xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&iot->lock, flags);
80 	r = __iot_idle_for(iot, jifs);
81 	spin_unlock_irqrestore(&iot->lock, flags);
82 
83 	return r;
84 }
85 
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&iot->lock, flags);
91 	iot->in_flight += len;
92 	spin_unlock_irqrestore(&iot->lock, flags);
93 }
94 
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 	iot->in_flight -= len;
98 	if (!iot->in_flight)
99 		iot->idle_time = jiffies;
100 }
101 
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&iot->lock, flags);
107 	__iot_io_end(iot, len);
108 	spin_unlock_irqrestore(&iot->lock, flags);
109 }
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118 	struct work_struct ws;
119 	int input;
120 };
121 
122 static inline void init_continuation(struct continuation *k,
123 				     void (*fn)(struct work_struct *))
124 {
125 	INIT_WORK(&k->ws, fn);
126 	k->input = 0;
127 }
128 
129 static inline void queue_continuation(struct workqueue_struct *wq,
130 				      struct continuation *k)
131 {
132 	queue_work(wq, &k->ws);
133 }
134 
135 /*----------------------------------------------------------------*/
136 
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142 	/*
143 	 * The operation that everyone is waiting for.
144 	 */
145 	int (*commit_op)(void *context);
146 	void *commit_context;
147 
148 	/*
149 	 * This is how bios should be issued once the commit op is complete
150 	 * (accounted_request).
151 	 */
152 	void (*issue_op)(struct bio *bio, void *context);
153 	void *issue_context;
154 
155 	/*
156 	 * Queued work gets put on here after commit.
157 	 */
158 	struct workqueue_struct *wq;
159 
160 	spinlock_t lock;
161 	struct list_head work_items;
162 	struct bio_list bios;
163 	struct work_struct commit_work;
164 
165 	bool commit_scheduled;
166 };
167 
168 static void __commit(struct work_struct *_ws)
169 {
170 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
171 
172 	int r;
173 	unsigned long flags;
174 	struct list_head work_items;
175 	struct work_struct *ws, *tmp;
176 	struct continuation *k;
177 	struct bio *bio;
178 	struct bio_list bios;
179 
180 	INIT_LIST_HEAD(&work_items);
181 	bio_list_init(&bios);
182 
183 	/*
184 	 * We have to grab these before the commit_op to avoid a race
185 	 * condition.
186 	 */
187 	spin_lock_irqsave(&b->lock, flags);
188 	list_splice_init(&b->work_items, &work_items);
189 	bio_list_merge(&bios, &b->bios);
190 	bio_list_init(&b->bios);
191 	b->commit_scheduled = false;
192 	spin_unlock_irqrestore(&b->lock, flags);
193 
194 	r = b->commit_op(b->commit_context);
195 
196 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
197 		k = container_of(ws, struct continuation, ws);
198 		k->input = r;
199 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
200 		queue_work(b->wq, ws);
201 	}
202 
203 	while ((bio = bio_list_pop(&bios))) {
204 		if (r) {
205 			bio->bi_error = r;
206 			bio_endio(bio);
207 		} else
208 			b->issue_op(bio, b->issue_context);
209 	}
210 }
211 
212 static void batcher_init(struct batcher *b,
213 			 int (*commit_op)(void *),
214 			 void *commit_context,
215 			 void (*issue_op)(struct bio *bio, void *),
216 			 void *issue_context,
217 			 struct workqueue_struct *wq)
218 {
219 	b->commit_op = commit_op;
220 	b->commit_context = commit_context;
221 	b->issue_op = issue_op;
222 	b->issue_context = issue_context;
223 	b->wq = wq;
224 
225 	spin_lock_init(&b->lock);
226 	INIT_LIST_HEAD(&b->work_items);
227 	bio_list_init(&b->bios);
228 	INIT_WORK(&b->commit_work, __commit);
229 	b->commit_scheduled = false;
230 }
231 
232 static void async_commit(struct batcher *b)
233 {
234 	queue_work(b->wq, &b->commit_work);
235 }
236 
237 static void continue_after_commit(struct batcher *b, struct continuation *k)
238 {
239 	unsigned long flags;
240 	bool commit_scheduled;
241 
242 	spin_lock_irqsave(&b->lock, flags);
243 	commit_scheduled = b->commit_scheduled;
244 	list_add_tail(&k->ws.entry, &b->work_items);
245 	spin_unlock_irqrestore(&b->lock, flags);
246 
247 	if (commit_scheduled)
248 		async_commit(b);
249 }
250 
251 /*
252  * Bios are errored if commit failed.
253  */
254 static void issue_after_commit(struct batcher *b, struct bio *bio)
255 {
256        unsigned long flags;
257        bool commit_scheduled;
258 
259        spin_lock_irqsave(&b->lock, flags);
260        commit_scheduled = b->commit_scheduled;
261        bio_list_add(&b->bios, bio);
262        spin_unlock_irqrestore(&b->lock, flags);
263 
264        if (commit_scheduled)
265 	       async_commit(b);
266 }
267 
268 /*
269  * Call this if some urgent work is waiting for the commit to complete.
270  */
271 static void schedule_commit(struct batcher *b)
272 {
273 	bool immediate;
274 	unsigned long flags;
275 
276 	spin_lock_irqsave(&b->lock, flags);
277 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
278 	b->commit_scheduled = true;
279 	spin_unlock_irqrestore(&b->lock, flags);
280 
281 	if (immediate)
282 		async_commit(b);
283 }
284 
285 /*
286  * There are a couple of places where we let a bio run, but want to do some
287  * work before calling its endio function.  We do this by temporarily
288  * changing the endio fn.
289  */
290 struct dm_hook_info {
291 	bio_end_io_t *bi_end_io;
292 };
293 
294 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
295 			bio_end_io_t *bi_end_io, void *bi_private)
296 {
297 	h->bi_end_io = bio->bi_end_io;
298 
299 	bio->bi_end_io = bi_end_io;
300 	bio->bi_private = bi_private;
301 }
302 
303 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
304 {
305 	bio->bi_end_io = h->bi_end_io;
306 }
307 
308 /*----------------------------------------------------------------*/
309 
310 #define MIGRATION_POOL_SIZE 128
311 #define COMMIT_PERIOD HZ
312 #define MIGRATION_COUNT_WINDOW 10
313 
314 /*
315  * The block size of the device holding cache data must be
316  * between 32KB and 1GB.
317  */
318 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
319 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
320 
321 enum cache_metadata_mode {
322 	CM_WRITE,		/* metadata may be changed */
323 	CM_READ_ONLY,		/* metadata may not be changed */
324 	CM_FAIL
325 };
326 
327 enum cache_io_mode {
328 	/*
329 	 * Data is written to cached blocks only.  These blocks are marked
330 	 * dirty.  If you lose the cache device you will lose data.
331 	 * Potential performance increase for both reads and writes.
332 	 */
333 	CM_IO_WRITEBACK,
334 
335 	/*
336 	 * Data is written to both cache and origin.  Blocks are never
337 	 * dirty.  Potential performance benfit for reads only.
338 	 */
339 	CM_IO_WRITETHROUGH,
340 
341 	/*
342 	 * A degraded mode useful for various cache coherency situations
343 	 * (eg, rolling back snapshots).  Reads and writes always go to the
344 	 * origin.  If a write goes to a cached oblock, then the cache
345 	 * block is invalidated.
346 	 */
347 	CM_IO_PASSTHROUGH
348 };
349 
350 struct cache_features {
351 	enum cache_metadata_mode mode;
352 	enum cache_io_mode io_mode;
353 	unsigned metadata_version;
354 };
355 
356 struct cache_stats {
357 	atomic_t read_hit;
358 	atomic_t read_miss;
359 	atomic_t write_hit;
360 	atomic_t write_miss;
361 	atomic_t demotion;
362 	atomic_t promotion;
363 	atomic_t writeback;
364 	atomic_t copies_avoided;
365 	atomic_t cache_cell_clash;
366 	atomic_t commit_count;
367 	atomic_t discard_count;
368 };
369 
370 struct cache {
371 	struct dm_target *ti;
372 	struct dm_target_callbacks callbacks;
373 
374 	struct dm_cache_metadata *cmd;
375 
376 	/*
377 	 * Metadata is written to this device.
378 	 */
379 	struct dm_dev *metadata_dev;
380 
381 	/*
382 	 * The slower of the two data devices.  Typically a spindle.
383 	 */
384 	struct dm_dev *origin_dev;
385 
386 	/*
387 	 * The faster of the two data devices.  Typically an SSD.
388 	 */
389 	struct dm_dev *cache_dev;
390 
391 	/*
392 	 * Size of the origin device in _complete_ blocks and native sectors.
393 	 */
394 	dm_oblock_t origin_blocks;
395 	sector_t origin_sectors;
396 
397 	/*
398 	 * Size of the cache device in blocks.
399 	 */
400 	dm_cblock_t cache_size;
401 
402 	/*
403 	 * Fields for converting from sectors to blocks.
404 	 */
405 	sector_t sectors_per_block;
406 	int sectors_per_block_shift;
407 
408 	spinlock_t lock;
409 	struct list_head deferred_cells;
410 	struct bio_list deferred_bios;
411 	struct bio_list deferred_writethrough_bios;
412 	sector_t migration_threshold;
413 	wait_queue_head_t migration_wait;
414 	atomic_t nr_allocated_migrations;
415 
416 	/*
417 	 * The number of in flight migrations that are performing
418 	 * background io. eg, promotion, writeback.
419 	 */
420 	atomic_t nr_io_migrations;
421 
422 	struct rw_semaphore quiesce_lock;
423 
424 	/*
425 	 * cache_size entries, dirty if set
426 	 */
427 	atomic_t nr_dirty;
428 	unsigned long *dirty_bitset;
429 
430 	/*
431 	 * origin_blocks entries, discarded if set.
432 	 */
433 	dm_dblock_t discard_nr_blocks;
434 	unsigned long *discard_bitset;
435 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
436 
437 	/*
438 	 * Rather than reconstructing the table line for the status we just
439 	 * save it and regurgitate.
440 	 */
441 	unsigned nr_ctr_args;
442 	const char **ctr_args;
443 
444 	struct dm_kcopyd_client *copier;
445 	struct workqueue_struct *wq;
446 	struct work_struct deferred_bio_worker;
447 	struct work_struct deferred_writethrough_worker;
448 	struct work_struct migration_worker;
449 	struct delayed_work waker;
450 	struct dm_bio_prison_v2 *prison;
451 
452 	mempool_t *migration_pool;
453 
454 	struct dm_cache_policy *policy;
455 	unsigned policy_nr_args;
456 
457 	bool need_tick_bio:1;
458 	bool sized:1;
459 	bool invalidate:1;
460 	bool commit_requested:1;
461 	bool loaded_mappings:1;
462 	bool loaded_discards:1;
463 
464 	/*
465 	 * Cache features such as write-through.
466 	 */
467 	struct cache_features features;
468 
469 	struct cache_stats stats;
470 
471 	/*
472 	 * Invalidation fields.
473 	 */
474 	spinlock_t invalidation_lock;
475 	struct list_head invalidation_requests;
476 
477 	struct io_tracker origin_tracker;
478 
479 	struct work_struct commit_ws;
480 	struct batcher committer;
481 
482 	struct rw_semaphore background_work_lock;
483 };
484 
485 struct per_bio_data {
486 	bool tick:1;
487 	unsigned req_nr:2;
488 	struct dm_bio_prison_cell_v2 *cell;
489 	struct dm_hook_info hook_info;
490 	sector_t len;
491 
492 	/*
493 	 * writethrough fields.  These MUST remain at the end of this
494 	 * structure and the 'cache' member must be the first as it
495 	 * is used to determine the offset of the writethrough fields.
