xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 };
122 
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 			bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 	h->bi_end_io = bio->bi_end_io;
127 
128 	bio->bi_end_io = bi_end_io;
129 	bio->bi_private = bi_private;
130 }
131 
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 	bio->bi_end_io = h->bi_end_io;
135 }
136 
137 /*----------------------------------------------------------------*/
138 
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142 
143 /*
144  * The block size of the device holding cache data must be
145  * between 32KB and 1GB.
146  */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149 
150 enum cache_metadata_mode {
151 	CM_WRITE,		/* metadata may be changed */
152 	CM_READ_ONLY,		/* metadata may not be changed */
153 	CM_FAIL
154 };
155 
156 enum cache_io_mode {
157 	/*
158 	 * Data is written to cached blocks only.  These blocks are marked
159 	 * dirty.  If you lose the cache device you will lose data.
160 	 * Potential performance increase for both reads and writes.
161 	 */
162 	CM_IO_WRITEBACK,
163 
164 	/*
165 	 * Data is written to both cache and origin.  Blocks are never
166 	 * dirty.  Potential performance benfit for reads only.
167 	 */
168 	CM_IO_WRITETHROUGH,
169 
170 	/*
171 	 * A degraded mode useful for various cache coherency situations
172 	 * (eg, rolling back snapshots).  Reads and writes always go to the
173 	 * origin.  If a write goes to a cached oblock, then the cache
174 	 * block is invalidated.
175 	 */
176 	CM_IO_PASSTHROUGH
177 };
178 
179 struct cache_features {
180 	enum cache_metadata_mode mode;
181 	enum cache_io_mode io_mode;
182 };
183 
184 struct cache_stats {
185 	atomic_t read_hit;
186 	atomic_t read_miss;
187 	atomic_t write_hit;
188 	atomic_t write_miss;
189 	atomic_t demotion;
190 	atomic_t promotion;
191 	atomic_t copies_avoided;
192 	atomic_t cache_cell_clash;
193 	atomic_t commit_count;
194 	atomic_t discard_count;
195 };
196 
197 /*
198  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
199  * the one-past-the-end value.
200  */
201 struct cblock_range {
202 	dm_cblock_t begin;
203 	dm_cblock_t end;
204 };
205 
206 struct invalidation_request {
207 	struct list_head list;
208 	struct cblock_range *cblocks;
209 
210 	atomic_t complete;
211 	int err;
212 
213 	wait_queue_head_t result_wait;
214 };
215 
216 struct cache {
217 	struct dm_target *ti;
218 	struct dm_target_callbacks callbacks;
219 
220 	struct dm_cache_metadata *cmd;
221 
222 	/*
223 	 * Metadata is written to this device.
224 	 */
225 	struct dm_dev *metadata_dev;
226 
227 	/*
228 	 * The slower of the two data devices.  Typically a spindle.
229 	 */
230 	struct dm_dev *origin_dev;
231 
232 	/*
233 	 * The faster of the two data devices.  Typically an SSD.
234 	 */
235 	struct dm_dev *cache_dev;
236 
237 	/*
238 	 * Size of the origin device in _complete_ blocks and native sectors.
239 	 */
240 	dm_oblock_t origin_blocks;
241 	sector_t origin_sectors;
242 
243 	/*
244 	 * Size of the cache device in blocks.
245 	 */
246 	dm_cblock_t cache_size;
247 
248 	/*
249 	 * Fields for converting from sectors to blocks.
250 	 */
251 	uint32_t sectors_per_block;
252 	int sectors_per_block_shift;
253 
254 	spinlock_t lock;
255 	struct list_head deferred_cells;
256 	struct bio_list deferred_bios;
257 	struct bio_list deferred_flush_bios;
258 	struct bio_list deferred_writethrough_bios;
259 	struct list_head quiesced_migrations;
260 	struct list_head completed_migrations;
261 	struct list_head need_commit_migrations;
262 	sector_t migration_threshold;
263 	wait_queue_head_t migration_wait;
264 	atomic_t nr_allocated_migrations;
265 
266 	/*
267 	 * The number of in flight migrations that are performing
268 	 * background io. eg, promotion, writeback.
269 	 */
270 	atomic_t nr_io_migrations;
271 
272 	wait_queue_head_t quiescing_wait;
273 	atomic_t quiescing;
274 	atomic_t quiescing_ack;
275 
276 	/*
277 	 * cache_size entries, dirty if set
278 	 */
279 	atomic_t nr_dirty;
280 	unsigned long *dirty_bitset;
281 
282 	/*
283 	 * origin_blocks entries, discarded if set.
284 	 */
285 	dm_dblock_t discard_nr_blocks;
286 	unsigned long *discard_bitset;
287 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
288 
289 	/*
290 	 * Rather than reconstructing the table line for the status we just
291 	 * save it and regurgitate.
292 	 */
293 	unsigned nr_ctr_args;
294 	const char **ctr_args;
295 
296 	struct dm_kcopyd_client *copier;
297 	struct workqueue_struct *wq;
298 	struct work_struct worker;
299 
300 	struct delayed_work waker;
301 	unsigned long last_commit_jiffies;
302 
303 	struct dm_bio_prison *prison;
304 	struct dm_deferred_set *all_io_ds;
305 
306 	mempool_t *migration_pool;
307 
308 	struct dm_cache_policy *policy;
309 	unsigned policy_nr_args;
310 
311 	bool need_tick_bio:1;
312 	bool sized:1;
313 	bool invalidate:1;
314 	bool commit_requested:1;
315 	bool loaded_mappings:1;
316 	bool loaded_discards:1;
317 
318 	/*
319 	 * Cache features such as write-through.
320 	 */
321 	struct cache_features features;
322 
323 	struct cache_stats stats;
324 
325 	/*
326 	 * Invalidation fields.
327 	 */
328 	spinlock_t invalidation_lock;
329 	struct list_head invalidation_requests;
330 
331 	struct io_tracker origin_tracker;
332 };
333 
334 struct per_bio_data {
335 	bool tick:1;
336 	unsigned req_nr:2;
337 	struct dm_deferred_entry *all_io_entry;
338 	struct dm_hook_info hook_info;
339 	sector_t len;
340 
341 	/*
342 	 * writethrough fields.  These MUST remain at the end of this
343 	 * structure and the 'cache' member must be the first as it
344 	 * is used to determine the offset of the writethrough fields.
345 	 */
346 	struct cache *cache;
347 	dm_cblock_t cblock;
348 	struct dm_bio_details bio_details;
349 };
350 
351 struct dm_cache_migration {
352 	struct list_head list;
353 	struct cache *cache;
354 
355 	unsigned long start_jiffies;
356 	dm_oblock_t old_oblock;
357 	dm_oblock_t new_oblock;
358 	dm_cblock_t cblock;
359 
360 	bool err:1;
361 	bool discard:1;
362 	bool writeback:1;
363 	bool demote:1;
364 	bool promote:1;
365 	bool requeue_holder:1;
366 	bool invalidate:1;
367 
368 	struct dm_bio_prison_cell *old_ocell;
369 	struct dm_bio_prison_cell *new_ocell;
370 };
371 
372 /*
373  * Processing a bio in the worker thread may require these memory
374  * allocations.  We prealloc to avoid deadlocks (the same worker thread
375  * frees them back to the mempool).
376  */
377 struct prealloc {
378 	struct dm_cache_migration *mg;
379 	struct dm_bio_prison_cell *cell1;
380 	struct dm_bio_prison_cell *cell2;
381 };
382 
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384 
385 static void wake_worker(struct cache *cache)
386 {
387 	queue_work(cache->wq, &cache->worker);
388 }
389 
390 /*----------------------------------------------------------------*/
391 
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394 	/* FIXME: change to use a local slab. */
395 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397 
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400 	dm_bio_prison_free_cell(cache->prison, cell);
401 }
402 
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405 	struct dm_cache_migration *mg;
406 
407 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408 	if (mg) {
409 		mg->cache = cache;
410 		atomic_inc(&mg->cache->nr_allocated_migrations);
411 	}
412 
413 	return mg;
414 }
415 
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418 	struct cache *cache = mg->cache;
419 
420 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421 		wake_up(&cache->migration_wait);
422 
423 	mempool_free(mg, cache->migration_pool);
424 }
425 
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428 	if (!p->mg) {
429 		p->mg = alloc_migration(cache);
430 		if (!p->mg)
431 			return -ENOMEM;
432 	}
433 
434 	if (!p->cell1) {
435 		p->cell1 = alloc_prison_cell(cache);
436 		if (!p->cell1)
437 			return -ENOMEM;
438 	}
439 
440 	if (!p->cell2) {
441 		p->cell2 = alloc_prison_cell(cache);
442 		if (!p->cell2)
443 			return -ENOMEM;
444 	}
445 
446 	return 0;
447 }
448 
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451 	if (p->cell2)
452 		free_prison_cell(cache, p->cell2);
453 
454 	if (p->cell1)
455 		free_prison_cell(cache, p->cell1);
456 
457 	if (p->mg)
458 		free_migration(p->mg);
459 }
460 
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463 	struct dm_cache_migration *mg = p->mg;
464 
465 	BUG_ON(!mg);
466 	p->mg = NULL;
467 
468 	return mg;
469 }
470 
471 /*
472  * You must have a cell within the prealloc struct to return.  If not this
473  * function will BUG() rather than returning NULL.
474  */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477 	struct dm_bio_prison_cell *r = NULL;
478 
479 	if (p->cell1) {
480 		r = p->cell1;
481 		p->cell1 = NULL;
482 
483 	} else if (p->cell2) {
484 		r = p->cell2;
485 		p->cell2 = NULL;
486 	} else
487 		BUG();
488 
489 	return r;
490 }
491 
492 /*
493  * You can't have more than two cells in a prealloc struct.  BUG() will be
494  * called if you try and overfill.
495  */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498 	if (!p->cell2)
499 		p->cell2 = cell;
500 
501 	else if (!p->cell1)
502 		p->cell1 = cell;
503 
504 	else
505 		BUG();
506 }
507 
508 /*----------------------------------------------------------------*/
509 
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512 	key->virtual = 0;
513 	key->dev = 0;
514 	key->block_begin = from_oblock(begin);
515 	key->block_end = from_oblock(end);
516 }
517 
518 /*
519  * The caller hands in a preallocated cell, and a free function for it.
520  * The cell will be freed if there's an error, or if it wasn't used because
521  * a cell with that key already exists.
522  */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524 
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527 			    cell_free_fn free_fn, void *free_context,
528 			    struct dm_bio_prison_cell **cell_result)
529 {
530 	int r;
531 	struct dm_cell_key key;
532 
533 	build_key(oblock_begin, oblock_end, &key);
534 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535 	if (r)
536 		free_fn(free_context, cell_prealloc);
537 
538 	return r;
539 }
540 
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543 		      cell_free_fn free_fn, void *free_context,
544 		      struct dm_bio_prison_cell **cell_result)
545 {
546 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547 	return bio_detain_range(cache, oblock, end, bio,
548 				cell_prealloc, free_fn, free_context, cell_result);
549 }
550 
551 static int get_cell(struct cache *cache,
552 		    dm_oblock_t oblock,
553 		    struct prealloc *structs,
554 		    struct dm_bio_prison_cell **cell_result)
555 {
556 	int r;
557 	struct dm_cell_key key;
558 	struct dm_bio_prison_cell *cell_prealloc;
559 
560 	cell_prealloc = prealloc_get_cell(structs);
561 
562 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564 	if (r)
565 		prealloc_put_cell(structs, cell_prealloc);
566 
567 	return r;
568 }
569 
570 /*----------------------------------------------------------------*/
571 
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574 	return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576 
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580 		atomic_inc(&cache->nr_dirty);
581 		policy_set_dirty(cache->policy, oblock);
582 	}
583 }
584 
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588 		policy_clear_dirty(cache->policy, oblock);
589 		if (atomic_dec_return(&cache->nr_dirty) == 0)
590 			dm_table_event(cache->ti->table);
591 	}
592 }
593 
594 /*----------------------------------------------------------------*/
595 
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598 	return cache->sectors_per_block_shift >= 0;
599 }
600 
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607 	do_div(b, n);
608 
609 	return b;
610 }
611 
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614 	dm_block_t oblocks = cache->discard_block_size;
615 
616 	if (block_size_is_power_of_two(cache))
617 		oblocks >>= cache->sectors_per_block_shift;
618 	else
619 		oblocks = block_div(oblocks, cache->sectors_per_block);
620 
621 	return oblocks;
622 }
623 
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626 	return to_dblock(block_div(from_oblock(oblock),
627 				   oblocks_per_dblock(cache)));
628 }
629 
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634 
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637 	unsigned long flags;
638 
639 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640 	atomic_inc(&cache->stats.discard_count);
641 
642 	spin_lock_irqsave(&cache->lock, flags);
643 	set_bit(from_dblock(b), cache->discard_bitset);
644 	spin_unlock_irqrestore(&cache->lock, flags);
645 }
646 
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&cache->lock, flags);
652 	clear_bit(from_dblock(b), cache->discard_bitset);
653 	spin_unlock_irqrestore(&cache->lock, flags);
654 }
655 
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658 	int r;
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&cache->lock, flags);
662 	r = test_bit(from_dblock(b), cache->discard_bitset);
663 	spin_unlock_irqrestore(&cache->lock, flags);
664 
665 	return r;
666 }
667 
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670 	int r;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&cache->lock, flags);
674 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675 		     cache->discard_bitset);
676 	spin_unlock_irqrestore(&cache->lock, flags);
677 
678 	return r;
679 }
680 
681 /*----------------------------------------------------------------*/
682 
683 static void load_stats(struct cache *cache)
684 {
685 	struct dm_cache_statistics stats;
686 
687 	dm_cache_metadata_get_stats(cache->cmd, &stats);
688 	atomic_set(&cache->stats.read_hit, stats.read_hits);
689 	atomic_set(&cache->stats.read_miss, stats.read_misses);
690 	atomic_set(&cache->stats.write_hit, stats.write_hits);
691 	atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693 
694 static void save_stats(struct cache *cache)
695 {
696 	struct dm_cache_statistics stats;
697 
698 	if (get_cache_mode(cache) >= CM_READ_ONLY)
699 		return;
700 
701 	stats.read_hits = atomic_read(&cache->stats.read_hit);
702 	stats.read_misses = atomic_read(&cache->stats.read_miss);
703 	stats.write_hits = atomic_read(&cache->stats.write_hit);
704 	stats.write_misses = atomic_read(&cache->stats.write_miss);
705 
706 	dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708 
709 /*----------------------------------------------------------------
710  * Per bio data
711  *--------------------------------------------------------------*/
712 
713 /*
714  * If using writeback, leave out struct per_bio_data's writethrough fields.
