;
1203 
1204 	case POLICY_WRITEBACK:
1205 		if (success)
1206 			force_clear_dirty(cache, cblock);
1207 		policy_complete_background_work(cache->policy, op, success);
1208 		dec_io_migrations(cache);
1209 		break;
1210 	}
1211 
1212 	bio_list_init(&bios);
1213 	if (mg->cell) {
1214 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1215 			free_prison_cell(cache, mg->cell);
1216 	}
1217 
1218 	free_migration(mg);
1219 	defer_bios(cache, &bios);
1220 	wake_migration_worker(cache);
1221 
1222 	background_work_end(cache);
1223 }
1224 
1225 static void mg_success(struct work_struct *ws)
1226 {
1227 	struct dm_cache_migration *mg = ws_to_mg(ws);
1228 	mg_complete(mg, mg->k.input == 0);
1229 }
1230 
1231 static void mg_update_metadata(struct work_struct *ws)
1232 {
1233 	int r;
1234 	struct dm_cache_migration *mg = ws_to_mg(ws);
1235 	struct cache *cache = mg->cache;
1236 	struct policy_work *op = mg->op;
1237 
1238 	switch (op->op) {
1239 	case POLICY_PROMOTE:
1240 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1241 		if (r) {
1242 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1243 				    cache_device_name(cache));
1244 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1245 
1246 			mg_complete(mg, false);
1247 			return;
1248 		}
1249 		mg_complete(mg, true);
1250 		break;
1251 
1252 	case POLICY_DEMOTE:
1253 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1254 		if (r) {
1255 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1256 				    cache_device_name(cache));
1257 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1258 
1259 			mg_complete(mg, false);
1260 			return;
1261 		}
1262 
1263 		/*
1264 		 * It would be nice if we only had to commit when a REQ_FLUSH
1265 		 * comes through.  But there's one scenario that we have to
1266 		 * look out for:
1267 		 *
1268 		 * - vblock x in a cache block
1269 		 * - domotion occurs
1270 		 * - cache block gets reallocated and over written
1271 		 * - crash
1272 		 *
1273 		 * When we recover, because there was no commit the cache will
1274 		 * rollback to having the data for vblock x in the cache block.
1275 		 * But the cache block has since been overwritten, so it'll end
1276 		 * up pointing to data that was never in 'x' during the history
1277 		 * of the device.
1278 		 *
1279 		 * To avoid this issue we require a commit as part of the
1280 		 * demotion operation.
1281 		 */
1282 		init_continuation(&mg->k, mg_success);
1283 		continue_after_commit(&cache->committer, &mg->k);
1284 		schedule_commit(&cache->committer);
1285 		break;
1286 
1287 	case POLICY_WRITEBACK:
1288 		mg_complete(mg, true);
1289 		break;
1290 	}
1291 }
1292 
1293 static void mg_update_metadata_after_copy(struct work_struct *ws)
1294 {
1295 	struct dm_cache_migration *mg = ws_to_mg(ws);
1296 
1297 	/*
1298 	 * Did the copy succeed?
1299 	 */
1300 	if (mg->k.input)
1301 		mg_complete(mg, false);
1302 	else
1303 		mg_update_metadata(ws);
1304 }
1305 
1306 static void mg_upgrade_lock(struct work_struct *ws)
1307 {
1308 	int r;
1309 	struct dm_cache_migration *mg = ws_to_mg(ws);
1310 
1311 	/*
1312 	 * Did the copy succeed?
1313 	 */
1314 	if (mg->k.input)
1315 		mg_complete(mg, false);
1316 
1317 	else {
1318 		/*
1319 		 * Now we want the lock to prevent both reads and writes.
1320 		 */
1321 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1322 					    READ_WRITE_LOCK_LEVEL);
1323 		if (r < 0)
1324 			mg_complete(mg, false);
1325 
1326 		else if (r)
1327 			quiesce(mg, mg_update_metadata);
1328 
1329 		else
1330 			mg_update_metadata(ws);
1331 	}
1332 }
1333 
1334 static void mg_full_copy(struct work_struct *ws)
1335 {
1336 	struct dm_cache_migration *mg = ws_to_mg(ws);
1337 	struct cache *cache = mg->cache;
1338 	struct policy_work *op = mg->op;
1339 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1340 
1341 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1342 	    is_discarded_oblock(cache, op->oblock)) {
1343 		mg_upgrade_lock(ws);
1344 		return;
1345 	}
1346 
1347 	init_continuation(&mg->k, mg_upgrade_lock);
1348 	copy(mg, is_policy_promote);
1349 }
1350 
1351 static void mg_copy(struct work_struct *ws)
1352 {
1353 	struct dm_cache_migration *mg = ws_to_mg(ws);
1354 
1355 	if (mg->overwrite_bio) {
1356 		/*
1357 		 * No exclusive lock was held when we last checked if the bio
1358 		 * was optimisable.  So we have to check again in case things
1359 		 * have changed (eg, the block may no longer be discarded).
1360 		 */
1361 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1362 			/*
1363 			 * Fallback to a real full copy after doing some tidying up.
1364 			 */
1365 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1366 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1367 			mg->overwrite_bio = NULL;
1368 			inc_io_migrations(mg->cache);
1369 			mg_full_copy(ws);
1370 			return;
1371 		}
1372 
1373 		/*
1374 		 * It's safe to do this here, even though it's new data
1375 		 * because all IO has been locked out of the block.
1376 		 *
1377 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1378 		 * so _not_ using mg_upgrade_lock() as continutation.
1379 		 */
1380 		overwrite(mg, mg_update_metadata_after_copy);
1381 
1382 	} else
1383 		mg_full_copy(ws);
1384 }
1385 
1386 static int mg_lock_writes(struct dm_cache_migration *mg)
1387 {
1388 	int r;
1389 	struct dm_cell_key_v2 key;
1390 	struct cache *cache = mg->cache;
1391 	struct dm_bio_prison_cell_v2 *prealloc;
1392 
1393 	prealloc = alloc_prison_cell(cache);
1394 
1395 	/*
1396 	 * Prevent writes to the block, but allow reads to continue.
1397 	 * Unless we're using an overwrite bio, in which case we lock
1398 	 * everything.
1399 	 */
1400 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1401 	r = dm_cell_lock_v2(cache->prison, &key,
1402 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1403 			    prealloc, &mg->cell);
1404 	if (r < 0) {
1405 		free_prison_cell(cache, prealloc);
1406 		mg_complete(mg, false);
1407 		return r;
1408 	}
1409 
1410 	if (mg->cell != prealloc)
1411 		free_prison_cell(cache, prealloc);
1412 
1413 	if (r == 0)
1414 		mg_copy(&mg->k.ws);
1415 	else
1416 		quiesce(mg, mg_copy);
1417 
1418 	return 0;
1419 }
1420 
1421 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1422 {
1423 	struct dm_cache_migration *mg;
1424 
1425 	if (!background_work_begin(cache)) {
1426 		policy_complete_background_work(cache->policy, op, false);
1427 		return -EPERM;
1428 	}
1429 
1430 	mg = alloc_migration(cache);
1431 
1432 	mg->op = op;
1433 	mg->overwrite_bio = bio;
1434 
1435 	if (!bio)
1436 		inc_io_migrations(cache);
1437 
1438 	return mg_lock_writes(mg);
1439 }
1440 
1441 /*----------------------------------------------------------------
1442  * invalidation processing
1443  *--------------------------------------------------------------*/
1444 
1445 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1446 {
1447 	struct bio_list bios;
1448 	struct cache *cache = mg->cache;
1449 
1450 	bio_list_init(&bios);
1451 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1452 		free_prison_cell(cache, mg->cell);
1453 
1454 	if (!success && mg->overwrite_bio)
1455 		bio_io_error(mg->overwrite_bio);
1456 
1457 	free_migration(mg);
1458 	defer_bios(cache, &bios);
1459 
1460 	background_work_end(cache);
1461 }
1462 
1463 static void invalidate_completed(struct work_struct *ws)
1464 {
1465 	struct dm_cache_migration *mg = ws_to_mg(ws);
1466 	invalidate_complete(mg, !mg->k.input);
1467 }
1468 
1469 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1470 {
1471 	int r = policy_invalidate_mapping(cache->policy, cblock);
1472 	if (!r) {
1473 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1474 		if (r) {
1475 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1476 				    cache_device_name(cache));
1477 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1478 		}
1479 
1480 	} else if (r == -ENODATA) {
1481 		/*
1482 		 * Harmless, already unmapped.