496 	 */
497 	struct cache *cache;
498 	dm_cblock_t cblock;
499 	struct dm_bio_details bio_details;
500 };
501 
502 struct dm_cache_migration {
503 	struct continuation k;
504 	struct cache *cache;
505 
506 	struct policy_work *op;
507 	struct bio *overwrite_bio;
508 	struct dm_bio_prison_cell_v2 *cell;
509 
510 	dm_cblock_t invalidate_cblock;
511 	dm_oblock_t invalidate_oblock;
512 };
513 
514 /*----------------------------------------------------------------*/
515 
516 static bool writethrough_mode(struct cache_features *f)
517 {
518 	return f->io_mode == CM_IO_WRITETHROUGH;
519 }
520 
521 static bool writeback_mode(struct cache_features *f)
522 {
523 	return f->io_mode == CM_IO_WRITEBACK;
524 }
525 
526 static inline bool passthrough_mode(struct cache_features *f)
527 {
528 	return unlikely(f->io_mode == CM_IO_PASSTHROUGH);
529 }
530 
531 /*----------------------------------------------------------------*/
532 
533 static void wake_deferred_bio_worker(struct cache *cache)
534 {
535 	queue_work(cache->wq, &cache->deferred_bio_worker);
536 }
537 
538 static void wake_deferred_writethrough_worker(struct cache *cache)
539 {
540 	queue_work(cache->wq, &cache->deferred_writethrough_worker);
541 }
542 
543 static void wake_migration_worker(struct cache *cache)
544 {
545 	if (passthrough_mode(&cache->features))
546 		return;
547 
548 	queue_work(cache->wq, &cache->migration_worker);
549 }
550 
551 /*----------------------------------------------------------------*/
552 
553 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
554 {
555 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
556 }
557 
558 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
559 {
560 	dm_bio_prison_free_cell_v2(cache->prison, cell);
561 }
562 
563 static struct dm_cache_migration *alloc_migration(struct cache *cache)
564 {
565 	struct dm_cache_migration *mg;
566 
567 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
568 	if (mg) {
569 		mg->cache = cache;
570 		atomic_inc(&mg->cache->nr_allocated_migrations);
571 	}
572 
573 	return mg;
574 }
575 
576 static void free_migration(struct dm_cache_migration *mg)
577 {
578 	struct cache *cache = mg->cache;
579 
580 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
581 		wake_up(&cache->migration_wait);
582 
583 	mempool_free(mg, cache->migration_pool);
584 }
585 
586 /*----------------------------------------------------------------*/
587 
588 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
589 {
590 	return to_oblock(from_oblock(b) + 1ull);
591 }
592 
593 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
594 {
595 	key->virtual = 0;
596 	key->dev = 0;
597 	key->block_begin = from_oblock(begin);
598 	key->block_end = from_oblock(end);
599 }
600 
601 /*
602  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
603  * level 1 which prevents *both* READs and WRITEs.
604  */
605 #define WRITE_LOCK_LEVEL 0
606 #define READ_WRITE_LOCK_LEVEL 1
607 
608 static unsigned lock_level(struct bio *bio)
609 {
610 	return bio_data_dir(bio) == WRITE ?
611 		WRITE_LOCK_LEVEL :
612 		READ_WRITE_LOCK_LEVEL;
613 }
614 
615 /*----------------------------------------------------------------
616  * Per bio data
617  *--------------------------------------------------------------*/
618 
619 /*
620  * If using writeback, leave out struct per_bio_data's writethrough fields.
621  */
622 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
623 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
624 
625 static size_t get_per_bio_data_size(struct cache *cache)
626 {
627 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
628 }
629 
630 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
631 {
632 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
633 	BUG_ON(!pb);
634 	return pb;
635 }
636 
637 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
638 {
639 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
640 
641 	pb->tick = false;
642 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
643 	pb->cell = NULL;
644 	pb->len = 0;
645 
646 	return pb;
647 }
648 
649 /*----------------------------------------------------------------*/
650 
651 static void defer_bio(struct cache *cache, struct bio *bio)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&cache->lock, flags);
656 	bio_list_add(&cache->deferred_bios, bio);
657 	spin_unlock_irqrestore(&cache->lock, flags);
658 
659 	wake_deferred_bio_worker(cache);
660 }
661 
662 static void defer_bios(struct cache *cache, struct bio_list *bios)
663 {
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&cache->lock, flags);
667 	bio_list_merge(&cache->deferred_bios, bios);
668 	bio_list_init(bios);
669 	spin_unlock_irqrestore(&cache->lock, flags);
670 
671 	wake_deferred_bio_worker(cache);
672 }
673 
674 /*----------------------------------------------------------------*/
675 
676 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
677 {
678 	bool r;
679 	size_t pb_size;
680 	struct per_bio_data *pb;
681 	struct dm_cell_key_v2 key;
682 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
683 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
684 
685 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
686 	if (!cell_prealloc) {
687 		defer_bio(cache, bio);
688 		return false;
689 	}
690 
691 	build_key(oblock, end, &key);
692 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
693 	if (!r) {
694 		/*
695 		 * Failed to get the lock.
696 		 */
697 		free_prison_cell(cache, cell_prealloc);
698 		return r;
699 	}
700 
701 	if (cell != cell_prealloc)
702 		free_prison_cell(cache, cell_prealloc);
703 
704 	pb_size = get_per_bio_data_size(cache);
705 	pb = get_per_bio_data(bio, pb_size);
706 	pb->cell = cell;
707 
708 	return r;
709 }
710 
711 /*----------------------------------------------------------------*/
712 
713 static bool is_dirty(struct cache *cache, dm_cblock_t b)
714 {
715 	return test_bit(from_cblock(b), cache->dirty_bitset);
716 }
717 
718 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
719 {
720 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
721 		atomic_inc(&cache->nr_dirty);
722 		policy_set_dirty(cache->policy, cblock);
723 	}
724 }
725 
726 /*
727  * These two are called when setting after migrations to force the policy
728  * and dirty bitset to be in sync.
729  */
730 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
731 {
732 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
733 		atomic_inc(&cache->nr_dirty);
734 	policy_set_dirty(cache->policy, cblock);
735 }
736 
737 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
738 {
739 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
740 		if (atomic_dec_return(&cache->nr_dirty) == 0)
741 			dm_table_event(cache->ti->table);
742 	}
743 
744 	policy_clear_dirty(cache->policy, cblock);
745 }
746 
747 /*----------------------------------------------------------------*/
748 
749 static bool block_size_is_power_of_two(struct cache *cache)
750 {
751 	return cache->sectors_per_block_shift >= 0;
752 }
753 
754 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
755 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
756 __always_inline
757 #endif
758 static dm_block_t block_div(dm_block_t b, uint32_t n)
759 {
760 	do_div(b, n);
761 
762 	return b;
763 }
764 
765 static dm_block_t oblocks_per_dblock(struct cache *cache)
766 {
767 	dm_block_t oblocks = cache->discard_block_size;
768 
769 	if (block_size_is_power_of_two(cache))
770 		oblocks >>= cache->sectors_per_block_shift;
771 	else
772 		oblocks = block_div(oblocks, cache->sectors_per_block);
773 
774 	return oblocks;
775 }
776 
777 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
778 {
779 	return to_dblock(block_div(from_oblock(oblock),
780 				   oblocks_per_dblock(cache)));
781 }
782 
783 static void set_discard(struct cache *cache, dm_dblock_t b)
784 {
785 	unsigned long flags;
786 
787 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
788 	atomic_inc(&cache->stats.discard_count);
789 
790 	spin_lock_irqsave(&cache->lock, flags);
791 	set_bit(from_dblock(b), cache->discard_bitset);
792 	spin_unlock_irqrestore(&cache->lock, flags);
793 }
794 
795 static void clear_discard(struct cache *cache, dm_dblock_t b)
796 {
797 	unsigned long flags;
798 
799 	spin_lock_irqsave(&cache->lock, flags);
800 	clear_bit(from_dblock(b), cache->discard_bitset);
801 	spin_unlock_irqrestore(&cache->lock, flags);
802 }
803 
804 static bool is_discarded(struct cache *cache, dm_dblock_t b)
805 {
806 	int r;
807 	unsigned long flags;
808 
809 	spin_lock_irqsave(&cache->lock, flags);
810 	r = test_bit(from_dblock(b), cache->discard_bitset);
811 	spin_unlock_irqrestore(&cache->lock, flags);
812 
813 	return r;
814 }
815 
816 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
817 {
818 	int r;
819 	unsigned long flags;
820 
821 	spin_lock_irqsave(&cache->lock, flags);
822 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
823 		     cache->discard_bitset);
824 	spin_unlock_irqrestore(&cache->lock, flags);
825 
826 	return r;
827 }
828 
829 /*----------------------------------------------------------------
830  * Remapping
831  *--------------------------------------------------------------*/
832 static void remap_to_origin(struct cache *cache, struct bio *bio)
833 {
834 	bio->bi_bdev = cache->origin_dev->bdev;
835 }
836 
837 static void remap_to_cache(struct cache *cache, struct bio *bio,
838 			   dm_cblock_t cblock)
839 {
840 	sector_t bi_sector = bio->bi_iter.bi_sector;
841 	sector_t block = from_cblock(cblock);
842 
843 	bio->bi_bdev = cache->cache_dev->bdev;
844 	if (!block_size_is_power_of_two(cache))
845 		bio->bi_iter.bi_sector =
846 			(block * cache->sectors_per_block) +
847 			sector_div(bi_sector, cache->sectors_per_block);
848 	else
849 		bio->bi_iter.bi_sector =
850 			(block << cache->sectors_per_block_shift) |
851 			(bi_sector & (cache->sectors_per_block - 1));
852 }
853 
854 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
855 {
856 	unsigned long flags;
857 	size_t pb_data_size = get_per_bio_data_size(cache);
858 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
859 
860 	spin_lock_irqsave(&cache->lock, flags);
861 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
862 	    bio_op(bio) != REQ_OP_DISCARD) {
863 		pb->tick = true;
864 		cache->need_tick_bio = false;
865 	}
866 	spin_unlock_irqrestore(&cache->lock, flags);
867 }
868 
869 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
870 					  dm_oblock_t oblock)
871 {
872 	// FIXME: this is called way too much.
873 	check_if_tick_bio_needed(cache, bio);
874 	remap_to_origin(cache, bio);
875 	if (bio_data_dir(bio) == WRITE)
876 		clear_discard(cache, oblock_to_dblock(cache, oblock));
877 }
878 
879 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
880 				 dm_oblock_t oblock, dm_cblock_t cblock)
881 {
882 	check_if_tick_bio_needed(cache, bio);
883 	remap_to_cache(cache, bio, cblock);
884 	if (bio_data_dir(bio) == WRITE) {
885 		set_dirty(cache, cblock);
886 		clear_discard(cache, oblock_to_dblock(cache, oblock));
887 	}
888 }
889 
890 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
891 {
892 	sector_t block_nr = bio->bi_iter.bi_sector;
893 
894 	if (!block_size_is_power_of_two(cache))
895 		(void) sector_div(block_nr, cache->sectors_per_block);
896 	else
897 		block_nr >>= cache->sectors_per_block_shift;
898 
899 	return to_oblock(block_nr);
900 }
901 
902 static bool accountable_bio(struct cache *cache, struct bio *bio)
903 {
904 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
905 		bio_op(bio) != REQ_OP_DISCARD);
906 }
907 
908 static void accounted_begin(struct cache *cache, struct bio *bio)
909 {
910 	size_t pb_data_size = get_per_bio_data_size(cache);
911 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
912 
913 	if (accountable_bio(cache, bio)) {
914 		pb->len = bio_sectors(bio);
915 		iot_io_begin(&cache->origin_tracker, pb->len);
916 	}
917 }
918 
919 static void accounted_complete(struct cache *cache, struct bio *bio)
920 {
921 	size_t pb_data_size = get_per_bio_data_size(cache);
922 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
923 
924 	iot_io_end(&cache->origin_tracker, pb->len);
925 }
926 
927 static void accounted_request(struct cache *cache, struct bio *bio)
928 {
929 	accounted_begin(cache, bio);
930 	generic_make_request(bio);
931 }
932 
933 static void issue_op(struct bio *bio, void *context)
934 {
935 	struct cache *cache = context;
936 	accounted_request(cache, bio);
937 }
938 
939 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
940 {
941 	unsigned long flags;
942 
943 	spin_lock_irqsave(&cache->lock, flags);
944 	bio_list_add(&cache->deferred_writethrough_bios, bio);
945 	spin_unlock_irqrestore(&cache->lock, flags);
946 
947 	wake_deferred_writethrough_worker(cache);
948 }
949 
950 static void writethrough_endio(struct bio *bio)
951 {
952 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
953 
954 	dm_unhook_bio(&pb->hook_info, bio);
955 
956 	if (bio->bi_error) {
957 		bio_endio(bio);
958 		return;
959 	}
960 
961 	dm_bio_restore(&pb->bio_details, bio);
962 	remap_to_cache(pb->cache, bio, pb->cblock);
963 
964 	/*
965 	 * We can't issue this bio directly, since we're in interrupt
966 	 * context.  So it gets put on a bio list for processing by the
967 	 * worker thread.
