xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 92b19ff5)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 	void *bi_private;
122 };
123 
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125 			bio_end_io_t *bi_end_io, void *bi_private)
126 {
127 	h->bi_end_io = bio->bi_end_io;
128 	h->bi_private = bio->bi_private;
129 
130 	bio->bi_end_io = bi_end_io;
131 	bio->bi_private = bi_private;
132 }
133 
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136 	bio->bi_end_io = h->bi_end_io;
137 	bio->bi_private = h->bi_private;
138 }
139 
140 /*----------------------------------------------------------------*/
141 
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145 
146 /*
147  * The block size of the device holding cache data must be
148  * between 32KB and 1GB.
149  */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152 
153 enum cache_metadata_mode {
154 	CM_WRITE,		/* metadata may be changed */
155 	CM_READ_ONLY,		/* metadata may not be changed */
156 	CM_FAIL
157 };
158 
159 enum cache_io_mode {
160 	/*
161 	 * Data is written to cached blocks only.  These blocks are marked
162 	 * dirty.  If you lose the cache device you will lose data.
163 	 * Potential performance increase for both reads and writes.
164 	 */
165 	CM_IO_WRITEBACK,
166 
167 	/*
168 	 * Data is written to both cache and origin.  Blocks are never
169 	 * dirty.  Potential performance benfit for reads only.
170 	 */
171 	CM_IO_WRITETHROUGH,
172 
173 	/*
174 	 * A degraded mode useful for various cache coherency situations
175 	 * (eg, rolling back snapshots).  Reads and writes always go to the
176 	 * origin.  If a write goes to a cached oblock, then the cache
177 	 * block is invalidated.
178 	 */
179 	CM_IO_PASSTHROUGH
180 };
181 
182 struct cache_features {
183 	enum cache_metadata_mode mode;
184 	enum cache_io_mode io_mode;
185 };
186 
187 struct cache_stats {
188 	atomic_t read_hit;
189 	atomic_t read_miss;
190 	atomic_t write_hit;
191 	atomic_t write_miss;
192 	atomic_t demotion;
193 	atomic_t promotion;
194 	atomic_t copies_avoided;
195 	atomic_t cache_cell_clash;
196 	atomic_t commit_count;
197 	atomic_t discard_count;
198 };
199 
200 /*
201  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
202  * the one-past-the-end value.
203  */
204 struct cblock_range {
205 	dm_cblock_t begin;
206 	dm_cblock_t end;
207 };
208 
209 struct invalidation_request {
210 	struct list_head list;
211 	struct cblock_range *cblocks;
212 
213 	atomic_t complete;
214 	int err;
215 
216 	wait_queue_head_t result_wait;
217 };
218 
219 struct cache {
220 	struct dm_target *ti;
221 	struct dm_target_callbacks callbacks;
222 
223 	struct dm_cache_metadata *cmd;
224 
225 	/*
226 	 * Metadata is written to this device.
227 	 */
228 	struct dm_dev *metadata_dev;
229 
230 	/*
231 	 * The slower of the two data devices.  Typically a spindle.
232 	 */
233 	struct dm_dev *origin_dev;
234 
235 	/*
236 	 * The faster of the two data devices.  Typically an SSD.
237 	 */
238 	struct dm_dev *cache_dev;
239 
240 	/*
241 	 * Size of the origin device in _complete_ blocks and native sectors.
242 	 */
243 	dm_oblock_t origin_blocks;
244 	sector_t origin_sectors;
245 
246 	/*
247 	 * Size of the cache device in blocks.
248 	 */
249 	dm_cblock_t cache_size;
250 
251 	/*
252 	 * Fields for converting from sectors to blocks.
253 	 */
254 	uint32_t sectors_per_block;
255 	int sectors_per_block_shift;
256 
257 	spinlock_t lock;
258 	struct list_head deferred_cells;
259 	struct bio_list deferred_bios;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_writethrough_bios;
262 	struct list_head quiesced_migrations;
263 	struct list_head completed_migrations;
264 	struct list_head need_commit_migrations;
265 	sector_t migration_threshold;
266 	wait_queue_head_t migration_wait;
267 	atomic_t nr_allocated_migrations;
268 
269 	/*
270 	 * The number of in flight migrations that are performing
271 	 * background io. eg, promotion, writeback.
