xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision ba61bb17)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&iot->lock, flags);
80 	r = __iot_idle_for(iot, jifs);
81 	spin_unlock_irqrestore(&iot->lock, flags);
82 
83 	return r;
84 }
85 
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&iot->lock, flags);
91 	iot->in_flight += len;
92 	spin_unlock_irqrestore(&iot->lock, flags);
93 }
94 
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 	if (!len)
98 		return;
99 
100 	iot->in_flight -= len;
101 	if (!iot->in_flight)
102 		iot->idle_time = jiffies;
103 }
104 
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&iot->lock, flags);
110 	__iot_io_end(iot, len);
111 	spin_unlock_irqrestore(&iot->lock, flags);
112 }
113 
114 /*----------------------------------------------------------------*/
115 
116 /*
117  * Represents a chunk of future work.  'input' allows continuations to pass
118  * values between themselves, typically error values.
119  */
120 struct continuation {
121 	struct work_struct ws;
122 	blk_status_t input;
123 };
124 
125 static inline void init_continuation(struct continuation *k,
126 				     void (*fn)(struct work_struct *))
127 {
128 	INIT_WORK(&k->ws, fn);
129 	k->input = 0;
130 }
131 
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 				      struct continuation *k)
134 {
135 	queue_work(wq, &k->ws);
136 }
137 
138 /*----------------------------------------------------------------*/
139 
140 /*
141  * The batcher collects together pieces of work that need a particular
142  * operation to occur before they can proceed (typically a commit).
143  */
144 struct batcher {
145 	/*
146 	 * The operation that everyone is waiting for.
147 	 */
148 	blk_status_t (*commit_op)(void *context);
149 	void *commit_context;
150 
151 	/*
152 	 * This is how bios should be issued once the commit op is complete
153 	 * (accounted_request).
154 	 */
155 	void (*issue_op)(struct bio *bio, void *context);
156 	void *issue_context;
157 
158 	/*
159 	 * Queued work gets put on here after commit.
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	spinlock_t lock;
164 	struct list_head work_items;
165 	struct bio_list bios;
166 	struct work_struct commit_work;
167 
168 	bool commit_scheduled;
169 };
170 
171 static void __commit(struct work_struct *_ws)
172 {
173 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 	blk_status_t r;
175 	unsigned long flags;
176 	struct list_head work_items;
177 	struct work_struct *ws, *tmp;
178 	struct continuation *k;
179 	struct bio *bio;
180 	struct bio_list bios;
181 
182 	INIT_LIST_HEAD(&work_items);
183 	bio_list_init(&bios);
184 
185 	/*
186 	 * We have to grab these before the commit_op to avoid a race
187 	 * condition.
188 	 */
189 	spin_lock_irqsave(&b->lock, flags);
190 	list_splice_init(&b->work_items, &work_items);
191 	bio_list_merge(&bios, &b->bios);
192 	bio_list_init(&b->bios);
193 	b->commit_scheduled = false;
194 	spin_unlock_irqrestore(&b->lock, flags);
195 
196 	r = b->commit_op(b->commit_context);
197 
198 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 		k = container_of(ws, struct continuation, ws);
200 		k->input = r;
201 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 		queue_work(b->wq, ws);
203 	}
204 
205 	while ((bio = bio_list_pop(&bios))) {
206 		if (r) {
207 			bio->bi_status = r;
208 			bio_endio(bio);
209 		} else
210 			b->issue_op(bio, b->issue_context);
211 	}
212 }
213 
214 static void batcher_init(struct batcher *b,
215 			 blk_status_t (*commit_op)(void *),
216 			 void *commit_context,
217 			 void (*issue_op)(struct bio *bio, void *),
218 			 void *issue_context,
219 			 struct workqueue_struct *wq)
220 {
221 	b->commit_op = commit_op;
222 	b->commit_context = commit_context;
223 	b->issue_op = issue_op;
224 	b->issue_context = issue_context;
225 	b->wq = wq;
226 
227 	spin_lock_init(&b->lock);
228 	INIT_LIST_HEAD(&b->work_items);
229 	bio_list_init(&b->bios);
230 	INIT_WORK(&b->commit_work, __commit);
231 	b->commit_scheduled = false;
232 }
233 
234 static void async_commit(struct batcher *b)
235 {
236 	queue_work(b->wq, &b->commit_work);
237 }
238 
239 static void continue_after_commit(struct batcher *b, struct continuation *k)
240 {
241 	unsigned long flags;
242 	bool commit_scheduled;
243 
244 	spin_lock_irqsave(&b->lock, flags);
245 	commit_scheduled = b->commit_scheduled;
246 	list_add_tail(&k->ws.entry, &b->work_items);
247 	spin_unlock_irqrestore(&b->lock, flags);
248 
249 	if (commit_scheduled)
250 		async_commit(b);
251 }
252 
253 /*
254  * Bios are errored if commit failed.
255  */
256 static void issue_after_commit(struct batcher *b, struct bio *bio)
257 {
258        unsigned long flags;
259        bool commit_scheduled;
260 
261        spin_lock_irqsave(&b->lock, flags);
262        commit_scheduled = b->commit_scheduled;
263        bio_list_add(&b->bios, bio);
264        spin_unlock_irqrestore(&b->lock, flags);
265 
266        if (commit_scheduled)
267 	       async_commit(b);
268 }
269 
270 /*
271  * Call this if some urgent work is waiting for the commit to complete.
272  */
273 static void schedule_commit(struct batcher *b)
274 {
275 	bool immediate;
276 	unsigned long flags;
277 
278 	spin_lock_irqsave(&b->lock, flags);
279 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 	b->commit_scheduled = true;
281 	spin_unlock_irqrestore(&b->lock, flags);
282 
283 	if (immediate)
284 		async_commit(b);
285 }
286 
287 /*
288  * There are a couple of places where we let a bio run, but want to do some
289  * work before calling its endio function.  We do this by temporarily
290  * changing the endio fn.
291  */
292 struct dm_hook_info {
293 	bio_end_io_t *bi_end_io;
294 };
295 
296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 			bio_end_io_t *bi_end_io, void *bi_private)
298 {
299 	h->bi_end_io = bio->bi_end_io;
300 
301 	bio->bi_end_io = bi_end_io;
302 	bio->bi_private = bi_private;
303 }
304 
305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306 {
307 	bio->bi_end_io = h->bi_end_io;
308 }
309 
310 /*----------------------------------------------------------------*/
311 
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
315 
316 /*
317  * The block size of the device holding cache data must be
318  * between 32KB and 1GB.
319  */
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322 
323 enum cache_metadata_mode {
324 	CM_WRITE,		/* metadata may be changed */
325 	CM_READ_ONLY,		/* metadata may not be changed */
326 	CM_FAIL
327 };
328 
329 enum cache_io_mode {
330 	/*
331 	 * Data is written to cached blocks only.  These blocks are marked
332 	 * dirty.  If you lose the cache device you will lose data.
333 	 * Potential performance increase for both reads and writes.
334 	 */
335 	CM_IO_WRITEBACK,
336 
337 	/*
338 	 * Data is written to both cache and origin.  Blocks are never
339 	 * dirty.  Potential performance benfit for reads only.
340 	 */
341 	CM_IO_WRITETHROUGH,
342 
343 	/*
344 	 * A degraded mode useful for various cache coherency situations
345 	 * (eg, rolling back snapshots).  Reads and writes always go to the
346 	 * origin.  If a write goes to a cached oblock, then the cache
347 	 * block is invalidated.
348 	 */
349 	CM_IO_PASSTHROUGH
350 };
351 
352 struct cache_features {
353 	enum cache_metadata_mode mode;
354 	enum cache_io_mode io_mode;
355 	unsigned metadata_version;
356 };
357 
358 struct cache_stats {
359 	atomic_t read_hit;
360 	atomic_t read_miss;
361 	atomic_t write_hit;
362 	atomic_t write_miss;
363 	atomic_t demotion;
364 	atomic_t promotion;
365 	atomic_t writeback;
366 	atomic_t copies_avoided;
367 	atomic_t cache_cell_clash;
368 	atomic_t commit_count;
369 	atomic_t discard_count;
370 };
371 
372 struct cache {
373 	struct dm_target *ti;
374 	spinlock_t lock;
375 
376 	/*
377 	 * Fields for converting from sectors to blocks.
378 	 */
379 	int sectors_per_block_shift;
380 	sector_t sectors_per_block;
381 
382 	struct dm_cache_metadata *cmd;
383 
384 	/*
385 	 * Metadata is written to this device.
386 	 */
387 	struct dm_dev *metadata_dev;
388 
389 	/*
390 	 * The slower of the two data devices.  Typically a spindle.
391 	 */
392 	struct dm_dev *origin_dev;
393 
394 	/*
395 	 * The faster of the two data devices.  Typically an SSD.
396 	 */
397 	struct dm_dev *cache_dev;
398 
399 	/*
400 	 * Size of the origin device in _complete_ blocks and native sectors.
401 	 */
402 	dm_oblock_t origin_blocks;
403 	sector_t origin_sectors;
404 
405 	/*
406 	 * Size of the cache device in blocks.
407 	 */
408 	dm_cblock_t cache_size;
409 
410 	/*
411 	 * Invalidation fields.
412 	 */
413 	spinlock_t invalidation_lock;
414 	struct list_head invalidation_requests;
415 
416 	sector_t migration_threshold;
417 	wait_queue_head_t migration_wait;
418 	atomic_t nr_allocated_migrations;
419 
420 	/*
421 	 * The number of in flight migrations that are performing
422 	 * background io. eg, promotion, writeback.
423 	 */
424 	atomic_t nr_io_migrations;
425 
426 	struct bio_list deferred_bios;
427 
428 	struct rw_semaphore quiesce_lock;
429 
430 	struct dm_target_callbacks callbacks;
431 
432 	/*
433 	 * origin_blocks entries, discarded if set.
434 	 */
435 	dm_dblock_t discard_nr_blocks;
436 	unsigned long *discard_bitset;
437 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
438 
439 	/*
440 	 * Rather than reconstructing the table line for the status we just
441 	 * save it and regurgitate.
442 	 */
443 	unsigned nr_ctr_args;
444 	const char **ctr_args;
445 
446 	struct dm_kcopyd_client *copier;
447 	struct work_struct deferred_bio_worker;
448 	struct work_struct migration_worker;
449 	struct workqueue_struct *wq;
450 	struct delayed_work waker;
451 	struct dm_bio_prison_v2 *prison;
452 
453 	/*
454 	 * cache_size entries, dirty if set
455 	 */
456 	unsigned long *dirty_bitset;
457 	atomic_t nr_dirty;
458 
459 	unsigned policy_nr_args;
460 	struct dm_cache_policy *policy;
461 
462 	/*
463 	 * Cache features such as write-through.