1483 		 */
1484 		r = 0;
1485 
1486 	} else
1487 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1488 
1489 	return r;
1490 }
1491 
1492 static void invalidate_remove(struct work_struct *ws)
1493 {
1494 	int r;
1495 	struct dm_cache_migration *mg = ws_to_mg(ws);
1496 	struct cache *cache = mg->cache;
1497 
1498 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1499 	if (r) {
1500 		invalidate_complete(mg, false);
1501 		return;
1502 	}
1503 
1504 	init_continuation(&mg->k, invalidate_completed);
1505 	continue_after_commit(&cache->committer, &mg->k);
1506 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1507 	mg->overwrite_bio = NULL;
1508 	schedule_commit(&cache->committer);
1509 }
1510 
1511 static int invalidate_lock(struct dm_cache_migration *mg)
1512 {
1513 	int r;
1514 	struct dm_cell_key_v2 key;
1515 	struct cache *cache = mg->cache;
1516 	struct dm_bio_prison_cell_v2 *prealloc;
1517 
1518 	prealloc = alloc_prison_cell(cache);
1519 
1520 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1521 	r = dm_cell_lock_v2(cache->prison, &key,
1522 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1523 	if (r < 0) {
1524 		free_prison_cell(cache, prealloc);
1525 		invalidate_complete(mg, false);
1526 		return r;
1527 	}
1528 
1529 	if (mg->cell != prealloc)
1530 		free_prison_cell(cache, prealloc);
1531 
1532 	if (r)
1533 		quiesce(mg, invalidate_remove);
1534 
1535 	else {
1536 		/*
1537 		 * We can't call invalidate_remove() directly here because we
1538 		 * might still be in request context.
1539 		 */
1540 		init_continuation(&mg->k, invalidate_remove);
1541 		queue_work(cache->wq, &mg->k.ws);
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1548 			    dm_oblock_t oblock, struct bio *bio)
1549 {
1550 	struct dm_cache_migration *mg;
1551 
1552 	if (!background_work_begin(cache))
1553 		return -EPERM;
1554 
1555 	mg = alloc_migration(cache);
1556 
1557 	mg->overwrite_bio = bio;
1558 	mg->invalidate_cblock = cblock;
1559 	mg->invalidate_oblock = oblock;
1560 
1561 	return invalidate_lock(mg);
1562 }
1563 
1564 /*----------------------------------------------------------------
1565  * bio processing
1566  *--------------------------------------------------------------*/
1567 
1568 enum busy {
1569 	IDLE,
1570 	BUSY
1571 };
1572 
1573 static enum busy spare_migration_bandwidth(struct cache *cache)
1574 {
1575 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1576 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1577 		cache->sectors_per_block;
1578 
1579 	if (idle && current_volume <= cache->migration_threshold)
1580 		return IDLE;
1581 	else
1582 		return BUSY;
1583 }
1584 
1585 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1586 {
1587 	atomic_inc(bio_data_dir(bio) == READ ?
1588 		   &cache->stats.read_hit : &cache->stats.write_hit);
1589 }
1590 
1591 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1592 {
1593 	atomic_inc(bio_data_dir(bio) == READ ?
1594 		   &cache->stats.read_miss : &cache->stats.write_miss);
1595 }
1596 
1597 /*----------------------------------------------------------------*/
1598 
1599 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1600 		   bool *commit_needed)
1601 {
1602 	int r, data_dir;
1603 	bool rb, background_queued;
1604 	dm_cblock_t cblock;
1605 
1606 	*commit_needed = false;
1607 
1608 	rb = bio_detain_shared(cache, block, bio);
1609 	if (!rb) {
1610 		/*
1611 		 * An exclusive lock is held for this block, so we have to
1612 		 * wait.  We set the commit_needed flag so the current
1613 		 * transaction will be committed asap, allowing this lock
1614 		 * to be dropped.
1615 		 */
1616 		*commit_needed = true;
1617 		return DM_MAPIO_SUBMITTED;
1618 	}
1619 
1620 	data_dir = bio_data_dir(bio);
1621 
1622 	if (optimisable_bio(cache, bio, block)) {
1623 		struct policy_work *op = NULL;
1624 
1625 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1626 		if (unlikely(r && r != -ENOENT)) {
1627 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1628 				    cache_device_name(cache), r);
1629 			bio_io_error(bio);
1630 			return DM_MAPIO_SUBMITTED;
1631 		}
1632 
1633 		if (r == -ENOENT && op) {
1634 			bio_drop_shared_lock(cache, bio);
1635 			BUG_ON(op->op != POLICY_PROMOTE);
1636 			mg_start(cache, op, bio);
1637 			return DM_MAPIO_SUBMITTED;
1638 		}
1639 	} else {
1640 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1641 		if (unlikely(r && r != -ENOENT)) {
1642 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1643 				    cache_device_name(cache), r);
1644 			bio_io_error(bio);
1645 			return DM_MAPIO_SUBMITTED;
1646 		}
1647 
1648 		if (background_queued)
1649 			wake_migration_worker(cache);
1650 	}
1651 
1652 	if (r == -ENOENT) {
1653 		struct per_bio_data *pb = get_per_bio_data(bio);
1654 
1655 		/*
1656 		 * Miss.
1657 		 */
1658 		inc_miss_counter(cache, bio);
1659 		if (pb->req_nr == 0) {
1660 			accounted_begin(cache, bio);
1661 			remap_to_origin_clear_discard(cache, bio, block);
1662 		} else {
1663 			/*
1664 			 * This is a duplicate writethrough io that is no
1665 			 * longer needed because the block has been demoted.
1666 			 */
1667 			bio_endio(bio);
1668 			return DM_MAPIO_SUBMITTED;
1669 		}
1670 	} else {
1671 		/*
1672 		 * Hit.
1673 		 */
1674 		inc_hit_counter(cache, bio);
1675 
1676 		/*
1677 		 * Passthrough always maps to the origin, invalidating any
1678 		 * cache blocks that are written to.
1679 		 */
1680 		if (passthrough_mode(cache)) {
1681 			if (bio_data_dir(bio) == WRITE) {
1682 				bio_drop_shared_lock(cache, bio);
1683 				atomic_inc(&cache->stats.demotion);
1684 				invalidate_start(cache, cblock, block, bio);
1685 			} else
1686 				remap_to_origin_clear_discard(cache, bio, block);
1687 		} else {
1688 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1689 			    !is_dirty(cache, cblock)) {
1690 				remap_to_origin_and_cache(cache, bio, block, cblock);
1691 				accounted_begin(cache, bio);
1692 			} else
1693 				remap_to_cache_dirty(cache, bio, block, cblock);
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1699 	 */
1700 	if (bio->bi_opf & REQ_FUA) {
1701 		/*
1702 		 * issue_after_commit will call accounted_begin a second time.  So
1703 		 * we call accounted_complete() to avoid double accounting.
1704 		 */
1705 		accounted_complete(cache, bio);
1706 		issue_after_commit(&cache->committer, bio);
1707 		*commit_needed = true;
1708 		return DM_MAPIO_SUBMITTED;
1709 	}
1710 
1711 	return DM_MAPIO_REMAPPED;
1712 }
1713 
1714 static bool process_bio(struct cache *cache, struct bio *bio)
1715 {
1716 	bool commit_needed;
1717 
1718 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1719 		submit_bio_noacct(bio);
1720 
1721 	return commit_needed;
1722 }
1723 
1724 /*
1725  * A non-zero return indicates read_only or fail_io mode.
1726  */
1727 static int commit(struct cache *cache, bool clean_shutdown)
1728 {
1729 	int r;
1730 
1731 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1732 		return -EINVAL;
1733 
1734 	atomic_inc(&cache->stats.commit_count);
1735 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1736 	if (r)
1737 		metadata_operation_failed(cache, "dm_cache_commit", r);
1738 
1739 	return r;
1740 }
1741 
1742 /*
1743  * Used by the batcher.