968 	 */
969 	defer_writethrough_bio(pb->cache, bio);
970 }
971 
972 /*
973  * FIXME: send in parallel, huge latency as is.
974  * When running in writethrough mode we need to send writes to clean blocks
975  * to both the cache and origin devices.  In future we'd like to clone the
976  * bio and send them in parallel, but for now we're doing them in
977  * series as this is easier.
978  */
979 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
980 				       dm_oblock_t oblock, dm_cblock_t cblock)
981 {
982 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
983 
984 	pb->cache = cache;
985 	pb->cblock = cblock;
986 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
987 	dm_bio_record(&pb->bio_details, bio);
988 
989 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
990 }
991 
992 /*----------------------------------------------------------------
993  * Failure modes
994  *--------------------------------------------------------------*/
995 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
996 {
997 	return cache->features.mode;
998 }
999 
1000 static const char *cache_device_name(struct cache *cache)
1001 {
1002 	return dm_device_name(dm_table_get_md(cache->ti->table));
1003 }
1004 
1005 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
1006 {
1007 	const char *descs[] = {
1008 		"write",
1009 		"read-only",
1010 		"fail"
1011 	};
1012 
1013 	dm_table_event(cache->ti->table);
1014 	DMINFO("%s: switching cache to %s mode",
1015 	       cache_device_name(cache), descs[(int)mode]);
1016 }
1017 
1018 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
1019 {
1020 	bool needs_check;
1021 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
1022 
1023 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
1024 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
1025 		      cache_device_name(cache));
1026 		new_mode = CM_FAIL;
1027 	}
1028 
1029 	if (new_mode == CM_WRITE && needs_check) {
1030 		DMERR("%s: unable to switch cache to write mode until repaired.",
1031 		      cache_device_name(cache));
1032 		if (old_mode != new_mode)
1033 			new_mode = old_mode;
1034 		else
1035 			new_mode = CM_READ_ONLY;
1036 	}
1037 
1038 	/* Never move out of fail mode */
1039 	if (old_mode == CM_FAIL)
1040 		new_mode = CM_FAIL;
1041 
1042 	switch (new_mode) {
1043 	case CM_FAIL:
1044 	case CM_READ_ONLY:
1045 		dm_cache_metadata_set_read_only(cache->cmd);
1046 		break;
1047 
1048 	case CM_WRITE:
1049 		dm_cache_metadata_set_read_write(cache->cmd);
1050 		break;
1051 	}
1052 
1053 	cache->features.mode = new_mode;
1054 
1055 	if (new_mode != old_mode)
1056 		notify_mode_switch(cache, new_mode);
1057 }
1058 
1059 static void abort_transaction(struct cache *cache)
1060 {
1061 	const char *dev_name = cache_device_name(cache);
1062 
1063 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1064 		return;
1065 
1066 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1067 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1068 		set_cache_mode(cache, CM_FAIL);
1069 	}
1070 
1071 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1072 	if (dm_cache_metadata_abort(cache->cmd)) {
1073 		DMERR("%s: failed to abort metadata transaction", dev_name);
1074 		set_cache_mode(cache, CM_FAIL);
1075 	}
1076 }
1077 
1078 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1079 {
1080 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1081 		    cache_device_name(cache), op, r);
1082 	abort_transaction(cache);
1083 	set_cache_mode(cache, CM_READ_ONLY);
1084 }
1085 
1086 /*----------------------------------------------------------------*/
1087 
1088 static void load_stats(struct cache *cache)
1089 {
1090 	struct dm_cache_statistics stats;
1091 
1092 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1093 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1094 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1095 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1096 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1097 }
1098 
1099 static void save_stats(struct cache *cache)
1100 {
1101 	struct dm_cache_statistics stats;
1102 
1103 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1104 		return;
1105 
1106 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1107 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1108 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1109 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1110 
1111 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1112 }
1113 
1114 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1115 {
1116 	switch (op) {
1117 	case POLICY_PROMOTE:
1118 		atomic_inc(&stats->promotion);
1119 		break;
1120 
1121 	case POLICY_DEMOTE:
1122 		atomic_inc(&stats->demotion);
1123 		break;
1124 
1125 	case POLICY_WRITEBACK:
1126 		atomic_inc(&stats->writeback);
1127 		break;
1128 	}
1129 }
1130 
1131 /*----------------------------------------------------------------
1132  * Migration processing
1133  *
1134  * Migration covers moving data from the origin device to the cache, or
1135  * vice versa.
1136  *--------------------------------------------------------------*/
1137 
1138 static void inc_io_migrations(struct cache *cache)
1139 {
1140 	atomic_inc(&cache->nr_io_migrations);
1141 }
1142 
1143 static void dec_io_migrations(struct cache *cache)
1144 {
1145 	atomic_dec(&cache->nr_io_migrations);
1146 }
1147 
1148 static bool discard_or_flush(struct bio *bio)
1149 {
1150 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1151 }
1152 
1153 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1154 				     dm_dblock_t *b, dm_dblock_t *e)
1155 {
1156 	sector_t sb = bio->bi_iter.bi_sector;
1157 	sector_t se = bio_end_sector(bio);
1158 
1159 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1160 
1161 	if (se - sb < cache->discard_block_size)
1162 		*e = *b;
1163 	else
1164 		*e = to_dblock(block_div(se, cache->discard_block_size));
1165 }
1166 
1167 /*----------------------------------------------------------------*/
1168 
1169 static void prevent_background_work(struct cache *cache)
1170 {
1171 	lockdep_off();
1172 	down_write(&cache->background_work_lock);
1173 	lockdep_on();
1174 }
1175 
1176 static void allow_background_work(struct cache *cache)
1177 {
1178 	lockdep_off();
1179 	up_write(&cache->background_work_lock);
1180 	lockdep_on();
1181 }
1182 
1183 static bool background_work_begin(struct cache *cache)
1184 {
1185 	bool r;
1186 
1187 	lockdep_off();
1188 	r = down_read_trylock(&cache->background_work_lock);
1189 	lockdep_on();
1190 
1191 	return r;
1192 }
1193 
1194 static void background_work_end(struct cache *cache)
1195 {
1196 	lockdep_off();
1197 	up_read(&cache->background_work_lock);
1198 	lockdep_on();
1199 }
1200 
1201 /*----------------------------------------------------------------*/
1202 
1203 static void quiesce(struct dm_cache_migration *mg,
1204 		    void (*continuation)(struct work_struct *))
1205 {
1206 	init_continuation(&mg->k, continuation);
1207 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1208 }
1209 
1210 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1211 {
1212 	struct continuation *k = container_of(ws, struct continuation, ws);
1213 	return container_of(k, struct dm_cache_migration, k);
1214 }
1215 
1216 static void copy_complete(int read_err, unsigned long write_err, void *context)
1217 {
1218 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1219 
1220 	if (read_err || write_err)
1221 		mg->k.input = -EIO;
1222 
1223 	queue_continuation(mg->cache->wq, &mg->k);
1224 }
1225 
1226 static int copy(struct dm_cache_migration *mg, bool promote)
1227 {
1228 	int r;
1229 	struct dm_io_region o_region, c_region;
1230 	struct cache *cache = mg->cache;
1231 
1232 	o_region.bdev = cache->origin_dev->bdev;
1233 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1234 	o_region.count = cache->sectors_per_block;
1235 
1236 	c_region.bdev = cache->cache_dev->bdev;
1237 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1238 	c_region.count = cache->sectors_per_block;
1239 
1240 	if (promote)
1241 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1242 	else
1243 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1244 
1245 	return r;
1246 }
1247 
1248 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1249 {
1250 	size_t pb_data_size = get_per_bio_data_size(cache);
1251 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1252 
1253 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1254 		free_prison_cell(cache, pb->cell);
1255 	pb->cell = NULL;
1256 }
1257 
1258 static void overwrite_endio(struct bio *bio)
1259 {
1260 	struct dm_cache_migration *mg = bio->bi_private;
1261 	struct cache *cache = mg->cache;
1262 	size_t pb_data_size = get_per_bio_data_size(cache);
1263 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1264 
1265 	dm_unhook_bio(&pb->hook_info, bio);
1266 
1267 	if (bio->bi_error)
1268 		mg->k.input = bio->bi_error;
1269 
1270 	queue_continuation(mg->cache->wq, &mg->k);
1271 }
1272 
1273 static void overwrite(struct dm_cache_migration *mg,
1274 		      void (*continuation)(struct work_struct *))
1275 {
1276 	struct bio *bio = mg->overwrite_bio;
1277 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1278 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1279 
1280 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1281 
1282 	/*
1283 	 * The overwrite bio is part of the copy operation, as such it does
1284 	 * not set/clear discard or dirty flags.
1285 	 */
1286 	if (mg->op->op == POLICY_PROMOTE)
1287 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1288 	else
1289 		remap_to_origin(mg->cache, bio);
1290 
1291 	init_continuation(&mg->k, continuation);
1292 	accounted_request(mg->cache, bio);
1293 }
1294 
1295 /*
1296  * Migration steps:
1297  *
1298  * 1) exclusive lock preventing WRITEs
1299  * 2) quiesce
1300  * 3) copy or issue overwrite bio
1301  * 4) upgrade to exclusive lock preventing READs and WRITEs
1302  * 5) quiesce
1303  * 6) update metadata and commit
1304  * 7) unlock
1305  */
1306 static void mg_complete(struct dm_cache_migration *mg, bool success)
1307 {
1308 	struct bio_list bios;
1309 	struct cache *cache = mg->cache;
1310 	struct policy_work *op = mg->op;
1311 	dm_cblock_t cblock = op->cblock;
1312 
1313 	if (success)
1314 		update_stats(&cache->stats, op->op);
1315 
1316 	switch (op->op) {
1317 	case POLICY_PROMOTE:
1318 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1319 		policy_complete_background_work(cache->policy, op, success);
1320 
1321 		if (mg->overwrite_bio) {
1322 			if (success)
1323 				force_set_dirty(cache, cblock);
1324 			else
1325 				mg->overwrite_bio->bi_error = (mg->k.input ? : -EIO);
1326 			bio_endio(mg->overwrite_bio);
1327 		} else {
1328 			if (success)
1329 				force_clear_dirty(cache, cblock);
1330 			dec_io_migrations(cache);
1331 		}
1332 		break;
1333 
1334 	case POLICY_DEMOTE:
1335 		/*
1336 		 * We clear dirty here to update the nr_dirty counter.
1337 		 */
1338 		if (success)
1339 			force_clear_dirty(cache, cblock);
1340 		policy_complete_background_work(cache->policy, op, success);
1341 		dec_io_migrations(cache);
1342 		break;
1343 
1344 	case POLICY_WRITEBACK:
1345 		if (success)
1346 			force_clear_dirty(cache, cblock);
1347 		policy_complete_background_work(cache->policy, op, success);
1348 		dec_io_migrations(cache);
1349 		break;
1350 	}
1351 
1352 	bio_list_init(&bios);
1353 	if (mg->cell) {
1354 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1355 			free_prison_cell(cache, mg->cell);
1356 	}
1357 
1358 	free_migration(mg);
1359 	defer_bios(cache, &bios);
1360 	wake_migration_worker(cache);
1361 
1362 	background_work_end(cache);
1363 }
1364 
1365 static void mg_success(struct work_struct *ws)
1366 {
1367 	struct dm_cache_migration *mg = ws_to_mg(ws);
1368 	mg_complete(mg, mg->k.input == 0);
1369 }
1370 
1371 static void mg_update_metadata(struct work_struct *ws)
1372 {
1373 	int r;
1374 	struct dm_cache_migration *mg = ws_to_mg(ws);
1375 	struct cache *cache = mg->cache;
1376 	struct policy_work *op = mg->op;
1377 
1378 	switch (op->op) {
1379 	case POLICY_PROMOTE:
1380 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1381 		if (r) {
1382 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1383 				    cache_device_name(cache));
1384 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1385 
1386 			mg_complete(mg, false);
1387 			return;
1388 		}
1389 		mg_complete(mg, true);
1390 		break;
1391 
1392 	case POLICY_DEMOTE:
1393 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1394 		if (r) {
1395 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1396 				    cache_device_name(cache));
1397 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1398 
1399 			mg_complete(mg, false);
1400 			return;
1401 		}
1402 
1403 		/*
1404 		 * It would be nice if we only had to commit when a REQ_FLUSH
1405 		 * comes through.  But there's one scenario that we have to
1406 		 * look out for:
1407 		 *
1408 		 * - vblock x in a cache block
1409 		 * - domotion occurs
1410 		 * - cache block gets reallocated and over written
1411 		 * - crash
1412 		 *
1413 		 * When we recover, because there was no commit the cache will
1414 		 * rollback to having the data for vblock x in the cache block.