715  */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718 
719 static bool writethrough_mode(struct cache_features *f)
720 {
721 	return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723 
724 static bool writeback_mode(struct cache_features *f)
725 {
726 	return f->io_mode == CM_IO_WRITEBACK;
727 }
728 
729 static bool passthrough_mode(struct cache_features *f)
730 {
731 	return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733 
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738 
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742 	BUG_ON(!pb);
743 	return pb;
744 }
745 
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749 
750 	pb->tick = false;
751 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
752 	pb->all_io_entry = NULL;
753 	pb->len = 0;
754 
755 	return pb;
756 }
757 
758 /*----------------------------------------------------------------
759  * Remapping
760  *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763 	bio->bi_bdev = cache->origin_dev->bdev;
764 }
765 
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767 			   dm_cblock_t cblock)
768 {
769 	sector_t bi_sector = bio->bi_iter.bi_sector;
770 	sector_t block = from_cblock(cblock);
771 
772 	bio->bi_bdev = cache->cache_dev->bdev;
773 	if (!block_size_is_power_of_two(cache))
774 		bio->bi_iter.bi_sector =
775 			(block * cache->sectors_per_block) +
776 			sector_div(bi_sector, cache->sectors_per_block);
777 	else
778 		bio->bi_iter.bi_sector =
779 			(block << cache->sectors_per_block_shift) |
780 			(bi_sector & (cache->sectors_per_block - 1));
781 }
782 
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785 	unsigned long flags;
786 	size_t pb_data_size = get_per_bio_data_size(cache);
787 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788 
789 	spin_lock_irqsave(&cache->lock, flags);
790 	if (cache->need_tick_bio &&
791 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
792 		pb->tick = true;
793 		cache->need_tick_bio = false;
794 	}
795 	spin_unlock_irqrestore(&cache->lock, flags);
796 }
797 
798 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
799 				  dm_oblock_t oblock)
800 {
801 	check_if_tick_bio_needed(cache, bio);
802 	remap_to_origin(cache, bio);
803 	if (bio_data_dir(bio) == WRITE)
804 		clear_discard(cache, oblock_to_dblock(cache, oblock));
805 }
806 
807 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
808 				 dm_oblock_t oblock, dm_cblock_t cblock)
809 {
810 	check_if_tick_bio_needed(cache, bio);
811 	remap_to_cache(cache, bio, cblock);
812 	if (bio_data_dir(bio) == WRITE) {
813 		set_dirty(cache, oblock, cblock);
814 		clear_discard(cache, oblock_to_dblock(cache, oblock));
815 	}
816 }
817 
818 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
819 {
820 	sector_t block_nr = bio->bi_iter.bi_sector;
821 
822 	if (!block_size_is_power_of_two(cache))
823 		(void) sector_div(block_nr, cache->sectors_per_block);
824 	else
825 		block_nr >>= cache->sectors_per_block_shift;
826 
827 	return to_oblock(block_nr);
828 }
829 
830 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
831 {
832 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
833 }
834 
835 /*
836  * You must increment the deferred set whilst the prison cell is held.  To
837  * encourage this, we ask for 'cell' to be passed in.
838  */
839 static void inc_ds(struct cache *cache, struct bio *bio,
840 		   struct dm_bio_prison_cell *cell)
841 {
842 	size_t pb_data_size = get_per_bio_data_size(cache);
843 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
844 
845 	BUG_ON(!cell);
846 	BUG_ON(pb->all_io_entry);
847 
848 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
849 }
850 
851 static bool accountable_bio(struct cache *cache, struct bio *bio)
852 {
853 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
854 		!(bio->bi_rw & REQ_DISCARD));
855 }
856 
857 static void accounted_begin(struct cache *cache, struct bio *bio)
858 {
859 	size_t pb_data_size = get_per_bio_data_size(cache);
860 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
861 
862 	if (accountable_bio(cache, bio)) {
863 		pb->len = bio_sectors(bio);
864 		iot_io_begin(&cache->origin_tracker, pb->len);
865 	}
866 }
867 
868 static void accounted_complete(struct cache *cache, struct bio *bio)
869 {
870 	size_t pb_data_size = get_per_bio_data_size(cache);
871 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
872 
873 	iot_io_end(&cache->origin_tracker, pb->len);
874 }
875 
876 static void accounted_request(struct cache *cache, struct bio *bio)
877 {
878 	accounted_begin(cache, bio);
879 	generic_make_request(bio);
880 }
881 
882 static void issue(struct cache *cache, struct bio *bio)
883 {
884 	unsigned long flags;
885 
886 	if (!bio_triggers_commit(cache, bio)) {
887 		accounted_request(cache, bio);
888 		return;
889 	}
890 
891 	/*
892 	 * Batch together any bios that trigger commits and then issue a
893 	 * single commit for them in do_worker().
894 	 */
895 	spin_lock_irqsave(&cache->lock, flags);
896 	cache->commit_requested = true;
897 	bio_list_add(&cache->deferred_flush_bios, bio);
898 	spin_unlock_irqrestore(&cache->lock, flags);
899 }
900 
901 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
902 {
903 	inc_ds(cache, bio, cell);
904 	issue(cache, bio);
905 }
906 
907 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
908 {
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&cache->lock, flags);
912 	bio_list_add(&cache->deferred_writethrough_bios, bio);
913 	spin_unlock_irqrestore(&cache->lock, flags);
914 
915 	wake_worker(cache);
916 }
917 
918 static void writethrough_endio(struct bio *bio)
919 {
920 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
921 
922 	dm_unhook_bio(&pb->hook_info, bio);
923 
924 	if (bio->bi_error) {
925 		bio_endio(bio);
926 		return;
927 	}
928 
929 	dm_bio_restore(&pb->bio_details, bio);
930 	remap_to_cache(pb->cache, bio, pb->cblock);
931 
932 	/*
933 	 * We can't issue this bio directly, since we're in interrupt
934 	 * context.  So it gets put on a bio list for processing by the
935 	 * worker thread.
936 	 */
937 	defer_writethrough_bio(pb->cache, bio);
938 }
939 
940 /*
941  * When running in writethrough mode we need to send writes to clean blocks
942  * to both the cache and origin devices.  In future we'd like to clone the
943  * bio and send them in parallel, but for now we're doing them in
944  * series as this is easier.
945  */
946 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
947 				       dm_oblock_t oblock, dm_cblock_t cblock)
948 {
949 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
950 
951 	pb->cache = cache;
952 	pb->cblock = cblock;
953 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
954 	dm_bio_record(&pb->bio_details, bio);
955 
956 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
957 }
958 
959 /*----------------------------------------------------------------
960  * Failure modes
961  *--------------------------------------------------------------*/
962 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
963 {
964 	return cache->features.mode;
965 }
966 
967 static const char *cache_device_name(struct cache *cache)
968 {
969 	return dm_device_name(dm_table_get_md(cache->ti->table));
970 }
971 
972 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
973 {
974 	const char *descs[] = {
975 		"write",
976 		"read-only",
977 		"fail"
978 	};
979 
980 	dm_table_event(cache->ti->table);
981 	DMINFO("%s: switching cache to %s mode",
982 	       cache_device_name(cache), descs[(int)mode]);
983 }
984 
985 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
986 {
987 	bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
988 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
989 
990 	if (new_mode == CM_WRITE && needs_check) {
991 		DMERR("%s: unable to switch cache to write mode until repaired.",
992 		      cache_device_name(cache));
993 		if (old_mode != new_mode)
994 			new_mode = old_mode;
995 		else
996 			new_mode = CM_READ_ONLY;
997 	}
998 
999 	/* Never move out of fail mode */
1000 	if (old_mode == CM_FAIL)
1001 		new_mode = CM_FAIL;
1002 
1003 	switch (new_mode) {
1004 	case CM_FAIL:
1005 	case CM_READ_ONLY:
1006 		dm_cache_metadata_set_read_only(cache->cmd);
1007 		break;
1008 
1009 	case CM_WRITE:
1010 		dm_cache_metadata_set_read_write(cache->cmd);
1011 		break;
1012 	}
1013 
1014 	cache->features.mode = new_mode;
1015 
1016 	if (new_mode != old_mode)
1017 		notify_mode_switch(cache, new_mode);
1018 }
1019 
1020 static void abort_transaction(struct cache *cache)
1021 {
1022 	const char *dev_name = cache_device_name(cache);
1023 
1024 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1025 		return;
1026 
1027 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1028 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1029 		set_cache_mode(cache, CM_FAIL);
1030 	}
1031 
1032 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1033 	if (dm_cache_metadata_abort(cache->cmd)) {
1034 		DMERR("%s: failed to abort metadata transaction", dev_name);
1035 		set_cache_mode(cache, CM_FAIL);
1036 	}
1037 }
1038 
1039 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1040 {
1041 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1042 		    cache_device_name(cache), op, r);
1043 	abort_transaction(cache);
1044 	set_cache_mode(cache, CM_READ_ONLY);
1045 }
1046 
1047 /*----------------------------------------------------------------
1048  * Migration processing
1049  *
1050  * Migration covers moving data from the origin device to the cache, or
1051  * vice versa.
1052  *--------------------------------------------------------------*/
1053 static void inc_io_migrations(struct cache *cache)
1054 {
1055 	atomic_inc(&cache->nr_io_migrations);
1056 }
1057 
1058 static void dec_io_migrations(struct cache *cache)
1059 {
1060 	atomic_dec(&cache->nr_io_migrations);
1061 }
1062 
1063 static bool discard_or_flush(struct bio *bio)
1064 {
1065 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1066 }
1067 
1068 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1069 {
1070 	if (discard_or_flush(cell->holder)) {
1071 		/*
1072 		 * We have to handle these bios individually.
1073 		 */
1074 		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1075 		free_prison_cell(cache, cell);
1076 	} else
1077 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1078 }
1079 
1080 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1081 {
1082 	unsigned long flags;
1083 
1084 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1085 		/*
1086 		 * There was no prisoner to promote to holder, the
1087 		 * cell has been released.
1088 		 */
1089 		free_prison_cell(cache, cell);
1090 		return;
1091 	}
1092 
1093 	spin_lock_irqsave(&cache->lock, flags);
1094 	__cell_defer(cache, cell);
1095 	spin_unlock_irqrestore(&cache->lock, flags);
1096 
1097 	wake_worker(cache);
1098 }
1099 
1100 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1101 {
1102 	dm_cell_error(cache->prison, cell, err);
1103 	free_prison_cell(cache, cell);
1104 }
1105 
1106 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1107 {
1108 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1109 }
1110 
1111 static void free_io_migration(struct dm_cache_migration *mg)
1112 {
1113 	struct cache *cache = mg->cache;
1114 
1115 	dec_io_migrations(cache);
1116 	free_migration(mg);
1117 	wake_worker(cache);
1118 }
1119 
1120 static void migration_failure(struct dm_cache_migration *mg)
1121 {
1122 	struct cache *cache = mg->cache;
1123 	const char *dev_name = cache_device_name(cache);
1124 
1125 	if (mg->writeback) {
1126 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1127 		set_dirty(cache, mg->old_oblock, mg->cblock);
1128 		cell_defer(cache, mg->old_ocell, false);
1129 
1130 	} else if (mg->demote) {
1131 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1132 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1133 
1134 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1135 		if (mg->promote)
1136 			cell_defer(cache, mg->new_ocell, true);
1137 	} else {
1138 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1139 		policy_remove_mapping(cache->policy, mg->new_oblock);
1140 		cell_defer(cache, mg->new_ocell, true);
1141 	}
1142 
1143 	free_io_migration(mg);
1144 }
1145 
1146 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1147 {
1148 	int r;
1149 	unsigned long flags;
1150 	struct cache *cache = mg->cache;
1151 
1152 	if (mg->writeback) {
1153 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1154 		cell_defer(cache, mg->old_ocell, false);
1155 		free_io_migration(mg);
1156 		return;
1157 
1158 	} else if (mg->demote) {
1159 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1160 		if (r) {
1161 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1162 				    cache_device_name(cache));
1163 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1164 			policy_force_mapping(cache->policy, mg->new_oblock,
1165 					     mg->old_oblock);
1166 			if (mg->promote)
1167 				cell_defer(cache, mg->new_ocell, true);
1168 			free_io_migration(mg);
1169 			return;
1170 		}
1171 	} else {
1172 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1173 		if (r) {
1174 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1175 				    cache_device_name(cache));
1176 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1177 			policy_remove_mapping(cache->policy, mg->new_oblock);
1178 			free_io_migration(mg);
1179 			return;
1180 		}
1181 	}
1182 
1183 	spin_lock_irqsave(&cache->lock, flags);
1184 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1185 	cache->commit_requested = true;
1186 	spin_unlock_irqrestore(&cache->lock, flags);
1187 }
1188 
1189 static void migration_success_post_commit(struct dm_cache_migration *mg)
1190 {
1191 	unsigned long flags;
1192 	struct cache *cache = mg->cache;
1193 
1194 	if (mg->writeback) {
1195 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1196 			     cache_device_name(cache));
1197 		return;
1198 
1199 	} else if (mg->demote) {
1200 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1201 
1202 		if (mg->promote) {
1203 			mg->demote = false;
1204 
1205 			spin_lock_irqsave(&cache->lock, flags);
1206 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1207 			spin_unlock_irqrestore(&cache->lock, flags);
1208 
1209 		} else {
1210 			if (mg->invalidate)
1211 				policy_remove_mapping(cache->policy, mg->old_oblock);
1212 			free_io_migration(mg);
1213 		}
1214 
1215 	} else {
1216 		if (mg->requeue_holder) {
1217 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1218 			cell_defer(cache, mg->new_ocell, true);
1219 		} else {
1220 			/*
1221 			 * The block was promoted via an overwrite, so it's dirty.
