1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison-v2.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 #include "dm-io-tracker.h" 12 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/init.h> 17 #include <linux/mempool.h> 18 #include <linux/module.h> 19 #include <linux/rwsem.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 23 #define DM_MSG_PREFIX "cache" 24 25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 26 "A percentage of time allocated for copying to and/or from cache"); 27 28 /*----------------------------------------------------------------*/ 29 30 /* 31 * Glossary: 32 * 33 * oblock: index of an origin block 34 * cblock: index of a cache block 35 * promotion: movement of a block from origin to cache 36 * demotion: movement of a block from cache to origin 37 * migration: movement of a block between the origin and cache device, 38 * either direction 39 */ 40 41 /*----------------------------------------------------------------*/ 42 43 /* 44 * Represents a chunk of future work. 'input' allows continuations to pass 45 * values between themselves, typically error values. 46 */ 47 struct continuation { 48 struct work_struct ws; 49 blk_status_t input; 50 }; 51 52 static inline void init_continuation(struct continuation *k, 53 void (*fn)(struct work_struct *)) 54 { 55 INIT_WORK(&k->ws, fn); 56 k->input = 0; 57 } 58 59 static inline void queue_continuation(struct workqueue_struct *wq, 60 struct continuation *k) 61 { 62 queue_work(wq, &k->ws); 63 } 64 65 /*----------------------------------------------------------------*/ 66 67 /* 68 * The batcher collects together pieces of work that need a particular 69 * operation to occur before they can proceed (typically a commit). 70 */ 71 struct batcher { 72 /* 73 * The operation that everyone is waiting for. 74 */ 75 blk_status_t (*commit_op)(void *context); 76 void *commit_context; 77 78 /* 79 * This is how bios should be issued once the commit op is complete 80 * (accounted_request). 81 */ 82 void (*issue_op)(struct bio *bio, void *context); 83 void *issue_context; 84 85 /* 86 * Queued work gets put on here after commit. 87 */ 88 struct workqueue_struct *wq; 89 90 spinlock_t lock; 91 struct list_head work_items; 92 struct bio_list bios; 93 struct work_struct commit_work; 94 95 bool commit_scheduled; 96 }; 97 98 static void __commit(struct work_struct *_ws) 99 { 100 struct batcher *b = container_of(_ws, struct batcher, commit_work); 101 blk_status_t r; 102 struct list_head work_items; 103 struct work_struct *ws, *tmp; 104 struct continuation *k; 105 struct bio *bio; 106 struct bio_list bios; 107 108 INIT_LIST_HEAD(&work_items); 109 bio_list_init(&bios); 110 111 /* 112 * We have to grab these before the commit_op to avoid a race 113 * condition. 114 */ 115 spin_lock_irq(&b->lock); 116 list_splice_init(&b->work_items, &work_items); 117 bio_list_merge(&bios, &b->bios); 118 bio_list_init(&b->bios); 119 b->commit_scheduled = false; 120 spin_unlock_irq(&b->lock); 121 122 r = b->commit_op(b->commit_context); 123 124 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 125 k = container_of(ws, struct continuation, ws); 126 k->input = r; 127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 128 queue_work(b->wq, ws); 129 } 130 131 while ((bio = bio_list_pop(&bios))) { 132 if (r) { 133 bio->bi_status = r; 134 bio_endio(bio); 135 } else 136 b->issue_op(bio, b->issue_context); 137 } 138 } 139 140 static void batcher_init(struct batcher *b, 141 blk_status_t (*commit_op)(void *), 142 void *commit_context, 143 void (*issue_op)(struct bio *bio, void *), 144 void *issue_context, 145 struct workqueue_struct *wq) 146 { 147 b->commit_op = commit_op; 148 b->commit_context = commit_context; 149 b->issue_op = issue_op; 150 b->issue_context = issue_context; 151 b->wq = wq; 152 153 spin_lock_init(&b->lock); 154 INIT_LIST_HEAD(&b->work_items); 155 bio_list_init(&b->bios); 156 INIT_WORK(&b->commit_work, __commit); 157 b->commit_scheduled = false; 158 } 159 160 static void async_commit(struct batcher *b) 161 { 162 queue_work(b->wq, &b->commit_work); 163 } 164 165 static void continue_after_commit(struct batcher *b, struct continuation *k) 166 { 167 bool commit_scheduled; 168 169 spin_lock_irq(&b->lock); 170 commit_scheduled = b->commit_scheduled; 171 list_add_tail(&k->ws.entry, &b->work_items); 172 spin_unlock_irq(&b->lock); 173 174 if (commit_scheduled) 175 async_commit(b); 176 } 177 178 /* 179 * Bios are errored if commit failed. 180 */ 181 static void issue_after_commit(struct batcher *b, struct bio *bio) 182 { 183 bool commit_scheduled; 184 185 spin_lock_irq(&b->lock); 186 commit_scheduled = b->commit_scheduled; 187 bio_list_add(&b->bios, bio); 188 spin_unlock_irq(&b->lock); 189 190 if (commit_scheduled) 191 async_commit(b); 192 } 193 194 /* 195 * Call this if some urgent work is waiting for the commit to complete. 196 */ 197 static void schedule_commit(struct batcher *b) 198 { 199 bool immediate; 200 201 spin_lock_irq(&b->lock); 202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 203 b->commit_scheduled = true; 204 spin_unlock_irq(&b->lock); 205 206 if (immediate) 207 async_commit(b); 208 } 209 210 /* 211 * There are a couple of places where we let a bio run, but want to do some 212 * work before calling its endio function. We do this by temporarily 213 * changing the endio fn. 214 */ 215 struct dm_hook_info { 216 bio_end_io_t *bi_end_io; 217 }; 218 219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 220 bio_end_io_t *bi_end_io, void *bi_private) 221 { 222 h->bi_end_io = bio->bi_end_io; 223 224 bio->bi_end_io = bi_end_io; 225 bio->bi_private = bi_private; 226 } 227 228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 229 { 230 bio->bi_end_io = h->bi_end_io; 231 } 232 233 /*----------------------------------------------------------------*/ 234 235 #define MIGRATION_POOL_SIZE 128 236 #define COMMIT_PERIOD HZ 237 #define MIGRATION_COUNT_WINDOW 10 238 239 /* 240 * The block size of the device holding cache data must be 241 * between 32KB and 1GB. 242 */ 243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 245 246 enum cache_metadata_mode { 247 CM_WRITE, /* metadata may be changed */ 248 CM_READ_ONLY, /* metadata may not be changed */ 249 CM_FAIL 250 }; 251 252 enum cache_io_mode { 253 /* 254 * Data is written to cached blocks only. These blocks are marked 255 * dirty. If you lose the cache device you will lose data. 256 * Potential performance increase for both reads and writes. 257 */ 258 CM_IO_WRITEBACK, 259 260 /* 261 * Data is written to both cache and origin. Blocks are never 262 * dirty. Potential performance benfit for reads only. 263 */ 264 CM_IO_WRITETHROUGH, 265 266 /* 267 * A degraded mode useful for various cache coherency situations 268 * (eg, rolling back snapshots). Reads and writes always go to the 269 * origin. If a write goes to a cached oblock, then the cache 270 * block is invalidated. 271 */ 272 CM_IO_PASSTHROUGH 273 }; 274 275 struct cache_features { 276 enum cache_metadata_mode mode; 277 enum cache_io_mode io_mode; 278 unsigned metadata_version; 279 bool discard_passdown:1; 280 }; 281 282 struct cache_stats { 283 atomic_t read_hit; 284 atomic_t read_miss; 285 atomic_t write_hit; 286 atomic_t write_miss; 287 atomic_t demotion; 288 atomic_t promotion; 289 atomic_t writeback; 290 atomic_t copies_avoided; 291 atomic_t cache_cell_clash; 292 atomic_t commit_count; 293 atomic_t discard_count; 294 }; 295 296 struct cache { 297 struct dm_target *ti; 298 spinlock_t lock; 299 300 /* 301 * Fields for converting from sectors to blocks. 302 */ 303 int sectors_per_block_shift; 304 sector_t sectors_per_block; 305 306 struct dm_cache_metadata *cmd; 307 308 /* 309 * Metadata is written to this device. 310 */ 311 struct dm_dev *metadata_dev; 312 313 /* 314 * The slower of the two data devices. Typically a spindle. 315 */ 316 struct dm_dev *origin_dev; 317 318 /* 319 * The faster of the two data devices. Typically an SSD. 320 */ 321 struct dm_dev *cache_dev; 322 323 /* 324 * Size of the origin device in _complete_ blocks and native sectors. 325 */ 326 dm_oblock_t origin_blocks; 327 sector_t origin_sectors; 328 329 /* 330 * Size of the cache device in blocks. 331 */ 332 dm_cblock_t cache_size; 333 334 /* 335 * Invalidation fields. 336 */ 337 spinlock_t invalidation_lock; 338 struct list_head invalidation_requests; 339 340 sector_t migration_threshold; 341 wait_queue_head_t migration_wait; 342 atomic_t nr_allocated_migrations; 343 344 /* 345 * The number of in flight migrations that are performing 346 * background io. eg, promotion, writeback. 347 */ 348 atomic_t nr_io_migrations; 349 350 struct bio_list deferred_bios; 351 352 struct rw_semaphore quiesce_lock; 353 354 /* 355 * origin_blocks entries, discarded if set. 356 */ 357 dm_dblock_t discard_nr_blocks; 358 unsigned long *discard_bitset; 359 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 360 361 /* 362 * Rather than reconstructing the table line for the status we just 363 * save it and regurgitate. 364 */ 365 unsigned nr_ctr_args; 366 const char **ctr_args; 367 368 struct dm_kcopyd_client *copier; 369 struct work_struct deferred_bio_worker; 370 struct work_struct migration_worker; 371 struct workqueue_struct *wq; 372 struct delayed_work waker; 373 struct dm_bio_prison_v2 *prison; 374 375 /* 376 * cache_size entries, dirty if set 377 */ 378 unsigned long *dirty_bitset; 379 atomic_t nr_dirty; 380 381 unsigned policy_nr_args; 382 struct dm_cache_policy *policy; 383 384 /* 385 * Cache features such as write-through. 386 */ 387 struct cache_features features; 388 389 struct cache_stats stats; 390 391 bool need_tick_bio:1; 392 bool sized:1; 393 bool invalidate:1; 394 bool commit_requested:1; 395 bool loaded_mappings:1; 396 bool loaded_discards:1; 397 398 struct rw_semaphore background_work_lock; 399 400 struct batcher committer; 401 struct work_struct commit_ws; 402 403 struct dm_io_tracker tracker; 404 405 mempool_t migration_pool; 406 407 struct bio_set bs; 408 }; 409 410 struct per_bio_data { 411 bool tick:1; 412 unsigned req_nr:2; 413 struct dm_bio_prison_cell_v2 *cell; 414 struct dm_hook_info hook_info; 415 sector_t len; 416 }; 417 418 struct dm_cache_migration { 419 struct continuation k; 420 struct cache *cache; 421 422 struct policy_work *op; 423 struct bio *overwrite_bio; 424 struct dm_bio_prison_cell_v2 *cell; 425 426 dm_cblock_t invalidate_cblock; 427 dm_oblock_t invalidate_oblock; 428 }; 429 430 /*----------------------------------------------------------------*/ 431 432 static bool writethrough_mode(struct cache *cache) 433 { 434 return cache->features.io_mode == CM_IO_WRITETHROUGH; 435 } 436 437 static bool writeback_mode(struct cache *cache) 438 { 439 return cache->features.io_mode == CM_IO_WRITEBACK; 440 } 441 442 static inline bool passthrough_mode(struct cache *cache) 443 { 444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 445 } 446 447 /*----------------------------------------------------------------*/ 448 449 static void wake_deferred_bio_worker(struct cache *cache) 450 { 451 queue_work(cache->wq, &cache->deferred_bio_worker); 452 } 453 454 static void wake_migration_worker(struct cache *cache) 455 { 456 if (passthrough_mode(cache)) 457 return; 458 459 queue_work(cache->wq, &cache->migration_worker); 460 } 461 462 /*----------------------------------------------------------------*/ 463 464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 465 { 466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 467 } 468 469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 470 { 471 dm_bio_prison_free_cell_v2(cache->prison, cell); 472 } 473 474 static struct dm_cache_migration *alloc_migration(struct cache *cache) 475 { 476 struct dm_cache_migration *mg; 477 478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 479 480 memset(mg, 0, sizeof(*mg)); 481 482 mg->cache = cache; 483 atomic_inc(&cache->nr_allocated_migrations); 484 485 return mg; 486 } 487 488 static void free_migration(struct dm_cache_migration *mg) 489 { 490 struct cache *cache = mg->cache; 491 492 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 493 wake_up(&cache->migration_wait); 494 495 mempool_free(mg, &cache->migration_pool); 496 } 497 498 /*----------------------------------------------------------------*/ 499 500 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 501 { 502 return to_oblock(from_oblock(b) + 1ull); 503 } 504 505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 506 { 507 key->virtual = 0; 508 key->dev = 0; 509 key->block_begin = from_oblock(begin); 510 key->block_end = from_oblock(end); 511 } 512 513 /* 514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 515 * level 1 which prevents *both* READs and WRITEs. 