1415 		 * But the cache block has since been overwritten, so it'll end
1416 		 * up pointing to data that was never in 'x' during the history
1417 		 * of the device.
1418 		 *
1419 		 * To avoid this issue we require a commit as part of the
1420 		 * demotion operation.
1421 		 */
1422 		init_continuation(&mg->k, mg_success);
1423 		continue_after_commit(&cache->committer, &mg->k);
1424 		schedule_commit(&cache->committer);
1425 		break;
1426 
1427 	case POLICY_WRITEBACK:
1428 		mg_complete(mg, true);
1429 		break;
1430 	}
1431 }
1432 
1433 static void mg_update_metadata_after_copy(struct work_struct *ws)
1434 {
1435 	struct dm_cache_migration *mg = ws_to_mg(ws);
1436 
1437 	/*
1438 	 * Did the copy succeed?
1439 	 */
1440 	if (mg->k.input)
1441 		mg_complete(mg, false);
1442 	else
1443 		mg_update_metadata(ws);
1444 }
1445 
1446 static void mg_upgrade_lock(struct work_struct *ws)
1447 {
1448 	int r;
1449 	struct dm_cache_migration *mg = ws_to_mg(ws);
1450 
1451 	/*
1452 	 * Did the copy succeed?
1453 	 */
1454 	if (mg->k.input)
1455 		mg_complete(mg, false);
1456 
1457 	else {
1458 		/*
1459 		 * Now we want the lock to prevent both reads and writes.
1460 		 */
1461 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1462 					    READ_WRITE_LOCK_LEVEL);
1463 		if (r < 0)
1464 			mg_complete(mg, false);
1465 
1466 		else if (r)
1467 			quiesce(mg, mg_update_metadata);
1468 
1469 		else
1470 			mg_update_metadata(ws);
1471 	}
1472 }
1473 
1474 static void mg_copy(struct work_struct *ws)
1475 {
1476 	int r;
1477 	struct dm_cache_migration *mg = ws_to_mg(ws);
1478 
1479 	if (mg->overwrite_bio) {
1480 		/*
1481 		 * It's safe to do this here, even though it's new data
1482 		 * because all IO has been locked out of the block.
1483 		 *
1484 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1485 		 * so _not_ using mg_upgrade_lock() as continutation.
1486 		 */
1487 		overwrite(mg, mg_update_metadata_after_copy);
1488 
1489 	} else {
1490 		struct cache *cache = mg->cache;
1491 		struct policy_work *op = mg->op;
1492 		bool is_policy_promote = (op->op == POLICY_PROMOTE);
1493 
1494 		if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1495 		    is_discarded_oblock(cache, op->oblock)) {
1496 			mg_upgrade_lock(ws);
1497 			return;
1498 		}
1499 
1500 		init_continuation(&mg->k, mg_upgrade_lock);
1501 
1502 		r = copy(mg, is_policy_promote);
1503 		if (r) {
1504 			DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1505 			mg->k.input = -EIO;
1506 			mg_complete(mg, false);
1507 		}
1508 	}
1509 }
1510 
1511 static int mg_lock_writes(struct dm_cache_migration *mg)
1512 {
1513 	int r;
1514 	struct dm_cell_key_v2 key;
1515 	struct cache *cache = mg->cache;
1516 	struct dm_bio_prison_cell_v2 *prealloc;
1517 
1518 	prealloc = alloc_prison_cell(cache);
1519 	if (!prealloc) {
1520 		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1521 		mg_complete(mg, false);
1522 		return -ENOMEM;
1523 	}
1524 
1525 	/*
1526 	 * Prevent writes to the block, but allow reads to continue.
1527 	 * Unless we're using an overwrite bio, in which case we lock
1528 	 * everything.
1529 	 */
1530 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1531 	r = dm_cell_lock_v2(cache->prison, &key,
1532 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1533 			    prealloc, &mg->cell);
1534 	if (r < 0) {
1535 		free_prison_cell(cache, prealloc);
1536 		mg_complete(mg, false);
1537 		return r;
1538 	}
1539 
1540 	if (mg->cell != prealloc)
1541 		free_prison_cell(cache, prealloc);
1542 
1543 	if (r == 0)
1544 		mg_copy(&mg->k.ws);
1545 	else
1546 		quiesce(mg, mg_copy);
1547 
1548 	return 0;
1549 }
1550 
1551 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1552 {
1553 	struct dm_cache_migration *mg;
1554 
1555 	if (!background_work_begin(cache)) {
1556 		policy_complete_background_work(cache->policy, op, false);
1557 		return -EPERM;
1558 	}
1559 
1560 	mg = alloc_migration(cache);
1561 	if (!mg) {
1562 		policy_complete_background_work(cache->policy, op, false);
1563 		background_work_end(cache);
1564 		return -ENOMEM;
1565 	}
1566 
1567 	memset(mg, 0, sizeof(*mg));
1568 
1569 	mg->cache = cache;
1570 	mg->op = op;
1571 	mg->overwrite_bio = bio;
1572 
1573 	if (!bio)
1574 		inc_io_migrations(cache);
1575 
1576 	return mg_lock_writes(mg);
1577 }
1578 
1579 /*----------------------------------------------------------------
1580  * invalidation processing
1581  *--------------------------------------------------------------*/
1582 
1583 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1584 {
1585 	struct bio_list bios;
1586 	struct cache *cache = mg->cache;
1587 
1588 	bio_list_init(&bios);
1589 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1590 		free_prison_cell(cache, mg->cell);
1591 
1592 	if (!success && mg->overwrite_bio)
1593 		bio_io_error(mg->overwrite_bio);
1594 
1595 	free_migration(mg);
1596 	defer_bios(cache, &bios);
1597 
1598 	background_work_end(cache);
1599 }
1600 
1601 static void invalidate_completed(struct work_struct *ws)
1602 {
1603 	struct dm_cache_migration *mg = ws_to_mg(ws);
1604 	invalidate_complete(mg, !mg->k.input);
1605 }
1606 
1607 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1608 {
1609 	int r = policy_invalidate_mapping(cache->policy, cblock);
1610 	if (!r) {
1611 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1612 		if (r) {
1613 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1614 				    cache_device_name(cache));
1615 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1616 		}
1617 
1618 	} else if (r == -ENODATA) {
1619 		/*
1620 		 * Harmless, already unmapped.
1621 		 */
1622 		r = 0;
1623 
1624 	} else
1625 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1626 
1627 	return r;
1628 }
1629 
1630 static void invalidate_remove(struct work_struct *ws)
1631 {
1632 	int r;
1633 	struct dm_cache_migration *mg = ws_to_mg(ws);
1634 	struct cache *cache = mg->cache;
1635 
1636 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1637 	if (r) {
1638 		invalidate_complete(mg, false);
1639 		return;
1640 	}
1641 
1642 	init_continuation(&mg->k, invalidate_completed);
1643 	continue_after_commit(&cache->committer, &mg->k);
1644 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1645 	mg->overwrite_bio = NULL;
1646 	schedule_commit(&cache->committer);
1647 }
1648 
1649 static int invalidate_lock(struct dm_cache_migration *mg)
1650 {
1651 	int r;
1652 	struct dm_cell_key_v2 key;
1653 	struct cache *cache = mg->cache;
1654 	struct dm_bio_prison_cell_v2 *prealloc;
1655 
1656 	prealloc = alloc_prison_cell(cache);
1657 	if (!prealloc) {
1658 		invalidate_complete(mg, false);
1659 		return -ENOMEM;
1660 	}
1661 
1662 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1663 	r = dm_cell_lock_v2(cache->prison, &key,
1664 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1665 	if (r < 0) {
1666 		free_prison_cell(cache, prealloc);
1667 		invalidate_complete(mg, false);
1668 		return r;
1669 	}
1670 
1671 	if (mg->cell != prealloc)
1672 		free_prison_cell(cache, prealloc);
1673 
1674 	if (r)
1675 		quiesce(mg, invalidate_remove);
1676 
1677 	else {
1678 		/*
1679 		 * We can't call invalidate_remove() directly here because we
1680 		 * might still be in request context.
1681 		 */
1682 		init_continuation(&mg->k, invalidate_remove);
1683 		queue_work(cache->wq, &mg->k.ws);
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1690 			    dm_oblock_t oblock, struct bio *bio)
1691 {
1692 	struct dm_cache_migration *mg;
1693 
1694 	if (!background_work_begin(cache))
1695 		return -EPERM;
1696 
1697 	mg = alloc_migration(cache);
1698 	if (!mg) {
1699 		background_work_end(cache);
1700 		return -ENOMEM;
1701 	}
1702 
1703 	memset(mg, 0, sizeof(*mg));
1704 
1705 	mg->cache = cache;
1706 	mg->overwrite_bio = bio;
1707 	mg->invalidate_cblock = cblock;
1708 	mg->invalidate_oblock = oblock;
1709 
1710 	return invalidate_lock(mg);
1711 }
1712 
1713 /*----------------------------------------------------------------
1714  * bio processing
1715  *--------------------------------------------------------------*/
1716 
1717 enum busy {
1718 	IDLE,
1719 	MODERATE,
1720 	BUSY
1721 };
1722 
1723 static enum busy spare_migration_bandwidth(struct cache *cache)
1724 {
1725 	bool idle = iot_idle_for(&cache->origin_tracker, HZ);
1726 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1727 		cache->sectors_per_block;
1728 
1729 	if (current_volume <= cache->migration_threshold)
1730 		return idle ? IDLE : MODERATE;
1731 	else
1732 		return idle ? MODERATE : BUSY;
1733 }
1734 
1735 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1736 {
1737 	atomic_inc(bio_data_dir(bio) == READ ?
1738 		   &cache->stats.read_hit : &cache->stats.write_hit);
1739 }
1740 
1741 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1742 {
1743 	atomic_inc(bio_data_dir(bio) == READ ?
1744 		   &cache->stats.read_miss : &cache->stats.write_miss);
1745 }
1746 
1747 /*----------------------------------------------------------------*/
1748 
1749 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1750 {
1751 	return (bio_data_dir(bio) == WRITE) &&
1752 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1753 }
1754 
1755 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1756 {
1757 	return writeback_mode(&cache->features) &&
1758 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1759 }
1760 
1761 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1762 		   bool *commit_needed)
1763 {
1764 	int r, data_dir;
1765 	bool rb, background_queued;
1766 	dm_cblock_t cblock;
1767 	size_t pb_data_size = get_per_bio_data_size(cache);
1768 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1769 
1770 	*commit_needed = false;
1771 
1772 	rb = bio_detain_shared(cache, block, bio);
1773 	if (!rb) {
1774 		/*
1775 		 * An exclusive lock is held for this block, so we have to
1776 		 * wait.  We set the commit_needed flag so the current
1777 		 * transaction will be committed asap, allowing this lock
1778 		 * to be dropped.
1779 		 */
1780 		*commit_needed = true;
1781 		return DM_MAPIO_SUBMITTED;
1782 	}
1783 
1784 	data_dir = bio_data_dir(bio);
1785 
1786 	if (optimisable_bio(cache, bio, block)) {
1787 		struct policy_work *op = NULL;
1788 
1789 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1790 		if (unlikely(r && r != -ENOENT)) {
1791 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1792 				    cache_device_name(cache), r);
1793 			bio_io_error(bio);
1794 			return DM_MAPIO_SUBMITTED;
1795 		}
1796 
1797 		if (r == -ENOENT && op) {
1798 			bio_drop_shared_lock(cache, bio);
1799 			BUG_ON(op->op != POLICY_PROMOTE);
1800 			mg_start(cache, op, bio);
1801 			return DM_MAPIO_SUBMITTED;
1802 		}
1803 	} else {
1804 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1805 		if (unlikely(r && r != -ENOENT)) {
1806 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1807 				    cache_device_name(cache), r);
1808 			bio_io_error(bio);
1809 			return DM_MAPIO_SUBMITTED;
1810 		}
1811 
1812 		if (background_queued)
1813 			wake_migration_worker(cache);
1814 	}
1815 
1816 	if (r == -ENOENT) {
1817 		/*
1818 		 * Miss.