1222 			 */
1223 			set_dirty(cache, mg->new_oblock, mg->cblock);
1224 			bio_endio(mg->new_ocell->holder);
1225 			cell_defer(cache, mg->new_ocell, false);
1226 		}
1227 		free_io_migration(mg);
1228 	}
1229 }
1230 
1231 static void copy_complete(int read_err, unsigned long write_err, void *context)
1232 {
1233 	unsigned long flags;
1234 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1235 	struct cache *cache = mg->cache;
1236 
1237 	if (read_err || write_err)
1238 		mg->err = true;
1239 
1240 	spin_lock_irqsave(&cache->lock, flags);
1241 	list_add_tail(&mg->list, &cache->completed_migrations);
1242 	spin_unlock_irqrestore(&cache->lock, flags);
1243 
1244 	wake_worker(cache);
1245 }
1246 
1247 static void issue_copy(struct dm_cache_migration *mg)
1248 {
1249 	int r;
1250 	struct dm_io_region o_region, c_region;
1251 	struct cache *cache = mg->cache;
1252 	sector_t cblock = from_cblock(mg->cblock);
1253 
1254 	o_region.bdev = cache->origin_dev->bdev;
1255 	o_region.count = cache->sectors_per_block;
1256 
1257 	c_region.bdev = cache->cache_dev->bdev;
1258 	c_region.sector = cblock * cache->sectors_per_block;
1259 	c_region.count = cache->sectors_per_block;
1260 
1261 	if (mg->writeback || mg->demote) {
1262 		/* demote */
1263 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1264 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1265 	} else {
1266 		/* promote */
1267 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1268 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1269 	}
1270 
1271 	if (r < 0) {
1272 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1273 		migration_failure(mg);
1274 	}
1275 }
1276 
1277 static void overwrite_endio(struct bio *bio)
1278 {
1279 	struct dm_cache_migration *mg = bio->bi_private;
1280 	struct cache *cache = mg->cache;
1281 	size_t pb_data_size = get_per_bio_data_size(cache);
1282 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1283 	unsigned long flags;
1284 
1285 	dm_unhook_bio(&pb->hook_info, bio);
1286 
1287 	if (bio->bi_error)
1288 		mg->err = true;
1289 
1290 	mg->requeue_holder = false;
1291 
1292 	spin_lock_irqsave(&cache->lock, flags);
1293 	list_add_tail(&mg->list, &cache->completed_migrations);
1294 	spin_unlock_irqrestore(&cache->lock, flags);
1295 
1296 	wake_worker(cache);
1297 }
1298 
1299 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1300 {
1301 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1302 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1303 
1304 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1305 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1306 
1307 	/*
1308 	 * No need to inc_ds() here, since the cell will be held for the
1309 	 * duration of the io.
1310 	 */
1311 	accounted_request(mg->cache, bio);
1312 }
1313 
1314 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1315 {
1316 	return (bio_data_dir(bio) == WRITE) &&
1317 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1318 }
1319 
1320 static void avoid_copy(struct dm_cache_migration *mg)
1321 {
1322 	atomic_inc(&mg->cache->stats.copies_avoided);
1323 	migration_success_pre_commit(mg);
1324 }
1325 
1326 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1327 				     dm_dblock_t *b, dm_dblock_t *e)
1328 {
1329 	sector_t sb = bio->bi_iter.bi_sector;
1330 	sector_t se = bio_end_sector(bio);
1331 
1332 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1333 
1334 	if (se - sb < cache->discard_block_size)
1335 		*e = *b;
1336 	else
1337 		*e = to_dblock(block_div(se, cache->discard_block_size));
1338 }
1339 
1340 static void issue_discard(struct dm_cache_migration *mg)
1341 {
1342 	dm_dblock_t b, e;
1343 	struct bio *bio = mg->new_ocell->holder;
1344 	struct cache *cache = mg->cache;
1345 
1346 	calc_discard_block_range(cache, bio, &b, &e);
1347 	while (b != e) {
1348 		set_discard(cache, b);
1349 		b = to_dblock(from_dblock(b) + 1);
1350 	}
1351 
1352 	bio_endio(bio);
1353 	cell_defer(cache, mg->new_ocell, false);
1354 	free_migration(mg);
1355 	wake_worker(cache);
1356 }
1357 
1358 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1359 {
1360 	bool avoid;
1361 	struct cache *cache = mg->cache;
1362 
1363 	if (mg->discard) {
1364 		issue_discard(mg);
1365 		return;
1366 	}
1367 
1368 	if (mg->writeback || mg->demote)
1369 		avoid = !is_dirty(cache, mg->cblock) ||
1370 			is_discarded_oblock(cache, mg->old_oblock);
1371 	else {
1372 		struct bio *bio = mg->new_ocell->holder;
1373 
1374 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1375 
1376 		if (writeback_mode(&cache->features) &&
1377 		    !avoid && bio_writes_complete_block(cache, bio)) {
1378 			issue_overwrite(mg, bio);
1379 			return;
1380 		}
1381 	}
1382 
1383 	avoid ? avoid_copy(mg) : issue_copy(mg);
1384 }
1385 
1386 static void complete_migration(struct dm_cache_migration *mg)
1387 {
1388 	if (mg->err)
1389 		migration_failure(mg);
1390 	else
1391 		migration_success_pre_commit(mg);
1392 }
1393 
1394 static void process_migrations(struct cache *cache, struct list_head *head,
1395 			       void (*fn)(struct dm_cache_migration *))
1396 {
1397 	unsigned long flags;
1398 	struct list_head list;
1399 	struct dm_cache_migration *mg, *tmp;
1400 
1401 	INIT_LIST_HEAD(&list);
1402 	spin_lock_irqsave(&cache->lock, flags);
1403 	list_splice_init(head, &list);
1404 	spin_unlock_irqrestore(&cache->lock, flags);
1405 
1406 	list_for_each_entry_safe(mg, tmp, &list, list)
1407 		fn(mg);
1408 }
1409 
1410 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1411 {
1412 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1413 }
1414 
1415 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1416 {
1417 	unsigned long flags;
1418 	struct cache *cache = mg->cache;
1419 
1420 	spin_lock_irqsave(&cache->lock, flags);
1421 	__queue_quiesced_migration(mg);
1422 	spin_unlock_irqrestore(&cache->lock, flags);
1423 
1424 	wake_worker(cache);
1425 }
1426 
1427 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1428 {
1429 	unsigned long flags;
1430 	struct dm_cache_migration *mg, *tmp;
1431 
1432 	spin_lock_irqsave(&cache->lock, flags);
1433 	list_for_each_entry_safe(mg, tmp, work, list)
1434 		__queue_quiesced_migration(mg);
1435 	spin_unlock_irqrestore(&cache->lock, flags);
1436 
1437 	wake_worker(cache);
1438 }
1439 
1440 static void check_for_quiesced_migrations(struct cache *cache,
1441 					  struct per_bio_data *pb)
1442 {
1443 	struct list_head work;
1444 
1445 	if (!pb->all_io_entry)
1446 		return;
1447 
1448 	INIT_LIST_HEAD(&work);
1449 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1450 
1451 	if (!list_empty(&work))
1452 		queue_quiesced_migrations(cache, &work);
1453 }
1454 
1455 static void quiesce_migration(struct dm_cache_migration *mg)
1456 {
1457 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1458 		queue_quiesced_migration(mg);
1459 }
1460 
1461 static void promote(struct cache *cache, struct prealloc *structs,
1462 		    dm_oblock_t oblock, dm_cblock_t cblock,
1463 		    struct dm_bio_prison_cell *cell)
1464 {
1465 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1466 
1467 	mg->err = false;
1468 	mg->discard = false;
1469 	mg->writeback = false;
1470 	mg->demote = false;
1471 	mg->promote = true;
1472 	mg->requeue_holder = true;
1473 	mg->invalidate = false;
1474 	mg->cache = cache;
1475 	mg->new_oblock = oblock;
1476 	mg->cblock = cblock;
1477 	mg->old_ocell = NULL;
1478 	mg->new_ocell = cell;
1479 	mg->start_jiffies = jiffies;
1480 
1481 	inc_io_migrations(cache);
1482 	quiesce_migration(mg);
1483 }
1484 
1485 static void writeback(struct cache *cache, struct prealloc *structs,
1486 		      dm_oblock_t oblock, dm_cblock_t cblock,
1487 		      struct dm_bio_prison_cell *cell)
1488 {
1489 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1490 
1491 	mg->err = false;
1492 	mg->discard = false;
1493 	mg->writeback = true;
1494 	mg->demote = false;
1495 	mg->promote = false;
1496 	mg->requeue_holder = true;
1497 	mg->invalidate = false;
1498 	mg->cache = cache;
1499 	mg->old_oblock = oblock;
1500 	mg->cblock = cblock;
1501 	mg->old_ocell = cell;
1502 	mg->new_ocell = NULL;
1503 	mg->start_jiffies = jiffies;
1504 
1505 	inc_io_migrations(cache);
1506 	quiesce_migration(mg);
1507 }
1508 
1509 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1510 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1511 				dm_cblock_t cblock,
1512 				struct dm_bio_prison_cell *old_ocell,
1513 				struct dm_bio_prison_cell *new_ocell)
1514 {
1515 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1516 
1517 	mg->err = false;
1518 	mg->discard = false;
1519 	mg->writeback = false;
1520 	mg->demote = true;
1521 	mg->promote = true;
1522 	mg->requeue_holder = true;
1523 	mg->invalidate = false;
1524 	mg->cache = cache;
1525 	mg->old_oblock = old_oblock;
1526 	mg->new_oblock = new_oblock;
1527 	mg->cblock = cblock;
1528 	mg->old_ocell = old_ocell;
1529 	mg->new_ocell = new_ocell;
1530 	mg->start_jiffies = jiffies;
1531 
1532 	inc_io_migrations(cache);
1533 	quiesce_migration(mg);
1534 }
1535 
1536 /*
1537  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1538  * block are thrown away.
1539  */
1540 static void invalidate(struct cache *cache, struct prealloc *structs,
1541 		       dm_oblock_t oblock, dm_cblock_t cblock,
1542 		       struct dm_bio_prison_cell *cell)
1543 {
1544 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1545 
1546 	mg->err = false;
1547 	mg->discard = false;
1548 	mg->writeback = false;
1549 	mg->demote = true;
1550 	mg->promote = false;
1551 	mg->requeue_holder = true;
1552 	mg->invalidate = true;
1553 	mg->cache = cache;
1554 	mg->old_oblock = oblock;
1555 	mg->cblock = cblock;
1556 	mg->old_ocell = cell;
1557 	mg->new_ocell = NULL;
1558 	mg->start_jiffies = jiffies;
1559 
1560 	inc_io_migrations(cache);
1561 	quiesce_migration(mg);
1562 }
1563 
1564 static void discard(struct cache *cache, struct prealloc *structs,
1565 		    struct dm_bio_prison_cell *cell)
1566 {
1567 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1568 
1569 	mg->err = false;
1570 	mg->discard = true;
1571 	mg->writeback = false;
1572 	mg->demote = false;
1573 	mg->promote = false;
1574 	mg->requeue_holder = false;
1575 	mg->invalidate = false;
1576 	mg->cache = cache;
1577 	mg->old_ocell = NULL;
1578 	mg->new_ocell = cell;
1579 	mg->start_jiffies = jiffies;
1580 
1581 	quiesce_migration(mg);
1582 }
1583 
1584 /*----------------------------------------------------------------
1585  * bio processing
1586  *--------------------------------------------------------------*/
1587 static void defer_bio(struct cache *cache, struct bio *bio)
1588 {
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&cache->lock, flags);
1592 	bio_list_add(&cache->deferred_bios, bio);
1593 	spin_unlock_irqrestore(&cache->lock, flags);
1594 
1595 	wake_worker(cache);
1596 }
1597 
1598 static void process_flush_bio(struct cache *cache, struct bio *bio)
1599 {
1600 	size_t pb_data_size = get_per_bio_data_size(cache);
1601 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1602 
1603 	BUG_ON(bio->bi_iter.bi_size);
1604 	if (!pb->req_nr)
1605 		remap_to_origin(cache, bio);
1606 	else
1607 		remap_to_cache(cache, bio, 0);
1608 
1609 	/*
1610 	 * REQ_FLUSH is not directed at any particular block so we don't
1611 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1612 	 * by dm-core.