1744  */
1745 static blk_status_t commit_op(void *context)
1746 {
1747 	struct cache *cache = context;
1748 
1749 	if (dm_cache_changed_this_transaction(cache->cmd))
1750 		return errno_to_blk_status(commit(cache, false));
1751 
1752 	return 0;
1753 }
1754 
1755 /*----------------------------------------------------------------*/
1756 
1757 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1758 {
1759 	struct per_bio_data *pb = get_per_bio_data(bio);
1760 
1761 	if (!pb->req_nr)
1762 		remap_to_origin(cache, bio);
1763 	else
1764 		remap_to_cache(cache, bio, 0);
1765 
1766 	issue_after_commit(&cache->committer, bio);
1767 	return true;
1768 }
1769 
1770 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1771 {
1772 	dm_dblock_t b, e;
1773 
1774 	// FIXME: do we need to lock the region?  Or can we just assume the
1775 	// user wont be so foolish as to issue discard concurrently with
1776 	// other IO?
1777 	calc_discard_block_range(cache, bio, &b, &e);
1778 	while (b != e) {
1779 		set_discard(cache, b);
1780 		b = to_dblock(from_dblock(b) + 1);
1781 	}
1782 
1783 	if (cache->features.discard_passdown) {
1784 		remap_to_origin(cache, bio);
1785 		submit_bio_noacct(bio);
1786 	} else
1787 		bio_endio(bio);
1788 
1789 	return false;
1790 }
1791 
1792 static void process_deferred_bios(struct work_struct *ws)
1793 {
1794 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1795 
1796 	bool commit_needed = false;
1797 	struct bio_list bios;
1798 	struct bio *bio;
1799 
1800 	bio_list_init(&bios);
1801 
1802 	spin_lock_irq(&cache->lock);
1803 	bio_list_merge(&bios, &cache->deferred_bios);
1804 	bio_list_init(&cache->deferred_bios);
1805 	spin_unlock_irq(&cache->lock);
1806 
1807 	while ((bio = bio_list_pop(&bios))) {
1808 		if (bio->bi_opf & REQ_PREFLUSH)
1809 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1810 
1811 		else if (bio_op(bio) == REQ_OP_DISCARD)
1812 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1813 
1814 		else
1815 			commit_needed = process_bio(cache, bio) || commit_needed;
1816 	}
1817 
1818 	if (commit_needed)
1819 		schedule_commit(&cache->committer);
1820 }
1821 
1822 /*----------------------------------------------------------------
1823  * Main worker loop
1824  *--------------------------------------------------------------*/
1825 
1826 static void requeue_deferred_bios(struct cache *cache)
1827 {
1828 	struct bio *bio;
1829 	struct bio_list bios;
1830 
1831 	bio_list_init(&bios);
1832 	bio_list_merge(&bios, &cache->deferred_bios);
1833 	bio_list_init(&cache->deferred_bios);
1834 
1835 	while ((bio = bio_list_pop(&bios))) {
1836 		bio->bi_status = BLK_STS_DM_REQUEUE;
1837 		bio_endio(bio);
1838 	}
1839 }
1840 
1841 /*
1842  * We want to commit periodically so that not too much
1843  * unwritten metadata builds up.
1844  */
1845 static void do_waker(struct work_struct *ws)
1846 {
1847 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1848 
1849 	policy_tick(cache->policy, true);
1850 	wake_migration_worker(cache);
1851 	schedule_commit(&cache->committer);
1852 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1853 }
1854 
1855 static void check_migrations(struct work_struct *ws)
1856 {
1857 	int r;
1858 	struct policy_work *op;
1859 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1860 	enum busy b;
1861 
1862 	for (;;) {
1863 		b = spare_migration_bandwidth(cache);
1864 
1865 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1866 		if (r == -ENODATA)
1867 			break;
1868 
1869 		if (r) {
1870 			DMERR_LIMIT("%s: policy_background_work failed",
1871 				    cache_device_name(cache));
1872 			break;
1873 		}
1874 
1875 		r = mg_start(cache, op, NULL);
1876 		if (r)
1877 			break;
1878 	}
1879 }
1880 
1881 /*----------------------------------------------------------------
1882  * Target methods
1883  *--------------------------------------------------------------*/
1884 
1885 /*
1886  * This function gets called on the error paths of the constructor, so we
1887  * have to cope with a partially initialised struct.
1888  */
1889 static void destroy(struct cache *cache)
1890 {
1891 	unsigned i;
1892 
1893 	mempool_exit(&cache->migration_pool);
1894 
1895 	if (cache->prison)
1896 		dm_bio_prison_destroy_v2(cache->prison);
1897 
1898 	if (cache->wq)
1899 		destroy_workqueue(cache->wq);
1900 
1901 	if (cache->dirty_bitset)
1902 		free_bitset(cache->dirty_bitset);
1903 
1904 	if (cache->discard_bitset)
1905 		free_bitset(cache->discard_bitset);
1906 
1907 	if (cache->copier)
1908 		dm_kcopyd_client_destroy(cache->copier);
1909 
1910 	if (cache->cmd)
1911 		dm_cache_metadata_close(cache->cmd);
1912 
1913 	if (cache->metadata_dev)
1914 		dm_put_device(cache->ti, cache->metadata_dev);
1915 
1916 	if (cache->origin_dev)
1917 		dm_put_device(cache->ti, cache->origin_dev);
1918 
1919 	if (cache->cache_dev)
1920 		dm_put_device(cache->ti, cache->cache_dev);
1921 
1922 	if (cache->policy)
1923 		dm_cache_policy_destroy(cache->policy);
1924 
1925 	for (i = 0; i < cache->nr_ctr_args ; i++)
1926 		kfree(cache->ctr_args[i]);
1927 	kfree(cache->ctr_args);
1928 
1929 	bioset_exit(&cache->bs);
1930 
1931 	kfree(cache);
1932 }
1933 
1934 static void cache_dtr(struct dm_target *ti)
1935 {
1936 	struct cache *cache = ti->private;
1937 
1938 	destroy(cache);
1939 }
1940 
1941 static sector_t get_dev_size(struct dm_dev *dev)
1942 {
1943 	return bdev_nr_sectors(dev->bdev);
1944 }
1945 
1946 /*----------------------------------------------------------------*/
1947 
1948 /*
1949  * Construct a cache device mapping.
1950  *
1951  * cache <metadata dev> <cache dev> <origin dev> <block size>
1952  *       <#feature args> [<feature arg>]*
1953  *       <policy> <#policy args> [<policy arg>]*
1954  *
1955  * metadata dev    : fast device holding the persistent metadata
1956  * cache dev	   : fast device holding cached data blocks
1957  * origin dev	   : slow device holding original data blocks
1958  * block size	   : cache unit size in sectors
1959  *
1960  * #feature args   : number of feature arguments passed
1961  * feature args    : writethrough.  (The default is writeback.)
1962  *
1963  * policy	   : the replacement policy to use
1964  * #policy args    : an even number of policy arguments corresponding
1965  *		     to key/value pairs passed to the policy
1966  * policy args	   : key/value pairs passed to the policy
1967  *		     E.g. 'sequential_threshold 1024'
1968  *		     See cache-policies.txt for details.
1969  *
1970  * Optional feature arguments are:
1971  *   writethrough  : write through caching that prohibits cache block
1972  *		     content from being different from origin block content.
1973  *		     Without this argument, the default behaviour is to write
1974  *		     back cache block contents later for performance reasons,
1975  *		     so they may differ from the corresponding origin blocks.