516 */ 517 #define WRITE_LOCK_LEVEL 0 518 #define READ_WRITE_LOCK_LEVEL 1 519 520 static unsigned lock_level(struct bio *bio) 521 { 522 return bio_data_dir(bio) == WRITE ? 523 WRITE_LOCK_LEVEL : 524 READ_WRITE_LOCK_LEVEL; 525 } 526 527 /*---------------------------------------------------------------- 528 * Per bio data 529 *--------------------------------------------------------------*/ 530 531 static struct per_bio_data *get_per_bio_data(struct bio *bio) 532 { 533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 534 BUG_ON(!pb); 535 return pb; 536 } 537 538 static struct per_bio_data *init_per_bio_data(struct bio *bio) 539 { 540 struct per_bio_data *pb = get_per_bio_data(bio); 541 542 pb->tick = false; 543 pb->req_nr = dm_bio_get_target_bio_nr(bio); 544 pb->cell = NULL; 545 pb->len = 0; 546 547 return pb; 548 } 549 550 /*----------------------------------------------------------------*/ 551 552 static void defer_bio(struct cache *cache, struct bio *bio) 553 { 554 spin_lock_irq(&cache->lock); 555 bio_list_add(&cache->deferred_bios, bio); 556 spin_unlock_irq(&cache->lock); 557 558 wake_deferred_bio_worker(cache); 559 } 560 561 static void defer_bios(struct cache *cache, struct bio_list *bios) 562 { 563 spin_lock_irq(&cache->lock); 564 bio_list_merge(&cache->deferred_bios, bios); 565 bio_list_init(bios); 566 spin_unlock_irq(&cache->lock); 567 568 wake_deferred_bio_worker(cache); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 574 { 575 bool r; 576 struct per_bio_data *pb; 577 struct dm_cell_key_v2 key; 578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 580 581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 582 583 build_key(oblock, end, &key); 584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 585 if (!r) { 586 /* 587 * Failed to get the lock. 588 */ 589 free_prison_cell(cache, cell_prealloc); 590 return r; 591 } 592 593 if (cell != cell_prealloc) 594 free_prison_cell(cache, cell_prealloc); 595 596 pb = get_per_bio_data(bio); 597 pb->cell = cell; 598 599 return r; 600 } 601 602 /*----------------------------------------------------------------*/ 603 604 static bool is_dirty(struct cache *cache, dm_cblock_t b) 605 { 606 return test_bit(from_cblock(b), cache->dirty_bitset); 607 } 608 609 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 610 { 611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 612 atomic_inc(&cache->nr_dirty); 613 policy_set_dirty(cache->policy, cblock); 614 } 615 } 616 617 /* 618 * These two are called when setting after migrations to force the policy 619 * and dirty bitset to be in sync. 620 */ 621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 622 { 623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 624 atomic_inc(&cache->nr_dirty); 625 policy_set_dirty(cache->policy, cblock); 626 } 627 628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 629 { 630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 631 if (atomic_dec_return(&cache->nr_dirty) == 0) 632 dm_table_event(cache->ti->table); 633 } 634 635 policy_clear_dirty(cache->policy, cblock); 636 } 637 638 /*----------------------------------------------------------------*/ 639 640 static bool block_size_is_power_of_two(struct cache *cache) 641 { 642 return cache->sectors_per_block_shift >= 0; 643 } 644 645 static dm_block_t block_div(dm_block_t b, uint32_t n) 646 { 647 do_div(b, n); 648 649 return b; 650 } 651 652 static dm_block_t oblocks_per_dblock(struct cache *cache) 653 { 654 dm_block_t oblocks = cache->discard_block_size; 655 656 if (block_size_is_power_of_two(cache)) 657 oblocks >>= cache->sectors_per_block_shift; 658 else 659 oblocks = block_div(oblocks, cache->sectors_per_block); 660 661 return oblocks; 662 } 663 664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 665 { 666 return to_dblock(block_div(from_oblock(oblock), 667 oblocks_per_dblock(cache))); 668 } 669 670 static void set_discard(struct cache *cache, dm_dblock_t b) 671 { 672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 673 atomic_inc(&cache->stats.discard_count); 674 675 spin_lock_irq(&cache->lock); 676 set_bit(from_dblock(b), cache->discard_bitset); 677 spin_unlock_irq(&cache->lock); 678 } 679 680 static void clear_discard(struct cache *cache, dm_dblock_t b) 681 { 682 spin_lock_irq(&cache->lock); 683 clear_bit(from_dblock(b), cache->discard_bitset); 684 spin_unlock_irq(&cache->lock); 685 } 686 687 static bool is_discarded(struct cache *cache, dm_dblock_t b) 688 { 689 int r; 690 spin_lock_irq(&cache->lock); 691 r = test_bit(from_dblock(b), cache->discard_bitset); 692 spin_unlock_irq(&cache->lock); 693 694 return r; 695 } 696 697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 698 { 699 int r; 700 spin_lock_irq(&cache->lock); 701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 702 cache->discard_bitset); 703 spin_unlock_irq(&cache->lock); 704 705 return r; 706 } 707 708 /*---------------------------------------------------------------- 709 * Remapping 710 *--------------------------------------------------------------*/ 711 static void remap_to_origin(struct cache *cache, struct bio *bio) 712 { 713 bio_set_dev(bio, cache->origin_dev->bdev); 714 } 715 716 static void remap_to_cache(struct cache *cache, struct bio *bio, 717 dm_cblock_t cblock) 718 { 719 sector_t bi_sector = bio->bi_iter.bi_sector; 720 sector_t block = from_cblock(cblock); 721 722 bio_set_dev(bio, cache->cache_dev->bdev); 723 if (!block_size_is_power_of_two(cache)) 724 bio->bi_iter.bi_sector = 725 (block * cache->sectors_per_block) + 726 sector_div(bi_sector, cache->sectors_per_block); 727 else 728 bio->bi_iter.bi_sector = 729 (block << cache->sectors_per_block_shift) | 730 (bi_sector & (cache->sectors_per_block - 1)); 731 } 732 733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 734 { 735 struct per_bio_data *pb; 736 737 spin_lock_irq(&cache->lock); 738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 739 bio_op(bio) != REQ_OP_DISCARD) { 740 pb = get_per_bio_data(bio); 741 pb->tick = true; 742 cache->need_tick_bio = false; 743 } 744 spin_unlock_irq(&cache->lock); 745 } 746 747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 748 dm_oblock_t oblock) 749 { 750 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 751 check_if_tick_bio_needed(cache, bio); 752 remap_to_origin(cache, bio); 753 if (bio_data_dir(bio) == WRITE) 754 clear_discard(cache, oblock_to_dblock(cache, oblock)); 755 } 756 757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 758 dm_oblock_t oblock, dm_cblock_t cblock) 759 { 760 check_if_tick_bio_needed(cache, bio); 761 remap_to_cache(cache, bio, cblock); 762 if (bio_data_dir(bio) == WRITE) { 763 set_dirty(cache, cblock); 764 clear_discard(cache, oblock_to_dblock(cache, oblock)); 765 } 766 } 767 768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 769 { 770 sector_t block_nr = bio->bi_iter.bi_sector; 771 772 if (!block_size_is_power_of_two(cache)) 773 (void) sector_div(block_nr, cache->sectors_per_block); 774 else 775 block_nr >>= cache->sectors_per_block_shift; 776 777 return to_oblock(block_nr); 778 } 779 780 static bool accountable_bio(struct cache *cache, struct bio *bio) 781 { 782 return bio_op(bio) != REQ_OP_DISCARD; 783 } 784 785 static void accounted_begin(struct cache *cache, struct bio *bio) 786 { 787 struct per_bio_data *pb; 788 789 if (accountable_bio(cache, bio)) { 790 pb = get_per_bio_data(bio); 791 pb->len = bio_sectors(bio); 792 dm_iot_io_begin(&cache->tracker, pb->len); 793 } 794 } 795 796 static void accounted_complete(struct cache *cache, struct bio *bio) 797 { 798 struct per_bio_data *pb = get_per_bio_data(bio); 799 800 dm_iot_io_end(&cache->tracker, pb->len); 801 } 802 803 static void accounted_request(struct cache *cache, struct bio *bio) 804 { 805 accounted_begin(cache, bio); 806 dm_submit_bio_remap(bio, NULL); 807 } 808 809 static void issue_op(struct bio *bio, void *context) 810 { 811 struct cache *cache = context; 812 accounted_request(cache, bio); 813 } 814 815 /* 816 * When running in writethrough mode we need to send writes to clean blocks 817 * to both the cache and origin devices. Clone the bio and send them in parallel. 818 */ 819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 820 dm_oblock_t oblock, dm_cblock_t cblock) 821 { 822 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio, 823 GFP_NOIO, &cache->bs); 824 825 BUG_ON(!origin_bio); 826 827 bio_chain(origin_bio, bio); 828 829 if (bio_data_dir(origin_bio) == WRITE) 830 clear_discard(cache, oblock_to_dblock(cache, oblock)); 831 submit_bio(origin_bio); 832 833 remap_to_cache(cache, bio, cblock); 834 } 835 836 /*---------------------------------------------------------------- 837 * Failure modes 838 *--------------------------------------------------------------*/ 839 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 840 { 841 return cache->features.mode; 842 } 843 844 static const char *cache_device_name(struct cache *cache) 845 { 846 return dm_table_device_name(cache->ti->table); 847 } 848 849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 850 { 851 const char *descs[] = { 852 "write", 853 "read-only", 854 "fail" 855 }; 856 857 dm_table_event(cache->ti->table); 858 DMINFO("%s: switching cache to %s mode", 859 cache_device_name(cache), descs[(int)mode]); 860 } 861 862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 863 { 864 bool needs_check; 865 enum cache_metadata_mode old_mode = get_cache_mode(cache); 866 867 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 868 DMERR("%s: unable to read needs_check flag, setting failure mode.", 869 cache_device_name(cache)); 870 new_mode = CM_FAIL; 871 } 872 873 if (new_mode == CM_WRITE && needs_check) { 874 DMERR("%s: unable to switch cache to write mode until repaired.", 875 cache_device_name(cache)); 876 if (old_mode != new_mode) 877 new_mode = old_mode; 878 else 879 new_mode = CM_READ_ONLY; 880 } 881 882 /* Never move out of fail mode */ 883 if (old_mode == CM_FAIL) 884 new_mode = CM_FAIL; 885 886 switch (new_mode) { 887 case CM_FAIL: 888 case CM_READ_ONLY: 889 dm_cache_metadata_set_read_only(cache->cmd); 890 break; 891 892 case CM_WRITE: 893 dm_cache_metadata_set_read_write(cache->cmd); 894 break; 895 } 896 897 cache->features.mode = new_mode; 898 899 if (new_mode != old_mode) 900 