464 	 */
465 	struct cache_features features;
466 
467 	struct cache_stats stats;
468 
469 	bool need_tick_bio:1;
470 	bool sized:1;
471 	bool invalidate:1;
472 	bool commit_requested:1;
473 	bool loaded_mappings:1;
474 	bool loaded_discards:1;
475 
476 	struct rw_semaphore background_work_lock;
477 
478 	struct batcher committer;
479 	struct work_struct commit_ws;
480 
481 	struct io_tracker tracker;
482 
483 	mempool_t migration_pool;
484 
485 	struct bio_set bs;
486 };
487 
488 struct per_bio_data {
489 	bool tick:1;
490 	unsigned req_nr:2;
491 	struct dm_bio_prison_cell_v2 *cell;
492 	struct dm_hook_info hook_info;
493 	sector_t len;
494 };
495 
496 struct dm_cache_migration {
497 	struct continuation k;
498 	struct cache *cache;
499 
500 	struct policy_work *op;
501 	struct bio *overwrite_bio;
502 	struct dm_bio_prison_cell_v2 *cell;
503 
504 	dm_cblock_t invalidate_cblock;
505 	dm_oblock_t invalidate_oblock;
506 };
507 
508 /*----------------------------------------------------------------*/
509 
510 static bool writethrough_mode(struct cache *cache)
511 {
512 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
513 }
514 
515 static bool writeback_mode(struct cache *cache)
516 {
517 	return cache->features.io_mode == CM_IO_WRITEBACK;
518 }
519 
520 static inline bool passthrough_mode(struct cache *cache)
521 {
522 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
523 }
524 
525 /*----------------------------------------------------------------*/
526 
527 static void wake_deferred_bio_worker(struct cache *cache)
528 {
529 	queue_work(cache->wq, &cache->deferred_bio_worker);
530 }
531 
532 static void wake_migration_worker(struct cache *cache)
533 {
534 	if (passthrough_mode(cache))
535 		return;
536 
537 	queue_work(cache->wq, &cache->migration_worker);
538 }
539 
540 /*----------------------------------------------------------------*/
541 
542 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
543 {
544 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
545 }
546 
547 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
548 {
549 	dm_bio_prison_free_cell_v2(cache->prison, cell);
550 }
551 
552 static struct dm_cache_migration *alloc_migration(struct cache *cache)
553 {
554 	struct dm_cache_migration *mg;
555 
556 	mg = mempool_alloc(&cache->migration_pool, GFP_NOWAIT);
557 	if (!mg)
558 		return NULL;
559 
560 	memset(mg, 0, sizeof(*mg));
561 
562 	mg->cache = cache;
563 	atomic_inc(&cache->nr_allocated_migrations);
564 
565 	return mg;
566 }
567 
568 static void free_migration(struct dm_cache_migration *mg)
569 {
570 	struct cache *cache = mg->cache;
571 
572 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
573 		wake_up(&cache->migration_wait);
574 
575 	mempool_free(mg, &cache->migration_pool);
576 }
577 
578 /*----------------------------------------------------------------*/
579 
580 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
581 {
582 	return to_oblock(from_oblock(b) + 1ull);
583 }
584 
585 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
586 {
587 	key->virtual = 0;
588 	key->dev = 0;
589 	key->block_begin = from_oblock(begin);
590 	key->block_end = from_oblock(end);
591 }
592 
593 /*
594  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
595  * level 1 which prevents *both* READs and WRITEs.
596  */
597 #define WRITE_LOCK_LEVEL 0
598 #define READ_WRITE_LOCK_LEVEL 1
599 
600 static unsigned lock_level(struct bio *bio)
601 {
602 	return bio_data_dir(bio) == WRITE ?
603 		WRITE_LOCK_LEVEL :
604 		READ_WRITE_LOCK_LEVEL;
605 }
606 
607 /*----------------------------------------------------------------
608  * Per bio data
609  *--------------------------------------------------------------*/
610 
611 static struct per_bio_data *get_per_bio_data(struct bio *bio)
612 {
613 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
614 	BUG_ON(!pb);
615 	return pb;
616 }
617 
618 static struct per_bio_data *init_per_bio_data(struct bio *bio)
619 {
620 	struct per_bio_data *pb = get_per_bio_data(bio);
621 
622 	pb->tick = false;
623 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
624 	pb->cell = NULL;
625 	pb->len = 0;
626 
627 	return pb;
628 }
629 
630 /*----------------------------------------------------------------*/
631 
632 static void defer_bio(struct cache *cache, struct bio *bio)
633 {
634 	unsigned long flags;
635 
636 	spin_lock_irqsave(&cache->lock, flags);
637 	bio_list_add(&cache->deferred_bios, bio);
638 	spin_unlock_irqrestore(&cache->lock, flags);
639 
640 	wake_deferred_bio_worker(cache);
641 }
642 
643 static void defer_bios(struct cache *cache, struct bio_list *bios)
644 {
645 	unsigned long flags;
646 
647 	spin_lock_irqsave(&cache->lock, flags);
648 	bio_list_merge(&cache->deferred_bios, bios);
649 	bio_list_init(bios);
650 	spin_unlock_irqrestore(&cache->lock, flags);
651 
652 	wake_deferred_bio_worker(cache);
653 }
654 
655 /*----------------------------------------------------------------*/
656 
657 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
658 {
659 	bool r;
660 	struct per_bio_data *pb;
661 	struct dm_cell_key_v2 key;
662 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
663 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
664 
665 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
666 	if (!cell_prealloc) {
667 		defer_bio(cache, bio);
668 		return false;
669 	}
670 
671 	build_key(oblock, end, &key);
672 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
673 	if (!r) {
674 		/*
675 		 * Failed to get the lock.
676 		 */
677 		free_prison_cell(cache, cell_prealloc);
678 		return r;
679 	}
680 
681 	if (cell != cell_prealloc)
682 		free_prison_cell(cache, cell_prealloc);
683 
684 	pb = get_per_bio_data(bio);
685 	pb->cell = cell;
686 
687 	return r;
688 }
689 
690 /*----------------------------------------------------------------*/
691 
692 static bool is_dirty(struct cache *cache, dm_cblock_t b)
693 {
694 	return test_bit(from_cblock(b), cache->dirty_bitset);
695 }
696 
697 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
698 {
699 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
700 		atomic_inc(&cache->nr_dirty);
701 		policy_set_dirty(cache->policy, cblock);
702 	}
703 }
704 
705 /*
706  * These two are called when setting after migrations to force the policy
707  * and dirty bitset to be in sync.
708  */
709 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
710 {
711 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
712 		atomic_inc(&cache->nr_dirty);
713 	policy_set_dirty(cache->policy, cblock);
714 }
715 
716 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
717 {
718 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
719 		if (atomic_dec_return(&cache->nr_dirty) == 0)
720 			dm_table_event(cache->ti->table);
721 	}
722 
723 	policy_clear_dirty(cache->policy, cblock);
724 }
725 
726 /*----------------------------------------------------------------*/
727 
728 static bool block_size_is_power_of_two(struct cache *cache)
729 {
730 	return cache->sectors_per_block_shift >= 0;
731 }
732 
733 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
734 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
735 __always_inline
736 #endif
737 static dm_block_t block_div(dm_block_t b, uint32_t n)
738 {
739 	do_div(b, n);
740 
741 	return b;
742 }
743 
744 static dm_block_t oblocks_per_dblock(struct cache *cache)
745 {
746 	dm_block_t oblocks = cache->discard_block_size;
747 
748 	if (block_size_is_power_of_two(cache))
749 		oblocks >>= cache->sectors_per_block_shift;
750 	else
751 		oblocks = block_div(oblocks, cache->sectors_per_block);
752 
753 	return oblocks;
754 }
755 
756 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
757 {
758 	return to_dblock(block_div(from_oblock(oblock),
759 				   oblocks_per_dblock(cache)));
760 }
761 
762 static void set_discard(struct cache *cache, dm_dblock_t b)
763 {
764 	unsigned long flags;
765 
766 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
767 	atomic_inc(&cache->stats.discard_count);
768 
769 	spin_lock_irqsave(&cache->lock, flags);
770 	set_bit(from_dblock(b), cache->discard_bitset);
771 	spin_unlock_irqrestore(&cache->lock, flags);
772 }
773 
774 static void clear_discard(struct cache *cache, dm_dblock_t b)
775 {
776 	unsigned long flags;
777 
778 	spin_lock_irqsave(&cache->lock, flags);
779 	clear_bit(from_dblock(b), cache->discard_bitset);
780 	spin_unlock_irqrestore(&cache->lock, flags);
781 }
782 
783 static bool is_discarded(struct cache *cache, dm_dblock_t b)
784 {
785 	int r;
786 	unsigned long flags;
787 
788 	spin_lock_irqsave(&cache->lock, flags);
789 	r = test_bit(from_dblock(b), cache->discard_bitset);
790 	spin_unlock_irqrestore(&cache->lock, flags);
791 
792 	return r;
793 }
794 
795 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
796 {
797 	int r;
798 	unsigned long flags;
799 
800 	spin_lock_irqsave(&cache->lock, flags);
801 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
802 		     cache->discard_bitset);
803 	spin_unlock_irqrestore(&cache->lock, flags);
804 
805 	return r;
806 }
807 
808 /*----------------------------------------------------------------
809  * Remapping
810  *--------------------------------------------------------------*/
811 static void remap_to_origin(struct cache *cache, struct bio *bio)
812 {
813 	bio_set_dev(bio, cache->origin_dev->bdev);
814 }
815 
816 static void remap_to_cache(struct cache *cache, struct bio *bio,
817 			   dm_cblock_t cblock)
818 {
819 	sector_t bi_sector = bio->bi_iter.bi_sector;
820 	sector_t block = from_cblock(cblock);
821 
822 	bio_set_dev(bio, cache->cache_dev->bdev);
823 	if (!block_size_is_power_of_two(cache))
824 		bio->bi_iter.bi_sector =
825 			(block * cache->sectors_per_block) +
826 			sector_div(bi_sector, cache->sectors_per_block);
827 	else
828 		bio->bi_iter.bi_sector =
829 			(block << cache->sectors_per_block_shift) |
830 			(bi_sector & (cache->sectors_per_block - 1));
831 }
832 
833 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
834 {
835 	unsigned long flags;
836 	struct per_bio_data *pb;
837 
838 	spin_lock_irqsave(&cache->lock, flags);
839 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
840 	    bio_op(bio) != REQ_OP_DISCARD) {
841 		pb = get_per_bio_data(bio);
842 		pb->tick = true;
843 		cache->need_tick_bio = false;
844 	}
845 	spin_unlock_irqrestore(&cache->lock, flags);
846 }
847 
848 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
849 					    dm_oblock_t oblock, bool bio_has_pbd)
850 {
851 	if (bio_has_pbd)
852 		check_if_tick_bio_needed(cache, bio);
853 	remap_to_origin(cache, bio);
854 	if (bio_data_dir(bio) == WRITE)
855 		clear_discard(cache, oblock_to_dblock(cache, oblock));
856 }
857 
858 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
859 					  dm_oblock_t oblock)
860 {
861 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
862 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
863 }
864 
865 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
866 				 dm_oblock_t oblock, dm_cblock_t cblock)
867 {
868 	check_if_tick_bio_needed(cache, bio);
869 	remap_to_cache(cache, bio, cblock);
870 	if (bio_data_dir(bio) == WRITE) {
871 		set_dirty(cache, cblock);
872 		clear_discard(cache, oblock_to_dblock(cache, oblock));
873 	}
874 }
875 
876 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
877 {
878 	sector_t block_nr = bio->bi_iter.bi_sector;
879 
880 	if (!block_size_is_power_of_two(cache))
881 		(void) sector_div(block_nr, cache->sectors_per_block);
882 	else
883 		block_nr >>= cache->sectors_per_block_shift;
884 
885 	return to_oblock(block_nr);
886 }
887 
888 static bool accountable_bio(struct cache *cache, struct bio *bio)
889 {
890 	return bio_op(bio) != REQ_OP_DISCARD;
891 }
892 
893 static void accounted_begin(struct cache *cache, struct bio *bio)
894 {
895 	struct per_bio_data *pb;
896 
897 	if (accountable_bio(cache, bio)) {
898 		pb = get_per_bio_data(bio);
899 		pb->len = bio_sectors(bio);
900 		iot_io_begin(&cache->tracker, pb->len);
901 	}
902 }
903 
904 static void accounted_complete(struct cache *cache, struct bio *bio)
905 {
906 	struct per_bio_data *pb = get_per_bio_data(bio);
907 
908 	iot_io_end(&cache->tracker, pb->len);
909 }
910 
911 static void accounted_request(struct cache *cache, struct bio *bio)
912 {
913 	accounted_begin(cache, bio);
914 	generic_make_request(bio);
915 }
916 
917 static void issue_op(struct bio *bio, void *context)
918 {
919 	struct cache *cache = context;
920 	accounted_request(cache, bio);
921 }
922 
923 /*
924  * When running in writethrough mode we need to send writes to clean blocks
925  * to both the cache and origin devices.  Clone the bio and send them in parallel.