1976  */
1977 struct cache_args {
1978 	struct dm_target *ti;
1979 
1980 	struct dm_dev *metadata_dev;
1981 
1982 	struct dm_dev *cache_dev;
1983 	sector_t cache_sectors;
1984 
1985 	struct dm_dev *origin_dev;
1986 	sector_t origin_sectors;
1987 
1988 	uint32_t block_size;
1989 
1990 	const char *policy_name;
1991 	int policy_argc;
1992 	const char **policy_argv;
1993 
1994 	struct cache_features features;
1995 };
1996 
1997 static void destroy_cache_args(struct cache_args *ca)
1998 {
1999 	if (ca->metadata_dev)
2000 		dm_put_device(ca->ti, ca->metadata_dev);
2001 
2002 	if (ca->cache_dev)
2003 		dm_put_device(ca->ti, ca->cache_dev);
2004 
2005 	if (ca->origin_dev)
2006 		dm_put_device(ca->ti, ca->origin_dev);
2007 
2008 	kfree(ca);
2009 }
2010 
2011 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2012 {
2013 	if (!as->argc) {
2014 		*error = "Insufficient args";
2015 		return false;
2016 	}
2017 
2018 	return true;
2019 }
2020 
2021 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2022 			      char **error)
2023 {
2024 	int r;
2025 	sector_t metadata_dev_size;
2026 	char b[BDEVNAME_SIZE];
2027 
2028 	if (!at_least_one_arg(as, error))
2029 		return -EINVAL;
2030 
2031 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2032 			  &ca->metadata_dev);
2033 	if (r) {
2034 		*error = "Error opening metadata device";
2035 		return r;
2036 	}
2037 
2038 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2039 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2040 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2041 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2042 
2043 	return 0;
2044 }
2045 
2046 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2047 			   char **error)
2048 {
2049 	int r;
2050 
2051 	if (!at_least_one_arg(as, error))
2052 		return -EINVAL;
2053 
2054 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2055 			  &ca->cache_dev);
2056 	if (r) {
2057 		*error = "Error opening cache device";
2058 		return r;
2059 	}
2060 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2061 
2062 	return 0;
2063 }
2064 
2065 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2066 			    char **error)
2067 {
2068 	int r;
2069 
2070 	if (!at_least_one_arg(as, error))
2071 		return -EINVAL;
2072 
2073 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2074 			  &ca->origin_dev);
2075 	if (r) {
2076 		*error = "Error opening origin device";
2077 		return r;
2078 	}
2079 
2080 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2081 	if (ca->ti->len > ca->origin_sectors) {
2082 		*error = "Device size larger than cached device";
2083 		return -EINVAL;
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2090 			    char **error)
2091 {
2092 	unsigned long block_size;
2093 
2094 	if (!at_least_one_arg(as, error))
2095 		return -EINVAL;
2096 
2097 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2098 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2099 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2100 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2101 		*error = "Invalid data block size";
2102 		return -EINVAL;
2103 	}
2104 
2105 	if (block_size > ca->cache_sectors) {
2106 		*error = "Data block size is larger than the cache device";
2107 		return -EINVAL;
2108 	}
2109 
2110 	ca->block_size = block_size;
2111 
2112 	return 0;
2113 }
2114 
2115 static void init_features(struct cache_features *cf)
2116 {
2117 	cf->mode = CM_WRITE;
2118 	cf->io_mode = CM_IO_WRITEBACK;
2119 	cf->metadata_version = 1;
2120 	cf->discard_passdown = true;
2121 }
2122 
2123 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2124 			  char **error)
2125 {
2126 	static const struct dm_arg _args[] = {
2127 		{0, 3, "Invalid number of cache feature arguments"},
2128 	};
2129 
2130 	int r, mode_ctr = 0;
2131 	unsigned argc;
2132 	const char *arg;
2133 	struct cache_features *cf = &ca->features;
2134 
2135 	init_features(cf);
2136 
2137 	r = dm_read_arg_group(_args, as, &argc, error);
2138 	if (r)
2139 		return -EINVAL;
2140 
2141 	while (argc--) {
2142 		arg = dm_shift_arg(as);
2143 
2144 		if (!strcasecmp(arg, "writeback")) {
2145 			cf->io_mode = CM_IO_WRITEBACK;
2146 			mode_ctr++;
2147 		}
2148 
2149 		else if (!strcasecmp(arg, "writethrough")) {
2150 			cf->io_mode = CM_IO_WRITETHROUGH;
2151 			mode_ctr++;
2152 		}
2153 
2154 		else if (!strcasecmp(arg, "passthrough")) {
2155 			cf->io_mode = CM_IO_PASSTHROUGH;
2156 			mode_ctr++;
2157 		}
2158 
2159 		else if (!strcasecmp(arg, "metadata2"))
2160 			cf->metadata_version = 2;
2161 
2162 		else if (!strcasecmp(arg, "no_discard_passdown"))
2163 			cf->discard_passdown = false;
2164 
2165 		else {
2166 			*error = "Unrecognised cache feature requested";
2167 			return -EINVAL;
2168 		}
2169 	}
2170 
2171 	if (mode_ctr > 1) {
2172 		*error = "Duplicate cache io_mode features requested";
2173 		return -EINVAL;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2180 			char **error)
2181 {
2182 	static const struct dm_arg _args[] = {
2183 		{0, 1024, "Invalid number of policy arguments"},
2184 	};
2185 
2186 	int r;
2187 
2188 	if (!at_least_one_arg(as, error))
2189 		return -EINVAL;
2190 
2191 	ca->policy_name = dm_shift_arg(as);
2192 
2193 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2194 	if (r)
2195 		return -EINVAL;
2196 
2197 	ca->policy_argv = (const char **)as->argv;
2198 	dm_consume_args(as, ca->policy_argc);
2199 
2200 	return 0;
2201 }
2202 
2203 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2204 			    char **error)
2205 {
2206 	int r;
2207 	struct dm_arg_set as;
2208 
2209 	as.argc = argc;
2210 	as.argv = argv;
2211 
2212 	r = parse_metadata_dev(ca, &as, error);
2213 	if (r)
2214 		return r;
2215 
2216 	r = parse_cache_dev(ca, &as, error);
2217 	if (r)
2218 		return r;
2219 
2220 	r = parse_origin_dev(ca, &as, error);
2221 	if (r)
2222 		return r;
2223 
2224 	r = parse_block_size(ca, &as, error);
2225 	if (r)
2226 		return r;
2227 
2228 	r = parse_features(ca, &as, error);
2229 	if (r)
2230 		return r;
2231 
2232 	r = parse_policy(ca, &as, error);
2233 	if (r)
2234 		return r;
2235 
2236 	return 0;
2237 }
2238 
2239 /*----------------------------------------------------------------*/
2240 
2241 static struct kmem_cache *migration_cache;
2242 
2243 #define NOT_CORE_OPTION 1
2244 
2245 static int process_config_option(struct cache *cache, const char *key, const char *value)
2246 {
2247 	unsigned long tmp;
2248 
2249 	if (!strcasecmp(key, "migration_threshold")) {
2250 		if (kstrtoul(value, 10, &tmp))
2251 			return -EINVAL;
2252 
2253 		cache->migration_threshold = tmp;
2254 		return 0;
2255 	}
2256 
2257 	return NOT_CORE_OPTION;
2258 }
2259 
2260 static int set_config_value(struct cache *cache, const char *key, const char *value)
2261 {
2262 	int r = process_config_option(cache, key, value);
2263 
2264 	if (r == NOT_CORE_OPTION)
2265 		r = policy_set_config_value(cache->policy, key, value);
2266 
2267 	if (r)
2268 		DMWARN("bad config value for %s: %s", key, value);
2269 
2270 	return r;
2271 }
2272 
2273 static int set_config_values(struct cache *cache, int argc, const char **argv)
2274 {
2275 	int r = 0;
2276 
2277 	if (argc & 1) {
2278 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2279 		return -EINVAL;
2280 	}
2281 
2282 	while (argc) {
2283 		r = set_config_value(cache, argv[0], argv[1]);
2284 		if (r)
2285 			break;
2286 
2287 		argc -= 2;
2288 		argv += 2;
2289 	}
2290 
2291 	return r;
2292 }
2293 
2294 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2295 			       char **error)
2296 {
2297 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2298 							   cache->cache_size,
2299 							   cache->origin_sectors,
2300 							   cache->sectors_per_block);
2301 	if (IS_ERR(p)) {
2302 		*error = "Error creating cache's policy";
2303 		return PTR_ERR(p);
2304 	}
2305 	cache->policy = p;
2306 	BUG_ON(!cache->policy);
2307 
2308 	return 0;
2309 }
2310 
2311 /*
2312  * We want the discard block size to be at least the size of the cache
2313  * block size and have no more than 2^14 discard blocks across the origin.