272 	 */
273 	atomic_t nr_io_migrations;
274 
275 	wait_queue_head_t quiescing_wait;
276 	atomic_t quiescing;
277 	atomic_t quiescing_ack;
278 
279 	/*
280 	 * cache_size entries, dirty if set
281 	 */
282 	atomic_t nr_dirty;
283 	unsigned long *dirty_bitset;
284 
285 	/*
286 	 * origin_blocks entries, discarded if set.
287 	 */
288 	dm_dblock_t discard_nr_blocks;
289 	unsigned long *discard_bitset;
290 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
291 
292 	/*
293 	 * Rather than reconstructing the table line for the status we just
294 	 * save it and regurgitate.
295 	 */
296 	unsigned nr_ctr_args;
297 	const char **ctr_args;
298 
299 	struct dm_kcopyd_client *copier;
300 	struct workqueue_struct *wq;
301 	struct work_struct worker;
302 
303 	struct delayed_work waker;
304 	unsigned long last_commit_jiffies;
305 
306 	struct dm_bio_prison *prison;
307 	struct dm_deferred_set *all_io_ds;
308 
309 	mempool_t *migration_pool;
310 
311 	struct dm_cache_policy *policy;
312 	unsigned policy_nr_args;
313 
314 	bool need_tick_bio:1;
315 	bool sized:1;
316 	bool invalidate:1;
317 	bool commit_requested:1;
318 	bool loaded_mappings:1;
319 	bool loaded_discards:1;
320 
321 	/*
322 	 * Cache features such as write-through.
323 	 */
324 	struct cache_features features;
325 
326 	struct cache_stats stats;
327 
328 	/*
329 	 * Invalidation fields.
330 	 */
331 	spinlock_t invalidation_lock;
332 	struct list_head invalidation_requests;
333 
334 	struct io_tracker origin_tracker;
335 };
336 
337 struct per_bio_data {
338 	bool tick:1;
339 	unsigned req_nr:2;
340 	struct dm_deferred_entry *all_io_entry;
341 	struct dm_hook_info hook_info;
342 	sector_t len;
343 
344 	/*
345 	 * writethrough fields.  These MUST remain at the end of this
346 	 * structure and the 'cache' member must be the first as it
347 	 * is used to determine the offset of the writethrough fields.
348 	 */
349 	struct cache *cache;
350 	dm_cblock_t cblock;
351 	struct dm_bio_details bio_details;
352 };
353 
354 struct dm_cache_migration {
355 	struct list_head list;
356 	struct cache *cache;
357 
358 	unsigned long start_jiffies;
359 	dm_oblock_t old_oblock;
360 	dm_oblock_t new_oblock;
361 	dm_cblock_t cblock;
362 
363 	bool err:1;
364 	bool discard:1;
365 	bool writeback:1;
366 	bool demote:1;
367 	bool promote:1;
368 	bool requeue_holder:1;
369 	bool invalidate:1;
370 
371 	struct dm_bio_prison_cell *old_ocell;
372 	struct dm_bio_prison_cell *new_ocell;
373 };
374 
375 /*
376  * Processing a bio in the worker thread may require these memory
377  * allocations.  We prealloc to avoid deadlocks (the same worker thread
378  * frees them back to the mempool).