926  */
927 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
928 				      dm_oblock_t oblock, dm_cblock_t cblock)
929 {
930 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
931 
932 	BUG_ON(!origin_bio);
933 
934 	bio_chain(origin_bio, bio);
935 	/*
936 	 * Passing false to __remap_to_origin_clear_discard() skips
937 	 * all code that might use per_bio_data (since clone doesn't have it)
938 	 */
939 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
940 	submit_bio(origin_bio);
941 
942 	remap_to_cache(cache, bio, cblock);
943 }
944 
945 /*----------------------------------------------------------------
946  * Failure modes
947  *--------------------------------------------------------------*/
948 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
949 {
950 	return cache->features.mode;
951 }
952 
953 static const char *cache_device_name(struct cache *cache)
954 {
955 	return dm_device_name(dm_table_get_md(cache->ti->table));
956 }
957 
958 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
959 {
960 	const char *descs[] = {
961 		"write",
962 		"read-only",
963 		"fail"
964 	};
965 
966 	dm_table_event(cache->ti->table);
967 	DMINFO("%s: switching cache to %s mode",
968 	       cache_device_name(cache), descs[(int)mode]);
969 }
970 
971 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
972 {
973 	bool needs_check;
974 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
975 
976 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
977 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
978 		      cache_device_name(cache));
979 		new_mode = CM_FAIL;
980 	}
981 
982 	if (new_mode == CM_WRITE && needs_check) {
983 		DMERR("%s: unable to switch cache to write mode until repaired.",
984 		      cache_device_name(cache));
985 		if (old_mode != new_mode)
986 			new_mode = old_mode;
987 		else
988 			new_mode = CM_READ_ONLY;
989 	}
990 
991 	/* Never move out of fail mode */
992 	if (old_mode == CM_FAIL)
993 		new_mode = CM_FAIL;
994 
995 	switch (new_mode) {
996 	case CM_FAIL:
997 	case CM_READ_ONLY:
998 		dm_cache_metadata_set_read_only(cache->cmd);
999 		break;
1000 
1001 	case CM_WRITE:
1002 		dm_cache_metadata_set_read_write(cache->cmd);
1003 		break;
1004 	}
1005 
1006 	cache->features.mode = new_mode;
1007 
1008 	if (new_mode != old_mode)
1009 		notify_mode_switch(cache, new_mode);
1010 }
1011 
1012 static void abort_transaction(struct cache *cache)
1013 {
1014 	const char *dev_name = cache_device_name(cache);
1015 
1016 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1017 		return;
1018 
1019 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1020 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1021 		set_cache_mode(cache, CM_FAIL);
1022 	}
1023 
1024 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1025 	if (dm_cache_metadata_abort(cache->cmd)) {
1026 		DMERR("%s: failed to abort metadata transaction", dev_name);
1027 		set_cache_mode(cache, CM_FAIL);
1028 	}
1029 }
1030 
1031 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1032 {
1033 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1034 		    cache_device_name(cache), op, r);
1035 	abort_transaction(cache);
1036 	set_cache_mode(cache, CM_READ_ONLY);
1037 }
1038 
1039 /*----------------------------------------------------------------*/
1040 
1041 static void load_stats(struct cache *cache)
1042 {
1043 	struct dm_cache_statistics stats;
1044 
1045 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1046 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1047 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1048 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1049 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1050 }
1051 
1052 static void save_stats(struct cache *cache)
1053 {
1054 	struct dm_cache_statistics stats;
1055 
1056 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1057 		return;
1058 
1059 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1060 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1061 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1062 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1063 
1064 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1065 }
1066 
1067 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1068 {
1069 	switch (op) {
1070 	case POLICY_PROMOTE:
1071 		atomic_inc(&stats->promotion);
1072 		break;
1073 
1074 	case POLICY_DEMOTE:
1075 		atomic_inc(&stats->demotion);
1076 		break;
1077 
1078 	case POLICY_WRITEBACK:
1079 		atomic_inc(&stats->writeback);
1080 		break;
1081 	}
1082 }
1083 
1084 /*----------------------------------------------------------------
1085  * Migration processing
1086  *
1087  * Migration covers moving data from the origin device to the cache, or
1088  * vice versa.
1089  *--------------------------------------------------------------*/
1090 
1091 static void inc_io_migrations(struct cache *cache)
1092 {
1093 	atomic_inc(&cache->nr_io_migrations);
1094 }
1095 
1096 static void dec_io_migrations(struct cache *cache)
1097 {
1098 	atomic_dec(&cache->nr_io_migrations);
1099 }
1100 
1101 static bool discard_or_flush(struct bio *bio)
1102 {
1103 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1104 }
1105 
1106 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1107 				     dm_dblock_t *b, dm_dblock_t *e)
1108 {
1109 	sector_t sb = bio->bi_iter.bi_sector;
1110 	sector_t se = bio_end_sector(bio);
1111 
1112 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1113 
1114 	if (se - sb < cache->discard_block_size)
1115 		*e = *b;
1116 	else
1117 		*e = to_dblock(block_div(se, cache->discard_block_size));
1118 }
1119 
1120 /*----------------------------------------------------------------*/
1121 
1122 static void prevent_background_work(struct cache *cache)
1123 {
1124 	lockdep_off();
1125 	down_write(&cache->background_work_lock);
1126 	lockdep_on();
1127 }
1128 
1129 static void allow_background_work(struct cache *cache)
1130 {
1131 	lockdep_off();
1132 	up_write(&cache->background_work_lock);
1133 	lockdep_on();
1134 }
1135 
1136 static bool background_work_begin(struct cache *cache)
1137 {
1138 	bool r;
1139 
1140 	lockdep_off();
1141 	r = down_read_trylock(&cache->background_work_lock);
1142 	lockdep_on();
1143 
1144 	return r;
1145 }
1146 
1147 static void background_work_end(struct cache *cache)
1148 {
1149 	lockdep_off();
1150 	up_read(&cache->background_work_lock);
1151 	lockdep_on();
1152 }
1153 
1154 /*----------------------------------------------------------------*/
1155 
1156 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1157 {
1158 	return (bio_data_dir(bio) == WRITE) &&
1159 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1160 }
1161 
1162 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1163 {
1164 	return writeback_mode(cache) &&
1165 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1166 }
1167 
1168 static void quiesce(struct dm_cache_migration *mg,
1169 		    void (*continuation)(struct work_struct *))
1170 {
1171 	init_continuation(&mg->k, continuation);
1172 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1173 }
1174 
1175 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1176 {
1177 	struct continuation *k = container_of(ws, struct continuation, ws);
1178 	return container_of(k, struct dm_cache_migration, k);
1179 }
1180 
1181 static void copy_complete(int read_err, unsigned long write_err, void *context)
1182 {
1183 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1184 
1185 	if (read_err || write_err)
1186 		mg->k.input = BLK_STS_IOERR;
1187 
1188 	queue_continuation(mg->cache->wq, &mg->k);
1189 }
1190 
1191 static int copy(struct dm_cache_migration *mg, bool promote)
1192 {
1193 	int r;
1194 	struct dm_io_region o_region, c_region;
1195 	struct cache *cache = mg->cache;
1196 
1197 	o_region.bdev = cache->origin_dev->bdev;
1198 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1199 	o_region.count = cache->sectors_per_block;
1200 
1201 	c_region.bdev = cache->cache_dev->bdev;
1202 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1203 	c_region.count = cache->sectors_per_block;
1204 
1205 	if (promote)
1206 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1207 	else
1208 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1209 
1210 	return r;
1211 }
1212 
1213 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1214 {
1215 	struct per_bio_data *pb = get_per_bio_data(bio);
1216 
1217 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1218 		free_prison_cell(cache, pb->cell);
1219 	pb->cell = NULL;
1220 }
1221 
1222 static void overwrite_endio(struct bio *bio)
1223 {
1224 	struct dm_cache_migration *mg = bio->bi_private;
1225 	struct cache *cache = mg->cache;
1226 	struct per_bio_data *pb = get_per_bio_data(bio);
1227 
1228 	dm_unhook_bio(&pb->hook_info, bio);
1229 
1230 	if (bio->bi_status)
1231 		mg->k.input = bio->bi_status;
1232 
1233 	queue_continuation(cache->wq, &mg->k);
1234 }
1235 
1236 static void overwrite(struct dm_cache_migration *mg,
1237 		      void (*continuation)(struct work_struct *))
1238 {
1239 	struct bio *bio = mg->overwrite_bio;
1240 	struct per_bio_data *pb = get_per_bio_data(bio);
1241 
1242 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1243 
1244 	/*
1245 	 * The overwrite bio is part of the copy operation, as such it does
1246 	 * not set/clear discard or dirty flags.
1247 	 */
1248 	if (mg->op->op == POLICY_PROMOTE)
1249 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1250 	else
1251 		remap_to_origin(mg->cache, bio);
1252 
1253 	init_continuation(&mg->k, continuation);
1254 	accounted_request(mg->cache, bio);
1255 }
1256 
1257 /*
1258  * Migration steps:
1259  *
1260  * 1) exclusive lock preventing WRITEs
1261  * 2) quiesce
1262  * 3) copy or issue overwrite bio
1263  * 4) upgrade to exclusive lock preventing READs and WRITEs
1264  * 5) quiesce
1265  * 6) update metadata and commit
1266  * 7) unlock
1267  */
1268 static void mg_complete(struct dm_cache_migration *mg, bool success)
1269 {
1270 	struct bio_list bios;
1271 	struct cache *cache = mg->cache;
1272 	struct policy_work *op = mg->op;
1273 	dm_cblock_t cblock = op->cblock;
1274 
1275 	if (success)
1276 		update_stats(&cache->stats, op->op);
1277 
1278 	switch (op->op) {
1279 	case POLICY_PROMOTE:
1280 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1281 		policy_complete_background_work(cache->policy, op, success);
1282 
1283 		if (mg->overwrite_bio) {
1284 			if (success)
1285 				force_set_dirty(cache, cblock);
1286 			else if (mg->k.input)
1287 				mg->overwrite_bio->bi_status = mg->k.input;
1288 			else
1289 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1290 			bio_endio(mg->overwrite_bio);
1291 		} else {
1292 			if (success)
1293 				force_clear_dirty(cache, cblock);
1294 			dec_io_migrations(cache);
1295 		}
1296 		break;
1297 
1298 	case POLICY_DEMOTE:
1299 		/*
1300 		 * We clear dirty here to update the nr_dirty counter.
1301 		 */
1302 		if (success)
1303 			force_clear_dirty(cache, cblock);
1304 		policy_complete_background_work(cache->policy, op, success);
1305 		dec_io_migrations(cache);
1306 		break;
1307 
1308 	case POLICY_WRITEBACK:
1309 		if (success)
1310 			force_clear_dirty(cache, cblock);
1311 		policy_complete_background_work(cache->policy, op, success);
1312 		dec_io_migrations(cache);
1313 		break;
1314 	}
1315 
1316 	bio_list_init(&bios);
1317 	if (mg->cell) {
1318 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1319 			free_prison_cell(cache, mg->cell);
1320 	}
1321 
1322 	free_migration(mg);
1323 	defer_bios(cache, &bios);
1324 	wake_migration_worker(cache);
1325 
1326 	background_work_end(cache);
1327 }
1328 
1329 static void mg_success(struct work_struct *ws)
1330 {
1331 	struct dm_cache_migration *mg = ws_to_mg(ws);
1332 	mg_complete(mg, mg->k.input == 0);
1333 }
1334 
1335 static void mg_update_metadata(struct work_struct *ws)
1336 {
1337 	int r;
1338 	struct dm_cache_migration *mg = ws_to_mg(ws);
1339 	struct cache *cache = mg->cache;
1340 	struct policy_work *op = mg->op;
1341 
1342 	switch (op->op) {
1343 	case POLICY_PROMOTE:
1344 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1345 		if (r) {
1346 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1347 				    cache_device_name(cache));
1348 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1349 
1350 			mg_complete(mg, false);
1351 			return;
1352 		}
1353 		mg_complete(mg, true);
1354 		break;
1355 
1356 	case POLICY_DEMOTE:
1357 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1358 		if (r) {
1359 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1360 				    cache_device_name(cache));
1361 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1362 
1363 			mg_complete(mg, false);
1364 			return;
1365 		}
1366 
1367 		/*
1368 		 * It would be nice if we only had to commit when a REQ_FLUSH
1369 		 * comes through.  But there's one scenario that we have to
1370 		 * look out for:
1371 		 *
1372 		 * - vblock x in a cache block
1373 		 * - domotion occurs
1374 		 * - cache block gets reallocated and over written
1375 		 * - crash
1376 		 *
1377 		 * When we recover, because there was no commit the cache will
1378 		 * rollback to having the data for vblock x in the cache block.