2314  */
2315 #define MAX_DISCARD_BLOCKS (1 << 14)
2316 
2317 static bool too_many_discard_blocks(sector_t discard_block_size,
2318 				    sector_t origin_size)
2319 {
2320 	(void) sector_div(origin_size, discard_block_size);
2321 
2322 	return origin_size > MAX_DISCARD_BLOCKS;
2323 }
2324 
2325 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2326 					     sector_t origin_size)
2327 {
2328 	sector_t discard_block_size = cache_block_size;
2329 
2330 	if (origin_size)
2331 		while (too_many_discard_blocks(discard_block_size, origin_size))
2332 			discard_block_size *= 2;
2333 
2334 	return discard_block_size;
2335 }
2336 
2337 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2338 {
2339 	dm_block_t nr_blocks = from_cblock(size);
2340 
2341 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2342 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2343 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2344 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2345 			     (unsigned long long) nr_blocks);
2346 
2347 	cache->cache_size = size;
2348 }
2349 
2350 #define DEFAULT_MIGRATION_THRESHOLD 2048
2351 
2352 static int cache_create(struct cache_args *ca, struct cache **result)
2353 {
2354 	int r = 0;
2355 	char **error = &ca->ti->error;
2356 	struct cache *cache;
2357 	struct dm_target *ti = ca->ti;
2358 	dm_block_t origin_blocks;
2359 	struct dm_cache_metadata *cmd;
2360 	bool may_format = ca->features.mode == CM_WRITE;
2361 
2362 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2363 	if (!cache)
2364 		return -ENOMEM;
2365 
2366 	cache->ti = ca->ti;
2367 	ti->private = cache;
2368 	ti->num_flush_bios = 2;
2369 	ti->flush_supported = true;
2370 
2371 	ti->num_discard_bios = 1;
2372 	ti->discards_supported = true;
2373 
2374 	ti->per_io_data_size = sizeof(struct per_bio_data);
2375 
2376 	cache->features = ca->features;
2377 	if (writethrough_mode(cache)) {
2378 		/* Create bioset for writethrough bios issued to origin */
2379 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2380 		if (r)
2381 			goto bad;
2382 	}
2383 
2384 	cache->metadata_dev = ca->metadata_dev;
2385 	cache->origin_dev = ca->origin_dev;
2386 	cache->cache_dev = ca->cache_dev;
2387 
2388 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2389 
2390 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2391 	origin_blocks = block_div(origin_blocks, ca->block_size);
2392 	cache->origin_blocks = to_oblock(origin_blocks);
2393 
2394 	cache->sectors_per_block = ca->block_size;
2395 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2396 		r = -EINVAL;
2397 		goto bad;
2398 	}
2399 
2400 	if (ca->block_size & (ca->block_size - 1)) {
2401 		dm_block_t cache_size = ca->cache_sectors;
2402 
2403 		cache->sectors_per_block_shift = -1;
2404 		cache_size = block_div(cache_size, ca->block_size);
2405 		set_cache_size(cache, to_cblock(cache_size));
2406 	} else {
2407 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2408 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2409 	}
2410 
2411 	r = create_cache_policy(cache, ca, error);
2412 	if (r)
2413 		goto bad;
2414 
2415 	cache->policy_nr_args = ca->policy_argc;
2416 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2417 
2418 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2419 	if (r) {
2420 		*error = "Error setting cache policy's config values";
2421 		goto bad;
2422 	}
2423 
2424 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2425 				     ca->block_size, may_format,
2426 				     dm_cache_policy_get_hint_size(cache->policy),
2427 				     ca->features.metadata_version);
2428 	if (IS_ERR(cmd)) {
2429 		*error = "Error creating metadata object";
2430 		r = PTR_ERR(cmd);
2431 		goto bad;
2432 	}
2433 	cache->cmd = cmd;
2434 	set_cache_mode(cache, CM_WRITE);
2435 	if (get_cache_mode(cache) != CM_WRITE) {
2436 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2437 		r = -EINVAL;
2438 		goto bad;
2439 	}
2440 
2441 	if (passthrough_mode(cache)) {
2442 		bool all_clean;
2443 
2444 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2445 		if (r) {
2446 			*error = "dm_cache_metadata_all_clean() failed";
2447 			goto bad;
2448 		}
2449 
2450 		if (!all_clean) {
2451 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2452 			r = -EINVAL;
2453 			goto bad;
2454 		}
2455 
2456 		policy_allow_migrations(cache->policy, false);
2457 	}
2458 
2459 	spin_lock_init(&cache->lock);
2460 	bio_list_init(&cache->deferred_bios);
2461 	atomic_set(&cache->nr_allocated_migrations, 0);
2462 	atomic_set(&cache->nr_io_migrations, 0);
2463 	init_waitqueue_head(&cache->migration_wait);
2464 
2465 	r = -ENOMEM;
2466 	atomic_set(&cache->nr_dirty, 0);
2467 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2468 	if (!cache->dirty_bitset) {
2469 		*error = "could not allocate dirty bitset";
2470 		goto bad;
2471 	}
2472 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2473 
2474 	cache->discard_block_size =
2475 		calculate_discard_block_size(cache->sectors_per_block,
2476 					     cache->origin_sectors);
2477 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2478 							      cache->discard_block_size));
2479 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2480 	if (!cache->discard_bitset) {
2481 		*error = "could not allocate discard bitset";
2482 		goto bad;
2483 	}
2484 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2485 
2486 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2487 	if (IS_ERR(cache->copier)) {
2488 		*error = "could not create kcopyd client";
2489 		r = PTR_ERR(cache->copier);
2490 		goto bad;
2491 	}
2492 
2493 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2494 	if (!cache->wq) {
2495 		*error = "could not create workqueue for metadata object";
2496 		goto bad;
2497 	}
2498 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2499 	INIT_WORK(&cache->migration_worker, check_migrations);
2500 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2501 
2502 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2503 	if (!cache->prison) {
2504 		*error = "could not create bio prison";
2505 		goto bad;
2506 	}
2507 
2508 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2509 				   migration_cache);
2510 	if (r) {
2511 		*error = "Error creating cache's migration mempool";
2512 		goto bad;
2513 	}
2514 
2515 	cache->need_tick_bio = true;
2516 	cache->sized = false;
2517 	cache->invalidate = false;
2518 	cache->commit_requested = false;
2519 	cache->loaded_mappings = false;
2520 	cache->loaded_discards = false;
2521 
2522 	load_stats(cache);
2523 
2524 	atomic_set(&cache->stats.demotion, 0);
2525 	atomic_set(&cache->stats.promotion, 0);
2526 	atomic_set(&cache->stats.copies_avoided, 0);
2527 	atomic_set(&cache->stats.cache_cell_clash, 0);
2528 	atomic_set(&cache->stats.commit_count, 0);
2529 	atomic_set(&cache->stats.discard_count, 0);
2530 
2531 	spin_lock_init(&cache->invalidation_lock);
2532 	INIT_LIST_HEAD(&cache->invalidation_requests);
2533 
2534 	batcher_init(&cache->committer, commit_op, cache,
2535 		     issue_op, cache, cache->wq);
2536 	dm_iot_init(&cache->tracker);
2537 
2538 	init_rwsem(&cache->background_work_lock);
2539 	prevent_background_work(cache);
2540 
2541 	*result = cache;
2542 	return 0;
2543 bad:
2544 	destroy(cache);
2545 	return r;
2546 }
2547 
2548 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2549 {
2550 	unsigned i;
2551 	const char **copy;
2552 
2553 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2554 	if (!copy)
2555 		return -ENOMEM;
2556 	for (i = 0; i < argc; i++) {
2557 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2558 		if (!copy[i]) {
2559 			while (i--)
2560 				kfree(copy[i]);
2561 			kfree(copy);
2562 			return -ENOMEM;
2563 		}
2564 	}
2565 
2566 	cache->nr_ctr_args = argc;
2567 	cache->ctr_args = copy;
2568 
2569 	return 0;
2570 }
2571 
2572 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2573 {
2574 	int r = -EINVAL;
2575 	struct cache_args *ca;
2576 	struct cache *cache = NULL;
2577 
2578 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2579 	if (!ca) {
2580 		ti->error = "Error allocating memory for cache";
2581 		return -ENOMEM;
2582 	}
2583 	ca->ti = ti;
2584 
2585 	r = parse_cache_args(ca, argc, argv, &ti->error);
2586 	if (r)
2587 		goto out;
2588 
2589 	r = cache_create(ca, &cache);
2590 	if (r)
2591 		goto out;
2592 
2593 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2594 	if (r) {
2595 		destroy(cache);
2596 		goto out;
2597 	}
2598 
2599 	ti->private = cache;
2600 out:
2601 	destroy_cache_args(ca);
2602 	return r;
2603 }
2604 
2605 /*----------------------------------------------------------------*/
2606 
2607 static int cache_map(struct dm_target *ti, struct bio *bio)
2608 {
2609 	struct cache *cache = ti->private;
2610 
2611 	int r;
2612 	bool commit_needed;
2613 	dm_oblock_t block = get_bio_block(cache, bio);
2614 
2615 	init_per_bio_data(bio);
2616 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2617 		/*
2618 		 * This can only occur if the io goes to a partial block at
2619 		 * the end of the origin device.  We don't cache these.