1613 	 */
1614 	issue(cache, bio);
1615 }
1616 
1617 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1618 				struct bio *bio)
1619 {
1620 	int r;
1621 	dm_dblock_t b, e;
1622 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1623 
1624 	calc_discard_block_range(cache, bio, &b, &e);
1625 	if (b == e) {
1626 		bio_endio(bio);
1627 		return;
1628 	}
1629 
1630 	cell_prealloc = prealloc_get_cell(structs);
1631 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1632 			     (cell_free_fn) prealloc_put_cell,
1633 			     structs, &new_ocell);
1634 	if (r > 0)
1635 		return;
1636 
1637 	discard(cache, structs, new_ocell);
1638 }
1639 
1640 static bool spare_migration_bandwidth(struct cache *cache)
1641 {
1642 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1643 		cache->sectors_per_block;
1644 	return current_volume < cache->migration_threshold;
1645 }
1646 
1647 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1648 {
1649 	atomic_inc(bio_data_dir(bio) == READ ?
1650 		   &cache->stats.read_hit : &cache->stats.write_hit);
1651 }
1652 
1653 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1654 {
1655 	atomic_inc(bio_data_dir(bio) == READ ?
1656 		   &cache->stats.read_miss : &cache->stats.write_miss);
1657 }
1658 
1659 /*----------------------------------------------------------------*/
1660 
1661 struct inc_detail {
1662 	struct cache *cache;
1663 	struct bio_list bios_for_issue;
1664 	struct bio_list unhandled_bios;
1665 	bool any_writes;
1666 };
1667 
1668 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1669 {
1670 	struct bio *bio;
1671 	struct inc_detail *detail = context;
1672 	struct cache *cache = detail->cache;
1673 
1674 	inc_ds(cache, cell->holder, cell);
1675 	if (bio_data_dir(cell->holder) == WRITE)
1676 		detail->any_writes = true;
1677 
1678 	while ((bio = bio_list_pop(&cell->bios))) {
1679 		if (discard_or_flush(bio)) {
1680 			bio_list_add(&detail->unhandled_bios, bio);
1681 			continue;
1682 		}
1683 
1684 		if (bio_data_dir(bio) == WRITE)
1685 			detail->any_writes = true;
1686 
1687 		bio_list_add(&detail->bios_for_issue, bio);
1688 		inc_ds(cache, bio, cell);
1689 	}
1690 }
1691 
1692 // FIXME: refactor these two
1693 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1694 					       struct dm_bio_prison_cell *cell,
1695 					       dm_oblock_t oblock, bool issue_holder)
1696 {
1697 	struct bio *bio;
1698 	unsigned long flags;
1699 	struct inc_detail detail;
1700 
1701 	detail.cache = cache;
1702 	bio_list_init(&detail.bios_for_issue);
1703 	bio_list_init(&detail.unhandled_bios);
1704 	detail.any_writes = false;
1705 
1706 	spin_lock_irqsave(&cache->lock, flags);
1707 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1708 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1709 	spin_unlock_irqrestore(&cache->lock, flags);
1710 
1711 	remap_to_origin(cache, cell->holder);
1712 	if (issue_holder)
1713 		issue(cache, cell->holder);
1714 	else
1715 		accounted_begin(cache, cell->holder);
1716 
1717 	if (detail.any_writes)
1718 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1719 
1720 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1721 		remap_to_origin(cache, bio);
1722 		issue(cache, bio);
1723 	}
1724 
1725 	free_prison_cell(cache, cell);
1726 }
1727 
1728 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1729 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1730 {
1731 	struct bio *bio;
1732 	unsigned long flags;
1733 	struct inc_detail detail;
1734 
1735 	detail.cache = cache;
1736 	bio_list_init(&detail.bios_for_issue);
1737 	bio_list_init(&detail.unhandled_bios);
1738 	detail.any_writes = false;
1739 
1740 	spin_lock_irqsave(&cache->lock, flags);
1741 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1742 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1743 	spin_unlock_irqrestore(&cache->lock, flags);
1744 
1745 	remap_to_cache(cache, cell->holder, cblock);
1746 	if (issue_holder)
1747 		issue(cache, cell->holder);
1748 	else
1749 		accounted_begin(cache, cell->holder);
1750 
1751 	if (detail.any_writes) {
1752 		set_dirty(cache, oblock, cblock);
1753 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1754 	}
1755 
1756 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1757 		remap_to_cache(cache, bio, cblock);
1758 		issue(cache, bio);
1759 	}
1760 
1761 	free_prison_cell(cache, cell);
1762 }
1763 
1764 /*----------------------------------------------------------------*/
1765 
1766 struct old_oblock_lock {
1767 	struct policy_locker locker;
1768 	struct cache *cache;
1769 	struct prealloc *structs;
1770 	struct dm_bio_prison_cell *cell;
1771 };
1772 
1773 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1774 {
1775 	/* This should never be called */
1776 	BUG();
1777 	return 0;
1778 }
1779 
1780 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1781 {
1782 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1783 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1784 
1785 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1786 			  (cell_free_fn) prealloc_put_cell,
1787 			  l->structs, &l->cell);
1788 }
1789 
1790 static void process_cell(struct cache *cache, struct prealloc *structs,
1791 			 struct dm_bio_prison_cell *new_ocell)
1792 {
1793 	int r;
1794 	bool release_cell = true;
1795 	struct bio *bio = new_ocell->holder;
1796 	dm_oblock_t block = get_bio_block(cache, bio);
1797 	struct policy_result lookup_result;
1798 	bool passthrough = passthrough_mode(&cache->features);
1799 	bool fast_promotion, can_migrate;
1800 	struct old_oblock_lock ool;
1801 
1802 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1803 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1804 
1805 	ool.locker.fn = cell_locker;
1806 	ool.cache = cache;
1807 	ool.structs = structs;
1808 	ool.cell = NULL;
1809 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1810 		       bio, &ool.locker, &lookup_result);
1811 
1812 	if (r == -EWOULDBLOCK)
1813 		/* migration has been denied */
1814 		lookup_result.op = POLICY_MISS;
1815 
1816 	switch (lookup_result.op) {
1817 	case POLICY_HIT:
1818 		if (passthrough) {
1819 			inc_miss_counter(cache, bio);
1820 
1821 			/*
1822 			 * Passthrough always maps to the origin,
1823 			 * invalidating any cache blocks that are written
1824 			 * to.
1825 			 */
1826 
1827 			if (bio_data_dir(bio) == WRITE) {
1828 				atomic_inc(&cache->stats.demotion);
1829 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1830 				release_cell = false;
1831 
1832 			} else {
1833 				/* FIXME: factor out issue_origin() */
1834 				remap_to_origin_clear_discard(cache, bio, block);
1835 				inc_and_issue(cache, bio, new_ocell);
1836 			}
1837 		} else {
1838 			inc_hit_counter(cache, bio);
1839 
1840 			if (bio_data_dir(bio) == WRITE &&
1841 			    writethrough_mode(&cache->features) &&
1842 			    !is_dirty(cache, lookup_result.cblock)) {
1843 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1844 				inc_and_issue(cache, bio, new_ocell);
1845 
1846 			} else {
1847 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1848 				release_cell = false;
1849 			}
1850 		}
1851 
1852 		break;
1853 
1854 	case POLICY_MISS:
1855 		inc_miss_counter(cache, bio);
1856 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1857 		release_cell = false;
1858 		break;
1859 
1860 	case POLICY_NEW:
1861 		atomic_inc(&cache->stats.promotion);
1862 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1863 		release_cell = false;
1864 		break;
1865 
1866 	case POLICY_REPLACE:
1867 		atomic_inc(&cache->stats.demotion);
1868 		atomic_inc(&cache->stats.promotion);
1869 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1870 				    block, lookup_result.cblock,
1871 				    ool.cell, new_ocell);
1872 		release_cell = false;
1873 		break;
1874 
1875 	default:
1876 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1877 			    cache_device_name(cache), __func__,
1878 			    (unsigned) lookup_result.op);
1879 		bio_io_error(bio);
1880 	}
1881 
1882 	if (release_cell)
1883 		cell_defer(cache, new_ocell, false);
1884 }
1885 
1886 static void process_bio(struct cache *cache, struct prealloc *structs,
1887 			struct bio *bio)
1888 {
1889 	int r;
1890 	dm_oblock_t block = get_bio_block(cache, bio);
1891 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1892 
1893 	/*
1894 	 * Check to see if that block is currently migrating.
1895 	 */
1896 	cell_prealloc = prealloc_get_cell(structs);
1897 	r = bio_detain(cache, block, bio, cell_prealloc,
1898 		       (cell_free_fn) prealloc_put_cell,
1899 		       structs, &new_ocell);
1900 	if (r > 0)
1901 		return;
1902 
1903 	process_cell(cache, structs, new_ocell);
1904 }
1905 
1906 static int need_commit_due_to_time(struct cache *cache)
1907 {
1908 	return jiffies < cache->last_commit_jiffies ||
1909 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1910 }
1911 
1912 /*
1913  * A non-zero return indicates read_only or fail_io mode.
1914  */
1915 static int commit(struct cache *cache, bool clean_shutdown)
1916 {
1917 	int r;
1918 
1919 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1920 		return -EINVAL;
1921 
1922 	atomic_inc(&cache->stats.commit_count);
1923 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1924 	if (r)
1925 		metadata_operation_failed(cache, "dm_cache_commit", r);
1926 
1927 	return r;
1928 }
1929 
1930 static int commit_if_needed(struct cache *cache)
1931 {
1932 	int r = 0;
1933 
1934 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1935 	    dm_cache_changed_this_transaction(cache->cmd)) {
1936 		r = commit(cache, false);
1937 		cache->commit_requested = false;
1938 		cache->last_commit_jiffies = jiffies;
1939 	}
1940 
1941 	return r;
1942 }
1943 
1944 static void process_deferred_bios(struct cache *cache)
1945 {
1946 	bool prealloc_used = false;
1947 	unsigned long flags;
1948 	struct bio_list bios;
1949 	struct bio *bio;
1950 	struct prealloc structs;
1951 
1952 	memset(&structs, 0, sizeof(structs));
1953 	bio_list_init(&bios);
1954 
1955 	spin_lock_irqsave(&cache->lock, flags);
1956 	bio_list_merge(&bios, &cache->deferred_bios);
1957 	bio_list_init(&cache->deferred_bios);
1958 	spin_unlock_irqrestore(&cache->lock, flags);
1959 
1960 	while (!bio_list_empty(&bios)) {
1961 		/*
1962 		 * If we've got no free migration structs, and processing
1963 		 * this bio might require one, we pause until there are some
1964 		 * prepared mappings to process.
1965 		 */
1966 		prealloc_used = true;
1967 		if (prealloc_data_structs(cache, &structs)) {
1968 			spin_lock_irqsave(&cache->lock, flags);
1969 			bio_list_merge(&cache->deferred_bios, &bios);
1970 			spin_unlock_irqrestore(&cache->lock, flags);
1971 			break;
1972 		}
1973 
1974 		bio = bio_list_pop(&bios);
1975 
1976 		if (bio->bi_rw & REQ_FLUSH)
1977 			process_flush_bio(cache, bio);
1978 		else if (bio->bi_rw & REQ_DISCARD)
1979 			process_discard_bio(cache, &structs, bio);
1980 		else
1981 			process_bio(cache, &structs, bio);
1982 	}
1983 
1984 	if (prealloc_used)
1985 		prealloc_free_structs(cache, &structs);
1986 }
1987 
1988 static void process_deferred_cells(struct cache *cache)
1989 {
1990 	bool prealloc_used = false;
1991 	unsigned long flags;
1992 	struct dm_bio_prison_cell *cell, *tmp;
1993 	struct list_head cells;
1994 	struct prealloc structs;
1995 
1996 	memset(&structs, 0, sizeof(structs));
1997 
1998 	INIT_LIST_HEAD(&cells);
1999 
2000 	spin_lock_irqsave(&cache->lock, flags);
2001 	list_splice_init(&cache->deferred_cells, &cells);
2002 	spin_unlock_irqrestore(&cache->lock, flags);
2003 
2004 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2005 		/*
2006 		 * If we've got no free migration structs, and processing
2007 		 * this bio might require one, we pause until there are some
2008 		 * prepared mappings to process.