379  */
380 struct prealloc {
381 	struct dm_cache_migration *mg;
382 	struct dm_bio_prison_cell *cell1;
383 	struct dm_bio_prison_cell *cell2;
384 };
385 
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387 
388 static void wake_worker(struct cache *cache)
389 {
390 	queue_work(cache->wq, &cache->worker);
391 }
392 
393 /*----------------------------------------------------------------*/
394 
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397 	/* FIXME: change to use a local slab. */
398 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400 
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403 	dm_bio_prison_free_cell(cache->prison, cell);
404 }
405 
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408 	struct dm_cache_migration *mg;
409 
410 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411 	if (mg) {
412 		mg->cache = cache;
413 		atomic_inc(&mg->cache->nr_allocated_migrations);
414 	}
415 
416 	return mg;
417 }
418 
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421 	struct cache *cache = mg->cache;
422 
423 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424 		wake_up(&cache->migration_wait);
425 
426 	mempool_free(mg, cache->migration_pool);
427 }
428 
429 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
430 {
431 	if (!p->mg) {
432 		p->mg = alloc_migration(cache);
433 		if (!p->mg)
434 			return -ENOMEM;
435 	}
436 
437 	if (!p->cell1) {
438 		p->cell1 = alloc_prison_cell(cache);
439 		if (!p->cell1)
440 			return -ENOMEM;
441 	}
442 
443 	if (!p->cell2) {
444 		p->cell2 = alloc_prison_cell(cache);
445 		if (!p->cell2)
446 			return -ENOMEM;
447 	}
448 
449 	return 0;
450 }
451 
452 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
453 {
454 	if (p->cell2)
455 		free_prison_cell(cache, p->cell2);
456 
457 	if (p->cell1)
458 		free_prison_cell(cache, p->cell1);
459 
460 	if (p->mg)
461 		free_migration(p->mg);
462 }
463 
464 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
465 {
466 	struct dm_cache_migration *mg = p->mg;
467 
468 	BUG_ON(!mg);
469 	p->mg = NULL;
470 
471 	return mg;
472 }
473 
474 /*
475  * You must have a cell within the prealloc struct to return.  If not this
476  * function will BUG() rather than returning NULL.
477  */
478 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
479 {
480 	struct dm_bio_prison_cell *r = NULL;
481 
482 	if (p->cell1) {
483 		r = p->cell1;
484 		p->cell1 = NULL;
485 
486 	} else if (p->cell2) {
487 		r = p->cell2;
488 		p->cell2 = NULL;
489 	} else
490 		BUG();
491 
492 	return r;
493 }
494 
495 /*
496  * You can't have more than two cells in a prealloc struct.  BUG() will be
497  * called if you try and overfill.
498  */
499 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
500 {
501 	if (!p->cell2)
502 		p->cell2 = cell;
503 
504 	else if (!p->cell1)
505 		p->cell1 = cell;
506 
507 	else
508 		BUG();
509 }
510 
511 /*----------------------------------------------------------------*/
512 
513 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
514 {
515 	key->virtual = 0;
516 	key->dev = 0;
517 	key->block_begin = from_oblock(begin);
518 	key->block_end = from_oblock(end);
519 }
520 
521 /*
522  * The caller hands in a preallocated cell, and a free function for it.
523  * The cell will be freed if there's an error, or if it wasn't used because
524  * a cell with that key already exists.
525  */
526 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
527 
528 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
529 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
530 			    cell_free_fn free_fn, void *free_context,
531 			    struct dm_bio_prison_cell **cell_result)
532 {
533 	int r;
534 	struct dm_cell_key key;
535 
536 	build_key(oblock_begin, oblock_end, &key);
537 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
538 	if (r)
539 		free_fn(free_context, cell_prealloc);
540 
541 	return r;
542 }
543 
544 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
545 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
546 		      cell_free_fn free_fn, void *free_context,
547 		      struct dm_bio_prison_cell **cell_result)
548 {
549 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
550 	return bio_detain_range(cache, oblock, end, bio,
551 				cell_prealloc, free_fn, free_context, cell_result);
552 }
553 
554 static int get_cell(struct cache *cache,
555 		    dm_oblock_t oblock,
556 		    struct prealloc *structs,
557 		    struct dm_bio_prison_cell **cell_result)
558 {
559 	int r;
560 	struct dm_cell_key key;
561 	struct dm_bio_prison_cell *cell_prealloc;
562 
563 	cell_prealloc = prealloc_get_cell(structs);
564 
565 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
566 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