2620 		 * Just remap to the origin and carry on.
2621 		 */
2622 		remap_to_origin(cache, bio);
2623 		accounted_begin(cache, bio);
2624 		return DM_MAPIO_REMAPPED;
2625 	}
2626 
2627 	if (discard_or_flush(bio)) {
2628 		defer_bio(cache, bio);
2629 		return DM_MAPIO_SUBMITTED;
2630 	}
2631 
2632 	r = map_bio(cache, bio, block, &commit_needed);
2633 	if (commit_needed)
2634 		schedule_commit(&cache->committer);
2635 
2636 	return r;
2637 }
2638 
2639 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2640 {
2641 	struct cache *cache = ti->private;
2642 	unsigned long flags;
2643 	struct per_bio_data *pb = get_per_bio_data(bio);
2644 
2645 	if (pb->tick) {
2646 		policy_tick(cache->policy, false);
2647 
2648 		spin_lock_irqsave(&cache->lock, flags);
2649 		cache->need_tick_bio = true;
2650 		spin_unlock_irqrestore(&cache->lock, flags);
2651 	}
2652 
2653 	bio_drop_shared_lock(cache, bio);
2654 	accounted_complete(cache, bio);
2655 
2656 	return DM_ENDIO_DONE;
2657 }
2658 
2659 static int write_dirty_bitset(struct cache *cache)
2660 {
2661 	int r;
2662 
2663 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2664 		return -EINVAL;
2665 
2666 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2667 	if (r)
2668 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2669 
2670 	return r;
2671 }
2672 
2673 static int write_discard_bitset(struct cache *cache)
2674 {
2675 	unsigned i, r;
2676 
2677 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2678 		return -EINVAL;
2679 
2680 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2681 					   cache->discard_nr_blocks);
2682 	if (r) {
2683 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2684 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2685 		return r;
2686 	}
2687 
2688 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2689 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2690 					 is_discarded(cache, to_dblock(i)));
2691 		if (r) {
2692 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2693 			return r;
2694 		}
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static int write_hints(struct cache *cache)
2701 {
2702 	int r;
2703 
2704 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2705 		return -EINVAL;
2706 
2707 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2708 	if (r) {
2709 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2710 		return r;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 /*
2717  * returns true on success
2718  */
2719 static bool sync_metadata(struct cache *cache)
2720 {
2721 	int r1, r2, r3, r4;
2722 
2723 	r1 = write_dirty_bitset(cache);
2724 	if (r1)
2725 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2726 
2727 	r2 = write_discard_bitset(cache);
2728 	if (r2)
2729 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2730 
2731 	save_stats(cache);
2732 
2733 	r3 = write_hints(cache);
2734 	if (r3)
2735 		DMERR("%s: could not write hints", cache_device_name(cache));
2736 
2737 	/*
2738 	 * If writing the above metadata failed, we still commit, but don't
2739 	 * set the clean shutdown flag.  This will effectively force every
2740 	 * dirty bit to be set on reload.
2741 	 */
2742 	r4 = commit(cache, !r1 && !r2 && !r3);
2743 	if (r4)
2744 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2745 
2746 	return !r1 && !r2 && !r3 && !r4;
2747 }
2748 
2749 static void cache_postsuspend(struct dm_target *ti)
2750 {
2751 	struct cache *cache = ti->private;
2752 
2753 	prevent_background_work(cache);
2754 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2755 
2756 	cancel_delayed_work_sync(&cache->waker);
2757 	drain_workqueue(cache->wq);
2758 	WARN_ON(cache->tracker.in_flight);
2759 
2760 	/*
2761 	 * If it's a flush suspend there won't be any deferred bios, so this
2762 	 * call is harmless.
2763 	 */
2764 	requeue_deferred_bios(cache);
2765 
2766 	if (get_cache_mode(cache) == CM_WRITE)
2767 		(void) sync_metadata(cache);
2768 }
2769 
2770 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2771 			bool dirty, uint32_t hint, bool hint_valid)
2772 {
2773 	struct cache *cache = context;
2774 
2775 	if (dirty) {
2776 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2777 		atomic_inc(&cache->nr_dirty);
2778 	} else
2779 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2780 
2781 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2782 }
2783 
2784 /*
2785  * The discard block size in the on disk metadata is not
2786  * neccessarily the same as we're currently using.  So we have to
2787  * be careful to only set the discarded attribute if we know it
2788  * covers a complete block of the new size.
2789  */
2790 struct discard_load_info {
2791 	struct cache *cache;
2792 
2793 	/*
2794 	 * These blocks are sized using the on disk dblock size, rather
2795 	 * than the current one.
2796 	 */
2797 	dm_block_t block_size;
2798 	dm_block_t discard_begin, discard_end;
2799 };
2800 
2801 static void discard_load_info_init(struct cache *cache,
2802 				   struct discard_load_info *li)
2803 {
2804 	li->cache = cache;
2805 	li->discard_begin = li->discard_end = 0;
2806 }
2807 
2808 static void set_discard_range(struct discard_load_info *li)
2809 {
2810 	sector_t b, e;
2811 
2812 	if (li->discard_begin == li->discard_end)
2813 		return;
2814 
2815 	/*
2816 	 * Convert to sectors.
2817 	 */
2818 	b = li->discard_begin * li->block_size;
2819 	e = li->discard_end * li->block_size;
2820 
2821 	/*
2822 	 * Then convert back to the current dblock size.
2823 	 */
2824 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2825 	sector_div(e, li->cache->discard_block_size);
2826 
2827 	/*
2828 	 * The origin may have shrunk, so we need to check we're still in
2829 	 * bounds.
2830 	 */
2831 	if (e > from_dblock(li->cache->discard_nr_blocks))
2832 		e = from_dblock(li->cache->discard_nr_blocks);
2833 
2834 	for (; b < e; b++)
2835 		set_discard(li->cache, to_dblock(b));
2836 }
2837 
2838 static int load_discard(void *context, sector_t discard_block_size,
2839 			dm_dblock_t dblock, bool discard)
2840 {
2841 	struct discard_load_info *li = context;
2842 
2843 	li->block_size = discard_block_size;
2844 
2845 	if (discard) {
2846 		if (from_dblock(dblock) == li->discard_end)
2847 			/*
2848 			 * We're already in a discard range, just extend it.
2849 			 */
2850 			li->discard_end = li->discard_end + 1ULL;
2851 
2852 		else {
2853 			/*
2854 			 * Emit the old range and start a new one.
2855 			 */
2856 			set_discard_range(li);
2857 			li->discard_begin = from_dblock(dblock);
2858 			li->discard_end = li->discard_begin + 1ULL;
2859 		}
2860 	} else {
2861 		set_discard_range(li);
2862 		li->discard_begin = li->discard_end = 0;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2869 {
2870 	sector_t size = get_dev_size(cache->cache_dev);
2871 	(void) sector_div(size, cache->sectors_per_block);
2872 	return to_cblock(size);
2873 }
2874 
2875 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2876 {
2877 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2878 		if (cache->sized) {
2879 			DMERR("%s: unable to extend cache due to missing cache table reload",
2880 			      cache_device_name(cache));
2881 			return false;
2882 		}
2883 	}
2884 
2885 	/*
2886 	 * We can't drop a dirty block when shrinking the cache.