2009 		 */
2010 		prealloc_used = true;
2011 		if (prealloc_data_structs(cache, &structs)) {
2012 			spin_lock_irqsave(&cache->lock, flags);
2013 			list_splice(&cells, &cache->deferred_cells);
2014 			spin_unlock_irqrestore(&cache->lock, flags);
2015 			break;
2016 		}
2017 
2018 		process_cell(cache, &structs, cell);
2019 	}
2020 
2021 	if (prealloc_used)
2022 		prealloc_free_structs(cache, &structs);
2023 }
2024 
2025 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2026 {
2027 	unsigned long flags;
2028 	struct bio_list bios;
2029 	struct bio *bio;
2030 
2031 	bio_list_init(&bios);
2032 
2033 	spin_lock_irqsave(&cache->lock, flags);
2034 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2035 	bio_list_init(&cache->deferred_flush_bios);
2036 	spin_unlock_irqrestore(&cache->lock, flags);
2037 
2038 	/*
2039 	 * These bios have already been through inc_ds()
2040 	 */
2041 	while ((bio = bio_list_pop(&bios)))
2042 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2043 }
2044 
2045 static void process_deferred_writethrough_bios(struct cache *cache)
2046 {
2047 	unsigned long flags;
2048 	struct bio_list bios;
2049 	struct bio *bio;
2050 
2051 	bio_list_init(&bios);
2052 
2053 	spin_lock_irqsave(&cache->lock, flags);
2054 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2055 	bio_list_init(&cache->deferred_writethrough_bios);
2056 	spin_unlock_irqrestore(&cache->lock, flags);
2057 
2058 	/*
2059 	 * These bios have already been through inc_ds()
2060 	 */
2061 	while ((bio = bio_list_pop(&bios)))
2062 		accounted_request(cache, bio);
2063 }
2064 
2065 static void writeback_some_dirty_blocks(struct cache *cache)
2066 {
2067 	bool prealloc_used = false;
2068 	dm_oblock_t oblock;
2069 	dm_cblock_t cblock;
2070 	struct prealloc structs;
2071 	struct dm_bio_prison_cell *old_ocell;
2072 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2073 
2074 	memset(&structs, 0, sizeof(structs));
2075 
2076 	while (spare_migration_bandwidth(cache)) {
2077 		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2078 			break; /* no work to do */
2079 
2080 		prealloc_used = true;
2081 		if (prealloc_data_structs(cache, &structs) ||
2082 		    get_cell(cache, oblock, &structs, &old_ocell)) {
2083 			policy_set_dirty(cache->policy, oblock);
2084 			break;
2085 		}
2086 
2087 		writeback(cache, &structs, oblock, cblock, old_ocell);
2088 	}
2089 
2090 	if (prealloc_used)
2091 		prealloc_free_structs(cache, &structs);
2092 }
2093 
2094 /*----------------------------------------------------------------
2095  * Invalidations.
2096  * Dropping something from the cache *without* writing back.
2097  *--------------------------------------------------------------*/
2098 
2099 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2100 {
2101 	int r = 0;
2102 	uint64_t begin = from_cblock(req->cblocks->begin);
2103 	uint64_t end = from_cblock(req->cblocks->end);
2104 
2105 	while (begin != end) {
2106 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2107 		if (!r) {
2108 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2109 			if (r) {
2110 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2111 				break;
2112 			}
2113 
2114 		} else if (r == -ENODATA) {
2115 			/* harmless, already unmapped */
2116 			r = 0;
2117 
2118 		} else {
2119 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2120 			break;
2121 		}
2122 
2123 		begin++;
2124         }
2125 
2126 	cache->commit_requested = true;
2127 
2128 	req->err = r;
2129 	atomic_set(&req->complete, 1);
2130 
2131 	wake_up(&req->result_wait);
2132 }
2133 
2134 static void process_invalidation_requests(struct cache *cache)
2135 {
2136 	struct list_head list;
2137 	struct invalidation_request *req, *tmp;
2138 
2139 	INIT_LIST_HEAD(&list);
2140 	spin_lock(&cache->invalidation_lock);
2141 	list_splice_init(&cache->invalidation_requests, &list);
2142 	spin_unlock(&cache->invalidation_lock);
2143 
2144 	list_for_each_entry_safe (req, tmp, &list, list)
2145 		process_invalidation_request(cache, req);
2146 }
2147 
2148 /*----------------------------------------------------------------
2149  * Main worker loop
2150  *--------------------------------------------------------------*/
2151 static bool is_quiescing(struct cache *cache)
2152 {
2153 	return atomic_read(&cache->quiescing);
2154 }
2155 
2156 static void ack_quiescing(struct cache *cache)
2157 {
2158 	if (is_quiescing(cache)) {
2159 		atomic_inc(&cache->quiescing_ack);
2160 		wake_up(&cache->quiescing_wait);
2161 	}
2162 }
2163 
2164 static void wait_for_quiescing_ack(struct cache *cache)
2165 {
2166 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2167 }
2168 
2169 static void start_quiescing(struct cache *cache)
2170 {
2171 	atomic_inc(&cache->quiescing);
2172 	wait_for_quiescing_ack(cache);
2173 }
2174 
2175 static void stop_quiescing(struct cache *cache)
2176 {
2177 	atomic_set(&cache->quiescing, 0);
2178 	atomic_set(&cache->quiescing_ack, 0);
2179 }
2180 
2181 static void wait_for_migrations(struct cache *cache)
2182 {
2183 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2184 }
2185 
2186 static void stop_worker(struct cache *cache)
2187 {
2188 	cancel_delayed_work(&cache->waker);
2189 	flush_workqueue(cache->wq);
2190 }
2191 
2192 static void requeue_deferred_cells(struct cache *cache)
2193 {
2194 	unsigned long flags;
2195 	struct list_head cells;
2196 	struct dm_bio_prison_cell *cell, *tmp;
2197 
2198 	INIT_LIST_HEAD(&cells);
2199 	spin_lock_irqsave(&cache->lock, flags);
2200 	list_splice_init(&cache->deferred_cells, &cells);
2201 	spin_unlock_irqrestore(&cache->lock, flags);
2202 
2203 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2204 		cell_requeue(cache, cell);
2205 }
2206 
2207 static void requeue_deferred_bios(struct cache *cache)
2208 {
2209 	struct bio *bio;
2210 	struct bio_list bios;
2211 
2212 	bio_list_init(&bios);
2213 	bio_list_merge(&bios, &cache->deferred_bios);
2214 	bio_list_init(&cache->deferred_bios);
2215 
2216 	while ((bio = bio_list_pop(&bios))) {
2217 		bio->bi_error = DM_ENDIO_REQUEUE;
2218 		bio_endio(bio);
2219 	}
2220 }
2221 
2222 static int more_work(struct cache *cache)
2223 {
2224 	if (is_quiescing(cache))
2225 		return !list_empty(&cache->quiesced_migrations) ||
2226 			!list_empty(&cache->completed_migrations) ||
2227 			!list_empty(&cache->need_commit_migrations);
2228 	else
2229 		return !bio_list_empty(&cache->deferred_bios) ||
2230 			!list_empty(&cache->deferred_cells) ||
2231 			!bio_list_empty(&cache->deferred_flush_bios) ||
2232 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2233 			!list_empty(&cache->quiesced_migrations) ||
2234 			!list_empty(&cache->completed_migrations) ||
2235 			!list_empty(&cache->need_commit_migrations) ||
2236 			cache->invalidate;
2237 }
2238 
2239 static void do_worker(struct work_struct *ws)
2240 {
2241 	struct cache *cache = container_of(ws, struct cache, worker);
2242 
2243 	do {
2244 		if (!is_quiescing(cache)) {
2245 			writeback_some_dirty_blocks(cache);
2246 			process_deferred_writethrough_bios(cache);
2247 			process_deferred_bios(cache);
2248 			process_deferred_cells(cache);
2249 			process_invalidation_requests(cache);
2250 		}
2251 
2252 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2253 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2254 
2255 		if (commit_if_needed(cache)) {
2256 			process_deferred_flush_bios(cache, false);
2257 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2258 		} else {
2259 			process_deferred_flush_bios(cache, true);
2260 			process_migrations(cache, &cache->need_commit_migrations,
2261 					   migration_success_post_commit);
2262 		}
2263 
2264 		ack_quiescing(cache);
2265 
2266 	} while (more_work(cache));
2267 }
2268 
2269 /*
2270  * We want to commit periodically so that not too much
2271  * unwritten metadata builds up.
2272  */
2273 static void do_waker(struct work_struct *ws)
2274 {
2275 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2276 	policy_tick(cache->policy, true);
2277 	wake_worker(cache);
2278 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2279 }
2280 
2281 /*----------------------------------------------------------------*/
2282 
2283 static int is_congested(struct dm_dev *dev, int bdi_bits)
2284 {
2285 	struct request_queue *q = bdev_get_queue(dev->bdev);
2286 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2287 }
2288 
2289 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2290 {
2291 	struct cache *cache = container_of(cb, struct cache, callbacks);
2292 
2293 	return is_congested(cache->origin_dev, bdi_bits) ||
2294 		is_congested(cache->cache_dev, bdi_bits);
2295 }
2296 
2297 /*----------------------------------------------------------------
2298  * Target methods
2299  *--------------------------------------------------------------*/
2300 
2301 /*
2302  * This function gets called on the error paths of the constructor, so we
2303  * have to cope with a partially initialised struct.
2304  */
2305 static void destroy(struct cache *cache)
2306 {
2307 	unsigned i;
2308 
2309 	mempool_destroy(cache->migration_pool);
2310 
2311 	if (cache->all_io_ds)
2312 		dm_deferred_set_destroy(cache->all_io_ds);
2313 
2314 	if (cache->prison)
2315 		dm_bio_prison_destroy(cache->prison);
2316 
2317 	if (cache->wq)
2318 		destroy_workqueue(cache->wq);
2319 
2320 	if (cache->dirty_bitset)
2321 		free_bitset(cache->dirty_bitset);
2322 
2323 	if (cache->discard_bitset)
2324 		free_bitset(cache->discard_bitset);
2325 
2326 	if (cache->copier)
2327 		dm_kcopyd_client_destroy(cache->copier);
2328 
2329 	if (cache->cmd)
2330 		dm_cache_metadata_close(cache->cmd);
2331 
2332 	if (cache->metadata_dev)
2333 		dm_put_device(cache->ti, cache->metadata_dev);
2334 
2335 	if (cache->origin_dev)
2336 		dm_put_device(cache->ti, cache->origin_dev);
2337 
2338 	if (cache->cache_dev)
2339 		dm_put_device(cache->ti, cache->cache_dev);
2340 
2341 	if (cache->policy)
2342 		dm_cache_policy_destroy(cache->policy);
2343 
2344 	for (i = 0; i < cache->nr_ctr_args ; i++)
2345 		kfree(cache->ctr_args[i]);
2346 	kfree(cache->ctr_args);
2347 
2348 	kfree(cache);
2349 }
2350 
2351 static void cache_dtr(struct dm_target *ti)
2352 {
2353 	struct cache *cache = ti->private;
2354 
2355 	destroy(cache);
2356 }
2357 
2358 static sector_t get_dev_size(struct dm_dev *dev)
2359 {
2360 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2361 }
2362 
2363 /*----------------------------------------------------------------*/
2364 
2365 /*
2366  * Construct a cache device mapping.
2367  *
2368  * cache <metadata dev> <cache dev> <origin dev> <block size>
2369  *       <#feature args> [<feature arg>]*
2370  *       <policy> <#policy args> [<policy arg>]*
2371  *
2372  * metadata dev    : fast device holding the persistent metadata
2373  * cache dev	   : fast device holding cached data blocks
2374  * origin dev	   : slow device holding original data blocks
2375  * block size	   : cache unit size in sectors
2376  *
2377  * #feature args   : number of feature arguments passed
2378  * feature args    : writethrough.  (The default is writeback.)
2379  *
2380  * policy	   : the replacement policy to use
2381  * #policy args    : an even number of policy arguments corresponding
2382  *		     to key/value pairs passed to the policy
2383  * policy args	   : key/value pairs passed to the policy
2384  *		     E.g. 'sequential_threshold 1024'
2385  *		     See cache-policies.txt for details.
2386  *
2387  * Optional feature arguments are:
2388  *   writethrough  : write through caching that prohibits cache block
2389  *		     content from being different from origin block content.
2390  *		     Without this argument, the default behaviour is to write
2391  *		     back cache block contents later for performance reasons,
2392  *		     so they may differ from the corresponding origin blocks.