notify_mode_switch(cache, new_mode); 901 } 902 903 static void abort_transaction(struct cache *cache) 904 { 905 const char *dev_name = cache_device_name(cache); 906 907 if (get_cache_mode(cache) >= CM_READ_ONLY) 908 return; 909 910 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 911 if (dm_cache_metadata_abort(cache->cmd)) { 912 DMERR("%s: failed to abort metadata transaction", dev_name); 913 set_cache_mode(cache, CM_FAIL); 914 } 915 916 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 917 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 918 set_cache_mode(cache, CM_FAIL); 919 } 920 } 921 922 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 923 { 924 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 925 cache_device_name(cache), op, r); 926 abort_transaction(cache); 927 set_cache_mode(cache, CM_READ_ONLY); 928 } 929 930 /*----------------------------------------------------------------*/ 931 932 static void load_stats(struct cache *cache) 933 { 934 struct dm_cache_statistics stats; 935 936 dm_cache_metadata_get_stats(cache->cmd, &stats); 937 atomic_set(&cache->stats.read_hit, stats.read_hits); 938 atomic_set(&cache->stats.read_miss, stats.read_misses); 939 atomic_set(&cache->stats.write_hit, stats.write_hits); 940 atomic_set(&cache->stats.write_miss, stats.write_misses); 941 } 942 943 static void save_stats(struct cache *cache) 944 { 945 struct dm_cache_statistics stats; 946 947 if (get_cache_mode(cache) >= CM_READ_ONLY) 948 return; 949 950 stats.read_hits = atomic_read(&cache->stats.read_hit); 951 stats.read_misses = atomic_read(&cache->stats.read_miss); 952 stats.write_hits = atomic_read(&cache->stats.write_hit); 953 stats.write_misses = atomic_read(&cache->stats.write_miss); 954 955 dm_cache_metadata_set_stats(cache->cmd, &stats); 956 } 957 958 static void update_stats(struct cache_stats *stats, enum policy_operation op) 959 { 960 switch (op) { 961 case POLICY_PROMOTE: 962 atomic_inc(&stats->promotion); 963 break; 964 965 case POLICY_DEMOTE: 966 atomic_inc(&stats->demotion); 967 break; 968 969 case POLICY_WRITEBACK: 970 atomic_inc(&stats->writeback); 971 break; 972 } 973 } 974 975 /*---------------------------------------------------------------- 976 * Migration processing 977 * 978 * Migration covers moving data from the origin device to the cache, or 979 * vice versa. 980 *--------------------------------------------------------------*/ 981 982 static void inc_io_migrations(struct cache *cache) 983 { 984 atomic_inc(&cache->nr_io_migrations); 985 } 986 987 static void dec_io_migrations(struct cache *cache) 988 { 989 atomic_dec(&cache->nr_io_migrations); 990 } 991 992 static bool discard_or_flush(struct bio *bio) 993 { 994 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 995 } 996 997 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 998 dm_dblock_t *b, dm_dblock_t *e) 999 { 1000 sector_t sb = bio->bi_iter.bi_sector; 1001 sector_t se = bio_end_sector(bio); 1002 1003 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1004 1005 if (se - sb < cache->discard_block_size) 1006 *e = *b; 1007 else 1008 *e = to_dblock(block_div(se, cache->discard_block_size)); 1009 } 1010 1011 /*----------------------------------------------------------------*/ 1012 1013 static void prevent_background_work(struct cache *cache) 1014 { 1015 lockdep_off(); 1016 down_write(&cache->background_work_lock); 1017 lockdep_on(); 1018 } 1019 1020 static void allow_background_work(struct cache *cache) 1021 { 1022 lockdep_off(); 1023 up_write(&cache->background_work_lock); 1024 lockdep_on(); 1025 } 1026 1027 static bool background_work_begin(struct cache *cache) 1028 { 1029 bool r; 1030 1031 lockdep_off(); 1032 r = down_read_trylock(&cache->background_work_lock); 1033 lockdep_on(); 1034 1035 return r; 1036 } 1037 1038 static void background_work_end(struct cache *cache) 1039 { 1040 lockdep_off(); 1041 up_read(&cache->background_work_lock); 1042 lockdep_on(); 1043 } 1044 1045 /*----------------------------------------------------------------*/ 1046 1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1048 { 1049 return (bio_data_dir(bio) == WRITE) && 1050 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1051 } 1052 1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1054 { 1055 return writeback_mode(cache) && 1056 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1057 } 1058 1059 static void quiesce(struct dm_cache_migration *mg, 1060 void (*continuation)(struct work_struct *)) 1061 { 1062 init_continuation(&mg->k, continuation); 1063 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1064 } 1065 1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1067 { 1068 struct continuation *k = container_of(ws, struct continuation, ws); 1069 return container_of(k, struct dm_cache_migration, k); 1070 } 1071 1072 static void copy_complete(int read_err, unsigned long write_err, void *context) 1073 { 1074 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1075 1076 if (read_err || write_err) 1077 mg->k.input = BLK_STS_IOERR; 1078 1079 queue_continuation(mg->cache->wq, &mg->k); 1080 } 1081 1082 static void copy(struct dm_cache_migration *mg, bool promote) 1083 { 1084 struct dm_io_region o_region, c_region; 1085 struct cache *cache = mg->cache; 1086 1087 o_region.bdev = cache->origin_dev->bdev; 1088 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1089 o_region.count = cache->sectors_per_block; 1090 1091 c_region.bdev = cache->cache_dev->bdev; 1092 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1093 c_region.count = cache->sectors_per_block; 1094 1095 if (promote) 1096 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1097 else 1098 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1099 } 1100 1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1102 { 1103 struct per_bio_data *pb = get_per_bio_data(bio); 1104 1105 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1106 free_prison_cell(cache, pb->cell); 1107 pb->cell = NULL; 1108 } 1109 1110 static void overwrite_endio(struct bio *bio) 1111 { 1112 struct dm_cache_migration *mg = bio->bi_private; 1113 struct cache *cache = mg->cache; 1114 struct per_bio_data *pb = get_per_bio_data(bio); 1115 1116 dm_unhook_bio(&pb->hook_info, bio); 1117 1118 if (bio->bi_status) 1119 mg->k.input = bio->bi_status; 1120 1121 queue_continuation(cache->wq, &mg->k); 1122 } 1123 1124 static void overwrite(struct dm_cache_migration *mg, 1125 void (*continuation)(struct work_struct *)) 1126 { 1127 struct bio *bio = mg->overwrite_bio; 1128 struct per_bio_data *pb = get_per_bio_data(bio); 1129 1130 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1131 1132 /* 1133 * The overwrite bio is part of the copy operation, as such it does 1134 * not set/clear discard or dirty flags. 1135 */ 1136 if (mg->op->op == POLICY_PROMOTE) 1137 remap_to_cache(mg->cache, bio, mg->op->cblock); 1138 else 1139 remap_to_origin(mg->cache, bio); 1140 1141 init_continuation(&mg->k, continuation); 1142 accounted_request(mg->cache, bio); 1143 } 1144 1145 /* 1146 * Migration steps: 1147 * 1148 * 1) exclusive lock preventing WRITEs 1149 * 2) quiesce 1150 * 3) copy or issue overwrite bio 1151 * 4) upgrade to exclusive lock preventing READs and WRITEs 1152 * 5) quiesce 1153 * 6) update metadata and commit 1154 * 7) unlock 1155 */ 1156 static void mg_complete(struct dm_cache_migration *mg, bool success) 1157 { 1158 struct bio_list bios; 1159 struct cache *cache = mg->cache; 1160 struct policy_work *op = mg->op; 1161 dm_cblock_t cblock = op->cblock; 1162 1163 if (success) 1164 update_stats(&cache->stats, op->op); 1165 1166 switch (op->op) { 1167 case POLICY_PROMOTE: 1168 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1169 policy_complete_background_work(cache->policy, op, success); 1170 1171 if (mg->overwrite_bio) { 1172 if (success) 1173 force_set_dirty(cache, cblock); 1174 else if (mg->k.input) 1175 mg->overwrite_bio->bi_status = mg->k.input; 1176 else 1177 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1178 bio_endio(mg->overwrite_bio); 1179 } else { 1180 if (success) 1181 force_clear_dirty(cache, cblock); 1182 dec_io_migrations(cache); 1183 } 1184 break; 1185 1186 case POLICY_DEMOTE: 1187 /* 1188 * We clear dirty here to update the nr_dirty counter. 1189 */ 1190 if (success) 1191 force_clear_dirty(cache, cblock); 1192 policy_complete_background_work(cache->policy, op, success); 1193 dec_io_migrations(cache); 1194 break; 1195 1196 case POLICY_WRITEBACK: 1197 if (success) 1198 force_clear_dirty(cache, cblock); 1199 policy_complete_background_work(cache->policy, op, success); 1200 dec_io_migrations(cache); 1201 break; 1202 } 1203 1204 bio_list_init(&bios); 1205 if (mg->cell) { 1206 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1207 free_prison_cell(cache, mg->cell); 1208 } 1209 1210 free_migration(mg); 1211 defer_bios(cache, &bios); 1212 wake_migration_worker(cache); 1213 1214 background_work_end(cache); 1215 } 1216 1217 static void mg_success(struct work_struct *ws) 1218 { 1219 struct dm_cache_migration *mg = ws_to_mg(ws); 1220 mg_complete(mg, mg->k.input == 0); 1221 } 1222 1223 static void mg_update_metadata(struct work_struct *ws) 1224 { 1225 int r; 1226 struct dm_cache_migration *mg = ws_to_mg(ws); 1227 struct cache *cache = mg->cache; 1228 struct policy_work *op = mg->op; 1229 1230 switch (op->op) { 1231 case POLICY_PROMOTE: 1232 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1233 if (r) { 1234 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1235 cache_device_name(cache)); 1236 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1237 1238 mg_complete(mg, false); 1239 return; 1240 } 1241 mg_complete(mg, true); 1242 break; 1243 1244 case POLICY_DEMOTE: 1245 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1246 if (r) { 1247 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1248 cache_device_name(cache)); 1249 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1250 1251 mg_complete(mg, false); 1252 return; 1253 } 1254 1255 /* 1256 * It would be nice if we only had to commit when a REQ_FLUSH 1257 * comes through. But there's one scenario that we have to 1258 * look out for: 1259 * 1260 * - vblock x in a cache block 1261 * - domotion occurs 1262 * - cache block gets reallocated and over written 1263 * - crash 1264 * 1265 * When we recover, because there was no commit the cache will 1266 * rollback to having the data for vblock x in the cache block. 1267 * But the cache block has since been overwritten, so it'll end 1268 * up pointing to data that was never in 'x' during the history 1269 * of the device. 1270 * 1271 * To avoid this issue we require a commit as part of the 1272 * demotion operation. 1273 */ 1274 init_continuation(&mg->k, mg_success); 1275 continue_after_commit(&cache->committer, &mg->k); 1276 schedule_commit(&cache->committer); 1277 break; 1278 1279 case POLICY_WRITEBACK: 1280 mg_complete(mg, true); 1281 break; 1282 } 1283 } 1284 1285 static void mg_update_metadata_after_copy(struct work_struct *ws) 1286 { 1287 struct dm_cache_migration *mg = ws_to_mg(ws); 1288 1289 /* 1290 * Did the copy succeed? 1291 */ 1292 if (mg->k.input) 1293 mg_complete(mg, false); 1294 else 1295 mg_update_metadata(ws); 1296 } 1297 1298 static void mg_upgrade_lock(struct work_struct *ws) 1299 { 1300 int r; 1301 struct dm_cache_migration *mg = ws_to_mg(ws); 1302 1303 /* 1304 * Did the copy succeed? 1305 */ 1306 if (mg->k.input) 1307 mg_complete(mg, false); 1308 1309 else { 1310 /* 1311 * Now we want the lock to prevent both reads and writes. 