1379 		 * But the cache block has since been overwritten, so it'll end
1380 		 * up pointing to data that was never in 'x' during the history
1381 		 * of the device.
1382 		 *
1383 		 * To avoid this issue we require a commit as part of the
1384 		 * demotion operation.
1385 		 */
1386 		init_continuation(&mg->k, mg_success);
1387 		continue_after_commit(&cache->committer, &mg->k);
1388 		schedule_commit(&cache->committer);
1389 		break;
1390 
1391 	case POLICY_WRITEBACK:
1392 		mg_complete(mg, true);
1393 		break;
1394 	}
1395 }
1396 
1397 static void mg_update_metadata_after_copy(struct work_struct *ws)
1398 {
1399 	struct dm_cache_migration *mg = ws_to_mg(ws);
1400 
1401 	/*
1402 	 * Did the copy succeed?
1403 	 */
1404 	if (mg->k.input)
1405 		mg_complete(mg, false);
1406 	else
1407 		mg_update_metadata(ws);
1408 }
1409 
1410 static void mg_upgrade_lock(struct work_struct *ws)
1411 {
1412 	int r;
1413 	struct dm_cache_migration *mg = ws_to_mg(ws);
1414 
1415 	/*
1416 	 * Did the copy succeed?
1417 	 */
1418 	if (mg->k.input)
1419 		mg_complete(mg, false);
1420 
1421 	else {
1422 		/*
1423 		 * Now we want the lock to prevent both reads and writes.
1424 		 */
1425 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1426 					    READ_WRITE_LOCK_LEVEL);
1427 		if (r < 0)
1428 			mg_complete(mg, false);
1429 
1430 		else if (r)
1431 			quiesce(mg, mg_update_metadata);
1432 
1433 		else
1434 			mg_update_metadata(ws);
1435 	}
1436 }
1437 
1438 static void mg_full_copy(struct work_struct *ws)
1439 {
1440 	struct dm_cache_migration *mg = ws_to_mg(ws);
1441 	struct cache *cache = mg->cache;
1442 	struct policy_work *op = mg->op;
1443 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1444 
1445 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1446 	    is_discarded_oblock(cache, op->oblock)) {
1447 		mg_upgrade_lock(ws);
1448 		return;
1449 	}
1450 
1451 	init_continuation(&mg->k, mg_upgrade_lock);
1452 
1453 	if (copy(mg, is_policy_promote)) {
1454 		DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1455 		mg->k.input = BLK_STS_IOERR;
1456 		mg_complete(mg, false);
1457 	}
1458 }
1459 
1460 static void mg_copy(struct work_struct *ws)
1461 {
1462 	struct dm_cache_migration *mg = ws_to_mg(ws);
1463 
1464 	if (mg->overwrite_bio) {
1465 		/*
1466 		 * No exclusive lock was held when we last checked if the bio
1467 		 * was optimisable.  So we have to check again in case things
1468 		 * have changed (eg, the block may no longer be discarded).
1469 		 */
1470 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1471 			/*
1472 			 * Fallback to a real full copy after doing some tidying up.
1473 			 */
1474 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1475 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1476 			mg->overwrite_bio = NULL;
1477 			inc_io_migrations(mg->cache);
1478 			mg_full_copy(ws);
1479 			return;
1480 		}
1481 
1482 		/*
1483 		 * It's safe to do this here, even though it's new data
1484 		 * because all IO has been locked out of the block.
1485 		 *
1486 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1487 		 * so _not_ using mg_upgrade_lock() as continutation.
1488 		 */
1489 		overwrite(mg, mg_update_metadata_after_copy);
1490 
1491 	} else
1492 		mg_full_copy(ws);
1493 }
1494 
1495 static int mg_lock_writes(struct dm_cache_migration *mg)
1496 {
1497 	int r;
1498 	struct dm_cell_key_v2 key;
1499 	struct cache *cache = mg->cache;
1500 	struct dm_bio_prison_cell_v2 *prealloc;
1501 
1502 	prealloc = alloc_prison_cell(cache);
1503 	if (!prealloc) {
1504 		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1505 		mg_complete(mg, false);
1506 		return -ENOMEM;
1507 	}
1508 
1509 	/*
1510 	 * Prevent writes to the block, but allow reads to continue.
1511 	 * Unless we're using an overwrite bio, in which case we lock
1512 	 * everything.
1513 	 */
1514 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1515 	r = dm_cell_lock_v2(cache->prison, &key,
1516 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1517 			    prealloc, &mg->cell);
1518 	if (r < 0) {
1519 		free_prison_cell(cache, prealloc);
1520 		mg_complete(mg, false);
1521 		return r;
1522 	}
1523 
1524 	if (mg->cell != prealloc)
1525 		free_prison_cell(cache, prealloc);
1526 
1527 	if (r == 0)
1528 		mg_copy(&mg->k.ws);
1529 	else
1530 		quiesce(mg, mg_copy);
1531 
1532 	return 0;
1533 }
1534 
1535 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1536 {
1537 	struct dm_cache_migration *mg;
1538 
1539 	if (!background_work_begin(cache)) {
1540 		policy_complete_background_work(cache->policy, op, false);
1541 		return -EPERM;
1542 	}
1543 
1544 	mg = alloc_migration(cache);
1545 	if (!mg) {
1546 		policy_complete_background_work(cache->policy, op, false);
1547 		background_work_end(cache);
1548 		return -ENOMEM;
1549 	}
1550 
1551 	mg->op = op;
1552 	mg->overwrite_bio = bio;
1553 
1554 	if (!bio)
1555 		inc_io_migrations(cache);
1556 
1557 	return mg_lock_writes(mg);
1558 }
1559 
1560 /*----------------------------------------------------------------
1561  * invalidation processing
1562  *--------------------------------------------------------------*/
1563 
1564 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1565 {
1566 	struct bio_list bios;
1567 	struct cache *cache = mg->cache;
1568 
1569 	bio_list_init(&bios);
1570 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1571 		free_prison_cell(cache, mg->cell);
1572 
1573 	if (!success && mg->overwrite_bio)
1574 		bio_io_error(mg->overwrite_bio);
1575 
1576 	free_migration(mg);
1577 	defer_bios(cache, &bios);
1578 
1579 	background_work_end(cache);
1580 }
1581 
1582 static void invalidate_completed(struct work_struct *ws)
1583 {
1584 	struct dm_cache_migration *mg = ws_to_mg(ws);
1585 	invalidate_complete(mg, !mg->k.input);
1586 }
1587 
1588 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1589 {
1590 	int r = policy_invalidate_mapping(cache->policy, cblock);
1591 	if (!r) {
1592 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1593 		if (r) {
1594 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1595 				    cache_device_name(cache));
1596 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1597 		}
1598 
1599 	} else if (r == -ENODATA) {
1600 		/*
1601 		 * Harmless, already unmapped.
1602 		 */
1603 		r = 0;
1604 
1605 	} else
1606 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1607 
1608 	return r;
1609 }
1610 
1611 static void invalidate_remove(struct work_struct *ws)
1612 {
1613 	int r;
1614 	struct dm_cache_migration *mg = ws_to_mg(ws);
1615 	struct cache *cache = mg->cache;
1616 
1617 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1618 	if (r) {
1619 		invalidate_complete(mg, false);
1620 		return;
1621 	}
1622 
1623 	init_continuation(&mg->k, invalidate_completed);
1624 	continue_after_commit(&cache->committer, &mg->k);
1625 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1626 	mg->overwrite_bio = NULL;
1627 	schedule_commit(&cache->committer);
1628 }
1629 
1630 static int invalidate_lock(struct dm_cache_migration *mg)
1631 {
1632 	int r;
1633 	struct dm_cell_key_v2 key;
1634 	struct cache *cache = mg->cache;
1635 	struct dm_bio_prison_cell_v2 *prealloc;
1636 
1637 	prealloc = alloc_prison_cell(cache);
1638 	if (!prealloc) {
1639 		invalidate_complete(mg, false);
1640 		return -ENOMEM;
1641 	}
1642 
1643 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1644 	r = dm_cell_lock_v2(cache->prison, &key,
1645 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1646 	if (r < 0) {
1647 		free_prison_cell(cache, prealloc);
1648 		invalidate_complete(mg, false);
1649 		return r;
1650 	}
1651 
1652 	if (mg->cell != prealloc)
1653 		free_prison_cell(cache, prealloc);
1654 
1655 	if (r)
1656 		quiesce(mg, invalidate_remove);
1657 
1658 	else {
1659 		/*
1660 		 * We can't call invalidate_remove() directly here because we
1661 		 * might still be in request context.
1662 		 */
1663 		init_continuation(&mg->k, invalidate_remove);
1664 		queue_work(cache->wq, &mg->k.ws);
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1671 			    dm_oblock_t oblock, struct bio *bio)
1672 {
1673 	struct dm_cache_migration *mg;
1674 
1675 	if (!background_work_begin(cache))
1676 		return -EPERM;
1677 
1678 	mg = alloc_migration(cache);
1679 	if (!mg) {
1680 		background_work_end(cache);
1681 		return -ENOMEM;
1682 	}
1683 
1684 	mg->overwrite_bio = bio;
1685 	mg->invalidate_cblock = cblock;
1686 	mg->invalidate_oblock = oblock;
1687 
1688 	return invalidate_lock(mg);
1689 }
1690 
1691 /*----------------------------------------------------------------
1692  * bio processing
1693  *--------------------------------------------------------------*/
1694 
1695 enum busy {
1696 	IDLE,
1697 	BUSY
1698 };
1699 
1700 static enum busy spare_migration_bandwidth(struct cache *cache)
1701 {
1702 	bool idle = iot_idle_for(&cache->tracker, HZ);
1703 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1704 		cache->sectors_per_block;
1705 
1706 	if (idle && current_volume <= cache->migration_threshold)
1707 		return IDLE;
1708 	else
1709 		return BUSY;
1710 }
1711 
1712 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1713 {
1714 	atomic_inc(bio_data_dir(bio) == READ ?
1715 		   &cache->stats.read_hit : &cache->stats.write_hit);
1716 }
1717 
1718 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1719 {
1720 	atomic_inc(bio_data_dir(bio) == READ ?
1721 		   &cache->stats.read_miss : &cache->stats.write_miss);
1722 }
1723 
1724 /*----------------------------------------------------------------*/
1725 
1726 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1727 		   bool *commit_needed)
1728 {
1729 	int r, data_dir;
1730 	bool rb, background_queued;
1731 	dm_cblock_t cblock;
1732 
1733 	*commit_needed = false;
1734 
1735 	rb = bio_detain_shared(cache, block, bio);
1736 	if (!rb) {
1737 		/*
1738 		 * An exclusive lock is held for this block, so we have to
1739 		 * wait.  We set the commit_needed flag so the current
1740 		 * transaction will be committed asap, allowing this lock
1741 		 * to be dropped.
1742 		 */
1743 		*commit_needed = true;
1744 		return DM_MAPIO_SUBMITTED;
1745 	}
1746 
1747 	data_dir = bio_data_dir(bio);
1748 
1749 	if (optimisable_bio(cache, bio, block)) {
1750 		struct policy_work *op = NULL;
1751 
1752 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1753 		if (unlikely(r && r != -ENOENT)) {
1754 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1755 				    cache_device_name(cache), r);
1756 			bio_io_error(bio);
1757 			return DM_MAPIO_SUBMITTED;
1758 		}
1759 
1760 		if (r == -ENOENT && op) {
1761 			bio_drop_shared_lock(cache, bio);
1762 			BUG_ON(op->op != POLICY_PROMOTE);
1763 			mg_start(cache, op, bio);
1764 			return DM_MAPIO_SUBMITTED;
1765 		}
1766 	} else {
1767 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1768 		if (unlikely(r && r != -ENOENT)) {
1769 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1770 				    cache_device_name(cache), r);
1771 			bio_io_error(bio);
1772 			return DM_MAPIO_SUBMITTED;
1773 		}
1774 
1775 		if (background_queued)
1776 			wake_migration_worker(cache);
1777 	}
1778 
1779 	if (r == -ENOENT) {
1780 		struct per_bio_data *pb = get_per_bio_data(bio);
1781 
1782 		/*
1783 		 * Miss.