2393  */
2394 struct cache_args {
2395 	struct dm_target *ti;
2396 
2397 	struct dm_dev *metadata_dev;
2398 
2399 	struct dm_dev *cache_dev;
2400 	sector_t cache_sectors;
2401 
2402 	struct dm_dev *origin_dev;
2403 	sector_t origin_sectors;
2404 
2405 	uint32_t block_size;
2406 
2407 	const char *policy_name;
2408 	int policy_argc;
2409 	const char **policy_argv;
2410 
2411 	struct cache_features features;
2412 };
2413 
2414 static void destroy_cache_args(struct cache_args *ca)
2415 {
2416 	if (ca->metadata_dev)
2417 		dm_put_device(ca->ti, ca->metadata_dev);
2418 
2419 	if (ca->cache_dev)
2420 		dm_put_device(ca->ti, ca->cache_dev);
2421 
2422 	if (ca->origin_dev)
2423 		dm_put_device(ca->ti, ca->origin_dev);
2424 
2425 	kfree(ca);
2426 }
2427 
2428 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2429 {
2430 	if (!as->argc) {
2431 		*error = "Insufficient args";
2432 		return false;
2433 	}
2434 
2435 	return true;
2436 }
2437 
2438 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2439 			      char **error)
2440 {
2441 	int r;
2442 	sector_t metadata_dev_size;
2443 	char b[BDEVNAME_SIZE];
2444 
2445 	if (!at_least_one_arg(as, error))
2446 		return -EINVAL;
2447 
2448 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2449 			  &ca->metadata_dev);
2450 	if (r) {
2451 		*error = "Error opening metadata device";
2452 		return r;
2453 	}
2454 
2455 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2456 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2457 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2458 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2459 
2460 	return 0;
2461 }
2462 
2463 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2464 			   char **error)
2465 {
2466 	int r;
2467 
2468 	if (!at_least_one_arg(as, error))
2469 		return -EINVAL;
2470 
2471 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2472 			  &ca->cache_dev);
2473 	if (r) {
2474 		*error = "Error opening cache device";
2475 		return r;
2476 	}
2477 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2478 
2479 	return 0;
2480 }
2481 
2482 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2483 			    char **error)
2484 {
2485 	int r;
2486 
2487 	if (!at_least_one_arg(as, error))
2488 		return -EINVAL;
2489 
2490 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2491 			  &ca->origin_dev);
2492 	if (r) {
2493 		*error = "Error opening origin device";
2494 		return r;
2495 	}
2496 
2497 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2498 	if (ca->ti->len > ca->origin_sectors) {
2499 		*error = "Device size larger than cached device";
2500 		return -EINVAL;
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2507 			    char **error)
2508 {
2509 	unsigned long block_size;
2510 
2511 	if (!at_least_one_arg(as, error))
2512 		return -EINVAL;
2513 
2514 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2515 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2516 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2517 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2518 		*error = "Invalid data block size";
2519 		return -EINVAL;
2520 	}
2521 
2522 	if (block_size > ca->cache_sectors) {
2523 		*error = "Data block size is larger than the cache device";
2524 		return -EINVAL;
2525 	}
2526 
2527 	ca->block_size = block_size;
2528 
2529 	return 0;
2530 }
2531 
2532 static void init_features(struct cache_features *cf)
2533 {
2534 	cf->mode = CM_WRITE;
2535 	cf->io_mode = CM_IO_WRITEBACK;
2536 }
2537 
2538 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2539 			  char **error)
2540 {
2541 	static struct dm_arg _args[] = {
2542 		{0, 1, "Invalid number of cache feature arguments"},
2543 	};
2544 
2545 	int r;
2546 	unsigned argc;
2547 	const char *arg;
2548 	struct cache_features *cf = &ca->features;
2549 
2550 	init_features(cf);
2551 
2552 	r = dm_read_arg_group(_args, as, &argc, error);
2553 	if (r)
2554 		return -EINVAL;
2555 
2556 	while (argc--) {
2557 		arg = dm_shift_arg(as);
2558 
2559 		if (!strcasecmp(arg, "writeback"))
2560 			cf->io_mode = CM_IO_WRITEBACK;
2561 
2562 		else if (!strcasecmp(arg, "writethrough"))
2563 			cf->io_mode = CM_IO_WRITETHROUGH;
2564 
2565 		else if (!strcasecmp(arg, "passthrough"))
2566 			cf->io_mode = CM_IO_PASSTHROUGH;
2567 
2568 		else {
2569 			*error = "Unrecognised cache feature requested";
2570 			return -EINVAL;
2571 		}
2572 	}
2573 
2574 	return 0;
2575 }
2576 
2577 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2578 			char **error)
2579 {
2580 	static struct dm_arg _args[] = {
2581 		{0, 1024, "Invalid number of policy arguments"},
2582 	};
2583 
2584 	int r;
2585 
2586 	if (!at_least_one_arg(as, error))
2587 		return -EINVAL;
2588 
2589 	ca->policy_name = dm_shift_arg(as);
2590 
2591 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2592 	if (r)
2593 		return -EINVAL;
2594 
2595 	ca->policy_argv = (const char **)as->argv;
2596 	dm_consume_args(as, ca->policy_argc);
2597 
2598 	return 0;
2599 }
2600 
2601 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2602 			    char **error)
2603 {
2604 	int r;
2605 	struct dm_arg_set as;
2606 
2607 	as.argc = argc;
2608 	as.argv = argv;
2609 
2610 	r = parse_metadata_dev(ca, &as, error);
2611 	if (r)
2612 		return r;
2613 
2614 	r = parse_cache_dev(ca, &as, error);
2615 	if (r)
2616 		return r;
2617 
2618 	r = parse_origin_dev(ca, &as, error);
2619 	if (r)
2620 		return r;
2621 
2622 	r = parse_block_size(ca, &as, error);
2623 	if (r)
2624 		return r;
2625 
2626 	r = parse_features(ca, &as, error);
2627 	if (r)
2628 		return r;
2629 
2630 	r = parse_policy(ca, &as, error);
2631 	if (r)
2632 		return r;
2633 
2634 	return 0;
2635 }
2636 
2637 /*----------------------------------------------------------------*/
2638 
2639 static struct kmem_cache *migration_cache;
2640 
2641 #define NOT_CORE_OPTION 1
2642 
2643 static int process_config_option(struct cache *cache, const char *key, const char *value)
2644 {
2645 	unsigned long tmp;
2646 
2647 	if (!strcasecmp(key, "migration_threshold")) {
2648 		if (kstrtoul(value, 10, &tmp))
2649 			return -EINVAL;
2650 
2651 		cache->migration_threshold = tmp;
2652 		return 0;
2653 	}
2654 
2655 	return NOT_CORE_OPTION;
2656 }
2657 
2658 static int set_config_value(struct cache *cache, const char *key, const char *value)
2659 {
2660 	int r = process_config_option(cache, key, value);
2661 
2662 	if (r == NOT_CORE_OPTION)
2663 		r = policy_set_config_value(cache->policy, key, value);
2664 
2665 	if (r)
2666 		DMWARN("bad config value for %s: %s", key, value);
2667 
2668 	return r;
2669 }
2670 
2671 static int set_config_values(struct cache *cache, int argc, const char **argv)
2672 {
2673 	int r = 0;
2674 
2675 	if (argc & 1) {
2676 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2677 		return -EINVAL;
2678 	}
2679 
2680 	while (argc) {
2681 		r = set_config_value(cache, argv[0], argv[1]);
2682 		if (r)
2683 			break;
2684 
2685 		argc -= 2;
2686 		argv += 2;
2687 	}
2688 
2689 	return r;
2690 }
2691 
2692 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2693 			       char **error)
2694 {
2695 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2696 							   cache->cache_size,
2697 							   cache->origin_sectors,
2698 							   cache->sectors_per_block);
2699 	if (IS_ERR(p)) {
2700 		*error = "Error creating cache's policy";
2701 		return PTR_ERR(p);
2702 	}
2703 	cache->policy = p;
2704 
2705 	return 0;
2706 }
2707 
2708 /*
2709  * We want the discard block size to be at least the size of the cache
2710  * block size and have no more than 2^14 discard blocks across the origin.
2711  */
2712 #define MAX_DISCARD_BLOCKS (1 << 14)
2713 
2714 static bool too_many_discard_blocks(sector_t discard_block_size,
2715 				    sector_t origin_size)
2716 {
2717 	(void) sector_div(origin_size, discard_block_size);
2718 
2719 	return origin_size > MAX_DISCARD_BLOCKS;
2720 }
2721 
2722 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2723 					     sector_t origin_size)
2724 {
2725 	sector_t discard_block_size = cache_block_size;
2726 
2727 	if (origin_size)
2728 		while (too_many_discard_blocks(discard_block_size, origin_size))
2729 			discard_block_size *= 2;
2730 
2731 	return discard_block_size;
2732 }
2733 
2734 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2735 {
2736 	dm_block_t nr_blocks = from_cblock(size);
2737 
2738 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2739 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2740 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2741 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2742 			     (unsigned long long) nr_blocks);
2743 
2744 	cache->cache_size = size;
2745 }
2746 
2747 #define DEFAULT_MIGRATION_THRESHOLD 2048
2748 
2749 static int cache_create(struct cache_args *ca, struct cache **result)
2750 {
2751 	int r = 0;
2752 	char **error = &ca->ti->error;
2753 	struct cache *cache;
2754 	struct dm_target *ti = ca->ti;
2755 	dm_block_t origin_blocks;
2756 	struct dm_cache_metadata *cmd;
2757 	bool may_format = ca->features.mode == CM_WRITE;
2758 
2759 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2760 	if (!cache)
2761 		return -ENOMEM;
2762 
2763 	cache->ti = ca->ti;
2764 	ti->private = cache;
2765 	ti->num_flush_bios = 2;
2766 	ti->flush_supported = true;
2767 
2768 	ti->num_discard_bios = 1;
2769 	ti->discards_supported = true;
2770 	ti->discard_zeroes_data_unsupported = true;
2771 	ti->split_discard_bios = false;
2772 
2773 	cache->features = ca->features;
2774 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2775 
2776 	cache->callbacks.congested_fn = cache_is_congested;
2777 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2778 
2779 	cache->metadata_dev = ca->metadata_dev;
2780 	cache->origin_dev = ca->origin_dev;
2781 	cache->cache_dev = ca->cache_dev;
2782 
2783 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2784 
2785 	/* FIXME: factor out this whole section */
2786 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2787 	origin_blocks = block_div(origin_blocks, ca->block_size);
2788 	cache->origin_blocks = to_oblock(origin_blocks);
2789 
2790 	cache->sectors_per_block = ca->block_size;
2791 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2792 		r = -EINVAL;
2793 		goto bad;
2794 	}
2795 
2796 	if (ca->block_size & (ca->block_size - 1)) {
2797 		dm_block_t cache_size = ca->cache_sectors;
2798 
2799 		cache->sectors_per_block_shift = -1;
2800 		cache_size = block_div(cache_size, ca->block_size);
2801 		set_cache_size(cache, to_cblock(cache_size));
2802 	} else {
2803 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2804 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2805 	}
2806 
2807 	r = create_cache_policy(cache, ca, error);
2808 	if (r)
2809 		goto bad;
2810 
2811 	cache->policy_nr_args = ca->policy_argc;
2812 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2813 
2814 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2815 	if (r) {
2816 		*error = "Error setting cache policy's config values";
2817 		goto bad;
2818 	}
2819 
2820 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2821 				     ca->block_size, may_format,
2822 				     dm_cache_policy_get_hint_size(cache->policy));
2823 	if (IS_ERR(cmd)) {
2824 		*error = "Error creating metadata object";
2825 		r = PTR_ERR(cmd);
2826 		goto bad;
2827 	}
2828 	cache->cmd = cmd;
2829 	set_cache_mode(cache, CM_WRITE);
2830 	if (get_cache_mode(cache) != CM_WRITE) {
2831 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2832 		r = -EINVAL;
2833 		goto bad;
2834 	}
2835 
2836 	if (passthrough_mode(&cache->features)) {
2837 		bool all_clean;
2838 
2839 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2840 		if (r) {
2841 			*error = "dm_cache_metadata_all_clean() failed";
2842 			goto bad;
2843 		}
2844 
2845 		if (!all_clean) {
2846 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2847 			r = -EINVAL;
2848 			goto bad;
2849 		}
2850 	}
2851 
2852 	spin_lock_init(&cache->lock);
2853 	INIT_LIST_HEAD(&cache->deferred_cells);
2854 	bio_list_init(&cache->deferred_bios);
2855 	bio_list_init(&cache->deferred_flush_bios);
2856 	bio_list_init(&cache->deferred_writethrough_bios);
2857 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2858 	INIT_LIST_HEAD(&cache->completed_migrations);
2859 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2860 	atomic_set(&cache->nr_allocated_migrations, 0);
2861 	atomic_set(&cache->nr_io_migrations, 0);
2862 	init_waitqueue_head(&cache->migration_wait);
2863 
2864 	init_waitqueue_head(&cache->quiescing_wait);
2865 	atomic_set(&cache->quiescing, 0);
2866 	atomic_set(&cache->quiescing_ack, 0);
2867 
2868 	r = -ENOMEM;
2869 	atomic_set(&cache->nr_dirty, 0);
2870 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2871 	if (!cache->dirty_bitset) {
2872 		*error = "could not allocate dirty bitset";
2873 		goto bad;
2874 	}
2875 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2876 
2877 	cache->discard_block_size =
2878 		calculate_discard_block_size(cache->sectors_per_block,
2879 					     cache->origin_sectors);
2880 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2881 							      cache->discard_block_size));
2882 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2883 	if (!cache->discard_bitset) {
2884 		*error = "could not allocate discard bitset";
2885 		goto bad;
2886 	}
2887 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2888 
2889 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2890 	if (IS_ERR(cache->copier)) {
2891 		*error = "could not create kcopyd client";
2892 		r = PTR_ERR(cache->copier);
2893 		goto bad;
2894 	}
2895 
2896 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2897 	if (!cache->wq) {
2898 		*error = "could not create workqueue for metadata object";
2899 		goto bad;
2900 	}
2901 	INIT_WORK(&cache->worker, do_worker);
2902 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2903 	cache->last_commit_jiffies = jiffies;
2904 
2905 	cache->prison = dm_bio_prison_create();
2906 	if (!cache->prison) {
2907 		*error = "could not create bio prison";
2908 		goto bad;
2909 	}
2910 
2911 	cache->all_io_ds = dm_deferred_set_create();
2912 	if (!cache->all_io_ds) {
2913 		*error = "could not create all_io deferred set";
2914 		goto bad;
2915 	}
2916 
2917 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2918 							 migration_cache);
2919 	if (!cache->migration_pool) {
2920 		*error = "Error creating cache's migration mempool";
2921 		goto bad;
2922 	}
2923 
2924 	cache->need_tick_bio = true;
2925 	cache->sized = false;
2926 	cache->invalidate = false;
2927 	cache->commit_requested = false;
2928 	cache->loaded_mappings = false;
2929 	cache->loaded_discards = false;
2930 
2931 	load_stats(cache);
2932 
2933 	atomic_set(&cache->stats.demotion, 0);
2934 	atomic_set(&cache->stats.promotion, 0);
2935 	atomic_set(&cache->stats.copies_avoided, 0);
2936 	atomic_set(&cache->stats.cache_cell_clash, 0);
2937 	atomic_set(&cache->stats.commit_count, 0);
2938 	atomic_set(&cache->stats.discard_count, 0);
2939 
2940 	spin_lock_init(&cache->invalidation_lock);
2941 	INIT_LIST_HEAD(&cache->invalidation_requests);
2942 
2943 	iot_init(&cache->origin_tracker);
2944 
2945 	*result = cache;
2946 	return 0;
2947 
2948 bad:
2949 	destroy(cache);
2950 	return r;
2951 }
2952 
2953 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2954 {
2955 	unsigned i;
2956 	const char **copy;
2957 
2958 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2959 	if (!copy)
2960 		return -ENOMEM;
2961 	for (i = 0; i < argc; i++) {
2962 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2963 		if (!copy[i]) {
2964 			while (i--)
2965 				kfree(copy[i]);
2966 			kfree(copy);
2967 			return -ENOMEM;
2968 		}
2969 	}
2970 
2971 	cache->nr_ctr_args = argc;
2972 	cache->ctr_args = copy;
2973 
2974 	return 0;
2975 }
2976 
2977 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2978 {
2979 	int r = -EINVAL;
2980 	struct cache_args *ca;
2981 	struct cache *cache = NULL;
2982 
2983 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2984 	if (!ca) {
2985 		ti->error = "Error allocating memory for cache";
2986 		return -ENOMEM;
2987 	}
2988 	ca->ti = ti;
2989 
2990 	r = parse_cache_args(ca, argc, argv, &ti->error);
2991 	if (r)
2992 		goto out;
2993 
2994 	r = cache_create(ca, &cache);
2995 	if (r)
2996 		goto out;
2997 
2998 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2999 	if (r) {
3000 		destroy(cache);
3001 		goto out;
3002 	}
3003 
3004 	ti->private = cache;
3005 
3006 out:
3007 	destroy_cache_args(ca);
3008 	return r;
3009 }
3010 
3011 /*----------------------------------------------------------------*/
3012 
3013 static int cache_map(struct dm_target *ti, struct bio *bio)
3014 {
3015 	struct cache *cache = ti->private;
3016 
3017 	int r;
3018 	struct dm_bio_prison_cell *cell = NULL;
3019 	dm_oblock_t block = get_bio_block(cache, bio);
3020 	size_t pb_data_size = get_per_bio_data_size(cache);
3021 	bool can_migrate = false;
3022 	bool fast_promotion;
3023 	struct policy_result lookup_result;
3024 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3025 	struct old_oblock_lock ool;
3026 
3027 	ool.locker.fn = null_locker;
3028 
3029 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3030 		/*
3031 		 * This can only occur if the io goes to a partial block at
3032 		 * the end of the origin device.  We don't cache these.