1819 		 */
1820 		inc_miss_counter(cache, bio);
1821 		if (pb->req_nr == 0) {
1822 			accounted_begin(cache, bio);
1823 			remap_to_origin_clear_discard(cache, bio, block);
1824 
1825 		} else {
1826 			/*
1827 			 * This is a duplicate writethrough io that is no
1828 			 * longer needed because the block has been demoted.
1829 			 */
1830 			bio_endio(bio);
1831 			return DM_MAPIO_SUBMITTED;
1832 		}
1833 	} else {
1834 		/*
1835 		 * Hit.
1836 		 */
1837 		inc_hit_counter(cache, bio);
1838 
1839 		/*
1840 		 * Passthrough always maps to the origin, invalidating any
1841 		 * cache blocks that are written to.
1842 		 */
1843 		if (passthrough_mode(&cache->features)) {
1844 			if (bio_data_dir(bio) == WRITE) {
1845 				bio_drop_shared_lock(cache, bio);
1846 				atomic_inc(&cache->stats.demotion);
1847 				invalidate_start(cache, cblock, block, bio);
1848 			} else
1849 				remap_to_origin_clear_discard(cache, bio, block);
1850 
1851 		} else {
1852 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
1853 			    !is_dirty(cache, cblock)) {
1854 				remap_to_origin_then_cache(cache, bio, block, cblock);
1855 				accounted_begin(cache, bio);
1856 			} else
1857 				remap_to_cache_dirty(cache, bio, block, cblock);
1858 		}
1859 	}
1860 
1861 	/*
1862 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1863 	 */
1864 	if (bio->bi_opf & REQ_FUA) {
1865 		/*
1866 		 * issue_after_commit will call accounted_begin a second time.  So
1867 		 * we call accounted_complete() to avoid double accounting.
1868 		 */
1869 		accounted_complete(cache, bio);
1870 		issue_after_commit(&cache->committer, bio);
1871 		*commit_needed = true;
1872 		return DM_MAPIO_SUBMITTED;
1873 	}
1874 
1875 	return DM_MAPIO_REMAPPED;
1876 }
1877 
1878 static bool process_bio(struct cache *cache, struct bio *bio)
1879 {
1880 	bool commit_needed;
1881 
1882 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1883 		generic_make_request(bio);
1884 
1885 	return commit_needed;
1886 }
1887 
1888 /*
1889  * A non-zero return indicates read_only or fail_io mode.
1890  */
1891 static int commit(struct cache *cache, bool clean_shutdown)
1892 {
1893 	int r;
1894 
1895 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1896 		return -EINVAL;
1897 
1898 	atomic_inc(&cache->stats.commit_count);
1899 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1900 	if (r)
1901 		metadata_operation_failed(cache, "dm_cache_commit", r);
1902 
1903 	return r;
1904 }
1905 
1906 /*
1907  * Used by the batcher.
1908  */
1909 static int commit_op(void *context)
1910 {
1911 	struct cache *cache = context;
1912 
1913 	if (dm_cache_changed_this_transaction(cache->cmd))
1914 		return commit(cache, false);
1915 
1916 	return 0;
1917 }
1918 
1919 /*----------------------------------------------------------------*/
1920 
1921 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1922 {
1923 	size_t pb_data_size = get_per_bio_data_size(cache);
1924 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1925 
1926 	if (!pb->req_nr)
1927 		remap_to_origin(cache, bio);
1928 	else
1929 		remap_to_cache(cache, bio, 0);
1930 
1931 	issue_after_commit(&cache->committer, bio);
1932 	return true;
1933 }
1934 
1935 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1936 {
1937 	dm_dblock_t b, e;
1938 
1939 	// FIXME: do we need to lock the region?  Or can we just assume the
1940 	// user wont be so foolish as to issue discard concurrently with
1941 	// other IO?
1942 	calc_discard_block_range(cache, bio, &b, &e);
1943 	while (b != e) {
1944 		set_discard(cache, b);
1945 		b = to_dblock(from_dblock(b) + 1);
1946 	}
1947 
1948 	bio_endio(bio);
1949 
1950 	return false;
1951 }
1952 
1953 static void process_deferred_bios(struct work_struct *ws)
1954 {
1955 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1956 
1957 	unsigned long flags;
1958 	bool commit_needed = false;
1959 	struct bio_list bios;
1960 	struct bio *bio;
1961 
1962 	bio_list_init(&bios);
1963 
1964 	spin_lock_irqsave(&cache->lock, flags);
1965 	bio_list_merge(&bios, &cache->deferred_bios);
1966 	bio_list_init(&cache->deferred_bios);
1967 	spin_unlock_irqrestore(&cache->lock, flags);
1968 
1969 	while ((bio = bio_list_pop(&bios))) {
1970 		if (bio->bi_opf & REQ_PREFLUSH)
1971 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1972 
1973 		else if (bio_op(bio) == REQ_OP_DISCARD)
1974 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1975 
1976 		else
1977 			commit_needed = process_bio(cache, bio) || commit_needed;
1978 	}
1979 
1980 	if (commit_needed)
1981 		schedule_commit(&cache->committer);
1982 }
1983 
1984 static void process_deferred_writethrough_bios(struct work_struct *ws)
1985 {
1986 	struct cache *cache = container_of(ws, struct cache, deferred_writethrough_worker);
1987 
1988 	unsigned long flags;
1989 	struct bio_list bios;
1990 	struct bio *bio;
1991 
1992 	bio_list_init(&bios);
1993 
1994 	spin_lock_irqsave(&cache->lock, flags);
1995 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1996 	bio_list_init(&cache->deferred_writethrough_bios);
1997 	spin_unlock_irqrestore(&cache->lock, flags);
1998 
1999 	/*
2000 	 * These bios have already been through accounted_begin()
2001 	 */
2002 	while ((bio = bio_list_pop(&bios)))
2003 		generic_make_request(bio);
2004 }
2005 
2006 /*----------------------------------------------------------------
2007  * Main worker loop
2008  *--------------------------------------------------------------*/
2009 
2010 static void requeue_deferred_bios(struct cache *cache)
2011 {
2012 	struct bio *bio;
2013 	struct bio_list bios;
2014 
2015 	bio_list_init(&bios);
2016 	bio_list_merge(&bios, &cache->deferred_bios);
2017 	bio_list_init(&cache->deferred_bios);
2018 
2019 	while ((bio = bio_list_pop(&bios))) {
2020 		bio->bi_error = DM_ENDIO_REQUEUE;
2021 		bio_endio(bio);
2022 	}
2023 }
2024 
2025 /*
2026  * We want to commit periodically so that not too much
2027  * unwritten metadata builds up.
2028  */
2029 static void do_waker(struct work_struct *ws)
2030 {
2031 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2032 
2033 	policy_tick(cache->policy, true);
2034 	wake_migration_worker(cache);
2035 	schedule_commit(&cache->committer);
2036 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2037 }
2038 
2039 static void check_migrations(struct work_struct *ws)
2040 {
2041 	int r;
2042 	struct policy_work *op;
2043 	struct cache *cache = container_of(ws, struct cache, migration_worker);
2044 	enum busy b;
2045 
2046 	for (;;) {
2047 		b = spare_migration_bandwidth(cache);
2048 		if (b == BUSY)
2049 			break;
2050 
2051 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
2052 		if (r == -ENODATA)
2053 			break;
2054 
2055 		if (r) {
2056 			DMERR_LIMIT("%s: policy_background_work failed",
2057 				    cache_device_name(cache));
2058 			break;
2059 		}
2060 
2061 		r = mg_start(cache, op, NULL);
2062 		if (r)
2063 			break;
2064 	}
2065 }
2066 
2067 /*----------------------------------------------------------------
2068  * Target methods
2069  *--------------------------------------------------------------*/
2070 
2071 /*
2072  * This function gets called on the error paths of the constructor, so we
2073  * have to cope with a partially initialised struct.
2074  */
2075 static void destroy(struct cache *cache)
2076 {
2077 	unsigned i;
2078 
2079 	mempool_destroy(cache->migration_pool);
2080 
2081 	if (cache->prison)
2082 		dm_bio_prison_destroy_v2(cache->prison);
2083 
2084 	if (cache->wq)
2085 		destroy_workqueue(cache->wq);
2086 
2087 	if (cache->dirty_bitset)
2088 		free_bitset(cache->dirty_bitset);
2089 
2090 	if (cache->discard_bitset)
2091 		free_bitset(cache->discard_bitset);
2092 
2093 	if (cache->copier)
2094 		dm_kcopyd_client_destroy(cache->copier);
2095 
2096 	if (cache->cmd)
2097 		dm_cache_metadata_close(cache->cmd);
2098 
2099 	if (cache->metadata_dev)
2100 		dm_put_device(cache->ti, cache->metadata_dev);
2101 
2102 	if (cache->origin_dev)
2103 		dm_put_device(cache->ti, cache->origin_dev);
2104 
2105 	if (cache->cache_dev)
2106 		dm_put_device(cache->ti, cache->cache_dev);
2107 
2108 	if (cache->policy)
2109 		dm_cache_policy_destroy(cache->policy);
2110 
2111 	for (i = 0; i < cache->nr_ctr_args ; i++)
2112 		kfree(cache->ctr_args[i]);
2113 	kfree(cache->ctr_args);
2114 
2115 	kfree(cache);
2116 }
2117 
2118 static void cache_dtr(struct dm_target *ti)
2119 {
2120 	struct cache *cache = ti->private;
2121 
2122 	destroy(cache);
2123 }
2124 
2125 static sector_t get_dev_size(struct dm_dev *dev)
2126 {
2127 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2128 }
2129 
2130 /*----------------------------------------------------------------*/
2131 
2132 /*
2133  * Construct a cache device mapping.
2134  *
2135  * cache <metadata dev> <cache dev> <origin dev> <block size>
2136  *       <#feature args> [<feature arg>]*
2137  *       <policy> <#policy args> [<policy arg>]*
2138  *
2139  * metadata dev    : fast device holding the persistent metadata
2140  * cache dev	   : fast device holding cached data blocks
2141  * origin dev	   : slow device holding original data blocks
2142  * block size	   : cache unit size in sectors
2143  *
2144  * #feature args   : number of feature arguments passed
2145  * feature args    : writethrough.  (The default is writeback.)
2146  *
2147  * policy	   : the replacement policy to use
2148  * #policy args    : an even number of policy arguments corresponding
2149  *		     to key/value pairs passed to the policy
2150  * policy args	   : key/value pairs passed to the policy
2151  *		     E.g. 'sequential_threshold 1024'
2152  *		     See cache-policies.txt for details.
2153  *
2154  * Optional feature arguments are:
2155  *   writethrough  : write through caching that prohibits cache block
2156  *		     content from being different from origin block content.
2157  *		     Without this argument, the default behaviour is to write
2158  *		     back cache block contents later for performance reasons,
2159  *		     so they may differ from the corresponding origin blocks.