1784 		 */
1785 		inc_miss_counter(cache, bio);
1786 		if (pb->req_nr == 0) {
1787 			accounted_begin(cache, bio);
1788 			remap_to_origin_clear_discard(cache, bio, block);
1789 		} else {
1790 			/*
1791 			 * This is a duplicate writethrough io that is no
1792 			 * longer needed because the block has been demoted.
1793 			 */
1794 			bio_endio(bio);
1795 			return DM_MAPIO_SUBMITTED;
1796 		}
1797 	} else {
1798 		/*
1799 		 * Hit.
1800 		 */
1801 		inc_hit_counter(cache, bio);
1802 
1803 		/*
1804 		 * Passthrough always maps to the origin, invalidating any
1805 		 * cache blocks that are written to.
1806 		 */
1807 		if (passthrough_mode(cache)) {
1808 			if (bio_data_dir(bio) == WRITE) {
1809 				bio_drop_shared_lock(cache, bio);
1810 				atomic_inc(&cache->stats.demotion);
1811 				invalidate_start(cache, cblock, block, bio);
1812 			} else
1813 				remap_to_origin_clear_discard(cache, bio, block);
1814 		} else {
1815 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1816 			    !is_dirty(cache, cblock)) {
1817 				remap_to_origin_and_cache(cache, bio, block, cblock);
1818 				accounted_begin(cache, bio);
1819 			} else
1820 				remap_to_cache_dirty(cache, bio, block, cblock);
1821 		}
1822 	}
1823 
1824 	/*
1825 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1826 	 */
1827 	if (bio->bi_opf & REQ_FUA) {
1828 		/*
1829 		 * issue_after_commit will call accounted_begin a second time.  So
1830 		 * we call accounted_complete() to avoid double accounting.
1831 		 */
1832 		accounted_complete(cache, bio);
1833 		issue_after_commit(&cache->committer, bio);
1834 		*commit_needed = true;
1835 		return DM_MAPIO_SUBMITTED;
1836 	}
1837 
1838 	return DM_MAPIO_REMAPPED;
1839 }
1840 
1841 static bool process_bio(struct cache *cache, struct bio *bio)
1842 {
1843 	bool commit_needed;
1844 
1845 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1846 		generic_make_request(bio);
1847 
1848 	return commit_needed;
1849 }
1850 
1851 /*
1852  * A non-zero return indicates read_only or fail_io mode.
1853  */
1854 static int commit(struct cache *cache, bool clean_shutdown)
1855 {
1856 	int r;
1857 
1858 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1859 		return -EINVAL;
1860 
1861 	atomic_inc(&cache->stats.commit_count);
1862 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1863 	if (r)
1864 		metadata_operation_failed(cache, "dm_cache_commit", r);
1865 
1866 	return r;
1867 }
1868 
1869 /*
1870  * Used by the batcher.
1871  */
1872 static blk_status_t commit_op(void *context)
1873 {
1874 	struct cache *cache = context;
1875 
1876 	if (dm_cache_changed_this_transaction(cache->cmd))
1877 		return errno_to_blk_status(commit(cache, false));
1878 
1879 	return 0;
1880 }
1881 
1882 /*----------------------------------------------------------------*/
1883 
1884 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1885 {
1886 	struct per_bio_data *pb = get_per_bio_data(bio);
1887 
1888 	if (!pb->req_nr)
1889 		remap_to_origin(cache, bio);
1890 	else
1891 		remap_to_cache(cache, bio, 0);
1892 
1893 	issue_after_commit(&cache->committer, bio);
1894 	return true;
1895 }
1896 
1897 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1898 {
1899 	dm_dblock_t b, e;
1900 
1901 	// FIXME: do we need to lock the region?  Or can we just assume the
1902 	// user wont be so foolish as to issue discard concurrently with
1903 	// other IO?
1904 	calc_discard_block_range(cache, bio, &b, &e);
1905 	while (b != e) {
1906 		set_discard(cache, b);
1907 		b = to_dblock(from_dblock(b) + 1);
1908 	}
1909 
1910 	bio_endio(bio);
1911 
1912 	return false;
1913 }
1914 
1915 static void process_deferred_bios(struct work_struct *ws)
1916 {
1917 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1918 
1919 	unsigned long flags;
1920 	bool commit_needed = false;
1921 	struct bio_list bios;
1922 	struct bio *bio;
1923 
1924 	bio_list_init(&bios);
1925 
1926 	spin_lock_irqsave(&cache->lock, flags);
1927 	bio_list_merge(&bios, &cache->deferred_bios);
1928 	bio_list_init(&cache->deferred_bios);
1929 	spin_unlock_irqrestore(&cache->lock, flags);
1930 
1931 	while ((bio = bio_list_pop(&bios))) {
1932 		if (bio->bi_opf & REQ_PREFLUSH)
1933 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1934 
1935 		else if (bio_op(bio) == REQ_OP_DISCARD)
1936 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1937 
1938 		else
1939 			commit_needed = process_bio(cache, bio) || commit_needed;
1940 	}
1941 
1942 	if (commit_needed)
1943 		schedule_commit(&cache->committer);
1944 }
1945 
1946 /*----------------------------------------------------------------
1947  * Main worker loop
1948  *--------------------------------------------------------------*/
1949 
1950 static void requeue_deferred_bios(struct cache *cache)
1951 {
1952 	struct bio *bio;
1953 	struct bio_list bios;
1954 
1955 	bio_list_init(&bios);
1956 	bio_list_merge(&bios, &cache->deferred_bios);
1957 	bio_list_init(&cache->deferred_bios);
1958 
1959 	while ((bio = bio_list_pop(&bios))) {
1960 		bio->bi_status = BLK_STS_DM_REQUEUE;
1961 		bio_endio(bio);
1962 	}
1963 }
1964 
1965 /*
1966  * We want to commit periodically so that not too much
1967  * unwritten metadata builds up.
1968  */
1969 static void do_waker(struct work_struct *ws)
1970 {
1971 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1972 
1973 	policy_tick(cache->policy, true);
1974 	wake_migration_worker(cache);
1975 	schedule_commit(&cache->committer);
1976 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1977 }
1978 
1979 static void check_migrations(struct work_struct *ws)
1980 {
1981 	int r;
1982 	struct policy_work *op;
1983 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1984 	enum busy b;
1985 
1986 	for (;;) {
1987 		b = spare_migration_bandwidth(cache);
1988 
1989 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1990 		if (r == -ENODATA)
1991 			break;
1992 
1993 		if (r) {
1994 			DMERR_LIMIT("%s: policy_background_work failed",
1995 				    cache_device_name(cache));
1996 			break;
1997 		}
1998 
1999 		r = mg_start(cache, op, NULL);
2000 		if (r)
2001 			break;
2002 	}
2003 }
2004 
2005 /*----------------------------------------------------------------
2006  * Target methods
2007  *--------------------------------------------------------------*/
2008 
2009 /*
2010  * This function gets called on the error paths of the constructor, so we
2011  * have to cope with a partially initialised struct.
2012  */
2013 static void destroy(struct cache *cache)
2014 {
2015 	unsigned i;
2016 
2017 	mempool_exit(&cache->migration_pool);
2018 
2019 	if (cache->prison)
2020 		dm_bio_prison_destroy_v2(cache->prison);
2021 
2022 	if (cache->wq)
2023 		destroy_workqueue(cache->wq);
2024 
2025 	if (cache->dirty_bitset)
2026 		free_bitset(cache->dirty_bitset);
2027 
2028 	if (cache->discard_bitset)
2029 		free_bitset(cache->discard_bitset);
2030 
2031 	if (cache->copier)
2032 		dm_kcopyd_client_destroy(cache->copier);
2033 
2034 	if (cache->cmd)
2035 		dm_cache_metadata_close(cache->cmd);
2036 
2037 	if (cache->metadata_dev)
2038 		dm_put_device(cache->ti, cache->metadata_dev);
2039 
2040 	if (cache->origin_dev)
2041 		dm_put_device(cache->ti, cache->origin_dev);
2042 
2043 	if (cache->cache_dev)
2044 		dm_put_device(cache->ti, cache->cache_dev);
2045 
2046 	if (cache->policy)
2047 		dm_cache_policy_destroy(cache->policy);
2048 
2049 	for (i = 0; i < cache->nr_ctr_args ; i++)
2050 		kfree(cache->ctr_args[i]);
2051 	kfree(cache->ctr_args);
2052 
2053 	bioset_exit(&cache->bs);
2054 
2055 	kfree(cache);
2056 }
2057 
2058 static void cache_dtr(struct dm_target *ti)
2059 {
2060 	struct cache *cache = ti->private;
2061 
2062 	destroy(cache);
2063 }
2064 
2065 static sector_t get_dev_size(struct dm_dev *dev)
2066 {
2067 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2068 }
2069 
2070 /*----------------------------------------------------------------*/
2071 
2072 /*
2073  * Construct a cache device mapping.
2074  *
2075  * cache <metadata dev> <cache dev> <origin dev> <block size>
2076  *       <#feature args> [<feature arg>]*
2077  *       <policy> <#policy args> [<policy arg>]*
2078  *
2079  * metadata dev    : fast device holding the persistent metadata
2080  * cache dev	   : fast device holding cached data blocks
2081  * origin dev	   : slow device holding original data blocks
2082  * block size	   : cache unit size in sectors
2083  *
2084  * #feature args   : number of feature arguments passed
2085  * feature args    : writethrough.  (The default is writeback.)
2086  *
2087  * policy	   : the replacement policy to use
2088  * #policy args    : an even number of policy arguments corresponding
2089  *		     to key/value pairs passed to the policy
2090  * policy args	   : key/value pairs passed to the policy
2091  *		     E.g. 'sequential_threshold 1024'
2092  *		     See cache-policies.txt for details.
2093  *
2094  * Optional feature arguments are:
2095  *   writethrough  : write through caching that prohibits cache block
2096  *		     content from being different from origin block content.
2097  *		     Without this argument, the default behaviour is to write
2098  *		     back cache block contents later for performance reasons,
2099  *		     so they may differ from the corresponding origin blocks.