1312 */ 1313 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1314 READ_WRITE_LOCK_LEVEL); 1315 if (r < 0) 1316 mg_complete(mg, false); 1317 1318 else if (r) 1319 quiesce(mg, mg_update_metadata); 1320 1321 else 1322 mg_update_metadata(ws); 1323 } 1324 } 1325 1326 static void mg_full_copy(struct work_struct *ws) 1327 { 1328 struct dm_cache_migration *mg = ws_to_mg(ws); 1329 struct cache *cache = mg->cache; 1330 struct policy_work *op = mg->op; 1331 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1332 1333 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1334 is_discarded_oblock(cache, op->oblock)) { 1335 mg_upgrade_lock(ws); 1336 return; 1337 } 1338 1339 init_continuation(&mg->k, mg_upgrade_lock); 1340 copy(mg, is_policy_promote); 1341 } 1342 1343 static void mg_copy(struct work_struct *ws) 1344 { 1345 struct dm_cache_migration *mg = ws_to_mg(ws); 1346 1347 if (mg->overwrite_bio) { 1348 /* 1349 * No exclusive lock was held when we last checked if the bio 1350 * was optimisable. So we have to check again in case things 1351 * have changed (eg, the block may no longer be discarded). 1352 */ 1353 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1354 /* 1355 * Fallback to a real full copy after doing some tidying up. 1356 */ 1357 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1358 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1359 mg->overwrite_bio = NULL; 1360 inc_io_migrations(mg->cache); 1361 mg_full_copy(ws); 1362 return; 1363 } 1364 1365 /* 1366 * It's safe to do this here, even though it's new data 1367 * because all IO has been locked out of the block. 1368 * 1369 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1370 * so _not_ using mg_upgrade_lock() as continutation. 1371 */ 1372 overwrite(mg, mg_update_metadata_after_copy); 1373 1374 } else 1375 mg_full_copy(ws); 1376 } 1377 1378 static int mg_lock_writes(struct dm_cache_migration *mg) 1379 { 1380 int r; 1381 struct dm_cell_key_v2 key; 1382 struct cache *cache = mg->cache; 1383 struct dm_bio_prison_cell_v2 *prealloc; 1384 1385 prealloc = alloc_prison_cell(cache); 1386 1387 /* 1388 * Prevent writes to the block, but allow reads to continue. 1389 * Unless we're using an overwrite bio, in which case we lock 1390 * everything. 1391 */ 1392 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1393 r = dm_cell_lock_v2(cache->prison, &key, 1394 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1395 prealloc, &mg->cell); 1396 if (r < 0) { 1397 free_prison_cell(cache, prealloc); 1398 mg_complete(mg, false); 1399 return r; 1400 } 1401 1402 if (mg->cell != prealloc) 1403 free_prison_cell(cache, prealloc); 1404 1405 if (r == 0) 1406 mg_copy(&mg->k.ws); 1407 else 1408 quiesce(mg, mg_copy); 1409 1410 return 0; 1411 } 1412 1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1414 { 1415 struct dm_cache_migration *mg; 1416 1417 if (!background_work_begin(cache)) { 1418 policy_complete_background_work(cache->policy, op, false); 1419 return -EPERM; 1420 } 1421 1422 mg = alloc_migration(cache); 1423 1424 mg->op = op; 1425 mg->overwrite_bio = bio; 1426 1427 if (!bio) 1428 inc_io_migrations(cache); 1429 1430 return mg_lock_writes(mg); 1431 } 1432 1433 /*---------------------------------------------------------------- 1434 * invalidation processing 1435 *--------------------------------------------------------------*/ 1436 1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1438 { 1439 struct bio_list bios; 1440 struct cache *cache = mg->cache; 1441 1442 bio_list_init(&bios); 1443 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1444 free_prison_cell(cache, mg->cell); 1445 1446 if (!success && mg->overwrite_bio) 1447 bio_io_error(mg->overwrite_bio); 1448 1449 free_migration(mg); 1450 defer_bios(cache, &bios); 1451 1452 background_work_end(cache); 1453 } 1454 1455 static void invalidate_completed(struct work_struct *ws) 1456 { 1457 struct dm_cache_migration *mg = ws_to_mg(ws); 1458 invalidate_complete(mg, !mg->k.input); 1459 } 1460 1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1462 { 1463 int r = policy_invalidate_mapping(cache->policy, cblock); 1464 if (!r) { 1465 r = dm_cache_remove_mapping(cache->cmd, cblock); 1466 if (r) { 1467 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1468 cache_device_name(cache)); 1469 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1470 } 1471 1472 } else if (r == -ENODATA) { 1473 /* 1474 * Harmless, already unmapped. 1475 */ 1476 r = 0; 1477 1478 } else 1479 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1480 1481 return r; 1482 } 1483 1484 static void invalidate_remove(struct work_struct *ws) 1485 { 1486 int r; 1487 struct dm_cache_migration *mg = ws_to_mg(ws); 1488 struct cache *cache = mg->cache; 1489 1490 r = invalidate_cblock(cache, mg->invalidate_cblock); 1491 if (r) { 1492 invalidate_complete(mg, false); 1493 return; 1494 } 1495 1496 init_continuation(&mg->k, invalidate_completed); 1497 continue_after_commit(&cache->committer, &mg->k); 1498 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1499 mg->overwrite_bio = NULL; 1500 schedule_commit(&cache->committer); 1501 } 1502 1503 static int invalidate_lock(struct dm_cache_migration *mg) 1504 { 1505 int r; 1506 struct dm_cell_key_v2 key; 1507 struct cache *cache = mg->cache; 1508 struct dm_bio_prison_cell_v2 *prealloc; 1509 1510 prealloc = alloc_prison_cell(cache); 1511 1512 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1513 r = dm_cell_lock_v2(cache->prison, &key, 1514 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1515 if (r < 0) { 1516 free_prison_cell(cache, prealloc); 1517 invalidate_complete(mg, false); 1518 return r; 1519 } 1520 1521 if (mg->cell != prealloc) 1522 free_prison_cell(cache, prealloc); 1523 1524 if (r) 1525 quiesce(mg, invalidate_remove); 1526 1527 else { 1528 /* 1529 * We can't call invalidate_remove() directly here because we 1530 * might still be in request context. 1531 */ 1532 init_continuation(&mg->k, invalidate_remove); 1533 queue_work(cache->wq, &mg->k.ws); 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1540 dm_oblock_t oblock, struct bio *bio) 1541 { 1542 struct dm_cache_migration *mg; 1543 1544 if (!background_work_begin(cache)) 1545 return -EPERM; 1546 1547 mg = alloc_migration(cache); 1548 1549 mg->overwrite_bio = bio; 1550 mg->invalidate_cblock = cblock; 1551 mg->invalidate_oblock = oblock; 1552 1553 return invalidate_lock(mg); 1554 } 1555 1556 /*---------------------------------------------------------------- 1557 * bio processing 1558 *--------------------------------------------------------------*/ 1559 1560 enum busy { 1561 IDLE, 1562 BUSY 1563 }; 1564 1565 static enum busy spare_migration_bandwidth(struct cache *cache) 1566 { 1567 bool idle = dm_iot_idle_for(&cache->tracker, HZ); 1568 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1569 cache->sectors_per_block; 1570 1571 if (idle && current_volume <= cache->migration_threshold) 1572 return IDLE; 1573 else 1574 return BUSY; 1575 } 1576 1577 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1578 { 1579 atomic_inc(bio_data_dir(bio) == READ ? 1580 &cache->stats.read_hit : &cache->stats.write_hit); 1581 } 1582 1583 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1584 { 1585 atomic_inc(bio_data_dir(bio) == READ ? 1586 &cache->stats.read_miss : &cache->stats.write_miss); 1587 } 1588 1589 /*----------------------------------------------------------------*/ 1590 1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1592 bool *commit_needed) 1593 { 1594 int r, data_dir; 1595 bool rb, background_queued; 1596 dm_cblock_t cblock; 1597 1598 *commit_needed = false; 1599 1600 rb = bio_detain_shared(cache, block, bio); 1601 if (!rb) { 1602 /* 1603 * An exclusive lock is held for this block, so we have to 1604 * wait. We set the commit_needed flag so the current 1605 * transaction will be committed asap, allowing this lock 1606 * to be dropped. 1607 */ 1608 *commit_needed = true; 1609 return DM_MAPIO_SUBMITTED; 1610 } 1611 1612 data_dir = bio_data_dir(bio); 1613 1614 if (optimisable_bio(cache, bio, block)) { 1615 struct policy_work *op = NULL; 1616 1617 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1618 if (unlikely(r && r != -ENOENT)) { 1619 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1620 cache_device_name(cache), r); 1621 bio_io_error(bio); 1622 return DM_MAPIO_SUBMITTED; 1623 } 1624 1625 if (r == -ENOENT && op) { 1626 bio_drop_shared_lock(cache, bio); 1627 BUG_ON(op->op != POLICY_PROMOTE); 1628 mg_start(cache, op, bio); 1629 return DM_MAPIO_SUBMITTED; 1630 } 1631 } else { 1632 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1633 if (unlikely(r && r != -ENOENT)) { 1634 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1635 cache_device_name(cache), r); 1636 bio_io_error(bio); 1637 return DM_MAPIO_SUBMITTED; 1638 } 1639 1640 if (background_queued) 1641 wake_migration_worker(cache); 1642 } 1643 1644 if (r == -ENOENT) { 1645 struct per_bio_data *pb = get_per_bio_data(bio); 1646 1647 /* 1648 * Miss. 1649 */ 1650 inc_miss_counter(cache, bio); 1651 if (pb->req_nr == 0) { 1652 accounted_begin(cache, bio); 1653 remap_to_origin_clear_discard(cache, bio, block); 1654 } else { 1655 /* 1656 * This is a duplicate writethrough io that is no 1657 * longer needed because the block has been demoted. 1658 */ 1659 bio_endio(bio); 1660 return DM_MAPIO_SUBMITTED; 1661 } 1662 } else { 1663 /* 1664 * Hit. 1665 */ 1666 inc_hit_counter(cache, bio); 1667 1668 /* 1669 * Passthrough always maps to the origin, invalidating any 1670 * cache blocks that are written to. 1671 */ 1672 if (passthrough_mode(cache)) { 1673 if (bio_data_dir(bio) == WRITE) { 1674 bio_drop_shared_lock(cache, bio); 1675 atomic_inc(&cache->stats.demotion); 1676 invalidate_start(cache, cblock, block, bio); 1677 } else 1678 remap_to_origin_clear_discard(cache, bio, block); 1679 } else { 1680 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1681 !is_dirty(cache, cblock)) { 1682 remap_to_origin_and_cache(cache, bio, block, cblock); 1683 accounted_begin(cache, bio); 1684 } else 1685 remap_to_cache_dirty(cache, bio, block, cblock); 1686 } 1687 } 1688 1689 /* 1690 * dm core turns FUA requests into a separate payload and FLUSH req. 1691 */ 1692 if (bio->bi_opf & REQ_FUA) { 1693 /* 1694 * issue_after_commit will call accounted_begin a second time. So 1695 * we call accounted_complete() to avoid double accounting. 1696 */ 1697 accounted_complete(cache, bio); 1698 issue_after_commit(&cache->committer, bio); 1699 *commit_needed = true; 1700 return DM_MAPIO_SUBMITTED; 1701 } 1702 1703 return DM_MAPIO_REMAPPED; 1704 } 1705 1706 static bool process_bio(struct cache *cache, struct bio *bio) 1707 { 1708 bool commit_needed; 1709 1710 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1711 dm_submit_bio_remap(bio, NULL); 1712 1713 return commit_needed; 1714 } 1715 1716 /* 1717 * A non-zero return indicates read_only or fail_io mode. 1718 */ 1719 static int commit(struct cache *cache, bool clean_shutdown) 1720 { 1721 int r; 1722 1723 if (get_cache_mode(cache) >= CM_READ_ONLY) 1724 return -EINVAL; 1725 1726 atomic_inc(&cache->stats.commit_count); 1727 r = dm_cache_commit(cache->cmd, clean_shutdown); 1728 if (r) 1729 metadata_operation_failed(cache, "dm_cache_commit", r); 1730 1731 return r; 1732 } 1733 1734 /* 1735 * Used by the batcher. 