2887 	 */
2888 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2889 		new_size = to_cblock(from_cblock(new_size) + 1);
2890 		if (is_dirty(cache, new_size)) {
2891 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2892 			      cache_device_name(cache),
2893 			      (unsigned long long) from_cblock(new_size));
2894 			return false;
2895 		}
2896 	}
2897 
2898 	return true;
2899 }
2900 
2901 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2902 {
2903 	int r;
2904 
2905 	r = dm_cache_resize(cache->cmd, new_size);
2906 	if (r) {
2907 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2908 		metadata_operation_failed(cache, "dm_cache_resize", r);
2909 		return r;
2910 	}
2911 
2912 	set_cache_size(cache, new_size);
2913 
2914 	return 0;
2915 }
2916 
2917 static int cache_preresume(struct dm_target *ti)
2918 {
2919 	int r = 0;
2920 	struct cache *cache = ti->private;
2921 	dm_cblock_t csize = get_cache_dev_size(cache);
2922 
2923 	/*
2924 	 * Check to see if the cache has resized.
2925 	 */
2926 	if (!cache->sized) {
2927 		r = resize_cache_dev(cache, csize);
2928 		if (r)
2929 			return r;
2930 
2931 		cache->sized = true;
2932 
2933 	} else if (csize != cache->cache_size) {
2934 		if (!can_resize(cache, csize))
2935 			return -EINVAL;
2936 
2937 		r = resize_cache_dev(cache, csize);
2938 		if (r)
2939 			return r;
2940 	}
2941 
2942 	if (!cache->loaded_mappings) {
2943 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2944 					   load_mapping, cache);
2945 		if (r) {
2946 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2947 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2948 			return r;
2949 		}
2950 
2951 		cache->loaded_mappings = true;
2952 	}
2953 
2954 	if (!cache->loaded_discards) {
2955 		struct discard_load_info li;
2956 
2957 		/*
2958 		 * The discard bitset could have been resized, or the
2959 		 * discard block size changed.  To be safe we start by
2960 		 * setting every dblock to not discarded.
2961 		 */
2962 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2963 
2964 		discard_load_info_init(cache, &li);
2965 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2966 		if (r) {
2967 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2968 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2969 			return r;
2970 		}
2971 		set_discard_range(&li);
2972 
2973 		cache->loaded_discards = true;
2974 	}
2975 
2976 	return r;
2977 }
2978 
2979 static void cache_resume(struct dm_target *ti)
2980 {
2981 	struct cache *cache = ti->private;
2982 
2983 	cache->need_tick_bio = true;
2984 	allow_background_work(cache);
2985 	do_waker(&cache->waker.work);
2986 }
2987 
2988 static void emit_flags(struct cache *cache, char *result,
2989 		       unsigned maxlen, ssize_t *sz_ptr)
2990 {
2991 	ssize_t sz = *sz_ptr;
2992 	struct cache_features *cf = &cache->features;
2993 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2994 
2995 	DMEMIT("%u ", count);
2996 
2997 	if (cf->metadata_version == 2)
2998 		DMEMIT("metadata2 ");
2999 
3000 	if (writethrough_mode(cache))
3001 		DMEMIT("writethrough ");
3002 
3003 	else if (passthrough_mode(cache))
3004 		DMEMIT("passthrough ");
3005 
3006 	else if (writeback_mode(cache))
3007 		DMEMIT("writeback ");
3008 
3009 	else {
3010 		DMEMIT("unknown ");
3011 		DMERR("%s: internal error: unknown io mode: %d",
3012 		      cache_device_name(cache), (int) cf->io_mode);
3013 	}
3014 
3015 	if (!cf->discard_passdown)
3016 		DMEMIT("no_discard_passdown ");
3017 
3018 	*sz_ptr = sz;
3019 }
3020 
3021 /*
3022  * Status format:
3023  *
3024  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3025  * <cache block size> <#used cache blocks>/<#total cache blocks>
3026  * <#read hits> <#read misses> <#write hits> <#write misses>
3027  * <#demotions> <#promotions> <#dirty>
3028  * <#features> <features>*
3029  * <#core args> <core args>
3030  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3031  */
3032 static void cache_status(struct dm_target *ti, status_type_t type,
3033 			 unsigned status_flags, char *result, unsigned maxlen)
3034 {
3035 	int r = 0;
3036 	unsigned i;
3037 	ssize_t sz = 0;
3038 	dm_block_t nr_free_blocks_metadata = 0;
3039 	dm_block_t nr_blocks_metadata = 0;
3040 	char buf[BDEVNAME_SIZE];
3041 	struct cache *cache = ti->private;
3042 	dm_cblock_t residency;
3043 	bool needs_check;
3044 
3045 	switch (type) {
3046 	case STATUSTYPE_INFO:
3047 		if (get_cache_mode(cache) == CM_FAIL) {
3048 			DMEMIT("Fail");
3049 			break;
3050 		}
3051 
3052 		/* Commit to ensure statistics aren't out-of-date */
3053 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3054 			(void) commit(cache, false);
3055 
3056 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3057 		if (r) {
3058 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3059 			      cache_device_name(cache), r);
3060 			goto err;
3061 		}
3062 
3063 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3064 		if (r) {
3065 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3066 			      cache_device_name(cache), r);
3067 			goto err;
3068 		}
3069 
3070 		residency = policy_residency(cache->policy);
3071 
3072 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3073 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3074 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3075 		       (unsigned long long)nr_blocks_metadata,
3076 		       (unsigned long long)cache->sectors_per_block,
3077 		       (unsigned long long) from_cblock(residency),
3078 		       (unsigned long long) from_cblock(cache->cache_size),
3079 		       (unsigned) atomic_read(&cache->stats.read_hit),
3080 		       (unsigned) atomic_read(&cache->stats.read_miss),
3081 		       (unsigned) atomic_read(&cache->stats.write_hit),
3082 		       (unsigned) atomic_read(&cache->stats.write_miss),
3083 		       (unsigned) atomic_read(&cache->stats.demotion),
3084 		       (unsigned) atomic_read(&cache->stats.promotion),
3085 		       (unsigned long) atomic_read(&cache->nr_dirty));
3086 
3087 		emit_flags(cache, result, maxlen, &sz);
3088 
3089 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3090 
3091 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3092 		if (sz < maxlen) {
3093 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3094 			if (r)
3095 				DMERR("%s: policy_emit_config_values returned %d",
3096 				      cache_device_name(cache), r);
3097 		}
3098 
3099 		if (get_cache_mode(cache) == CM_READ_ONLY)
3100 			DMEMIT("ro ");
3101 		else
3102 			DMEMIT("rw ");
3103 
3104 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3105 
3106 		if (r || needs_check)
3107 			DMEMIT("needs_check ");
3108 		else
3109 			DMEMIT("- ");
3110 
3111 		break;
3112 
3113 	case STATUSTYPE_TABLE:
3114 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3115 		DMEMIT("%s ", buf);
3116 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3117 		DMEMIT("%s ", buf);
3118 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3119 		DMEMIT("%s", buf);
3120 
3121 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3122 			DMEMIT(" %s", cache->ctr_args[i]);
3123 		if (cache->nr_ctr_args)
3124 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3125 		break;
3126 
3127 	case STATUSTYPE_IMA:
3128 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3129 		if (get_cache_mode(cache) == CM_FAIL)
3130 			DMEMIT(",metadata_mode=fail");
3131 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3132 			DMEMIT(",metadata_mode=ro");
3133 		else
3134 			DMEMIT(",metadata_mode=rw");
3135 
3136 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3137 		DMEMIT(",cache_metadata_device=%s", buf);
3138 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3139 		DMEMIT(",cache_device=%s", buf);
3140 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3141 		DMEMIT(",cache_origin_device=%s", buf);
3142 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3143 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3144 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3145 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3146 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3147 		DMEMIT(";");
3148 		break;
3149 	}
3150 
3151 	return;
3152 
3153 err:
3154 	DMEMIT("Error");
3155 }
3156 
3157 /*
3158  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3159  * the one-past-the-end value.