2100  */
2101 struct cache_args {
2102 	struct dm_target *ti;
2103 
2104 	struct dm_dev *metadata_dev;
2105 
2106 	struct dm_dev *cache_dev;
2107 	sector_t cache_sectors;
2108 
2109 	struct dm_dev *origin_dev;
2110 	sector_t origin_sectors;
2111 
2112 	uint32_t block_size;
2113 
2114 	const char *policy_name;
2115 	int policy_argc;
2116 	const char **policy_argv;
2117 
2118 	struct cache_features features;
2119 };
2120 
2121 static void destroy_cache_args(struct cache_args *ca)
2122 {
2123 	if (ca->metadata_dev)
2124 		dm_put_device(ca->ti, ca->metadata_dev);
2125 
2126 	if (ca->cache_dev)
2127 		dm_put_device(ca->ti, ca->cache_dev);
2128 
2129 	if (ca->origin_dev)
2130 		dm_put_device(ca->ti, ca->origin_dev);
2131 
2132 	kfree(ca);
2133 }
2134 
2135 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2136 {
2137 	if (!as->argc) {
2138 		*error = "Insufficient args";
2139 		return false;
2140 	}
2141 
2142 	return true;
2143 }
2144 
2145 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2146 			      char **error)
2147 {
2148 	int r;
2149 	sector_t metadata_dev_size;
2150 	char b[BDEVNAME_SIZE];
2151 
2152 	if (!at_least_one_arg(as, error))
2153 		return -EINVAL;
2154 
2155 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2156 			  &ca->metadata_dev);
2157 	if (r) {
2158 		*error = "Error opening metadata device";
2159 		return r;
2160 	}
2161 
2162 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2163 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2164 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2165 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2166 
2167 	return 0;
2168 }
2169 
2170 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2171 			   char **error)
2172 {
2173 	int r;
2174 
2175 	if (!at_least_one_arg(as, error))
2176 		return -EINVAL;
2177 
2178 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2179 			  &ca->cache_dev);
2180 	if (r) {
2181 		*error = "Error opening cache device";
2182 		return r;
2183 	}
2184 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2185 
2186 	return 0;
2187 }
2188 
2189 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2190 			    char **error)
2191 {
2192 	int r;
2193 
2194 	if (!at_least_one_arg(as, error))
2195 		return -EINVAL;
2196 
2197 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2198 			  &ca->origin_dev);
2199 	if (r) {
2200 		*error = "Error opening origin device";
2201 		return r;
2202 	}
2203 
2204 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2205 	if (ca->ti->len > ca->origin_sectors) {
2206 		*error = "Device size larger than cached device";
2207 		return -EINVAL;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2214 			    char **error)
2215 {
2216 	unsigned long block_size;
2217 
2218 	if (!at_least_one_arg(as, error))
2219 		return -EINVAL;
2220 
2221 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2222 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2223 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2224 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2225 		*error = "Invalid data block size";
2226 		return -EINVAL;
2227 	}
2228 
2229 	if (block_size > ca->cache_sectors) {
2230 		*error = "Data block size is larger than the cache device";
2231 		return -EINVAL;
2232 	}
2233 
2234 	ca->block_size = block_size;
2235 
2236 	return 0;
2237 }
2238 
2239 static void init_features(struct cache_features *cf)
2240 {
2241 	cf->mode = CM_WRITE;
2242 	cf->io_mode = CM_IO_WRITEBACK;
2243 	cf->metadata_version = 1;
2244 }
2245 
2246 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2247 			  char **error)
2248 {
2249 	static const struct dm_arg _args[] = {
2250 		{0, 2, "Invalid number of cache feature arguments"},
2251 	};
2252 
2253 	int r;
2254 	unsigned argc;
2255 	const char *arg;
2256 	struct cache_features *cf = &ca->features;
2257 
2258 	init_features(cf);
2259 
2260 	r = dm_read_arg_group(_args, as, &argc, error);
2261 	if (r)
2262 		return -EINVAL;
2263 
2264 	while (argc--) {
2265 		arg = dm_shift_arg(as);
2266 
2267 		if (!strcasecmp(arg, "writeback"))
2268 			cf->io_mode = CM_IO_WRITEBACK;
2269 
2270 		else if (!strcasecmp(arg, "writethrough"))
2271 			cf->io_mode = CM_IO_WRITETHROUGH;
2272 
2273 		else if (!strcasecmp(arg, "passthrough"))
2274 			cf->io_mode = CM_IO_PASSTHROUGH;
2275 
2276 		else if (!strcasecmp(arg, "metadata2"))
2277 			cf->metadata_version = 2;
2278 
2279 		else {
2280 			*error = "Unrecognised cache feature requested";
2281 			return -EINVAL;
2282 		}
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2289 			char **error)
2290 {
2291 	static const struct dm_arg _args[] = {
2292 		{0, 1024, "Invalid number of policy arguments"},
2293 	};
2294 
2295 	int r;
2296 
2297 	if (!at_least_one_arg(as, error))
2298 		return -EINVAL;
2299 
2300 	ca->policy_name = dm_shift_arg(as);
2301 
2302 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2303 	if (r)
2304 		return -EINVAL;
2305 
2306 	ca->policy_argv = (const char **)as->argv;
2307 	dm_consume_args(as, ca->policy_argc);
2308 
2309 	return 0;
2310 }
2311 
2312 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2313 			    char **error)
2314 {
2315 	int r;
2316 	struct dm_arg_set as;
2317 
2318 	as.argc = argc;
2319 	as.argv = argv;
2320 
2321 	r = parse_metadata_dev(ca, &as, error);
2322 	if (r)
2323 		return r;
2324 
2325 	r = parse_cache_dev(ca, &as, error);
2326 	if (r)
2327 		return r;
2328 
2329 	r = parse_origin_dev(ca, &as, error);
2330 	if (r)
2331 		return r;
2332 
2333 	r = parse_block_size(ca, &as, error);
2334 	if (r)
2335 		return r;
2336 
2337 	r = parse_features(ca, &as, error);
2338 	if (r)
2339 		return r;
2340 
2341 	r = parse_policy(ca, &as, error);
2342 	if (r)
2343 		return r;
2344 
2345 	return 0;
2346 }
2347 
2348 /*----------------------------------------------------------------*/
2349 
2350 static struct kmem_cache *migration_cache;
2351 
2352 #define NOT_CORE_OPTION 1
2353 
2354 static int process_config_option(struct cache *cache, const char *key, const char *value)
2355 {
2356 	unsigned long tmp;
2357 
2358 	if (!strcasecmp(key, "migration_threshold")) {
2359 		if (kstrtoul(value, 10, &tmp))
2360 			return -EINVAL;
2361 
2362 		cache->migration_threshold = tmp;
2363 		return 0;
2364 	}
2365 
2366 	return NOT_CORE_OPTION;
2367 }
2368 
2369 static int set_config_value(struct cache *cache, const char *key, const char *value)
2370 {
2371 	int r = process_config_option(cache, key, value);
2372 
2373 	if (r == NOT_CORE_OPTION)
2374 		r = policy_set_config_value(cache->policy, key, value);
2375 
2376 	if (r)
2377 		DMWARN("bad config value for %s: %s", key, value);
2378 
2379 	return r;
2380 }
2381 
2382 static int set_config_values(struct cache *cache, int argc, const char **argv)
2383 {
2384 	int r = 0;
2385 
2386 	if (argc & 1) {
2387 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2388 		return -EINVAL;
2389 	}
2390 
2391 	while (argc) {
2392 		r = set_config_value(cache, argv[0], argv[1]);
2393 		if (r)
2394 			break;
2395 
2396 		argc -= 2;
2397 		argv += 2;
2398 	}
2399 
2400 	return r;
2401 }
2402 
2403 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2404 			       char **error)
2405 {
2406 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2407 							   cache->cache_size,
2408 							   cache->origin_sectors,
2409 							   cache->sectors_per_block);
2410 	if (IS_ERR(p)) {
2411 		*error = "Error creating cache's policy";
2412 		return PTR_ERR(p);
2413 	}
2414 	cache->policy = p;
2415 	BUG_ON(!cache->policy);
2416 
2417 	return 0;
2418 }
2419 
2420 /*
2421  * We want the discard block size to be at least the size of the cache
2422  * block size and have no more than 2^14 discard blocks across the origin.
2423  */
2424 #define MAX_DISCARD_BLOCKS (1 << 14)
2425 
2426 static bool too_many_discard_blocks(sector_t discard_block_size,
2427 				    sector_t origin_size)
2428 {
2429 	(void) sector_div(origin_size, discard_block_size);
2430 
2431 	return origin_size > MAX_DISCARD_BLOCKS;
2432 }
2433 
2434 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2435 					     sector_t origin_size)
2436 {
2437 	sector_t discard_block_size = cache_block_size;
2438 
2439 	if (origin_size)
2440 		while (too_many_discard_blocks(discard_block_size, origin_size))
2441 			discard_block_size *= 2;
2442 
2443 	return discard_block_size;
2444 }
2445 
2446 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2447 {
2448 	dm_block_t nr_blocks = from_cblock(size);
2449 
2450 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2451 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2452 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2453 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2454 			     (unsigned long long) nr_blocks);
2455 
2456 	cache->cache_size = size;
2457 }
2458 
2459 static int is_congested(struct dm_dev *dev, int bdi_bits)
2460 {
2461 	struct request_queue *q = bdev_get_queue(dev->bdev);
2462 	return bdi_congested(q->backing_dev_info, bdi_bits);
2463 }
2464 
2465 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2466 {
2467 	struct cache *cache = container_of(cb, struct cache, callbacks);
2468 
2469 	return is_congested(cache->origin_dev, bdi_bits) ||
2470 		is_congested(cache->cache_dev, bdi_bits);
2471 }
2472 
2473 #define DEFAULT_MIGRATION_THRESHOLD 2048
2474 
2475 static int cache_create(struct cache_args *ca, struct cache **result)
2476 {
2477 	int r = 0;
2478 	char **error = &ca->ti->error;
2479 	struct cache *cache;
2480 	struct dm_target *ti = ca->ti;
2481 	dm_block_t origin_blocks;
2482 	struct dm_cache_metadata *cmd;
2483 	bool may_format = ca->features.mode == CM_WRITE;
2484 
2485 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2486 	if (!cache)
2487 		return -ENOMEM;
2488 
2489 	cache->ti = ca->ti;
2490 	ti->private = cache;
2491 	ti->num_flush_bios = 2;
2492 	ti->flush_supported = true;
2493 
2494 	ti->num_discard_bios = 1;
2495 	ti->discards_supported = true;
2496 	ti->split_discard_bios = false;
2497 
2498 	ti->per_io_data_size = sizeof(struct per_bio_data);
2499 
2500 	cache->features = ca->features;
2501 	if (writethrough_mode(cache)) {
2502 		/* Create bioset for writethrough bios issued to origin */
2503 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2504 		if (r)
2505 			goto bad;
2506 	}
2507 
2508 	cache->callbacks.congested_fn = cache_is_congested;
2509 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2510 
2511 	cache->metadata_dev = ca->metadata_dev;
2512 	cache->origin_dev = ca->origin_dev;
2513 	cache->cache_dev = ca->cache_dev;
2514 
2515 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2516 
2517 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2518 	origin_blocks = block_div(origin_blocks, ca->block_size);
2519 	cache->origin_blocks = to_oblock(origin_blocks);
2520 
2521 	cache->sectors_per_block = ca->block_size;
2522 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2523 		r = -EINVAL;
2524 		goto bad;
2525 	}
2526 
2527 	if (ca->block_size & (ca->block_size - 1)) {
2528 		dm_block_t cache_size = ca->cache_sectors;
2529 
2530 		cache->sectors_per_block_shift = -1;
2531 		cache_size = block_div(cache_size, ca->block_size);
2532 		set_cache_size(cache, to_cblock(cache_size));
2533 	} else {
2534 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2535 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2536 	}
2537 
2538 	r = create_cache_policy(cache, ca, error);
2539 	if (r)
2540 		goto bad;
2541 
2542 	cache->policy_nr_args = ca->policy_argc;
2543 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2544 
2545 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2546 	if (r) {
2547 		*error = "Error setting cache policy's config values";
2548 		goto bad;
2549 	}
2550 
2551 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2552 				     ca->block_size, may_format,
2553 				     dm_cache_policy_get_hint_size(cache->policy),
2554 				     ca->features.metadata_version);
2555 	if (IS_ERR(cmd)) {
2556 		*error = "Error creating metadata object";
2557 		r = PTR_ERR(cmd);
2558 		goto bad;
2559 	}
2560 	cache->cmd = cmd;
2561 	set_cache_mode(cache, CM_WRITE);
2562 	if (get_cache_mode(cache) != CM_WRITE) {
2563 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2564 		r = -EINVAL;
2565 		goto bad;
2566 	}
2567 
2568 	if (passthrough_mode(cache)) {
2569 		bool all_clean;
2570 
2571 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2572 		if (r) {
2573 			*error = "dm_cache_metadata_all_clean() failed";
2574 			goto bad;
2575 		}
2576 
2577 		if (!all_clean) {
2578 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2579 			r = -EINVAL;
2580 			goto bad;
2581 		}
2582 
2583 		policy_allow_migrations(cache->policy, false);
2584 	}
2585 
2586 	spin_lock_init(&cache->lock);
2587 	bio_list_init(&cache->deferred_bios);