1736 */ 1737 static blk_status_t commit_op(void *context) 1738 { 1739 struct cache *cache = context; 1740 1741 if (dm_cache_changed_this_transaction(cache->cmd)) 1742 return errno_to_blk_status(commit(cache, false)); 1743 1744 return 0; 1745 } 1746 1747 /*----------------------------------------------------------------*/ 1748 1749 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1750 { 1751 struct per_bio_data *pb = get_per_bio_data(bio); 1752 1753 if (!pb->req_nr) 1754 remap_to_origin(cache, bio); 1755 else 1756 remap_to_cache(cache, bio, 0); 1757 1758 issue_after_commit(&cache->committer, bio); 1759 return true; 1760 } 1761 1762 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1763 { 1764 dm_dblock_t b, e; 1765 1766 // FIXME: do we need to lock the region? Or can we just assume the 1767 // user wont be so foolish as to issue discard concurrently with 1768 // other IO? 1769 calc_discard_block_range(cache, bio, &b, &e); 1770 while (b != e) { 1771 set_discard(cache, b); 1772 b = to_dblock(from_dblock(b) + 1); 1773 } 1774 1775 if (cache->features.discard_passdown) { 1776 remap_to_origin(cache, bio); 1777 dm_submit_bio_remap(bio, NULL); 1778 } else 1779 bio_endio(bio); 1780 1781 return false; 1782 } 1783 1784 static void process_deferred_bios(struct work_struct *ws) 1785 { 1786 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1787 1788 bool commit_needed = false; 1789 struct bio_list bios; 1790 struct bio *bio; 1791 1792 bio_list_init(&bios); 1793 1794 spin_lock_irq(&cache->lock); 1795 bio_list_merge(&bios, &cache->deferred_bios); 1796 bio_list_init(&cache->deferred_bios); 1797 spin_unlock_irq(&cache->lock); 1798 1799 while ((bio = bio_list_pop(&bios))) { 1800 if (bio->bi_opf & REQ_PREFLUSH) 1801 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1802 1803 else if (bio_op(bio) == REQ_OP_DISCARD) 1804 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1805 1806 else 1807 commit_needed = process_bio(cache, bio) || commit_needed; 1808 } 1809 1810 if (commit_needed) 1811 schedule_commit(&cache->committer); 1812 } 1813 1814 /*---------------------------------------------------------------- 1815 * Main worker loop 1816 *--------------------------------------------------------------*/ 1817 1818 static void requeue_deferred_bios(struct cache *cache) 1819 { 1820 struct bio *bio; 1821 struct bio_list bios; 1822 1823 bio_list_init(&bios); 1824 bio_list_merge(&bios, &cache->deferred_bios); 1825 bio_list_init(&cache->deferred_bios); 1826 1827 while ((bio = bio_list_pop(&bios))) { 1828 bio->bi_status = BLK_STS_DM_REQUEUE; 1829 bio_endio(bio); 1830 } 1831 } 1832 1833 /* 1834 * We want to commit periodically so that not too much 1835 * unwritten metadata builds up. 1836 */ 1837 static void do_waker(struct work_struct *ws) 1838 { 1839 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1840 1841 policy_tick(cache->policy, true); 1842 wake_migration_worker(cache); 1843 schedule_commit(&cache->committer); 1844 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1845 } 1846 1847 static void check_migrations(struct work_struct *ws) 1848 { 1849 int r; 1850 struct policy_work *op; 1851 struct cache *cache = container_of(ws, struct cache, migration_worker); 1852 enum busy b; 1853 1854 for (;;) { 1855 b = spare_migration_bandwidth(cache); 1856 1857 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1858 if (r == -ENODATA) 1859 break; 1860 1861 if (r) { 1862 DMERR_LIMIT("%s: policy_background_work failed", 1863 cache_device_name(cache)); 1864 break; 1865 } 1866 1867 r = mg_start(cache, op, NULL); 1868 if (r) 1869 break; 1870 } 1871 } 1872 1873 /*---------------------------------------------------------------- 1874 * Target methods 1875 *--------------------------------------------------------------*/ 1876 1877 /* 1878 * This function gets called on the error paths of the constructor, so we 1879 * have to cope with a partially initialised struct. 1880 */ 1881 static void destroy(struct cache *cache) 1882 { 1883 unsigned i; 1884 1885 mempool_exit(&cache->migration_pool); 1886 1887 if (cache->prison) 1888 dm_bio_prison_destroy_v2(cache->prison); 1889 1890 cancel_delayed_work_sync(&cache->waker); 1891 if (cache->wq) 1892 destroy_workqueue(cache->wq); 1893 1894 if (cache->dirty_bitset) 1895 free_bitset(cache->dirty_bitset); 1896 1897 if (cache->discard_bitset) 1898 free_bitset(cache->discard_bitset); 1899 1900 if (cache->copier) 1901 dm_kcopyd_client_destroy(cache->copier); 1902 1903 if (cache->cmd) 1904 dm_cache_metadata_close(cache->cmd); 1905 1906 if (cache->metadata_dev) 1907 dm_put_device(cache->ti, cache->metadata_dev); 1908 1909 if (cache->origin_dev) 1910 dm_put_device(cache->ti, cache->origin_dev); 1911 1912 if (cache->cache_dev) 1913 dm_put_device(cache->ti, cache->cache_dev); 1914 1915 if (cache->policy) 1916 dm_cache_policy_destroy(cache->policy); 1917 1918 for (i = 0; i < cache->nr_ctr_args ; i++) 1919 kfree(cache->ctr_args[i]); 1920 kfree(cache->ctr_args); 1921 1922 bioset_exit(&cache->bs); 1923 1924 kfree(cache); 1925 } 1926 1927 static void cache_dtr(struct dm_target *ti) 1928 { 1929 struct cache *cache = ti->private; 1930 1931 destroy(cache); 1932 } 1933 1934 static sector_t get_dev_size(struct dm_dev *dev) 1935 { 1936 return bdev_nr_sectors(dev->bdev); 1937 } 1938 1939 /*----------------------------------------------------------------*/ 1940 1941 /* 1942 * Construct a cache device mapping. 1943 * 1944 * cache <metadata dev> <cache dev> <origin dev> <block size> 1945 * <#feature args> [<feature arg>]* 1946 * <policy> <#policy args> [<policy arg>]* 1947 * 1948 * metadata dev : fast device holding the persistent metadata 1949 * cache dev : fast device holding cached data blocks 1950 * origin dev : slow device holding original data blocks 1951 * block size : cache unit size in sectors 1952 * 1953 * #feature args : number of feature arguments passed 1954 * feature args : writethrough. (The default is writeback.) 1955 * 1956 * policy : the replacement policy to use 1957 * #policy args : an even number of policy arguments corresponding 1958 * to key/value pairs passed to the policy 1959 * policy args : key/value pairs passed to the policy 1960 * E.g. 'sequential_threshold 1024' 1961 * See cache-policies.txt for details. 1962 * 1963 * Optional feature arguments are: 1964 * writethrough : write through caching that prohibits cache block 1965 * content from being different from origin block content. 1966 * Without this argument, the default behaviour is to write 1967 * back cache block contents later for performance reasons, 1968 * so they may differ from the corresponding origin blocks. 1969 */ 1970 struct cache_args { 1971 struct dm_target *ti; 1972 1973 struct dm_dev *metadata_dev; 1974 1975 struct dm_dev *cache_dev; 1976 sector_t cache_sectors; 1977 1978 struct dm_dev *origin_dev; 1979 sector_t origin_sectors; 1980 1981 uint32_t block_size; 1982 1983 const char *policy_name; 1984 int policy_argc; 1985 const char **policy_argv; 1986 1987 struct cache_features features; 1988 }; 1989 1990 static void destroy_cache_args(struct cache_args *ca) 1991 { 1992 if (ca->metadata_dev) 1993 dm_put_device(ca->ti, ca->metadata_dev); 1994 1995 if (ca->cache_dev) 1996 dm_put_device(ca->ti, ca->cache_dev); 1997 1998 if (ca->origin_dev) 1999 dm_put_device(ca->ti, ca->origin_dev); 2000 2001 kfree(ca); 2002 } 2003 2004 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2005 { 2006 if (!as->argc) { 2007 *error = "Insufficient args"; 2008 return false; 2009 } 2010 2011 return true; 2012 } 2013 2014 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2015 char **error) 2016 { 2017 int r; 2018 sector_t metadata_dev_size; 2019 2020 if (!at_least_one_arg(as, error)) 2021 return -EINVAL; 2022 2023 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2024 &ca->metadata_dev); 2025 if (r) { 2026 *error = "Error opening metadata device"; 2027 return r; 2028 } 2029 2030 metadata_dev_size = get_dev_size(ca->metadata_dev); 2031 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2032 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 2033 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS); 2034 2035 return 0; 2036 } 2037 2038 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2039 char **error) 2040 { 2041 int r; 2042 2043 if (!at_least_one_arg(as, error)) 2044 return -EINVAL; 2045 2046 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2047 &ca->cache_dev); 2048 if (r) { 2049 *error = "Error opening cache device"; 2050 return r; 2051 } 2052 ca->cache_sectors = get_dev_size(ca->cache_dev); 2053 2054 return 0; 2055 } 2056 2057 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2058 char **error) 2059 { 2060 int r; 2061 2062 if (!at_least_one_arg(as, error)) 2063 return -EINVAL; 2064 2065 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2066 &ca->origin_dev); 2067 if (r) { 2068 *error = "Error opening origin device"; 2069 return r; 2070 } 2071 2072 ca->origin_sectors = get_dev_size(ca->origin_dev); 2073 if (ca->ti->len > ca->origin_sectors) { 2074 *error = "Device size larger than cached device"; 2075 return -EINVAL; 2076 } 2077 2078 return 0; 2079 } 2080 2081 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2082 char **error) 2083 { 2084 unsigned long block_size; 2085 2086 if (!at_least_one_arg(as, error)) 2087 return -EINVAL; 2088 2089 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2090 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2091 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2092 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2093 *error = "Invalid data block size"; 2094 return -EINVAL; 2095 } 2096 2097 if (block_size > ca->cache_sectors) { 2098 *error = "Data block size is larger than the cache device"; 2099 return -EINVAL; 2100 } 2101 2102 ca->block_size = block_size; 2103 2104 return 0; 2105 } 2106 2107 static void init_features(struct cache_features *cf) 2108 { 2109 cf->mode = CM_WRITE; 2110 cf->io_mode = CM_IO_WRITEBACK; 2111 cf->metadata_version = 1; 2112 cf->discard_passdown = true; 2113 } 2114 2115 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2116 char **error) 2117 { 2118 static const struct dm_arg _args[] = { 2119 {0, 3, "Invalid number of cache feature arguments"}, 2120 }; 2121 2122 int r, mode_ctr = 0; 2123 unsigned argc; 2124 const char *arg; 2125 struct cache_features *cf = &ca->features; 2126 2127 init_features(cf); 2128 2129 r = dm_read_arg_group(_args, as, &argc, error); 2130 if (r) 2131 return -EINVAL; 2132 2133 while (argc--) { 2134 arg = dm_shift_arg(as); 2135 2136 if (!strcasecmp(arg, "writeback")) { 2137 cf->io_mode = CM_IO_WRITEBACK; 2138 mode_ctr++; 2139 } 2140 2141 else if (!strcasecmp(arg, "writethrough")) { 2142 cf->io_mode = CM_IO_WRITETHROUGH; 2143 mode_ctr++; 2144 } 2145 2146 else if (!strcasecmp(arg, "passthrough")) { 2147 cf->io_mode = CM_IO_PASSTHROUGH; 2148 mode_ctr++; 2149 } 2150 2151 else if (!strcasecmp(arg, "metadata2")) 2152 cf->metadata_version = 2; 2153 2154 else if (!strcasecmp(arg, "no_discard_passdown")) 2155 cf->discard_passdown = false; 2156 2157 else { 2158 *error = "Unrecognised cache feature requested"; 2159 return -EINVAL; 2160 } 2161 } 2162 2163 if (mode_ctr > 1) { 2164 *error = "Duplicate cache io_mode features requested"; 2165 return -EINVAL; 2166 } 2167 2168 return 0; 2169 } 2170 2171 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2172 char **error) 2173 { 2174 static const struct dm_arg _args[] = { 2175 {0, 1024, "Invalid number of policy arguments"}, 2176 }; 2177 2178 int r; 2179 2180 if (!at_least_one_arg(as, error)) 2181 return -EINVAL; 2182 2183 ca->policy_name = dm_shift_arg(as); 2184 2185 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2186 