3033 		 * Just remap to the origin and carry on.
3034 		 */
3035 		remap_to_origin(cache, bio);
3036 		accounted_begin(cache, bio);
3037 		return DM_MAPIO_REMAPPED;
3038 	}
3039 
3040 	if (discard_or_flush(bio)) {
3041 		defer_bio(cache, bio);
3042 		return DM_MAPIO_SUBMITTED;
3043 	}
3044 
3045 	/*
3046 	 * Check to see if that block is currently migrating.
3047 	 */
3048 	cell = alloc_prison_cell(cache);
3049 	if (!cell) {
3050 		defer_bio(cache, bio);
3051 		return DM_MAPIO_SUBMITTED;
3052 	}
3053 
3054 	r = bio_detain(cache, block, bio, cell,
3055 		       (cell_free_fn) free_prison_cell,
3056 		       cache, &cell);
3057 	if (r) {
3058 		if (r < 0)
3059 			defer_bio(cache, bio);
3060 
3061 		return DM_MAPIO_SUBMITTED;
3062 	}
3063 
3064 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3065 
3066 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3067 		       bio, &ool.locker, &lookup_result);
3068 	if (r == -EWOULDBLOCK) {
3069 		cell_defer(cache, cell, true);
3070 		return DM_MAPIO_SUBMITTED;
3071 
3072 	} else if (r) {
3073 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3074 			    cache_device_name(cache), r);
3075 		cell_defer(cache, cell, false);
3076 		bio_io_error(bio);
3077 		return DM_MAPIO_SUBMITTED;
3078 	}
3079 
3080 	r = DM_MAPIO_REMAPPED;
3081 	switch (lookup_result.op) {
3082 	case POLICY_HIT:
3083 		if (passthrough_mode(&cache->features)) {
3084 			if (bio_data_dir(bio) == WRITE) {
3085 				/*
3086 				 * We need to invalidate this block, so
3087 				 * defer for the worker thread.
3088 				 */
3089 				cell_defer(cache, cell, true);
3090 				r = DM_MAPIO_SUBMITTED;
3091 
3092 			} else {
3093 				inc_miss_counter(cache, bio);
3094 				remap_to_origin_clear_discard(cache, bio, block);
3095 				accounted_begin(cache, bio);
3096 				inc_ds(cache, bio, cell);
3097 				// FIXME: we want to remap hits or misses straight
3098 				// away rather than passing over to the worker.
3099 				cell_defer(cache, cell, false);
3100 			}
3101 
3102 		} else {
3103 			inc_hit_counter(cache, bio);
3104 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3105 			    !is_dirty(cache, lookup_result.cblock)) {
3106 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3107 				accounted_begin(cache, bio);
3108 				inc_ds(cache, bio, cell);
3109 				cell_defer(cache, cell, false);
3110 
3111 			} else
3112 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3113 		}
3114 		break;
3115 
3116 	case POLICY_MISS:
3117 		inc_miss_counter(cache, bio);
3118 		if (pb->req_nr != 0) {
3119 			/*
3120 			 * This is a duplicate writethrough io that is no
3121 			 * longer needed because the block has been demoted.
3122 			 */
3123 			bio_endio(bio);
3124 			// FIXME: remap everything as a miss
3125 			cell_defer(cache, cell, false);
3126 			r = DM_MAPIO_SUBMITTED;
3127 
3128 		} else
3129 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3130 		break;
3131 
3132 	default:
3133 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3134 			    cache_device_name(cache), __func__,
3135 			    (unsigned) lookup_result.op);
3136 		cell_defer(cache, cell, false);
3137 		bio_io_error(bio);
3138 		r = DM_MAPIO_SUBMITTED;
3139 	}
3140 
3141 	return r;
3142 }
3143 
3144 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3145 {
3146 	struct cache *cache = ti->private;
3147 	unsigned long flags;
3148 	size_t pb_data_size = get_per_bio_data_size(cache);
3149 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3150 
3151 	if (pb->tick) {
3152 		policy_tick(cache->policy, false);
3153 
3154 		spin_lock_irqsave(&cache->lock, flags);
3155 		cache->need_tick_bio = true;
3156 		spin_unlock_irqrestore(&cache->lock, flags);
3157 	}
3158 
3159 	check_for_quiesced_migrations(cache, pb);
3160 	accounted_complete(cache, bio);
3161 
3162 	return 0;
3163 }
3164 
3165 static int write_dirty_bitset(struct cache *cache)
3166 {
3167 	unsigned i, r;
3168 
3169 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3170 		return -EINVAL;
3171 
3172 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3173 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3174 				       is_dirty(cache, to_cblock(i)));
3175 		if (r) {
3176 			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3177 			return r;
3178 		}
3179 	}
3180 
3181 	return 0;
3182 }
3183 
3184 static int write_discard_bitset(struct cache *cache)
3185 {
3186 	unsigned i, r;
3187 
3188 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3189 		return -EINVAL;
3190 
3191 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3192 					   cache->discard_nr_blocks);
3193 	if (r) {
3194 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3195 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3196 		return r;
3197 	}
3198 
3199 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3200 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3201 					 is_discarded(cache, to_dblock(i)));
3202 		if (r) {
3203 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3204 			return r;
3205 		}
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 static int write_hints(struct cache *cache)
3212 {
3213 	int r;
3214 
3215 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3216 		return -EINVAL;
3217 
3218 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3219 	if (r) {
3220 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3221 		return r;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 /*
3228  * returns true on success
3229  */
3230 static bool sync_metadata(struct cache *cache)
3231 {
3232 	int r1, r2, r3, r4;
3233 
3234 	r1 = write_dirty_bitset(cache);
3235 	if (r1)
3236 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3237 
3238 	r2 = write_discard_bitset(cache);
3239 	if (r2)
3240 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3241 
3242 	save_stats(cache);
3243 
3244 	r3 = write_hints(cache);
3245 	if (r3)
3246 		DMERR("%s: could not write hints", cache_device_name(cache));
3247 
3248 	/*
3249 	 * If writing the above metadata failed, we still commit, but don't
3250 	 * set the clean shutdown flag.  This will effectively force every
3251 	 * dirty bit to be set on reload.
3252 	 */
3253 	r4 = commit(cache, !r1 && !r2 && !r3);
3254 	if (r4)
3255 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3256 
3257 	return !r1 && !r2 && !r3 && !r4;
3258 }
3259 
3260 static void cache_postsuspend(struct dm_target *ti)
3261 {
3262 	struct cache *cache = ti->private;
3263 
3264 	start_quiescing(cache);
3265 	wait_for_migrations(cache);
3266 	stop_worker(cache);
3267 	requeue_deferred_bios(cache);
3268 	requeue_deferred_cells(cache);
3269 	stop_quiescing(cache);
3270 
3271 	if (get_cache_mode(cache) == CM_WRITE)
3272 		(void) sync_metadata(cache);
3273 }
3274 
3275 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3276 			bool dirty, uint32_t hint, bool hint_valid)
3277 {
3278 	int r;
3279 	struct cache *cache = context;
3280 
3281 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3282 	if (r)
3283 		return r;
3284 
3285 	if (dirty)
3286 		set_dirty(cache, oblock, cblock);
3287 	else
3288 		clear_dirty(cache, oblock, cblock);
3289 
3290 	return 0;
3291 }
3292 
3293 /*
3294  * The discard block size in the on disk metadata is not
3295  * neccessarily the same as we're currently using.  So we have to
3296  * be careful to only set the discarded attribute if we know it
3297  * covers a complete block of the new size.
3298  */
3299 struct discard_load_info {
3300 	struct cache *cache;
3301 
3302 	/*
3303 	 * These blocks are sized using the on disk dblock size, rather
3304 	 * than the current one.
3305 	 */
3306 	dm_block_t block_size;
3307 	dm_block_t discard_begin, discard_end;
3308 };
3309 
3310 static void discard_load_info_init(struct cache *cache,
3311 				   struct discard_load_info *li)
3312 {
3313 	li->cache = cache;
3314 	li->discard_begin = li->discard_end = 0;
3315 }
3316 
3317 static void set_discard_range(struct discard_load_info *li)
3318 {
3319 	sector_t b, e;
3320 
3321 	if (li->discard_begin == li->discard_end)
3322 		return;
3323 
3324 	/*
3325 	 * Convert to sectors.
3326 	 */
3327 	b = li->discard_begin * li->block_size;
3328 	e = li->discard_end * li->block_size;
3329 
3330 	/*
3331 	 * Then convert back to the current dblock size.
3332 	 */
3333 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3334 	sector_div(e, li->cache->discard_block_size);
3335 
3336 	/*
3337 	 * The origin may have shrunk, so we need to check we're still in
3338 	 * bounds.
3339 	 */
3340 	if (e > from_dblock(li->cache->discard_nr_blocks))
3341 		e = from_dblock(li->cache->discard_nr_blocks);
3342 
3343 	for (; b < e; b++)
3344 		set_discard(li->cache, to_dblock(b));
3345 }
3346 
3347 static int load_discard(void *context, sector_t discard_block_size,
3348 			dm_dblock_t dblock, bool discard)
3349 {
3350 	struct discard_load_info *li = context;
3351 
3352 	li->block_size = discard_block_size;
3353 
3354 	if (discard) {
3355 		if (from_dblock(dblock) == li->discard_end)
3356 			/*
3357 			 * We're already in a discard range, just extend it.
3358 			 */
3359 			li->discard_end = li->discard_end + 1ULL;
3360 
3361 		else {
3362 			/*
3363 			 * Emit the old range and start a new one.