2588 	atomic_set(&cache->nr_allocated_migrations, 0);
2589 	atomic_set(&cache->nr_io_migrations, 0);
2590 	init_waitqueue_head(&cache->migration_wait);
2591 
2592 	r = -ENOMEM;
2593 	atomic_set(&cache->nr_dirty, 0);
2594 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2595 	if (!cache->dirty_bitset) {
2596 		*error = "could not allocate dirty bitset";
2597 		goto bad;
2598 	}
2599 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2600 
2601 	cache->discard_block_size =
2602 		calculate_discard_block_size(cache->sectors_per_block,
2603 					     cache->origin_sectors);
2604 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2605 							      cache->discard_block_size));
2606 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2607 	if (!cache->discard_bitset) {
2608 		*error = "could not allocate discard bitset";
2609 		goto bad;
2610 	}
2611 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2612 
2613 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2614 	if (IS_ERR(cache->copier)) {
2615 		*error = "could not create kcopyd client";
2616 		r = PTR_ERR(cache->copier);
2617 		goto bad;
2618 	}
2619 
2620 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2621 	if (!cache->wq) {
2622 		*error = "could not create workqueue for metadata object";
2623 		goto bad;
2624 	}
2625 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2626 	INIT_WORK(&cache->migration_worker, check_migrations);
2627 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2628 
2629 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2630 	if (!cache->prison) {
2631 		*error = "could not create bio prison";
2632 		goto bad;
2633 	}
2634 
2635 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2636 				   migration_cache);
2637 	if (r) {
2638 		*error = "Error creating cache's migration mempool";
2639 		goto bad;
2640 	}
2641 
2642 	cache->need_tick_bio = true;
2643 	cache->sized = false;
2644 	cache->invalidate = false;
2645 	cache->commit_requested = false;
2646 	cache->loaded_mappings = false;
2647 	cache->loaded_discards = false;
2648 
2649 	load_stats(cache);
2650 
2651 	atomic_set(&cache->stats.demotion, 0);
2652 	atomic_set(&cache->stats.promotion, 0);
2653 	atomic_set(&cache->stats.copies_avoided, 0);
2654 	atomic_set(&cache->stats.cache_cell_clash, 0);
2655 	atomic_set(&cache->stats.commit_count, 0);
2656 	atomic_set(&cache->stats.discard_count, 0);
2657 
2658 	spin_lock_init(&cache->invalidation_lock);
2659 	INIT_LIST_HEAD(&cache->invalidation_requests);
2660 
2661 	batcher_init(&cache->committer, commit_op, cache,
2662 		     issue_op, cache, cache->wq);
2663 	iot_init(&cache->tracker);
2664 
2665 	init_rwsem(&cache->background_work_lock);
2666 	prevent_background_work(cache);
2667 
2668 	*result = cache;
2669 	return 0;
2670 bad:
2671 	destroy(cache);
2672 	return r;
2673 }
2674 
2675 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2676 {
2677 	unsigned i;
2678 	const char **copy;
2679 
2680 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2681 	if (!copy)
2682 		return -ENOMEM;
2683 	for (i = 0; i < argc; i++) {
2684 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2685 		if (!copy[i]) {
2686 			while (i--)
2687 				kfree(copy[i]);
2688 			kfree(copy);
2689 			return -ENOMEM;
2690 		}
2691 	}
2692 
2693 	cache->nr_ctr_args = argc;
2694 	cache->ctr_args = copy;
2695 
2696 	return 0;
2697 }
2698 
2699 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2700 {
2701 	int r = -EINVAL;
2702 	struct cache_args *ca;
2703 	struct cache *cache = NULL;
2704 
2705 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2706 	if (!ca) {
2707 		ti->error = "Error allocating memory for cache";
2708 		return -ENOMEM;
2709 	}
2710 	ca->ti = ti;
2711 
2712 	r = parse_cache_args(ca, argc, argv, &ti->error);
2713 	if (r)
2714 		goto out;
2715 
2716 	r = cache_create(ca, &cache);
2717 	if (r)
2718 		goto out;
2719 
2720 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2721 	if (r) {
2722 		destroy(cache);
2723 		goto out;
2724 	}
2725 
2726 	ti->private = cache;
2727 out:
2728 	destroy_cache_args(ca);
2729 	return r;
2730 }
2731 
2732 /*----------------------------------------------------------------*/
2733 
2734 static int cache_map(struct dm_target *ti, struct bio *bio)
2735 {
2736 	struct cache *cache = ti->private;
2737 
2738 	int r;
2739 	bool commit_needed;
2740 	dm_oblock_t block = get_bio_block(cache, bio);
2741 
2742 	init_per_bio_data(bio);
2743 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2744 		/*
2745 		 * This can only occur if the io goes to a partial block at
2746 		 * the end of the origin device.  We don't cache these.
2747 		 * Just remap to the origin and carry on.
2748 		 */
2749 		remap_to_origin(cache, bio);
2750 		accounted_begin(cache, bio);
2751 		return DM_MAPIO_REMAPPED;
2752 	}
2753 
2754 	if (discard_or_flush(bio)) {
2755 		defer_bio(cache, bio);
2756 		return DM_MAPIO_SUBMITTED;
2757 	}
2758 
2759 	r = map_bio(cache, bio, block, &commit_needed);
2760 	if (commit_needed)
2761 		schedule_commit(&cache->committer);
2762 
2763 	return r;
2764 }
2765 
2766 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2767 {
2768 	struct cache *cache = ti->private;
2769 	unsigned long flags;
2770 	struct per_bio_data *pb = get_per_bio_data(bio);
2771 
2772 	if (pb->tick) {
2773 		policy_tick(cache->policy, false);
2774 
2775 		spin_lock_irqsave(&cache->lock, flags);
2776 		cache->need_tick_bio = true;
2777 		spin_unlock_irqrestore(&cache->lock, flags);
2778 	}
2779 
2780 	bio_drop_shared_lock(cache, bio);
2781 	accounted_complete(cache, bio);
2782 
2783 	return DM_ENDIO_DONE;
2784 }
2785 
2786 static int write_dirty_bitset(struct cache *cache)
2787 {
2788 	int r;
2789 
2790 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2791 		return -EINVAL;
2792 
2793 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2794 	if (r)
2795 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2796 
2797 	return r;
2798 }
2799 
2800 static int write_discard_bitset(struct cache *cache)
2801 {
2802 	unsigned i, r;
2803 
2804 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2805 		return -EINVAL;
2806 
2807 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2808 					   cache->discard_nr_blocks);
2809 	if (r) {
2810 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2811 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2812 		return r;
2813 	}
2814 
2815 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2816 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2817 					 is_discarded(cache, to_dblock(i)));
2818 		if (r) {
2819 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2820 			return r;
2821 		}
2822 	}
2823 
2824 	return 0;
2825 }
2826 
2827 static int write_hints(struct cache *cache)
2828 {
2829 	int r;
2830 
2831 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2832 		return -EINVAL;
2833 
2834 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2835 	if (r) {
2836 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2837 		return r;
2838 	}
2839 
2840 	return 0;
2841 }
2842 
2843 /*
2844  * returns true on success
2845  */
2846 static bool sync_metadata(struct cache *cache)
2847 {
2848 	int r1, r2, r3, r4;
2849 
2850 	r1 = write_dirty_bitset(cache);
2851 	if (r1)
2852 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2853 
2854 	r2 = write_discard_bitset(cache);
2855 	if (r2)
2856 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2857 
2858 	save_stats(cache);
2859 
2860 	r3 = write_hints(cache);
2861 	if (r3)
2862 		DMERR("%s: could not write hints", cache_device_name(cache));
2863 
2864 	/*
2865 	 * If writing the above metadata failed, we still commit, but don't
2866 	 * set the clean shutdown flag.  This will effectively force every
2867 	 * dirty bit to be set on reload.
2868 	 */
2869 	r4 = commit(cache, !r1 && !r2 && !r3);
2870 	if (r4)
2871 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2872 
2873 	return !r1 && !r2 && !r3 && !r4;
2874 }
2875 
2876 static void cache_postsuspend(struct dm_target *ti)
2877 {
2878 	struct cache *cache = ti->private;
2879 
2880 	prevent_background_work(cache);
2881 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2882 
2883 	cancel_delayed_work(&cache->waker);
2884 	flush_workqueue(cache->wq);
2885 	WARN_ON(cache->tracker.in_flight);
2886 
2887 	/*
2888 	 * If it's a flush suspend there won't be any deferred bios, so this
2889 	 * call is harmless.
2890 	 */
2891 	requeue_deferred_bios(cache);
2892 
2893 	if (get_cache_mode(cache) == CM_WRITE)
2894 		(void) sync_metadata(cache);
2895 }
2896 
2897 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2898 			bool dirty, uint32_t hint, bool hint_valid)
2899 {
2900 	int r;
2901 	struct cache *cache = context;
2902 
2903 	if (dirty) {
2904 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2905 		atomic_inc(&cache->nr_dirty);
2906 	} else
2907 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2908 
2909 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2910 	if (r)
2911 		return r;
2912 
2913 	return 0;
2914 }
2915 
2916 /*
2917  * The discard block size in the on disk metadata is not
2918  * neccessarily the same as we're currently using.  So we have to
2919  * be careful to only set the discarded attribute if we know it
2920  * covers a complete block of the new size.
2921  */
2922 struct discard_load_info {
2923 	struct cache *cache;
2924 
2925 	/*
2926 	 * These blocks are sized using the on disk dblock size, rather
2927 	 * than the current one.
2928 	 */
2929 	dm_block_t block_size;
2930 	dm_block_t discard_begin, discard_end;
2931 };
2932 
2933 static void discard_load_info_init(struct cache *cache,
2934 				   struct discard_load_info *li)
2935 {
2936 	li->cache = cache;
2937 	li->discard_begin = li->discard_end = 0;
2938 }
2939 
2940 static void set_discard_range(struct discard_load_info *li)
2941 {
2942 	sector_t b, e;
2943 
2944 	if (li->discard_begin == li->discard_end)
2945 		return;
2946 
2947 	/*
2948 	 * Convert to sectors.
2949 	 */
2950 	b = li->discard_begin * li->block_size;
2951 	e = li->discard_end * li->block_size;
2952 
2953 	/*
2954 	 * Then convert back to the current dblock size.
2955 	 */
2956 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2957 	sector_div(e, li->cache->discard_block_size);
2958 
2959 	/*
2960 	 * The origin may have shrunk, so we need to check we're still in
2961 	 * bounds.
2962 	 */
2963 	if (e > from_dblock(li->cache->discard_nr_blocks))
2964 		e = from_dblock(li->cache->discard_nr_blocks);
2965 
2966 	for (; b < e; b++)
2967 		set_discard(li->cache, to_dblock(b));
2968 }
2969 
2970 static int load_discard(void *context, sector_t discard_block_size,
2971 			dm_dblock_t dblock, bool discard)
2972 {
2973 	struct discard_load_info *li = context;
2974 
2975 	li->block_size = discard_block_size;
2976 
2977 	if (discard) {
2978 		if (from_dblock(dblock) == li->discard_end)
2979 			/*
2980 			 * We're already in a discard range, just extend it.
2981 			 */
2982 			li->discard_end = li->discard_end + 1ULL;
2983 
2984 		else {
2985 			/*
2986 			 * Emit the old range and start a new one.
2987 			 */
2988 			set_discard_range(li);
2989 			li->discard_begin = from_dblock(dblock);
2990 			li->discard_end = li->discard_begin + 1ULL;
2991 		}
2992 	} else {
2993 		set_discard_range(li);
2994 		li->discard_begin = li->discard_end = 0;
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3001 {
3002 	sector_t size = get_dev_size(cache->cache_dev);
3003 	(void) sector_div(size, cache->sectors_per_block);
3004 	return to_cblock(size);
3005 }
3006 
3007 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3008 {
3009 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3010 		return true;
3011 
3012 	/*
3013 	 * We can't drop a dirty block when shrinking the cache.
3014 	 */
3015 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3016 		new_size = to_cblock(from_cblock(new_size) + 1);
3017 		if (is_dirty(cache, new_size)) {
3018 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3019 			      cache_device_name(cache),
3020 			      (unsigned long long) from_cblock(new_size));
3021 			return false;
3022 		}
3023 	}
3024 
3025 	return true;
3026 }
3027 
3028 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3029 {
3030 	int r;
3031 
3032 	r = dm_cache_resize(cache->cmd, new_size);
3033 	if (r) {
3034 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3035 		metadata_operation_failed(cache, "dm_cache_resize", r);
3036 		return r;
3037 	}
3038 
3039 	set_cache_size(cache, new_size);
3040 
3041 	return 0;
3042 }
3043 
3044 static int cache_preresume(struct dm_target *ti)
3045 {
3046 	int r = 0;
3047 	struct cache *cache = ti->private;
3048 	dm_cblock_t csize = get_cache_dev_size(cache);
3049 
3050 	/*
3051 	 * Check to see if the cache has resized.