if (r) 2187 return -EINVAL; 2188 2189 ca->policy_argv = (const char **)as->argv; 2190 dm_consume_args(as, ca->policy_argc); 2191 2192 return 0; 2193 } 2194 2195 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2196 char **error) 2197 { 2198 int r; 2199 struct dm_arg_set as; 2200 2201 as.argc = argc; 2202 as.argv = argv; 2203 2204 r = parse_metadata_dev(ca, &as, error); 2205 if (r) 2206 return r; 2207 2208 r = parse_cache_dev(ca, &as, error); 2209 if (r) 2210 return r; 2211 2212 r = parse_origin_dev(ca, &as, error); 2213 if (r) 2214 return r; 2215 2216 r = parse_block_size(ca, &as, error); 2217 if (r) 2218 return r; 2219 2220 r = parse_features(ca, &as, error); 2221 if (r) 2222 return r; 2223 2224 r = parse_policy(ca, &as, error); 2225 if (r) 2226 return r; 2227 2228 return 0; 2229 } 2230 2231 /*----------------------------------------------------------------*/ 2232 2233 static struct kmem_cache *migration_cache; 2234 2235 #define NOT_CORE_OPTION 1 2236 2237 static int process_config_option(struct cache *cache, const char *key, const char *value) 2238 { 2239 unsigned long tmp; 2240 2241 if (!strcasecmp(key, "migration_threshold")) { 2242 if (kstrtoul(value, 10, &tmp)) 2243 return -EINVAL; 2244 2245 cache->migration_threshold = tmp; 2246 return 0; 2247 } 2248 2249 return NOT_CORE_OPTION; 2250 } 2251 2252 static int set_config_value(struct cache *cache, const char *key, const char *value) 2253 { 2254 int r = process_config_option(cache, key, value); 2255 2256 if (r == NOT_CORE_OPTION) 2257 r = policy_set_config_value(cache->policy, key, value); 2258 2259 if (r) 2260 DMWARN("bad config value for %s: %s", key, value); 2261 2262 return r; 2263 } 2264 2265 static int set_config_values(struct cache *cache, int argc, const char **argv) 2266 { 2267 int r = 0; 2268 2269 if (argc & 1) { 2270 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2271 return -EINVAL; 2272 } 2273 2274 while (argc) { 2275 r = set_config_value(cache, argv[0], argv[1]); 2276 if (r) 2277 break; 2278 2279 argc -= 2; 2280 argv += 2; 2281 } 2282 2283 return r; 2284 } 2285 2286 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2287 char **error) 2288 { 2289 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2290 cache->cache_size, 2291 cache->origin_sectors, 2292 cache->sectors_per_block); 2293 if (IS_ERR(p)) { 2294 *error = "Error creating cache's policy"; 2295 return PTR_ERR(p); 2296 } 2297 cache->policy = p; 2298 BUG_ON(!cache->policy); 2299 2300 return 0; 2301 } 2302 2303 /* 2304 * We want the discard block size to be at least the size of the cache 2305 * block size and have no more than 2^14 discard blocks across the origin. 2306 */ 2307 #define MAX_DISCARD_BLOCKS (1 << 14) 2308 2309 static bool too_many_discard_blocks(sector_t discard_block_size, 2310 sector_t origin_size) 2311 { 2312 (void) sector_div(origin_size, discard_block_size); 2313 2314 return origin_size > MAX_DISCARD_BLOCKS; 2315 } 2316 2317 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2318 sector_t origin_size) 2319 { 2320 sector_t discard_block_size = cache_block_size; 2321 2322 if (origin_size) 2323 while (too_many_discard_blocks(discard_block_size, origin_size)) 2324 discard_block_size *= 2; 2325 2326 return discard_block_size; 2327 } 2328 2329 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2330 { 2331 dm_block_t nr_blocks = from_cblock(size); 2332 2333 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2334 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2335 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2336 "Please consider increasing the cache block size to reduce the overall cache block count.", 2337 (unsigned long long) nr_blocks); 2338 2339 cache->cache_size = size; 2340 } 2341 2342 #define DEFAULT_MIGRATION_THRESHOLD 2048 2343 2344 static int cache_create(struct cache_args *ca, struct cache **result) 2345 { 2346 int r = 0; 2347 char **error = &ca->ti->error; 2348 struct cache *cache; 2349 struct dm_target *ti = ca->ti; 2350 dm_block_t origin_blocks; 2351 struct dm_cache_metadata *cmd; 2352 bool may_format = ca->features.mode == CM_WRITE; 2353 2354 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2355 if (!cache) 2356 return -ENOMEM; 2357 2358 cache->ti = ca->ti; 2359 ti->private = cache; 2360 ti->accounts_remapped_io = true; 2361 ti->num_flush_bios = 2; 2362 ti->flush_supported = true; 2363 2364 ti->num_discard_bios = 1; 2365 ti->discards_supported = true; 2366 2367 ti->per_io_data_size = sizeof(struct per_bio_data); 2368 2369 cache->features = ca->features; 2370 if (writethrough_mode(cache)) { 2371 /* Create bioset for writethrough bios issued to origin */ 2372 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2373 if (r) 2374 goto bad; 2375 } 2376 2377 cache->metadata_dev = ca->metadata_dev; 2378 cache->origin_dev = ca->origin_dev; 2379 cache->cache_dev = ca->cache_dev; 2380 2381 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2382 2383 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2384 origin_blocks = block_div(origin_blocks, ca->block_size); 2385 cache->origin_blocks = to_oblock(origin_blocks); 2386 2387 cache->sectors_per_block = ca->block_size; 2388 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2389 r = -EINVAL; 2390 goto bad; 2391 } 2392 2393 if (ca->block_size & (ca->block_size - 1)) { 2394 dm_block_t cache_size = ca->cache_sectors; 2395 2396 cache->sectors_per_block_shift = -1; 2397 cache_size = block_div(cache_size, ca->block_size); 2398 set_cache_size(cache, to_cblock(cache_size)); 2399 } else { 2400 cache->sectors_per_block_shift = __ffs(ca->block_size); 2401 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2402 } 2403 2404 r = create_cache_policy(cache, ca, error); 2405 if (r) 2406 goto bad; 2407 2408 cache->policy_nr_args = ca->policy_argc; 2409 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2410 2411 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2412 if (r) { 2413 *error = "Error setting cache policy's config values"; 2414 goto bad; 2415 } 2416 2417 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2418 ca->block_size, may_format, 2419 dm_cache_policy_get_hint_size(cache->policy), 2420 ca->features.metadata_version); 2421 if (IS_ERR(cmd)) { 2422 *error = "Error creating metadata object"; 2423 r = PTR_ERR(cmd); 2424 goto bad; 2425 } 2426 cache->cmd = cmd; 2427 set_cache_mode(cache, CM_WRITE); 2428 if (get_cache_mode(cache) != CM_WRITE) { 2429 *error = "Unable to get write access to metadata, please check/repair metadata."; 2430 r = -EINVAL; 2431 goto bad; 2432 } 2433 2434 if (passthrough_mode(cache)) { 2435 bool all_clean; 2436 2437 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2438 if (r) { 2439 *error = "dm_cache_metadata_all_clean() failed"; 2440 goto bad; 2441 } 2442 2443 if (!all_clean) { 2444 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2445 r = -EINVAL; 2446 goto bad; 2447 } 2448 2449 policy_allow_migrations(cache->policy, false); 2450 } 2451 2452 spin_lock_init(&cache->lock); 2453 bio_list_init(&cache->deferred_bios); 2454 atomic_set(&cache->nr_allocated_migrations, 0); 2455 atomic_set(&cache->nr_io_migrations, 0); 2456 init_waitqueue_head(&cache->migration_wait); 2457 2458 r = -ENOMEM; 2459 atomic_set(&cache->nr_dirty, 0); 2460 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2461 if (!cache->dirty_bitset) { 2462 *error = "could not allocate dirty bitset"; 2463 goto bad; 2464 } 2465 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2466 2467 cache->discard_block_size = 2468 calculate_discard_block_size(cache->sectors_per_block, 2469 cache->origin_sectors); 2470 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2471 cache->discard_block_size)); 2472 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2473 if (!cache->discard_bitset) { 2474 *error = "could not allocate discard bitset"; 2475 goto bad; 2476 } 2477 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2478 2479 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2480 if (IS_ERR(cache->copier)) { 2481 *error = "could not create kcopyd client"; 2482 r = PTR_ERR(cache->copier); 2483 goto bad; 2484 } 2485 2486 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2487 if (!cache->wq) { 2488 *error = "could not create workqueue for metadata object"; 2489 goto bad; 2490 } 2491 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2492 INIT_WORK(&cache->migration_worker, check_migrations); 2493 INIT_DELAYED_WORK(&cache->waker, do_waker); 2494 2495 cache->prison = dm_bio_prison_create_v2(cache->wq); 2496 if (!cache->prison) { 2497 *error = "could not create bio prison"; 2498 goto bad; 2499 } 2500 2501 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2502 migration_cache); 2503 if (r) { 2504 *error = "Error creating cache's migration mempool"; 2505 goto bad; 2506 } 2507 2508 cache->need_tick_bio = true; 2509 cache->sized = false; 2510 cache->invalidate = false; 2511 cache->commit_requested = false; 2512 cache->loaded_mappings = false; 2513 cache->loaded_discards = false; 2514 2515 load_stats(cache); 2516 2517 atomic_set(&cache->stats.demotion, 0); 2518 atomic_set(&cache->stats.promotion, 0); 2519 atomic_set(&cache->stats.copies_avoided, 0); 2520 atomic_set(&cache->stats.cache_cell_clash, 0); 2521 atomic_set(&cache->stats.commit_count, 0); 2522 atomic_set(&cache->stats.discard_count, 0); 2523 2524 spin_lock_init(&cache->invalidation_lock); 2525 INIT_LIST_HEAD(&cache->invalidation_requests); 2526 2527 batcher_init(&cache->committer, commit_op, cache, 2528 issue_op, cache, cache->wq); 2529 dm_iot_init(&cache->tracker); 2530 2531 init_rwsem(&cache->background_work_lock); 2532 prevent_background_work(cache); 2533 2534 *result = cache; 2535 return 0; 2536 bad: 2537 destroy(cache); 2538 return r; 2539 } 2540 2541 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2542 { 2543 unsigned i; 2544 const char **copy; 2545 2546 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2547 if (!copy) 2548 return -ENOMEM; 2549 for (i = 0; i < argc; i++) { 2550 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2551 if (!copy[i]) { 2552 while (i--) 2553 kfree(copy[i]); 2554 kfree(copy); 2555 return -ENOMEM; 2556 } 2557 } 2558 2559 cache->nr_ctr_args = argc; 2560 cache->ctr_args = copy; 2561 2562 return 0; 2563 } 2564 2565 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2566 { 2567 int r = -EINVAL; 2568 struct cache_args *ca; 2569 struct cache *cache = NULL; 2570 2571 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2572 if (!ca) { 2573 ti->error = "Error allocating memory for cache"; 2574 return -ENOMEM; 2575 } 2576 ca->ti = ti; 2577 2578 r = parse_cache_args(ca, argc, argv, &ti->error); 2579 if (r) 2580 goto out; 2581 2582 r = cache_create(ca, &cache); 2583 if (r) 2584 goto out; 2585 2586 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2587 if (r) { 2588 destroy(cache); 2589 goto out; 2590 } 2591 2592 ti->private = cache; 2593 out: 2594 destroy_cache_args(ca); 2595 return r; 2596 } 2597 2598 /*----------------------------------------------------------------*/ 2599 2600 static int cache_map(struct dm_target *ti, struct bio *bio) 2601 { 2602 struct cache *cache = ti->private; 2603 2604 int r; 2605 bool commit_needed; 2606 dm_oblock_t block = get_bio_block(cache, bio); 2607 2608 init_per_bio_data(bio); 2609 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2610 /* 2611 * This can only occur if the io goes to a partial block at 2612 * the end of the origin device. We don't cache these. 