2160  */
2161 struct cache_args {
2162 	struct dm_target *ti;
2163 
2164 	struct dm_dev *metadata_dev;
2165 
2166 	struct dm_dev *cache_dev;
2167 	sector_t cache_sectors;
2168 
2169 	struct dm_dev *origin_dev;
2170 	sector_t origin_sectors;
2171 
2172 	uint32_t block_size;
2173 
2174 	const char *policy_name;
2175 	int policy_argc;
2176 	const char **policy_argv;
2177 
2178 	struct cache_features features;
2179 };
2180 
2181 static void destroy_cache_args(struct cache_args *ca)
2182 {
2183 	if (ca->metadata_dev)
2184 		dm_put_device(ca->ti, ca->metadata_dev);
2185 
2186 	if (ca->cache_dev)
2187 		dm_put_device(ca->ti, ca->cache_dev);
2188 
2189 	if (ca->origin_dev)
2190 		dm_put_device(ca->ti, ca->origin_dev);
2191 
2192 	kfree(ca);
2193 }
2194 
2195 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2196 {
2197 	if (!as->argc) {
2198 		*error = "Insufficient args";
2199 		return false;
2200 	}
2201 
2202 	return true;
2203 }
2204 
2205 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2206 			      char **error)
2207 {
2208 	int r;
2209 	sector_t metadata_dev_size;
2210 	char b[BDEVNAME_SIZE];
2211 
2212 	if (!at_least_one_arg(as, error))
2213 		return -EINVAL;
2214 
2215 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2216 			  &ca->metadata_dev);
2217 	if (r) {
2218 		*error = "Error opening metadata device";
2219 		return r;
2220 	}
2221 
2222 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2223 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2224 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2225 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2226 
2227 	return 0;
2228 }
2229 
2230 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2231 			   char **error)
2232 {
2233 	int r;
2234 
2235 	if (!at_least_one_arg(as, error))
2236 		return -EINVAL;
2237 
2238 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2239 			  &ca->cache_dev);
2240 	if (r) {
2241 		*error = "Error opening cache device";
2242 		return r;
2243 	}
2244 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2245 
2246 	return 0;
2247 }
2248 
2249 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2250 			    char **error)
2251 {
2252 	int r;
2253 
2254 	if (!at_least_one_arg(as, error))
2255 		return -EINVAL;
2256 
2257 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2258 			  &ca->origin_dev);
2259 	if (r) {
2260 		*error = "Error opening origin device";
2261 		return r;
2262 	}
2263 
2264 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2265 	if (ca->ti->len > ca->origin_sectors) {
2266 		*error = "Device size larger than cached device";
2267 		return -EINVAL;
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2274 			    char **error)
2275 {
2276 	unsigned long block_size;
2277 
2278 	if (!at_least_one_arg(as, error))
2279 		return -EINVAL;
2280 
2281 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2282 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2283 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2284 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2285 		*error = "Invalid data block size";
2286 		return -EINVAL;
2287 	}
2288 
2289 	if (block_size > ca->cache_sectors) {
2290 		*error = "Data block size is larger than the cache device";
2291 		return -EINVAL;
2292 	}
2293 
2294 	ca->block_size = block_size;
2295 
2296 	return 0;
2297 }
2298 
2299 static void init_features(struct cache_features *cf)
2300 {
2301 	cf->mode = CM_WRITE;
2302 	cf->io_mode = CM_IO_WRITEBACK;
2303 	cf->metadata_version = 1;
2304 }
2305 
2306 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2307 			  char **error)
2308 {
2309 	static struct dm_arg _args[] = {
2310 		{0, 2, "Invalid number of cache feature arguments"},
2311 	};
2312 
2313 	int r;
2314 	unsigned argc;
2315 	const char *arg;
2316 	struct cache_features *cf = &ca->features;
2317 
2318 	init_features(cf);
2319 
2320 	r = dm_read_arg_group(_args, as, &argc, error);
2321 	if (r)
2322 		return -EINVAL;
2323 
2324 	while (argc--) {
2325 		arg = dm_shift_arg(as);
2326 
2327 		if (!strcasecmp(arg, "writeback"))
2328 			cf->io_mode = CM_IO_WRITEBACK;
2329 
2330 		else if (!strcasecmp(arg, "writethrough"))
2331 			cf->io_mode = CM_IO_WRITETHROUGH;
2332 
2333 		else if (!strcasecmp(arg, "passthrough"))
2334 			cf->io_mode = CM_IO_PASSTHROUGH;
2335 
2336 		else if (!strcasecmp(arg, "metadata2"))
2337 			cf->metadata_version = 2;
2338 
2339 		else {
2340 			*error = "Unrecognised cache feature requested";
2341 			return -EINVAL;
2342 		}
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2349 			char **error)
2350 {
2351 	static struct dm_arg _args[] = {
2352 		{0, 1024, "Invalid number of policy arguments"},
2353 	};
2354 
2355 	int r;
2356 
2357 	if (!at_least_one_arg(as, error))
2358 		return -EINVAL;
2359 
2360 	ca->policy_name = dm_shift_arg(as);
2361 
2362 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2363 	if (r)
2364 		return -EINVAL;
2365 
2366 	ca->policy_argv = (const char **)as->argv;
2367 	dm_consume_args(as, ca->policy_argc);
2368 
2369 	return 0;
2370 }
2371 
2372 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2373 			    char **error)
2374 {
2375 	int r;
2376 	struct dm_arg_set as;
2377 
2378 	as.argc = argc;
2379 	as.argv = argv;
2380 
2381 	r = parse_metadata_dev(ca, &as, error);
2382 	if (r)
2383 		return r;
2384 
2385 	r = parse_cache_dev(ca, &as, error);
2386 	if (r)
2387 		return r;
2388 
2389 	r = parse_origin_dev(ca, &as, error);
2390 	if (r)
2391 		return r;
2392 
2393 	r = parse_block_size(ca, &as, error);
2394 	if (r)
2395 		return r;
2396 
2397 	r = parse_features(ca, &as, error);
2398 	if (r)
2399 		return r;
2400 
2401 	r = parse_policy(ca, &as, error);
2402 	if (r)
2403 		return r;
2404 
2405 	return 0;
2406 }
2407 
2408 /*----------------------------------------------------------------*/
2409 
2410 static struct kmem_cache *migration_cache;
2411 
2412 #define NOT_CORE_OPTION 1
2413 
2414 static int process_config_option(struct cache *cache, const char *key, const char *value)
2415 {
2416 	unsigned long tmp;
2417 
2418 	if (!strcasecmp(key, "migration_threshold")) {
2419 		if (kstrtoul(value, 10, &tmp))
2420 			return -EINVAL;
2421 
2422 		cache->migration_threshold = tmp;
2423 		return 0;
2424 	}
2425 
2426 	return NOT_CORE_OPTION;
2427 }
2428 
2429 static int set_config_value(struct cache *cache, const char *key, const char *value)
2430 {
2431 	int r = process_config_option(cache, key, value);
2432 
2433 	if (r == NOT_CORE_OPTION)
2434 		r = policy_set_config_value(cache->policy, key, value);
2435 
2436 	if (r)
2437 		DMWARN("bad config value for %s: %s", key, value);
2438 
2439 	return r;
2440 }
2441 
2442 static int set_config_values(struct cache *cache, int argc, const char **argv)
2443 {
2444 	int r = 0;
2445 
2446 	if (argc & 1) {
2447 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2448 		return -EINVAL;
2449 	}
2450 
2451 	while (argc) {
2452 		r = set_config_value(cache, argv[0], argv[1]);
2453 		if (r)
2454 			break;
2455 
2456 		argc -= 2;
2457 		argv += 2;
2458 	}
2459 
2460 	return r;
2461 }
2462 
2463 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2464 			       char **error)
2465 {
2466 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2467 							   cache->cache_size,
2468 							   cache->origin_sectors,
2469 							   cache->sectors_per_block);
2470 	if (IS_ERR(p)) {
2471 		*error = "Error creating cache's policy";
2472 		return PTR_ERR(p);
2473 	}
2474 	cache->policy = p;
2475 	BUG_ON(!cache->policy);
2476 
2477 	return 0;
2478 }
2479 
2480 /*
2481  * We want the discard block size to be at least the size of the cache
2482  * block size and have no more than 2^14 discard blocks across the origin.
2483  */
2484 #define MAX_DISCARD_BLOCKS (1 << 14)
2485 
2486 static bool too_many_discard_blocks(sector_t discard_block_size,
2487 				    sector_t origin_size)
2488 {
2489 	(void) sector_div(origin_size, discard_block_size);
2490 
2491 	return origin_size > MAX_DISCARD_BLOCKS;
2492 }
2493 
2494 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2495 					     sector_t origin_size)
2496 {
2497 	sector_t discard_block_size = cache_block_size;
2498 
2499 	if (origin_size)
2500 		while (too_many_discard_blocks(discard_block_size, origin_size))
2501 			discard_block_size *= 2;
2502 
2503 	return discard_block_size;
2504 }
2505 
2506 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2507 {
2508 	dm_block_t nr_blocks = from_cblock(size);
2509 
2510 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2511 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2512 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2513 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2514 			     (unsigned long long) nr_blocks);
2515 
2516 	cache->cache_size = size;
2517 }
2518 
2519 static int is_congested(struct dm_dev *dev, int bdi_bits)
2520 {
2521 	struct request_queue *q = bdev_get_queue(dev->bdev);
2522 	return bdi_congested(q->backing_dev_info, bdi_bits);
2523 }
2524 
2525 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2526 {
2527 	struct cache *cache = container_of(cb, struct cache, callbacks);
2528 
2529 	return is_congested(cache->origin_dev, bdi_bits) ||
2530 		is_congested(cache->cache_dev, bdi_bits);
2531 }
2532 
2533 #define DEFAULT_MIGRATION_THRESHOLD 2048
2534 
2535 static int cache_create(struct cache_args *ca, struct cache **result)
2536 {
2537 	int r = 0;
2538 	char **error = &ca->ti->error;
2539 	struct cache *cache;
2540 	struct dm_target *ti = ca->ti;
2541 	dm_block_t origin_blocks;
2542 	struct dm_cache_metadata *cmd;
2543 	bool may_format = ca->features.mode == CM_WRITE;
2544 
2545 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2546 	if (!cache)
2547 		return -ENOMEM;
2548 
2549 	cache->ti = ca->ti;
2550 	ti->private = cache;
2551 	ti->num_flush_bios = 2;
2552 	ti->flush_supported = true;
2553 
2554 	ti->num_discard_bios = 1;
2555 	ti->discards_supported = true;
2556 	ti->split_discard_bios = false;
2557 
2558 	cache->features = ca->features;
2559 	ti->per_io_data_size = get_per_bio_data_size(cache);
2560 
2561 	cache->callbacks.congested_fn = cache_is_congested;
2562 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2563 
2564 	cache->metadata_dev = ca->metadata_dev;
2565 	cache->origin_dev = ca->origin_dev;
2566 	cache->cache_dev = ca->cache_dev;
2567 
2568 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2569 
2570 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2571 	origin_blocks = block_div(origin_blocks, ca->block_size);
2572 	cache->origin_blocks = to_oblock(origin_blocks);
2573 
2574 	cache->sectors_per_block = ca->block_size;
2575 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2576 		r = -EINVAL;
2577 		goto bad;
2578 	}
2579 
2580 	if (ca->block_size & (ca->block_size - 1)) {
2581 		dm_block_t cache_size = ca->cache_sectors;
2582 
2583 		cache->sectors_per_block_shift = -1;
2584 		cache_size = block_div(cache_size, ca->block_size);
2585 		set_cache_size(cache, to_cblock(cache_size));
2586 	} else {
2587 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2588 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2589 	}
2590 
2591 	r = create_cache_policy(cache, ca, error);
2592 	if (r)
2593 		goto bad;
2594 
2595 	cache->policy_nr_args = ca->policy_argc;
2596 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2597 
2598 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2599 	if (r) {
2600 		*error = "Error setting cache policy's config values";
2601 		goto bad;
2602 	}
2603 
2604 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2605 				     ca->block_size, may_format,
2606 				     dm_cache_policy_get_hint_size(cache->policy),
2607 				     ca->features.metadata_version);
2608 	if (IS_ERR(cmd)) {
2609 		*error = "Error creating metadata object";
2610 		r = PTR_ERR(cmd);
2611 		goto bad;
2612 	}
2613 	cache->cmd = cmd;
2614 	set_cache_mode(cache, CM_WRITE);
2615 	if (get_cache_mode(cache) != CM_WRITE) {
2616 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2617 		r = -EINVAL;
2618 		goto bad;
2619 	}
2620 
2621 	if (passthrough_mode(&cache->features)) {
2622 		bool all_clean;
2623 
2624 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2625 		if (r) {
2626 			*error = "dm_cache_metadata_all_clean() failed";
2627 			goto bad;
2628 		}
2629 
2630 		if (!all_clean) {
2631 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2632 			r = -EINVAL;
2633 			goto bad;
2634 		}
2635 
2636 		policy_allow_migrations(cache->policy, false);
2637 	}
2638 
2639 	spin_lock_init(&cache->lock);
2640 	INIT_LIST_HEAD(&cache->deferred_cells);
2641 	bio_list_init(&cache->deferred_bios);
2642 	bio_list_init(&cache->deferred_writethrough_bios);
2643 	atomic_set(&cache->nr_allocated_migrations, 0);
2644 	atomic_set(&cache->nr_io_migrations, 0);
2645 	init_waitqueue_head(&cache->migration_wait);
2646 
2647 	r = -ENOMEM;