3364 			 */
3365 			set_discard_range(li);
3366 			li->discard_begin = from_dblock(dblock);
3367 			li->discard_end = li->discard_begin + 1ULL;
3368 		}
3369 	} else {
3370 		set_discard_range(li);
3371 		li->discard_begin = li->discard_end = 0;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3378 {
3379 	sector_t size = get_dev_size(cache->cache_dev);
3380 	(void) sector_div(size, cache->sectors_per_block);
3381 	return to_cblock(size);
3382 }
3383 
3384 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3385 {
3386 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3387 		return true;
3388 
3389 	/*
3390 	 * We can't drop a dirty block when shrinking the cache.
3391 	 */
3392 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3393 		new_size = to_cblock(from_cblock(new_size) + 1);
3394 		if (is_dirty(cache, new_size)) {
3395 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3396 			      cache_device_name(cache),
3397 			      (unsigned long long) from_cblock(new_size));
3398 			return false;
3399 		}
3400 	}
3401 
3402 	return true;
3403 }
3404 
3405 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3406 {
3407 	int r;
3408 
3409 	r = dm_cache_resize(cache->cmd, new_size);
3410 	if (r) {
3411 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3412 		metadata_operation_failed(cache, "dm_cache_resize", r);
3413 		return r;
3414 	}
3415 
3416 	set_cache_size(cache, new_size);
3417 
3418 	return 0;
3419 }
3420 
3421 static int cache_preresume(struct dm_target *ti)
3422 {
3423 	int r = 0;
3424 	struct cache *cache = ti->private;
3425 	dm_cblock_t csize = get_cache_dev_size(cache);
3426 
3427 	/*
3428 	 * Check to see if the cache has resized.
3429 	 */
3430 	if (!cache->sized) {
3431 		r = resize_cache_dev(cache, csize);
3432 		if (r)
3433 			return r;
3434 
3435 		cache->sized = true;
3436 
3437 	} else if (csize != cache->cache_size) {
3438 		if (!can_resize(cache, csize))
3439 			return -EINVAL;
3440 
3441 		r = resize_cache_dev(cache, csize);
3442 		if (r)
3443 			return r;
3444 	}
3445 
3446 	if (!cache->loaded_mappings) {
3447 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3448 					   load_mapping, cache);
3449 		if (r) {
3450 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3451 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3452 			return r;
3453 		}
3454 
3455 		cache->loaded_mappings = true;
3456 	}
3457 
3458 	if (!cache->loaded_discards) {
3459 		struct discard_load_info li;
3460 
3461 		/*
3462 		 * The discard bitset could have been resized, or the
3463 		 * discard block size changed.  To be safe we start by
3464 		 * setting every dblock to not discarded.
3465 		 */
3466 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3467 
3468 		discard_load_info_init(cache, &li);
3469 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3470 		if (r) {
3471 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3472 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3473 			return r;
3474 		}
3475 		set_discard_range(&li);
3476 
3477 		cache->loaded_discards = true;
3478 	}
3479 
3480 	return r;
3481 }
3482 
3483 static void cache_resume(struct dm_target *ti)
3484 {
3485 	struct cache *cache = ti->private;
3486 
3487 	cache->need_tick_bio = true;
3488 	do_waker(&cache->waker.work);
3489 }
3490 
3491 /*
3492  * Status format:
3493  *
3494  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3495  * <cache block size> <#used cache blocks>/<#total cache blocks>
3496  * <#read hits> <#read misses> <#write hits> <#write misses>
3497  * <#demotions> <#promotions> <#dirty>
3498  * <#features> <features>*
3499  * <#core args> <core args>
3500  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3501  */
3502 static void cache_status(struct dm_target *ti, status_type_t type,
3503 			 unsigned status_flags, char *result, unsigned maxlen)
3504 {
3505 	int r = 0;
3506 	unsigned i;
3507 	ssize_t sz = 0;
3508 	dm_block_t nr_free_blocks_metadata = 0;
3509 	dm_block_t nr_blocks_metadata = 0;
3510 	char buf[BDEVNAME_SIZE];
3511 	struct cache *cache = ti->private;
3512 	dm_cblock_t residency;
3513 
3514 	switch (type) {
3515 	case STATUSTYPE_INFO:
3516 		if (get_cache_mode(cache) == CM_FAIL) {
3517 			DMEMIT("Fail");
3518 			break;
3519 		}
3520 
3521 		/* Commit to ensure statistics aren't out-of-date */
3522 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3523 			(void) commit(cache, false);
3524 
3525 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3526 		if (r) {
3527 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3528 			      cache_device_name(cache), r);
3529 			goto err;
3530 		}
3531 
3532 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3533 		if (r) {
3534 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3535 			      cache_device_name(cache), r);
3536 			goto err;
3537 		}
3538 
3539 		residency = policy_residency(cache->policy);
3540 
3541 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3542 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3543 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3544 		       (unsigned long long)nr_blocks_metadata,
3545 		       cache->sectors_per_block,
3546 		       (unsigned long long) from_cblock(residency),
3547 		       (unsigned long long) from_cblock(cache->cache_size),
3548 		       (unsigned) atomic_read(&cache->stats.read_hit),
3549 		       (unsigned) atomic_read(&cache->stats.read_miss),
3550 		       (unsigned) atomic_read(&cache->stats.write_hit),
3551 		       (unsigned) atomic_read(&cache->stats.write_miss),
3552 		       (unsigned) atomic_read(&cache->stats.demotion),
3553 		       (unsigned) atomic_read(&cache->stats.promotion),
3554 		       (unsigned long) atomic_read(&cache->nr_dirty));
3555 
3556 		if (writethrough_mode(&cache->features))
3557 			DMEMIT("1 writethrough ");
3558 
3559 		else if (passthrough_mode(&cache->features))
3560 			DMEMIT("1 passthrough ");
3561 
3562 		else if (writeback_mode(&cache->features))
3563 			DMEMIT("1 writeback ");
3564 
3565 		else {
3566 			DMERR("%s: internal error: unknown io mode: %d",
3567 			      cache_device_name(cache), (int) cache->features.io_mode);
3568 			goto err;
3569 		}
3570 
3571 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3572 
3573 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3574 		if (sz < maxlen) {
3575 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3576 			if (r)
3577 				DMERR("%s: policy_emit_config_values returned %d",
3578 				      cache_device_name(cache), r);
3579 		}
3580 
3581 		if (get_cache_mode(cache) == CM_READ_ONLY)
3582 			DMEMIT("ro ");
3583 		else
3584 			DMEMIT("rw ");
3585 
3586 		if (dm_cache_metadata_needs_check(cache->cmd))
3587 			DMEMIT("needs_check ");
3588 		else
3589 			DMEMIT("- ");
3590 
3591 		break;
3592 
3593 	case STATUSTYPE_TABLE:
3594 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3595 		DMEMIT("%s ", buf);
3596 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3597 		DMEMIT("%s ", buf);
3598 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3599 		DMEMIT("%s", buf);
3600 
3601 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3602 			DMEMIT(" %s", cache->ctr_args[i]);
3603 		if (cache->nr_ctr_args)
3604 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3605 	}
3606 
3607 	return;
3608 
3609 err:
3610 	DMEMIT("Error");
3611 }
3612 
3613 /*
3614  * A cache block range can take two forms:
3615  *
3616  * i) A single cblock, eg. '3456'
3617  * ii) A begin and end cblock with dots between, eg. 123-234
3618  */
3619 static int parse_cblock_range(struct cache *cache, const char *str,
3620 			      struct cblock_range *result)
3621 {
3622 	char dummy;
3623 	uint64_t b, e;
3624 	int r;
3625 
3626 	/*
3627 	 * Try and parse form (ii) first.
3628 	 */
3629 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3630 	if (r < 0)
3631 		return r;
3632 
3633 	if (r == 2) {
3634 		result->begin = to_cblock(b);
3635 		result->end = to_cblock(e);
3636 		return 0;
3637 	}
3638 
3639 	/*
3640 	 * That didn't work, try form (i).
3641 	 */
3642 	r = sscanf(str, "%llu%c", &b, &dummy);
3643 	if (r < 0)
3644 		return r;
3645 
3646 	if (r == 1) {
3647 		result->begin = to_cblock(b);
3648 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3649 		return 0;
3650 	}
3651 
3652 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3653 	return -EINVAL;
3654 }
3655 
3656 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3657 {
3658 	uint64_t b = from_cblock(range->begin);
3659 	uint64_t e = from_cblock(range->end);
3660 	uint64_t n = from_cblock(cache->cache_size);
3661 
3662 	if (b >= n) {
3663 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3664 		      cache_device_name(cache), b, n);
3665 		return -EINVAL;
3666 	}
3667 
3668 	if (e > n) {
3669 		DMERR("%s: end cblock out of range: %llu > %llu",
3670 		      cache_device_name(cache), e, n);
3671 		return -EINVAL;
3672 	}
3673 
3674 	if (b >= e) {
3675 		DMERR("%s: invalid cblock range: %llu >= %llu",
3676 		      cache_device_name(cache), b, e);
3677 		return -EINVAL;
3678 	}
3679 
3680 	return 0;
3681 }
3682 
3683 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3684 {
3685 	struct invalidation_request req;
3686 
3687 	INIT_LIST_HEAD(&req.list);
3688 	req.cblocks = range;
3689 	atomic_set(&req.complete, 0);
3690 	req.err = 0;
3691 	init_waitqueue_head(&req.result_wait);
3692 
3693 	spin_lock(&cache->invalidation_lock);
3694 	list_add(&req.list, &cache->invalidation_requests);
3695 	spin_unlock(&cache->invalidation_lock);
3696 	wake_worker(cache);
3697 
3698 	wait_event(req.result_wait, atomic_read(&req.complete));
3699 	return req.err;
3700 }
3701 
3702 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3703 					      const char **cblock_ranges)
3704 {
3705 	int r = 0;
3706 	unsigned i;
3707 	struct cblock_range range;
3708 
3709 	if (!passthrough_mode(&cache->features)) {
3710 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3711 		      cache_device_name(cache));
3712 		return -EPERM;
3713 	}
3714 
3715 	for (i = 0; i < count; i++) {
3716 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3717 		if (r)
3718 			break;
3719 
3720 		r = validate_cblock_range(cache, &range);
3721 		if (r)
3722 			break;
3723 
3724 		/*
3725 		 * Pass begin and end origin blocks to the worker and wake it.
3726 		 */
3727 		r = request_invalidation(cache, &range);
3728 		if (r)
3729 			break;
3730 	}
3731 
3732 	return r;
3733 }
3734 
3735 /*
3736  * Supports
3737  *	"<key> <value>"
3738  * and
3739  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3740  *
3741  * The key migration_threshold is supported by the cache target core.
3742  */
3743 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3744 {
3745 	struct cache *cache = ti->private;
3746 
3747 	if (!argc)
3748 		return -EINVAL;
3749 
3750 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3751 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3752 		      cache_device_name(cache));
3753 		return -EOPNOTSUPP;
3754 	}
3755 
3756 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3757 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3758 
3759 	if (argc != 2)
3760 		return -EINVAL;
3761 
3762 	return set_config_value(cache, argv[0], argv[1]);
3763 }
3764 
3765 static int cache_iterate_devices(struct dm_target *ti,
3766 				 iterate_devices_callout_fn fn, void *data)
3767 {
3768 	int r = 0;
3769 	struct cache *cache = ti->private;
3770 
3771 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3772 	if (!r)
3773 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3774 
3775 	return r;
3776 }
3777 
3778 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3779 {
3780 	/*
3781 	 * FIXME: these limits may be incompatible with the cache device
3782 	 */
3783 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3784 					    cache->origin_sectors);
3785 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3786 }
3787 
3788 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3789 {
3790 	struct cache *cache = ti->private;
3791 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3792 
3793 	/*
3794 	 * If the system-determined stacked limits are compatible with the
3795 	 * cache's blocksize (io_opt is a factor) do not override them.
3796 	 */
3797 	if (io_opt_sectors < cache->sectors_per_block ||
3798 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3799 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3800 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3801 	}
3802 	set_discard_limits(cache, limits);
3803 }
3804 
3805 /*----------------------------------------------------------------*/
3806 
3807 static struct target_type cache_target = {
3808 	.name = "cache",
3809 	.version = {1, 8, 0},
3810 	.module = THIS_MODULE,
3811 	.ctr = cache_ctr,
3812 	.dtr = cache_dtr,
3813 	.map = cache_map,
3814 	.end_io = cache_end_io,
3815 	.postsuspend = cache_postsuspend,
3816 	.preresume = cache_preresume,
3817 	.resume = cache_resume,
3818 	.status = cache_status,
3819 	.message = cache_message,
3820 	.iterate_devices = cache_iterate_devices,
3821 	.io_hints = cache_io_hints,
3822 };
3823 
3824 static int __init dm_cache_init(void)
3825 {
3826 	int r;
3827 
3828 	r = dm_register_target(&cache_target);
3829 	if (r) {
3830 		DMERR("cache target registration failed: %d", r);
3831 		return r;
3832 	}
3833 
3834 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3835 	if (!migration_cache) {
3836 		dm_unregister_target(&cache_target);
3837 		return -ENOMEM;
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 static void __exit dm_cache_exit(void)
3844 {
3845 	dm_unregister_target(&cache_target);
3846 	kmem_cache_destroy(migration_cache);
3847 }
3848 
3849 module_init(dm_cache_init);
3850 module_exit(dm_cache_exit);
3851 
3852 MODULE_DESCRIPTION(DM_NAME " cache target");
3853 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3854 MODULE_LICENSE("GPL");
3855