2613 * Just remap to the origin and carry on. 2614 */ 2615 remap_to_origin(cache, bio); 2616 accounted_begin(cache, bio); 2617 return DM_MAPIO_REMAPPED; 2618 } 2619 2620 if (discard_or_flush(bio)) { 2621 defer_bio(cache, bio); 2622 return DM_MAPIO_SUBMITTED; 2623 } 2624 2625 r = map_bio(cache, bio, block, &commit_needed); 2626 if (commit_needed) 2627 schedule_commit(&cache->committer); 2628 2629 return r; 2630 } 2631 2632 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2633 { 2634 struct cache *cache = ti->private; 2635 unsigned long flags; 2636 struct per_bio_data *pb = get_per_bio_data(bio); 2637 2638 if (pb->tick) { 2639 policy_tick(cache->policy, false); 2640 2641 spin_lock_irqsave(&cache->lock, flags); 2642 cache->need_tick_bio = true; 2643 spin_unlock_irqrestore(&cache->lock, flags); 2644 } 2645 2646 bio_drop_shared_lock(cache, bio); 2647 accounted_complete(cache, bio); 2648 2649 return DM_ENDIO_DONE; 2650 } 2651 2652 static int write_dirty_bitset(struct cache *cache) 2653 { 2654 int r; 2655 2656 if (get_cache_mode(cache) >= CM_READ_ONLY) 2657 return -EINVAL; 2658 2659 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2660 if (r) 2661 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2662 2663 return r; 2664 } 2665 2666 static int write_discard_bitset(struct cache *cache) 2667 { 2668 unsigned i, r; 2669 2670 if (get_cache_mode(cache) >= CM_READ_ONLY) 2671 return -EINVAL; 2672 2673 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2674 cache->discard_nr_blocks); 2675 if (r) { 2676 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2677 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2678 return r; 2679 } 2680 2681 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2682 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2683 is_discarded(cache, to_dblock(i))); 2684 if (r) { 2685 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2686 return r; 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 static int write_hints(struct cache *cache) 2694 { 2695 int r; 2696 2697 if (get_cache_mode(cache) >= CM_READ_ONLY) 2698 return -EINVAL; 2699 2700 r = dm_cache_write_hints(cache->cmd, cache->policy); 2701 if (r) { 2702 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2703 return r; 2704 } 2705 2706 return 0; 2707 } 2708 2709 /* 2710 * returns true on success 2711 */ 2712 static bool sync_metadata(struct cache *cache) 2713 { 2714 int r1, r2, r3, r4; 2715 2716 r1 = write_dirty_bitset(cache); 2717 if (r1) 2718 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2719 2720 r2 = write_discard_bitset(cache); 2721 if (r2) 2722 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2723 2724 save_stats(cache); 2725 2726 r3 = write_hints(cache); 2727 if (r3) 2728 DMERR("%s: could not write hints", cache_device_name(cache)); 2729 2730 /* 2731 * If writing the above metadata failed, we still commit, but don't 2732 * set the clean shutdown flag. This will effectively force every 2733 * dirty bit to be set on reload. 2734 */ 2735 r4 = commit(cache, !r1 && !r2 && !r3); 2736 if (r4) 2737 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2738 2739 return !r1 && !r2 && !r3 && !r4; 2740 } 2741 2742 static void cache_postsuspend(struct dm_target *ti) 2743 { 2744 struct cache *cache = ti->private; 2745 2746 prevent_background_work(cache); 2747 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2748 2749 cancel_delayed_work_sync(&cache->waker); 2750 drain_workqueue(cache->wq); 2751 WARN_ON(cache->tracker.in_flight); 2752 2753 /* 2754 * If it's a flush suspend there won't be any deferred bios, so this 2755 * call is harmless. 2756 */ 2757 requeue_deferred_bios(cache); 2758 2759 if (get_cache_mode(cache) == CM_WRITE) 2760 (void) sync_metadata(cache); 2761 } 2762 2763 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2764 bool dirty, uint32_t hint, bool hint_valid) 2765 { 2766 struct cache *cache = context; 2767 2768 if (dirty) { 2769 set_bit(from_cblock(cblock), cache->dirty_bitset); 2770 atomic_inc(&cache->nr_dirty); 2771 } else 2772 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2773 2774 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2775 } 2776 2777 /* 2778 * The discard block size in the on disk metadata is not 2779 * necessarily the same as we're currently using. So we have to 2780 * be careful to only set the discarded attribute if we know it 2781 * covers a complete block of the new size. 2782 */ 2783 struct discard_load_info { 2784 struct cache *cache; 2785 2786 /* 2787 * These blocks are sized using the on disk dblock size, rather 2788 * than the current one. 2789 */ 2790 dm_block_t block_size; 2791 dm_block_t discard_begin, discard_end; 2792 }; 2793 2794 static void discard_load_info_init(struct cache *cache, 2795 struct discard_load_info *li) 2796 { 2797 li->cache = cache; 2798 li->discard_begin = li->discard_end = 0; 2799 } 2800 2801 static void set_discard_range(struct discard_load_info *li) 2802 { 2803 sector_t b, e; 2804 2805 if (li->discard_begin == li->discard_end) 2806 return; 2807 2808 /* 2809 * Convert to sectors. 2810 */ 2811 b = li->discard_begin * li->block_size; 2812 e = li->discard_end * li->block_size; 2813 2814 /* 2815 * Then convert back to the current dblock size. 2816 */ 2817 b = dm_sector_div_up(b, li->cache->discard_block_size); 2818 sector_div(e, li->cache->discard_block_size); 2819 2820 /* 2821 * The origin may have shrunk, so we need to check we're still in 2822 * bounds. 2823 */ 2824 if (e > from_dblock(li->cache->discard_nr_blocks)) 2825 e = from_dblock(li->cache->discard_nr_blocks); 2826 2827 for (; b < e; b++) 2828 set_discard(li->cache, to_dblock(b)); 2829 } 2830 2831 static int load_discard(void *context, sector_t discard_block_size, 2832 dm_dblock_t dblock, bool discard) 2833 { 2834 struct discard_load_info *li = context; 2835 2836 li->block_size = discard_block_size; 2837 2838 if (discard) { 2839 if (from_dblock(dblock) == li->discard_end) 2840 /* 2841 * We're already in a discard range, just extend it. 2842 */ 2843 li->discard_end = li->discard_end + 1ULL; 2844 2845 else { 2846 /* 2847 * Emit the old range and start a new one. 2848 */ 2849 set_discard_range(li); 2850 li->discard_begin = from_dblock(dblock); 2851 li->discard_end = li->discard_begin + 1ULL; 2852 } 2853 } else { 2854 set_discard_range(li); 2855 li->discard_begin = li->discard_end = 0; 2856 } 2857 2858 return 0; 2859 } 2860 2861 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2862 { 2863 sector_t size = get_dev_size(cache->cache_dev); 2864 (void) sector_div(size, cache->sectors_per_block); 2865 return to_cblock(size); 2866 } 2867 2868 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2869 { 2870 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2871 if (cache->sized) { 2872 DMERR("%s: unable to extend cache due to missing cache table reload", 2873 cache_device_name(cache)); 2874 return false; 2875 } 2876 } 2877 2878 /* 2879 * We can't drop a dirty block when shrinking the cache. 2880 */ 2881 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2882 new_size = to_cblock(from_cblock(new_size) + 1); 2883 if (is_dirty(cache, new_size)) { 2884 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2885 cache_device_name(cache), 2886 (unsigned long long) from_cblock(new_size)); 2887 return false; 2888 } 2889 } 2890 2891 return true; 2892 } 2893 2894 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2895 { 2896 int r; 2897 2898 r = dm_cache_resize(cache->cmd, new_size); 2899 if (r) { 2900 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2901 metadata_operation_failed(cache, "dm_cache_resize", r); 2902 return r; 2903 } 2904 2905 set_cache_size(cache, new_size); 2906 2907 return 0; 2908 } 2909 2910 static int cache_preresume(struct dm_target *ti) 2911 { 2912 int r = 0; 2913 struct cache *cache = ti->private; 2914 dm_cblock_t csize = get_cache_dev_size(cache); 2915 2916 /* 2917 * Check to see if the cache has resized. 2918 */ 2919 if (!cache->sized) { 2920 r = resize_cache_dev(cache, csize); 2921 if (r) 2922 return r; 2923 2924 cache->sized = true; 2925 2926 } else if (csize != cache->cache_size) { 2927 if (!can_resize(cache, csize)) 2928 return -EINVAL; 2929 2930 r = resize_cache_dev(cache, csize); 2931 if (r) 2932 return r; 2933 } 2934 2935 if (!cache->loaded_mappings) { 2936 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2937 load_mapping, cache); 2938 if (r) { 2939 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 2940 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 2941 return r; 2942 } 2943 2944 cache->loaded_mappings = true; 2945 } 2946 2947 if (!cache->loaded_discards) { 2948 struct discard_load_info li; 2949 2950 /* 2951 * The discard bitset could have been resized, or the 2952 * discard block size changed. To be safe we start by 2953 * setting every dblock to not discarded. 2954 */ 2955 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2956 2957 discard_load_info_init(cache, &li); 2958 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 2959 if (r) { 2960 DMERR("%s: could not load origin discards", cache_device_name(cache)); 2961 metadata_operation_failed(cache, "dm_cache_load_discards", r); 2962 return r; 2963 } 2964 set_discard_range(&li); 2965 2966 cache->loaded_discards = true; 2967 } 2968 2969 return r; 2970 } 2971 2972 static void cache_resume(struct dm_target *ti) 2973 { 2974 struct cache *cache = ti->private; 2975 2976 cache->need_tick_bio = true; 2977 allow_background_work(cache); 2978 do_waker(&cache->waker.work); 2979 } 2980 2981 static void emit_flags(struct cache *cache, char *result, 2982 unsigned maxlen, ssize_t *sz_ptr) 2983 { 2984 ssize_t sz = *sz_ptr; 2985 struct cache_features *cf = &cache->features; 2986 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 2987 2988 DMEMIT("%u ", count); 2989 2990 if (cf->metadata_version == 2) 2991 DMEMIT("metadata2 "); 2992 2993 if (writethrough_mode(cache)) 2994 DMEMIT("writethrough "); 2995 2996 else if (passthrough_mode(cache)) 2997 DMEMIT("passthrough "); 2998 2999 else if (writeback_mode(cache)) 3000 DMEMIT("writeback "); 3001 3002 else { 3003 DMEMIT("unknown "); 3004 DMERR("%s: internal error: unknown io mode: %d", 3005 cache_device_name(cache), (int) cf->io_mode); 3006 } 3007 3008 if (!cf->discard_passdown) 3009 DMEMIT("no_discard_passdown "); 3010 3011 *sz_ptr = sz; 3012 } 3013 3014 /* 3015 * Status format: 3016 * 3017 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3018 * <cache block size> <#used cache blocks>/<#total cache blocks> 3019 * <#read hits> <#read misses> <#write hits> <#write misses> 3020 * <#demotions> <#promotions> <#dirty> 3021 * <#features> <features>* 3022 * <#core args> <core args> 3023 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3024 */ 3025 static void cache_status(struct dm_target *ti, status_type_t type, 3026 unsigned status_flags, char *result, unsigned maxlen) 3027 { 3028 int r = 0; 3029 unsigned i; 3030 ssize_t sz = 0; 3031 dm_block_t nr_free_blocks_metadata = 0; 3032 dm_block_t nr_blocks_metadata = 0; 3033 char buf[BDEVNAME_SIZE]; 3034 struct cache *cache = ti->private; 3035 dm_cblock_t residency; 3036 bool needs_check; 3037 3038 switch (type) { 3039 case STATUSTYPE_INFO: 3040 if (get_cache_mode(cache) == CM_FAIL) { 3041 DMEMIT("Fail"); 3042 break; 3043 } 3044 3045 /* Commit to ensure statistics aren't out-of-date */ 3046 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3047 (void) commit(cache, false); 3048 3049 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3050 if (r) { 3051 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3052 