2648 	atomic_set(&cache->nr_dirty, 0);
2649 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2650 	if (!cache->dirty_bitset) {
2651 		*error = "could not allocate dirty bitset";
2652 		goto bad;
2653 	}
2654 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2655 
2656 	cache->discard_block_size =
2657 		calculate_discard_block_size(cache->sectors_per_block,
2658 					     cache->origin_sectors);
2659 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2660 							      cache->discard_block_size));
2661 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2662 	if (!cache->discard_bitset) {
2663 		*error = "could not allocate discard bitset";
2664 		goto bad;
2665 	}
2666 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2667 
2668 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2669 	if (IS_ERR(cache->copier)) {
2670 		*error = "could not create kcopyd client";
2671 		r = PTR_ERR(cache->copier);
2672 		goto bad;
2673 	}
2674 
2675 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2676 	if (!cache->wq) {
2677 		*error = "could not create workqueue for metadata object";
2678 		goto bad;
2679 	}
2680 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2681 	INIT_WORK(&cache->deferred_writethrough_worker,
2682 		  process_deferred_writethrough_bios);
2683 	INIT_WORK(&cache->migration_worker, check_migrations);
2684 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2685 
2686 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2687 	if (!cache->prison) {
2688 		*error = "could not create bio prison";
2689 		goto bad;
2690 	}
2691 
2692 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2693 							 migration_cache);
2694 	if (!cache->migration_pool) {
2695 		*error = "Error creating cache's migration mempool";
2696 		goto bad;
2697 	}
2698 
2699 	cache->need_tick_bio = true;
2700 	cache->sized = false;
2701 	cache->invalidate = false;
2702 	cache->commit_requested = false;
2703 	cache->loaded_mappings = false;
2704 	cache->loaded_discards = false;
2705 
2706 	load_stats(cache);
2707 
2708 	atomic_set(&cache->stats.demotion, 0);
2709 	atomic_set(&cache->stats.promotion, 0);
2710 	atomic_set(&cache->stats.copies_avoided, 0);
2711 	atomic_set(&cache->stats.cache_cell_clash, 0);
2712 	atomic_set(&cache->stats.commit_count, 0);
2713 	atomic_set(&cache->stats.discard_count, 0);
2714 
2715 	spin_lock_init(&cache->invalidation_lock);
2716 	INIT_LIST_HEAD(&cache->invalidation_requests);
2717 
2718 	batcher_init(&cache->committer, commit_op, cache,
2719 		     issue_op, cache, cache->wq);
2720 	iot_init(&cache->origin_tracker);
2721 
2722 	init_rwsem(&cache->background_work_lock);
2723 	prevent_background_work(cache);
2724 
2725 	*result = cache;
2726 	return 0;
2727 bad:
2728 	destroy(cache);
2729 	return r;
2730 }
2731 
2732 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2733 {
2734 	unsigned i;
2735 	const char **copy;
2736 
2737 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2738 	if (!copy)
2739 		return -ENOMEM;
2740 	for (i = 0; i < argc; i++) {
2741 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2742 		if (!copy[i]) {
2743 			while (i--)
2744 				kfree(copy[i]);
2745 			kfree(copy);
2746 			return -ENOMEM;
2747 		}
2748 	}
2749 
2750 	cache->nr_ctr_args = argc;
2751 	cache->ctr_args = copy;
2752 
2753 	return 0;
2754 }
2755 
2756 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2757 {
2758 	int r = -EINVAL;
2759 	struct cache_args *ca;
2760 	struct cache *cache = NULL;
2761 
2762 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2763 	if (!ca) {
2764 		ti->error = "Error allocating memory for cache";
2765 		return -ENOMEM;
2766 	}
2767 	ca->ti = ti;
2768 
2769 	r = parse_cache_args(ca, argc, argv, &ti->error);
2770 	if (r)
2771 		goto out;
2772 
2773 	r = cache_create(ca, &cache);
2774 	if (r)
2775 		goto out;
2776 
2777 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2778 	if (r) {
2779 		destroy(cache);
2780 		goto out;
2781 	}
2782 
2783 	ti->private = cache;
2784 out:
2785 	destroy_cache_args(ca);
2786 	return r;
2787 }
2788 
2789 /*----------------------------------------------------------------*/
2790 
2791 static int cache_map(struct dm_target *ti, struct bio *bio)
2792 {
2793 	struct cache *cache = ti->private;
2794 
2795 	int r;
2796 	bool commit_needed;
2797 	dm_oblock_t block = get_bio_block(cache, bio);
2798 	size_t pb_data_size = get_per_bio_data_size(cache);
2799 
2800 	init_per_bio_data(bio, pb_data_size);
2801 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2802 		/*
2803 		 * This can only occur if the io goes to a partial block at
2804 		 * the end of the origin device.  We don't cache these.
2805 		 * Just remap to the origin and carry on.
2806 		 */
2807 		remap_to_origin(cache, bio);
2808 		accounted_begin(cache, bio);
2809 		return DM_MAPIO_REMAPPED;
2810 	}
2811 
2812 	if (discard_or_flush(bio)) {
2813 		defer_bio(cache, bio);
2814 		return DM_MAPIO_SUBMITTED;
2815 	}
2816 
2817 	r = map_bio(cache, bio, block, &commit_needed);
2818 	if (commit_needed)
2819 		schedule_commit(&cache->committer);
2820 
2821 	return r;
2822 }
2823 
2824 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2825 {
2826 	struct cache *cache = ti->private;
2827 	unsigned long flags;
2828 	size_t pb_data_size = get_per_bio_data_size(cache);
2829 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2830 
2831 	if (pb->tick) {
2832 		policy_tick(cache->policy, false);
2833 
2834 		spin_lock_irqsave(&cache->lock, flags);
2835 		cache->need_tick_bio = true;
2836 		spin_unlock_irqrestore(&cache->lock, flags);
2837 	}
2838 
2839 	bio_drop_shared_lock(cache, bio);
2840 	accounted_complete(cache, bio);
2841 
2842 	return 0;
2843 }
2844 
2845 static int write_dirty_bitset(struct cache *cache)
2846 {
2847 	int r;
2848 
2849 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2850 		return -EINVAL;
2851 
2852 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2853 	if (r)
2854 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2855 
2856 	return r;
2857 }
2858 
2859 static int write_discard_bitset(struct cache *cache)
2860 {
2861 	unsigned i, r;
2862 
2863 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2864 		return -EINVAL;
2865 
2866 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2867 					   cache->discard_nr_blocks);
2868 	if (r) {
2869 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2870 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2871 		return r;
2872 	}
2873 
2874 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2875 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2876 					 is_discarded(cache, to_dblock(i)));
2877 		if (r) {
2878 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2879 			return r;
2880 		}
2881 	}
2882 
2883 	return 0;
2884 }
2885 
2886 static int write_hints(struct cache *cache)
2887 {
2888 	int r;
2889 
2890 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2891 		return -EINVAL;
2892 
2893 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2894 	if (r) {
2895 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2896 		return r;
2897 	}
2898 
2899 	return 0;
2900 }
2901 
2902 /*
2903  * returns true on success
2904  */
2905 static bool sync_metadata(struct cache *cache)
2906 {
2907 	int r1, r2, r3, r4;
2908 
2909 	r1 = write_dirty_bitset(cache);
2910 	if (r1)
2911 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2912 
2913 	r2 = write_discard_bitset(cache);
2914 	if (r2)
2915 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2916 
2917 	save_stats(cache);
2918 
2919 	r3 = write_hints(cache);
2920 	if (r3)
2921 		DMERR("%s: could not write hints", cache_device_name(cache));
2922 
2923 	/*
2924 	 * If writing the above metadata failed, we still commit, but don't
2925 	 * set the clean shutdown flag.  This will effectively force every
2926 	 * dirty bit to be set on reload.
2927 	 */
2928 	r4 = commit(cache, !r1 && !r2 && !r3);
2929 	if (r4)
2930 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2931 
2932 	return !r1 && !r2 && !r3 && !r4;
2933 }
2934 
2935 static void cache_postsuspend(struct dm_target *ti)
2936 {
2937 	struct cache *cache = ti->private;
2938 
2939 	prevent_background_work(cache);
2940 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2941 
2942 	cancel_delayed_work(&cache->waker);
2943 	flush_workqueue(cache->wq);
2944 	WARN_ON(cache->origin_tracker.in_flight);
2945 
2946 	/*
2947 	 * If it's a flush suspend there won't be any deferred bios, so this
2948 	 * call is harmless.
2949 	 */
2950 	requeue_deferred_bios(cache);
2951 
2952 	if (get_cache_mode(cache) == CM_WRITE)
2953 		(void) sync_metadata(cache);
2954 }
2955 
2956 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2957 			bool dirty, uint32_t hint, bool hint_valid)
2958 {
2959 	int r;
2960 	struct cache *cache = context;
2961 
2962 	if (dirty) {
2963 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2964 		atomic_inc(&cache->nr_dirty);
2965 	} else
2966 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2967 
2968 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2969 	if (r)
2970 		return r;
2971 
2972 	return 0;
2973 }
2974 
2975 /*
2976  * The discard block size in the on disk metadata is not
2977  * neccessarily the same as we're currently using.  So we have to
2978  * be careful to only set the discarded attribute if we know it
2979  * covers a complete block of the new size.
2980  */
2981 struct discard_load_info {
2982 	struct cache *cache;
2983 
2984 	/*
2985 	 * These blocks are sized using the on disk dblock size, rather
2986 	 * than the current one.
2987 	 */
2988 	dm_block_t block_size;
2989 	dm_block_t discard_begin, discard_end;
2990 };
2991 
2992 static void discard_load_info_init(struct cache *cache,
2993 				   struct discard_load_info *li)
2994 {
2995 	li->cache = cache;
2996 	li->discard_begin = li->discard_end = 0;
2997 }
2998 
2999 static void set_discard_range(struct discard_load_info *li)
3000 {
3001 	sector_t b, e;
3002 
3003 	if (li->discard_begin == li->discard_end)
3004 		return;
3005 
3006 	/*
3007 	 * Convert to sectors.
3008 	 */
3009 	b = li->discard_begin * li->block_size;
3010 	e = li->discard_end * li->block_size;
3011 
3012 	/*
3013 	 * Then convert back to the current dblock size.
3014 	 */
3015 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3016 	sector_div(e, li->cache->discard_block_size);
3017 
3018 	/*
3019 	 * The origin may have shrunk, so we need to check we're still in
3020 	 * bounds.
3021 	 */
3022 	if (e > from_dblock(li->cache->discard_nr_blocks))
3023 		e = from_dblock(li->cache->discard_nr_blocks);
3024 
3025 	for (; b < e; b++)
3026 		set_discard(li->cache, to_dblock(b));
3027 }
3028 
3029 static int load_discard(void *context, sector_t discard_block_size,
3030 			dm_dblock_t dblock, bool discard)
3031 {
3032 	struct discard_load_info *li = context;
3033 
3034 	li->block_size = discard_block_size;
3035 
3036 	if (discard) {
3037 		if (from_dblock(dblock) == li->discard_end)
3038 			/*
3039 			 * We're already in a discard range, just extend it.
3040 			 */
3041 			li->discard_end = li->discard_end + 1ULL;
3042 
3043 		else {
3044 			/*
3045 			 * Emit the old range and start a new one.
3046 			 */
3047 			set_discard_range(li);
3048 			li->discard_begin = from_dblock(dblock);
3049 			li->discard_end = li->discard_begin + 1ULL;
3050 		}
3051 	} else {
3052 		set_discard_range(li);
3053 		li->discard_begin = li->discard_end = 0;
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3060 {
3061 	sector_t size = get_dev_size(cache->cache_dev);
3062 	(void) sector_div(size, cache->sectors_per_block);
3063 	return to_cblock(size);
3064 }
3065 
3066 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3067 {
3068 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3069 		return true;
3070 
3071 	/*
3072 	 * We can't drop a dirty block when shrinking the cache.
3073 	 */
3074 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3075 		new_size = to_cblock(from_cblock(new_size) + 1);
3076 		if (is_dirty(cache, new_size)) {
3077 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3078 			      cache_device_name(cache),
3079 			      (unsigned long long) from_cblock(new_size));
3080 			return false;
3081 		}
3082 	}
3083 
3084 	return true;
3085 }
3086 
3087 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3088 {
3089 	int r;
3090 
3091 	r = dm_cache_resize(cache->cmd, new_size);
3092 	if (r) {
3093 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3094 		metadata_operation_failed(cache, "dm_cache_resize", r);
3095 		return r;
3096 	}
3097 
3098 	set_cache_size(cache, new_size);
3099 
3100 	return 0;
3101 }
3102 
3103 static int cache_preresume(struct dm_target *ti)
3104 {
3105 	int r = 0;
3106 	struct cache *cache = ti->private;
3107 	dm_cblock_t csize = get_cache_dev_size(cache);
3108 
3109 	/*
3110 	 * Check to see if the cache has resized.