3052 	 */
3053 	if (!cache->sized) {
3054 		r = resize_cache_dev(cache, csize);
3055 		if (r)
3056 			return r;
3057 
3058 		cache->sized = true;
3059 
3060 	} else if (csize != cache->cache_size) {
3061 		if (!can_resize(cache, csize))
3062 			return -EINVAL;
3063 
3064 		r = resize_cache_dev(cache, csize);
3065 		if (r)
3066 			return r;
3067 	}
3068 
3069 	if (!cache->loaded_mappings) {
3070 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3071 					   load_mapping, cache);
3072 		if (r) {
3073 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3074 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3075 			return r;
3076 		}
3077 
3078 		cache->loaded_mappings = true;
3079 	}
3080 
3081 	if (!cache->loaded_discards) {
3082 		struct discard_load_info li;
3083 
3084 		/*
3085 		 * The discard bitset could have been resized, or the
3086 		 * discard block size changed.  To be safe we start by
3087 		 * setting every dblock to not discarded.
3088 		 */
3089 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3090 
3091 		discard_load_info_init(cache, &li);
3092 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3093 		if (r) {
3094 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3095 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3096 			return r;
3097 		}
3098 		set_discard_range(&li);
3099 
3100 		cache->loaded_discards = true;
3101 	}
3102 
3103 	return r;
3104 }
3105 
3106 static void cache_resume(struct dm_target *ti)
3107 {
3108 	struct cache *cache = ti->private;
3109 
3110 	cache->need_tick_bio = true;
3111 	allow_background_work(cache);
3112 	do_waker(&cache->waker.work);
3113 }
3114 
3115 /*
3116  * Status format:
3117  *
3118  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3119  * <cache block size> <#used cache blocks>/<#total cache blocks>
3120  * <#read hits> <#read misses> <#write hits> <#write misses>
3121  * <#demotions> <#promotions> <#dirty>
3122  * <#features> <features>*
3123  * <#core args> <core args>
3124  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3125  */
3126 static void cache_status(struct dm_target *ti, status_type_t type,
3127 			 unsigned status_flags, char *result, unsigned maxlen)
3128 {
3129 	int r = 0;
3130 	unsigned i;
3131 	ssize_t sz = 0;
3132 	dm_block_t nr_free_blocks_metadata = 0;
3133 	dm_block_t nr_blocks_metadata = 0;
3134 	char buf[BDEVNAME_SIZE];
3135 	struct cache *cache = ti->private;
3136 	dm_cblock_t residency;
3137 	bool needs_check;
3138 
3139 	switch (type) {
3140 	case STATUSTYPE_INFO:
3141 		if (get_cache_mode(cache) == CM_FAIL) {
3142 			DMEMIT("Fail");
3143 			break;
3144 		}
3145 
3146 		/* Commit to ensure statistics aren't out-of-date */
3147 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3148 			(void) commit(cache, false);
3149 
3150 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3151 		if (r) {
3152 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3153 			      cache_device_name(cache), r);
3154 			goto err;
3155 		}
3156 
3157 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3158 		if (r) {
3159 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3160 			      cache_device_name(cache), r);
3161 			goto err;
3162 		}
3163 
3164 		residency = policy_residency(cache->policy);
3165 
3166 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3167 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3168 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3169 		       (unsigned long long)nr_blocks_metadata,
3170 		       (unsigned long long)cache->sectors_per_block,
3171 		       (unsigned long long) from_cblock(residency),
3172 		       (unsigned long long) from_cblock(cache->cache_size),
3173 		       (unsigned) atomic_read(&cache->stats.read_hit),
3174 		       (unsigned) atomic_read(&cache->stats.read_miss),
3175 		       (unsigned) atomic_read(&cache->stats.write_hit),
3176 		       (unsigned) atomic_read(&cache->stats.write_miss),
3177 		       (unsigned) atomic_read(&cache->stats.demotion),
3178 		       (unsigned) atomic_read(&cache->stats.promotion),
3179 		       (unsigned long) atomic_read(&cache->nr_dirty));
3180 
3181 		if (cache->features.metadata_version == 2)
3182 			DMEMIT("2 metadata2 ");
3183 		else
3184 			DMEMIT("1 ");
3185 
3186 		if (writethrough_mode(cache))
3187 			DMEMIT("writethrough ");
3188 
3189 		else if (passthrough_mode(cache))
3190 			DMEMIT("passthrough ");
3191 
3192 		else if (writeback_mode(cache))
3193 			DMEMIT("writeback ");
3194 
3195 		else {
3196 			DMERR("%s: internal error: unknown io mode: %d",
3197 			      cache_device_name(cache), (int) cache->features.io_mode);
3198 			goto err;
3199 		}
3200 
3201 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3202 
3203 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3204 		if (sz < maxlen) {
3205 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3206 			if (r)
3207 				DMERR("%s: policy_emit_config_values returned %d",
3208 				      cache_device_name(cache), r);
3209 		}
3210 
3211 		if (get_cache_mode(cache) == CM_READ_ONLY)
3212 			DMEMIT("ro ");
3213 		else
3214 			DMEMIT("rw ");
3215 
3216 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3217 
3218 		if (r || needs_check)
3219 			DMEMIT("needs_check ");
3220 		else
3221 			DMEMIT("- ");
3222 
3223 		break;
3224 
3225 	case STATUSTYPE_TABLE:
3226 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3227 		DMEMIT("%s ", buf);
3228 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3229 		DMEMIT("%s ", buf);
3230 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3231 		DMEMIT("%s", buf);
3232 
3233 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3234 			DMEMIT(" %s", cache->ctr_args[i]);
3235 		if (cache->nr_ctr_args)
3236 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3237 	}
3238 
3239 	return;
3240 
3241 err:
3242 	DMEMIT("Error");
3243 }
3244 
3245 /*
3246  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3247  * the one-past-the-end value.
3248  */
3249 struct cblock_range {
3250 	dm_cblock_t begin;
3251 	dm_cblock_t end;
3252 };
3253 
3254 /*
3255  * A cache block range can take two forms:
3256  *
3257  * i) A single cblock, eg. '3456'
3258  * ii) A begin and end cblock with a dash between, eg. 123-234
3259  */
3260 static int parse_cblock_range(struct cache *cache, const char *str,
3261 			      struct cblock_range *result)
3262 {
3263 	char dummy;
3264 	uint64_t b, e;
3265 	int r;
3266 
3267 	/*
3268 	 * Try and parse form (ii) first.
3269 	 */
3270 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3271 	if (r < 0)
3272 		return r;
3273 
3274 	if (r == 2) {
3275 		result->begin = to_cblock(b);
3276 		result->end = to_cblock(e);
3277 		return 0;
3278 	}
3279 
3280 	/*
3281 	 * That didn't work, try form (i).
3282 	 */
3283 	r = sscanf(str, "%llu%c", &b, &dummy);
3284 	if (r < 0)
3285 		return r;
3286 
3287 	if (r == 1) {
3288 		result->begin = to_cblock(b);
3289 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3290 		return 0;
3291 	}
3292 
3293 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3294 	return -EINVAL;
3295 }
3296 
3297 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3298 {
3299 	uint64_t b = from_cblock(range->begin);
3300 	uint64_t e = from_cblock(range->end);
3301 	uint64_t n = from_cblock(cache->cache_size);
3302 
3303 	if (b >= n) {
3304 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3305 		      cache_device_name(cache), b, n);
3306 		return -EINVAL;
3307 	}
3308 
3309 	if (e > n) {
3310 		DMERR("%s: end cblock out of range: %llu > %llu",
3311 		      cache_device_name(cache), e, n);
3312 		return -EINVAL;
3313 	}
3314 
3315 	if (b >= e) {
3316 		DMERR("%s: invalid cblock range: %llu >= %llu",
3317 		      cache_device_name(cache), b, e);
3318 		return -EINVAL;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3325 {
3326 	return to_cblock(from_cblock(b) + 1);
3327 }
3328 
3329 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3330 {
3331 	int r = 0;
3332 
3333 	/*
3334 	 * We don't need to do any locking here because we know we're in
3335 	 * passthrough mode.  There's is potential for a race between an
3336 	 * invalidation triggered by an io and an invalidation message.  This
3337 	 * is harmless, we must not worry if the policy call fails.
3338 	 */
3339 	while (range->begin != range->end) {
3340 		r = invalidate_cblock(cache, range->begin);
3341 		if (r)
3342 			return r;
3343 
3344 		range->begin = cblock_succ(range->begin);
3345 	}
3346 
3347 	cache->commit_requested = true;
3348 	return r;
3349 }
3350 
3351 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3352 					      const char **cblock_ranges)
3353 {
3354 	int r = 0;
3355 	unsigned i;
3356 	struct cblock_range range;
3357 
3358 	if (!passthrough_mode(cache)) {
3359 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3360 		      cache_device_name(cache));
3361 		return -EPERM;
3362 	}
3363 
3364 	for (i = 0; i < count; i++) {
3365 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3366 		if (r)
3367 			break;
3368 
3369 		r = validate_cblock_range(cache, &range);
3370 		if (r)
3371 			break;
3372 
3373 		/*
3374 		 * Pass begin and end origin blocks to the worker and wake it.
3375 		 */
3376 		r = request_invalidation(cache, &range);
3377 		if (r)
3378 			break;
3379 	}
3380 
3381 	return r;
3382 }
3383 
3384 /*
3385  * Supports
3386  *	"<key> <value>"
3387  * and
3388  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3389  *
3390  * The key migration_threshold is supported by the cache target core.
3391  */
3392 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3393 			 char *result, unsigned maxlen)
3394 {
3395 	struct cache *cache = ti->private;
3396 
3397 	if (!argc)
3398 		return -EINVAL;
3399 
3400 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3401 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3402 		      cache_device_name(cache));
3403 		return -EOPNOTSUPP;
3404 	}
3405 
3406 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3407 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3408 
3409 	if (argc != 2)
3410 		return -EINVAL;
3411 
3412 	return set_config_value(cache, argv[0], argv[1]);
3413 }
3414 
3415 static int cache_iterate_devices(struct dm_target *ti,
3416 				 iterate_devices_callout_fn fn, void *data)
3417 {
3418 	int r = 0;
3419 	struct cache *cache = ti->private;
3420 
3421 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3422 	if (!r)
3423 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3424 
3425 	return r;
3426 }
3427 
3428 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3429 {
3430 	/*
3431 	 * FIXME: these limits may be incompatible with the cache device
3432 	 */
3433 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3434 					    cache->origin_sectors);
3435 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3436 }
3437 
3438 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3439 {
3440 	struct cache *cache = ti->private;
3441 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3442 
3443 	/*
3444 	 * If the system-determined stacked limits are compatible with the
3445 	 * cache's blocksize (io_opt is a factor) do not override them.
3446 	 */
3447 	if (io_opt_sectors < cache->sectors_per_block ||
3448 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3449 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3450 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3451 	}
3452 	set_discard_limits(cache, limits);
3453 }
3454 
3455 /*----------------------------------------------------------------*/
3456 
3457 static struct target_type cache_target = {
3458 	.name = "cache",
3459 	.version = {2, 0, 0},
3460 	.module = THIS_MODULE,
3461 	.ctr = cache_ctr,
3462 	.dtr = cache_dtr,
3463 	.map = cache_map,
3464 	.end_io = cache_end_io,
3465 	.postsuspend = cache_postsuspend,
3466 	.preresume = cache_preresume,
3467 	.resume = cache_resume,
3468 	.status = cache_status,
3469 	.message = cache_message,
3470 	.iterate_devices = cache_iterate_devices,
3471 	.io_hints = cache_io_hints,
3472 };
3473 
3474 static int __init dm_cache_init(void)
3475 {
3476 	int r;
3477 
3478 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3479 	if (!migration_cache) {
3480 		dm_unregister_target(&cache_target);
3481 		return -ENOMEM;
3482 	}
3483 
3484 	r = dm_register_target(&cache_target);
3485 	if (r) {
3486 		DMERR("cache target registration failed: %d", r);
3487 		return r;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static void __exit dm_cache_exit(void)
3494 {
3495 	dm_unregister_target(&cache_target);
3496 	kmem_cache_destroy(migration_cache);
3497 }
3498 
3499 module_init(dm_cache_init);
3500 module_exit(dm_cache_exit);
3501 
3502 MODULE_DESCRIPTION(DM_NAME " cache target");
3503 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3504 MODULE_LICENSE("GPL");
3505