3160  */
3161 struct cblock_range {
3162 	dm_cblock_t begin;
3163 	dm_cblock_t end;
3164 };
3165 
3166 /*
3167  * A cache block range can take two forms:
3168  *
3169  * i) A single cblock, eg. '3456'
3170  * ii) A begin and end cblock with a dash between, eg. 123-234
3171  */
3172 static int parse_cblock_range(struct cache *cache, const char *str,
3173 			      struct cblock_range *result)
3174 {
3175 	char dummy;
3176 	uint64_t b, e;
3177 	int r;
3178 
3179 	/*
3180 	 * Try and parse form (ii) first.
3181 	 */
3182 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3183 	if (r < 0)
3184 		return r;
3185 
3186 	if (r == 2) {
3187 		result->begin = to_cblock(b);
3188 		result->end = to_cblock(e);
3189 		return 0;
3190 	}
3191 
3192 	/*
3193 	 * That didn't work, try form (i).
3194 	 */
3195 	r = sscanf(str, "%llu%c", &b, &dummy);
3196 	if (r < 0)
3197 		return r;
3198 
3199 	if (r == 1) {
3200 		result->begin = to_cblock(b);
3201 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3202 		return 0;
3203 	}
3204 
3205 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3206 	return -EINVAL;
3207 }
3208 
3209 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3210 {
3211 	uint64_t b = from_cblock(range->begin);
3212 	uint64_t e = from_cblock(range->end);
3213 	uint64_t n = from_cblock(cache->cache_size);
3214 
3215 	if (b >= n) {
3216 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3217 		      cache_device_name(cache), b, n);
3218 		return -EINVAL;
3219 	}
3220 
3221 	if (e > n) {
3222 		DMERR("%s: end cblock out of range: %llu > %llu",
3223 		      cache_device_name(cache), e, n);
3224 		return -EINVAL;
3225 	}
3226 
3227 	if (b >= e) {
3228 		DMERR("%s: invalid cblock range: %llu >= %llu",
3229 		      cache_device_name(cache), b, e);
3230 		return -EINVAL;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3237 {
3238 	return to_cblock(from_cblock(b) + 1);
3239 }
3240 
3241 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3242 {
3243 	int r = 0;
3244 
3245 	/*
3246 	 * We don't need to do any locking here because we know we're in
3247 	 * passthrough mode.  There's is potential for a race between an
3248 	 * invalidation triggered by an io and an invalidation message.  This
3249 	 * is harmless, we must not worry if the policy call fails.
3250 	 */
3251 	while (range->begin != range->end) {
3252 		r = invalidate_cblock(cache, range->begin);
3253 		if (r)
3254 			return r;
3255 
3256 		range->begin = cblock_succ(range->begin);
3257 	}
3258 
3259 	cache->commit_requested = true;
3260 	return r;
3261 }
3262 
3263 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3264 					      const char **cblock_ranges)
3265 {
3266 	int r = 0;
3267 	unsigned i;
3268 	struct cblock_range range;
3269 
3270 	if (!passthrough_mode(cache)) {
3271 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3272 		      cache_device_name(cache));
3273 		return -EPERM;
3274 	}
3275 
3276 	for (i = 0; i < count; i++) {
3277 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3278 		if (r)
3279 			break;
3280 
3281 		r = validate_cblock_range(cache, &range);
3282 		if (r)
3283 			break;
3284 
3285 		/*
3286 		 * Pass begin and end origin blocks to the worker and wake it.
3287 		 */
3288 		r = request_invalidation(cache, &range);
3289 		if (r)
3290 			break;
3291 	}
3292 
3293 	return r;
3294 }
3295 
3296 /*
3297  * Supports
3298  *	"<key> <value>"
3299  * and
3300  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3301  *
3302  * The key migration_threshold is supported by the cache target core.
3303  */
3304 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3305 			 char *result, unsigned maxlen)
3306 {
3307 	struct cache *cache = ti->private;
3308 
3309 	if (!argc)
3310 		return -EINVAL;
3311 
3312 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3313 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3314 		      cache_device_name(cache));
3315 		return -EOPNOTSUPP;
3316 	}
3317 
3318 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3319 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3320 
3321 	if (argc != 2)
3322 		return -EINVAL;
3323 
3324 	return set_config_value(cache, argv[0], argv[1]);
3325 }
3326 
3327 static int cache_iterate_devices(struct dm_target *ti,
3328 				 iterate_devices_callout_fn fn, void *data)
3329 {
3330 	int r = 0;
3331 	struct cache *cache = ti->private;
3332 
3333 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3334 	if (!r)
3335 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3336 
3337 	return r;
3338 }
3339 
3340 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3341 {
3342 	struct request_queue *q = bdev_get_queue(origin_bdev);
3343 
3344 	return blk_queue_discard(q);
3345 }
3346 
3347 /*
3348  * If discard_passdown was enabled verify that the origin device
3349  * supports discards.  Disable discard_passdown if not.
3350  */
3351 static void disable_passdown_if_not_supported(struct cache *cache)
3352 {
3353 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3354 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3355 	const char *reason = NULL;
3356 	char buf[BDEVNAME_SIZE];
3357 
3358 	if (!cache->features.discard_passdown)
3359 		return;
3360 
3361 	if (!origin_dev_supports_discard(origin_bdev))
3362 		reason = "discard unsupported";
3363 
3364 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3365 		reason = "max discard sectors smaller than a block";
3366 
3367 	if (reason) {
3368 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3369 		       bdevname(origin_bdev, buf), reason);
3370 		cache->features.discard_passdown = false;
3371 	}
3372 }
3373 
3374 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3375 {
3376 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3377 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3378 
3379 	if (!cache->features.discard_passdown) {
3380 		/* No passdown is done so setting own virtual limits */
3381 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3382 						    cache->origin_sectors);
3383 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3384 		return;
3385 	}
3386 
3387 	/*
3388 	 * cache_iterate_devices() is stacking both origin and fast device limits
3389 	 * but discards aren't passed to fast device, so inherit origin's limits.
3390 	 */
3391 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3392 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3393 	limits->discard_granularity = origin_limits->discard_granularity;
3394 	limits->discard_alignment = origin_limits->discard_alignment;
3395 	limits->discard_misaligned = origin_limits->discard_misaligned;
3396 }
3397 
3398 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3399 {
3400 	struct cache *cache = ti->private;
3401 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3402 
3403 	/*
3404 	 * If the system-determined stacked limits are compatible with the
3405 	 * cache's blocksize (io_opt is a factor) do not override them.
3406 	 */
3407 	if (io_opt_sectors < cache->sectors_per_block ||
3408 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3409 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3410 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3411 	}
3412 
3413 	disable_passdown_if_not_supported(cache);
3414 	set_discard_limits(cache, limits);
3415 }
3416 
3417 /*----------------------------------------------------------------*/
3418 
3419 static struct target_type cache_target = {
3420 	.name = "cache",
3421 	.version = {2, 2, 0},
3422 	.module = THIS_MODULE,
3423 	.ctr = cache_ctr,
3424 	.dtr = cache_dtr,
3425 	.map = cache_map,
3426 	.end_io = cache_end_io,
3427 	.postsuspend = cache_postsuspend,
3428 	.preresume = cache_preresume,
3429 	.resume = cache_resume,
3430 	.status = cache_status,
3431 	.message = cache_message,
3432 	.iterate_devices = cache_iterate_devices,
3433 	.io_hints = cache_io_hints,
3434 };
3435 
3436 static int __init dm_cache_init(void)
3437 {
3438 	int r;
3439 
3440 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3441 	if (!migration_cache)
3442 		return -ENOMEM;
3443 
3444 	r = dm_register_target(&cache_target);
3445 	if (r) {
3446 		DMERR("cache target registration failed: %d", r);
3447 		kmem_cache_destroy(migration_cache);
3448 		return r;
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static void __exit dm_cache_exit(void)
3455 {
3456 	dm_unregister_target(&cache_target);
3457 	kmem_cache_destroy(migration_cache);
3458 }
3459 
3460 module_init(dm_cache_init);
3461 module_exit(dm_cache_exit);
3462 
3463 MODULE_DESCRIPTION(DM_NAME " cache target");
3464 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3465 MODULE_LICENSE("GPL");
3466