3111 	 */
3112 	if (!cache->sized) {
3113 		r = resize_cache_dev(cache, csize);
3114 		if (r)
3115 			return r;
3116 
3117 		cache->sized = true;
3118 
3119 	} else if (csize != cache->cache_size) {
3120 		if (!can_resize(cache, csize))
3121 			return -EINVAL;
3122 
3123 		r = resize_cache_dev(cache, csize);
3124 		if (r)
3125 			return r;
3126 	}
3127 
3128 	if (!cache->loaded_mappings) {
3129 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3130 					   load_mapping, cache);
3131 		if (r) {
3132 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3133 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3134 			return r;
3135 		}
3136 
3137 		cache->loaded_mappings = true;
3138 	}
3139 
3140 	if (!cache->loaded_discards) {
3141 		struct discard_load_info li;
3142 
3143 		/*
3144 		 * The discard bitset could have been resized, or the
3145 		 * discard block size changed.  To be safe we start by
3146 		 * setting every dblock to not discarded.
3147 		 */
3148 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3149 
3150 		discard_load_info_init(cache, &li);
3151 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3152 		if (r) {
3153 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3154 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3155 			return r;
3156 		}
3157 		set_discard_range(&li);
3158 
3159 		cache->loaded_discards = true;
3160 	}
3161 
3162 	return r;
3163 }
3164 
3165 static void cache_resume(struct dm_target *ti)
3166 {
3167 	struct cache *cache = ti->private;
3168 
3169 	cache->need_tick_bio = true;
3170 	allow_background_work(cache);
3171 	do_waker(&cache->waker.work);
3172 }
3173 
3174 /*
3175  * Status format:
3176  *
3177  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3178  * <cache block size> <#used cache blocks>/<#total cache blocks>
3179  * <#read hits> <#read misses> <#write hits> <#write misses>
3180  * <#demotions> <#promotions> <#dirty>
3181  * <#features> <features>*
3182  * <#core args> <core args>
3183  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3184  */
3185 static void cache_status(struct dm_target *ti, status_type_t type,
3186 			 unsigned status_flags, char *result, unsigned maxlen)
3187 {
3188 	int r = 0;
3189 	unsigned i;
3190 	ssize_t sz = 0;
3191 	dm_block_t nr_free_blocks_metadata = 0;
3192 	dm_block_t nr_blocks_metadata = 0;
3193 	char buf[BDEVNAME_SIZE];
3194 	struct cache *cache = ti->private;
3195 	dm_cblock_t residency;
3196 	bool needs_check;
3197 
3198 	switch (type) {
3199 	case STATUSTYPE_INFO:
3200 		if (get_cache_mode(cache) == CM_FAIL) {
3201 			DMEMIT("Fail");
3202 			break;
3203 		}
3204 
3205 		/* Commit to ensure statistics aren't out-of-date */
3206 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3207 			(void) commit(cache, false);
3208 
3209 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3210 		if (r) {
3211 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3212 			      cache_device_name(cache), r);
3213 			goto err;
3214 		}
3215 
3216 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3217 		if (r) {
3218 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3219 			      cache_device_name(cache), r);
3220 			goto err;
3221 		}
3222 
3223 		residency = policy_residency(cache->policy);
3224 
3225 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3226 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3227 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3228 		       (unsigned long long)nr_blocks_metadata,
3229 		       (unsigned long long)cache->sectors_per_block,
3230 		       (unsigned long long) from_cblock(residency),
3231 		       (unsigned long long) from_cblock(cache->cache_size),
3232 		       (unsigned) atomic_read(&cache->stats.read_hit),
3233 		       (unsigned) atomic_read(&cache->stats.read_miss),
3234 		       (unsigned) atomic_read(&cache->stats.write_hit),
3235 		       (unsigned) atomic_read(&cache->stats.write_miss),
3236 		       (unsigned) atomic_read(&cache->stats.demotion),
3237 		       (unsigned) atomic_read(&cache->stats.promotion),
3238 		       (unsigned long) atomic_read(&cache->nr_dirty));
3239 
3240 		if (cache->features.metadata_version == 2)
3241 			DMEMIT("2 metadata2 ");
3242 		else
3243 			DMEMIT("1 ");
3244 
3245 		if (writethrough_mode(&cache->features))
3246 			DMEMIT("writethrough ");
3247 
3248 		else if (passthrough_mode(&cache->features))
3249 			DMEMIT("passthrough ");
3250 
3251 		else if (writeback_mode(&cache->features))
3252 			DMEMIT("writeback ");
3253 
3254 		else {
3255 			DMERR("%s: internal error: unknown io mode: %d",
3256 			      cache_device_name(cache), (int) cache->features.io_mode);
3257 			goto err;
3258 		}
3259 
3260 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3261 
3262 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3263 		if (sz < maxlen) {
3264 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3265 			if (r)
3266 				DMERR("%s: policy_emit_config_values returned %d",
3267 				      cache_device_name(cache), r);
3268 		}
3269 
3270 		if (get_cache_mode(cache) == CM_READ_ONLY)
3271 			DMEMIT("ro ");
3272 		else
3273 			DMEMIT("rw ");
3274 
3275 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3276 
3277 		if (r || needs_check)
3278 			DMEMIT("needs_check ");
3279 		else
3280 			DMEMIT("- ");
3281 
3282 		break;
3283 
3284 	case STATUSTYPE_TABLE:
3285 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3286 		DMEMIT("%s ", buf);
3287 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3288 		DMEMIT("%s ", buf);
3289 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3290 		DMEMIT("%s", buf);
3291 
3292 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3293 			DMEMIT(" %s", cache->ctr_args[i]);
3294 		if (cache->nr_ctr_args)
3295 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3296 	}
3297 
3298 	return;
3299 
3300 err:
3301 	DMEMIT("Error");
3302 }
3303 
3304 /*
3305  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3306  * the one-past-the-end value.
3307  */
3308 struct cblock_range {
3309 	dm_cblock_t begin;
3310 	dm_cblock_t end;
3311 };
3312 
3313 /*
3314  * A cache block range can take two forms:
3315  *
3316  * i) A single cblock, eg. '3456'
3317  * ii) A begin and end cblock with a dash between, eg. 123-234
3318  */
3319 static int parse_cblock_range(struct cache *cache, const char *str,
3320 			      struct cblock_range *result)
3321 {
3322 	char dummy;
3323 	uint64_t b, e;
3324 	int r;
3325 
3326 	/*
3327 	 * Try and parse form (ii) first.
3328 	 */
3329 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3330 	if (r < 0)
3331 		return r;
3332 
3333 	if (r == 2) {
3334 		result->begin = to_cblock(b);
3335 		result->end = to_cblock(e);
3336 		return 0;
3337 	}
3338 
3339 	/*
3340 	 * That didn't work, try form (i).
3341 	 */
3342 	r = sscanf(str, "%llu%c", &b, &dummy);
3343 	if (r < 0)
3344 		return r;
3345 
3346 	if (r == 1) {
3347 		result->begin = to_cblock(b);
3348 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3349 		return 0;
3350 	}
3351 
3352 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3353 	return -EINVAL;
3354 }
3355 
3356 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3357 {
3358 	uint64_t b = from_cblock(range->begin);
3359 	uint64_t e = from_cblock(range->end);
3360 	uint64_t n = from_cblock(cache->cache_size);
3361 
3362 	if (b >= n) {
3363 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3364 		      cache_device_name(cache), b, n);
3365 		return -EINVAL;
3366 	}
3367 
3368 	if (e > n) {
3369 		DMERR("%s: end cblock out of range: %llu > %llu",
3370 		      cache_device_name(cache), e, n);
3371 		return -EINVAL;
3372 	}
3373 
3374 	if (b >= e) {
3375 		DMERR("%s: invalid cblock range: %llu >= %llu",
3376 		      cache_device_name(cache), b, e);
3377 		return -EINVAL;
3378 	}
3379 
3380 	return 0;
3381 }
3382 
3383 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3384 {
3385 	return to_cblock(from_cblock(b) + 1);
3386 }
3387 
3388 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3389 {
3390 	int r = 0;
3391 
3392 	/*
3393 	 * We don't need to do any locking here because we know we're in
3394 	 * passthrough mode.  There's is potential for a race between an
3395 	 * invalidation triggered by an io and an invalidation message.  This
3396 	 * is harmless, we must not worry if the policy call fails.
3397 	 */
3398 	while (range->begin != range->end) {
3399 		r = invalidate_cblock(cache, range->begin);
3400 		if (r)
3401 			return r;
3402 
3403 		range->begin = cblock_succ(range->begin);
3404 	}
3405 
3406 	cache->commit_requested = true;
3407 	return r;
3408 }
3409 
3410 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3411 					      const char **cblock_ranges)
3412 {
3413 	int r = 0;
3414 	unsigned i;
3415 	struct cblock_range range;
3416 
3417 	if (!passthrough_mode(&cache->features)) {
3418 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3419 		      cache_device_name(cache));
3420 		return -EPERM;
3421 	}
3422 
3423 	for (i = 0; i < count; i++) {
3424 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3425 		if (r)
3426 			break;
3427 
3428 		r = validate_cblock_range(cache, &range);
3429 		if (r)
3430 			break;
3431 
3432 		/*
3433 		 * Pass begin and end origin blocks to the worker and wake it.
3434 		 */
3435 		r = request_invalidation(cache, &range);
3436 		if (r)
3437 			break;
3438 	}
3439 
3440 	return r;
3441 }
3442 
3443 /*
3444  * Supports
3445  *	"<key> <value>"
3446  * and
3447  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3448  *
3449  * The key migration_threshold is supported by the cache target core.
3450  */
3451 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3452 {
3453 	struct cache *cache = ti->private;
3454 
3455 	if (!argc)
3456 		return -EINVAL;
3457 
3458 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3459 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3460 		      cache_device_name(cache));
3461 		return -EOPNOTSUPP;
3462 	}
3463 
3464 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3465 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3466 
3467 	if (argc != 2)
3468 		return -EINVAL;
3469 
3470 	return set_config_value(cache, argv[0], argv[1]);
3471 }
3472 
3473 static int cache_iterate_devices(struct dm_target *ti,
3474 				 iterate_devices_callout_fn fn, void *data)
3475 {
3476 	int r = 0;
3477 	struct cache *cache = ti->private;
3478 
3479 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3480 	if (!r)
3481 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3482 
3483 	return r;
3484 }
3485 
3486 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3487 {
3488 	/*
3489 	 * FIXME: these limits may be incompatible with the cache device
3490 	 */
3491 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3492 					    cache->origin_sectors);
3493 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3494 }
3495 
3496 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3497 {
3498 	struct cache *cache = ti->private;
3499 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3500 
3501 	/*
3502 	 * If the system-determined stacked limits are compatible with the
3503 	 * cache's blocksize (io_opt is a factor) do not override them.
3504 	 */
3505 	if (io_opt_sectors < cache->sectors_per_block ||
3506 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3507 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3508 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3509 	}
3510 	set_discard_limits(cache, limits);
3511 }
3512 
3513 /*----------------------------------------------------------------*/
3514 
3515 static struct target_type cache_target = {
3516 	.name = "cache",
3517 	.version = {2, 0, 0},
3518 	.module = THIS_MODULE,
3519 	.ctr = cache_ctr,
3520 	.dtr = cache_dtr,
3521 	.map = cache_map,
3522 	.end_io = cache_end_io,
3523 	.postsuspend = cache_postsuspend,
3524 	.preresume = cache_preresume,
3525 	.resume = cache_resume,
3526 	.status = cache_status,
3527 	.message = cache_message,
3528 	.iterate_devices = cache_iterate_devices,
3529 	.io_hints = cache_io_hints,
3530 };
3531 
3532 static int __init dm_cache_init(void)
3533 {
3534 	int r;
3535 
3536 	r = dm_register_target(&cache_target);
3537 	if (r) {
3538 		DMERR("cache target registration failed: %d", r);
3539 		return r;
3540 	}
3541 
3542 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3543 	if (!migration_cache) {
3544 		dm_unregister_target(&cache_target);
3545 		return -ENOMEM;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static void __exit dm_cache_exit(void)
3552 {
3553 	dm_unregister_target(&cache_target);
3554 	kmem_cache_destroy(migration_cache);
3555 }
3556 
3557 module_init(dm_cache_init);
3558 module_exit(dm_cache_exit);
3559 
3560 MODULE_DESCRIPTION(DM_NAME " cache target");
3561 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3562 MODULE_LICENSE("GPL");
3563