cache_device_name(cache), r); 3053 goto err; 3054 } 3055 3056 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3057 if (r) { 3058 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3059 cache_device_name(cache), r); 3060 goto err; 3061 } 3062 3063 residency = policy_residency(cache->policy); 3064 3065 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3066 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, 3067 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3068 (unsigned long long)nr_blocks_metadata, 3069 (unsigned long long)cache->sectors_per_block, 3070 (unsigned long long) from_cblock(residency), 3071 (unsigned long long) from_cblock(cache->cache_size), 3072 (unsigned) atomic_read(&cache->stats.read_hit), 3073 (unsigned) atomic_read(&cache->stats.read_miss), 3074 (unsigned) atomic_read(&cache->stats.write_hit), 3075 (unsigned) atomic_read(&cache->stats.write_miss), 3076 (unsigned) atomic_read(&cache->stats.demotion), 3077 (unsigned) atomic_read(&cache->stats.promotion), 3078 (unsigned long) atomic_read(&cache->nr_dirty)); 3079 3080 emit_flags(cache, result, maxlen, &sz); 3081 3082 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3083 3084 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3085 if (sz < maxlen) { 3086 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3087 if (r) 3088 DMERR("%s: policy_emit_config_values returned %d", 3089 cache_device_name(cache), r); 3090 } 3091 3092 if (get_cache_mode(cache) == CM_READ_ONLY) 3093 DMEMIT("ro "); 3094 else 3095 DMEMIT("rw "); 3096 3097 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3098 3099 if (r || needs_check) 3100 DMEMIT("needs_check "); 3101 else 3102 DMEMIT("- "); 3103 3104 break; 3105 3106 case STATUSTYPE_TABLE: 3107 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3108 DMEMIT("%s ", buf); 3109 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3110 DMEMIT("%s ", buf); 3111 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3112 DMEMIT("%s", buf); 3113 3114 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3115 DMEMIT(" %s", cache->ctr_args[i]); 3116 if (cache->nr_ctr_args) 3117 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3118 break; 3119 3120 case STATUSTYPE_IMA: 3121 DMEMIT_TARGET_NAME_VERSION(ti->type); 3122 if (get_cache_mode(cache) == CM_FAIL) 3123 DMEMIT(",metadata_mode=fail"); 3124 else if (get_cache_mode(cache) == CM_READ_ONLY) 3125 DMEMIT(",metadata_mode=ro"); 3126 else 3127 DMEMIT(",metadata_mode=rw"); 3128 3129 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3130 DMEMIT(",cache_metadata_device=%s", buf); 3131 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3132 DMEMIT(",cache_device=%s", buf); 3133 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3134 DMEMIT(",cache_origin_device=%s", buf); 3135 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n'); 3136 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n'); 3137 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n'); 3138 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n'); 3139 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y'); 3140 DMEMIT(";"); 3141 break; 3142 } 3143 3144 return; 3145 3146 err: 3147 DMEMIT("Error"); 3148 } 3149 3150 /* 3151 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3152 * the one-past-the-end value. 3153 */ 3154 struct cblock_range { 3155 dm_cblock_t begin; 3156 dm_cblock_t end; 3157 }; 3158 3159 /* 3160 * A cache block range can take two forms: 3161 * 3162 * i) A single cblock, eg. '3456' 3163 * ii) A begin and end cblock with a dash between, eg. 123-234 3164 */ 3165 static int parse_cblock_range(struct cache *cache, const char *str, 3166 struct cblock_range *result) 3167 { 3168 char dummy; 3169 uint64_t b, e; 3170 int r; 3171 3172 /* 3173 * Try and parse form (ii) first. 3174 */ 3175 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3176 if (r < 0) 3177 return r; 3178 3179 if (r == 2) { 3180 result->begin = to_cblock(b); 3181 result->end = to_cblock(e); 3182 return 0; 3183 } 3184 3185 /* 3186 * That didn't work, try form (i). 3187 */ 3188 r = sscanf(str, "%llu%c", &b, &dummy); 3189 if (r < 0) 3190 return r; 3191 3192 if (r == 1) { 3193 result->begin = to_cblock(b); 3194 result->end = to_cblock(from_cblock(result->begin) + 1u); 3195 return 0; 3196 } 3197 3198 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3199 return -EINVAL; 3200 } 3201 3202 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3203 { 3204 uint64_t b = from_cblock(range->begin); 3205 uint64_t e = from_cblock(range->end); 3206 uint64_t n = from_cblock(cache->cache_size); 3207 3208 if (b >= n) { 3209 DMERR("%s: begin cblock out of range: %llu >= %llu", 3210 cache_device_name(cache), b, n); 3211 return -EINVAL; 3212 } 3213 3214 if (e > n) { 3215 DMERR("%s: end cblock out of range: %llu > %llu", 3216 cache_device_name(cache), e, n); 3217 return -EINVAL; 3218 } 3219 3220 if (b >= e) { 3221 DMERR("%s: invalid cblock range: %llu >= %llu", 3222 cache_device_name(cache), b, e); 3223 return -EINVAL; 3224 } 3225 3226 return 0; 3227 } 3228 3229 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3230 { 3231 return to_cblock(from_cblock(b) + 1); 3232 } 3233 3234 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3235 { 3236 int r = 0; 3237 3238 /* 3239 * We don't need to do any locking here because we know we're in 3240 * passthrough mode. There's is potential for a race between an 3241 * invalidation triggered by an io and an invalidation message. This 3242 * is harmless, we must not worry if the policy call fails. 3243 */ 3244 while (range->begin != range->end) { 3245 r = invalidate_cblock(cache, range->begin); 3246 if (r) 3247 return r; 3248 3249 range->begin = cblock_succ(range->begin); 3250 } 3251 3252 cache->commit_requested = true; 3253 return r; 3254 } 3255 3256 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 3257 const char **cblock_ranges) 3258 { 3259 int r = 0; 3260 unsigned i; 3261 struct cblock_range range; 3262 3263 if (!passthrough_mode(cache)) { 3264 DMERR("%s: cache has to be in passthrough mode for invalidation", 3265 cache_device_name(cache)); 3266 return -EPERM; 3267 } 3268 3269 for (i = 0; i < count; i++) { 3270 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3271 if (r) 3272 break; 3273 3274 r = validate_cblock_range(cache, &range); 3275 if (r) 3276 break; 3277 3278 /* 3279 * Pass begin and end origin blocks to the worker and wake it. 3280 */ 3281 r = request_invalidation(cache, &range); 3282 if (r) 3283 break; 3284 } 3285 3286 return r; 3287 } 3288 3289 /* 3290 * Supports 3291 * "<key> <value>" 3292 * and 3293 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3294 * 3295 * The key migration_threshold is supported by the cache target core. 3296 */ 3297 static int cache_message(struct dm_target *ti, unsigned argc, char **argv, 3298 char *result, unsigned maxlen) 3299 { 3300 struct cache *cache = ti->private; 3301 3302 if (!argc) 3303 return -EINVAL; 3304 3305 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3306 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3307 cache_device_name(cache)); 3308 return -EOPNOTSUPP; 3309 } 3310 3311 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3312 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3313 3314 if (argc != 2) 3315 return -EINVAL; 3316 3317 return set_config_value(cache, argv[0], argv[1]); 3318 } 3319 3320 static int cache_iterate_devices(struct dm_target *ti, 3321 iterate_devices_callout_fn fn, void *data) 3322 { 3323 int r = 0; 3324 struct cache *cache = ti->private; 3325 3326 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3327 if (!r) 3328 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3329 3330 return r; 3331 } 3332 3333 /* 3334 * If discard_passdown was enabled verify that the origin device 3335 * supports discards. Disable discard_passdown if not. 3336 */ 3337 static void disable_passdown_if_not_supported(struct cache *cache) 3338 { 3339 struct block_device *origin_bdev = cache->origin_dev->bdev; 3340 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3341 const char *reason = NULL; 3342 3343 if (!cache->features.discard_passdown) 3344 return; 3345 3346 if (!bdev_max_discard_sectors(origin_bdev)) 3347 reason = "discard unsupported"; 3348 3349 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3350 reason = "max discard sectors smaller than a block"; 3351 3352 if (reason) { 3353 DMWARN("Origin device (%pg) %s: Disabling discard passdown.", 3354 origin_bdev, reason); 3355 cache->features.discard_passdown = false; 3356 } 3357 } 3358 3359 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3360 { 3361 struct block_device *origin_bdev = cache->origin_dev->bdev; 3362 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3363 3364 if (!cache->features.discard_passdown) { 3365 /* No passdown is done so setting own virtual limits */ 3366 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3367 cache->origin_sectors); 3368 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3369 return; 3370 } 3371 3372 /* 3373 * cache_iterate_devices() is stacking both origin and fast device limits 3374 * but discards aren't passed to fast device, so inherit origin's limits. 3375 */ 3376 limits->max_discard_sectors = origin_limits->max_discard_sectors; 3377 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3378 limits->discard_granularity = origin_limits->discard_granularity; 3379 limits->discard_alignment = origin_limits->discard_alignment; 3380 limits->discard_misaligned = origin_limits->discard_misaligned; 3381 } 3382 3383 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3384 { 3385 struct cache *cache = ti->private; 3386 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3387 3388 /* 3389 * If the system-determined stacked limits are compatible with the 3390 * cache's blocksize (io_opt is a factor) do not override them. 3391 */ 3392 if (io_opt_sectors < cache->sectors_per_block || 3393 do_div(io_opt_sectors, cache->sectors_per_block)) { 3394 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3395 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3396 } 3397 3398 disable_passdown_if_not_supported(cache); 3399 set_discard_limits(cache, limits); 3400 } 3401 3402 /*----------------------------------------------------------------*/ 3403 3404 static struct target_type cache_target = { 3405 .name = "cache", 3406 .version = {2, 2, 0}, 3407 .module = THIS_MODULE, 3408 .ctr = cache_ctr, 3409 .dtr = cache_dtr, 3410 .map = cache_map, 3411 .end_io = cache_end_io, 3412 .postsuspend = cache_postsuspend, 3413 .preresume = cache_preresume, 3414 .resume = cache_resume, 3415 .status = cache_status, 3416 .message = cache_message, 3417 .iterate_devices = cache_iterate_devices, 3418 .io_hints = cache_io_hints, 3419 }; 3420 3421 static int __init dm_cache_init(void) 3422 { 3423 int r; 3424 3425 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3426 if (!migration_cache) 3427 return -ENOMEM; 3428 3429 r = dm_register_target(&cache_target); 3430 if (r) { 3431 DMERR("cache target registration failed: %d", r); 3432 kmem_cache_destroy(migration_cache); 3433 return r; 3434 } 3435 3436 return 0; 3437 } 3438 3439 static void __exit dm_cache_exit(void) 3440 { 3441 dm_unregister_target(&cache_target); 3442 kmem_cache_destroy(migration_cache); 3443 } 3444 3445 module_init(dm_cache_init); 3446 module_exit(dm_cache_exit); 3447 3448 MODULE_DESCRIPTION(DM_NAME " cache target"); 3449 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3450 MODULE_LICENSE("GPL"); 3451