567 	if (r)
568 		prealloc_put_cell(structs, cell_prealloc);
569 
570 	return r;
571 }
572 
573 /*----------------------------------------------------------------*/
574 
575 static bool is_dirty(struct cache *cache, dm_cblock_t b)
576 {
577 	return test_bit(from_cblock(b), cache->dirty_bitset);
578 }
579 
580 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
581 {
582 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
583 		atomic_inc(&cache->nr_dirty);
584 		policy_set_dirty(cache->policy, oblock);
585 	}
586 }
587 
588 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
589 {
590 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
591 		policy_clear_dirty(cache->policy, oblock);
592 		if (atomic_dec_return(&cache->nr_dirty) == 0)
593 			dm_table_event(cache->ti->table);
594 	}
595 }
596 
597 /*----------------------------------------------------------------*/
598 
599 static bool block_size_is_power_of_two(struct cache *cache)
600 {
601 	return cache->sectors_per_block_shift >= 0;
602 }
603 
604 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
605 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
606 __always_inline
607 #endif
608 static dm_block_t block_div(dm_block_t b, uint32_t n)
609 {
610 	do_div(b, n);
611 
612 	return b;
613 }
614 
615 static dm_block_t oblocks_per_dblock(struct cache *cache)
616 {
617 	dm_block_t oblocks = cache->discard_block_size;
618 
619 	if (block_size_is_power_of_two(cache))
620 		oblocks >>= cache->sectors_per_block_shift;
621 	else
622 		oblocks = block_div(oblocks, cache->sectors_per_block);
623 
624 	return oblocks;
625 }
626 
627 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
628 {
629 	return to_dblock(block_div(from_oblock(oblock),
630 				   oblocks_per_dblock(cache)));
631 }
632 
633 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
634 {
635 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
636 }
637 
638 static void set_discard(struct cache *cache, dm_dblock_t b)
639 {
640 	unsigned long flags;
641 
642 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
643 	atomic_inc(&cache->stats.discard_count);
644 
645 	spin_lock_irqsave(&cache->lock, flags);
646 	set_bit(from_dblock(b), cache->discard_bitset);
647 	spin_unlock_irqrestore(&cache->lock, flags);
648 }
649 
650 static void clear_discard(struct cache *cache, dm_dblock_t b)
651 {
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&cache->lock, flags);
655 	clear_bit(from_dblock(b), cache->discard_bitset);
656 	spin_unlock_irqrestore(&cache->lock, flags);
657 }
658 
659 static bool is_discarded(struct cache *cache, dm_dblock_t b)
660 {
661 	int r;
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&cache->lock, flags);
665 	r = test_bit(from_dblock(b), cache->discard_bitset);
666 	spin_unlock_irqrestore(&cache->lock, flags);
667 
668 	return r;
669 }
670 
671 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
672 {
673 	int r;
674 	unsigned long flags;
675 
676 	spin_lock_irqsave(&cache->lock, flags);
677 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
678 		     cache->discard_bitset);
679 	spin_unlock_irqrestore(&cache->lock, flags);
680 
681 	return r;
682 }
683 
684 /*----------------------------------------------------------------*/
685 
686 static void load_stats(struct cache *cache)
687 {
688 	struct dm_cache_statistics stats;
689 
690 	dm_cache_metadata_get_stats(cache->cmd, &stats);
691 	atomic_set(&cache->stats.read_hit, stats.read_hits);
692 	atomic_set(&cache->stats.read_miss, stats.read_misses);
693 	atomic_set(&cache->stats.write_hit, stats.write_hits);
694 	atomic_set(&cache->stats.write_miss, stats.write_misses);
695 }
696 
697 static void save_stats(struct cache *cache)
698 {
699 	struct dm_cache_statistics stats;
700 
701 	if (get_cache_mode(cache) >= CM_READ_ONLY)
702 		return;
703 
704 	stats.read_hits = atomic_read(&cache->stats.read_hit);
705 	stats.read_misses = atomic_read(&cache->stats.read_miss);
706 	stats.write_hits = atomic_read(&cache->stats.write_hit);
707 	stats.write_misses = atomic_read(&cache->stats.write_miss);
708 
709 	dm_cache_metadata_set_stats(cache->cmd, &stats);
710 }
711 
712 /*----------------------------------------------------------------
713  * Per bio data
714  *--------------------------------------------------------------*/
715 
716 /*
717  * If using writeback, leave out struct per_bio_data's writethrough fields.
718  */
719 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
720 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
721 
722 static bool writethrough_mode(struct cache_features *f)
723 {
724 	return f->io_mode == CM_IO_WRITETHROUGH;
725 }
726 
727 static bool writeback_mode(struct cache_features *f)
728 {
729 	return f->io_mode == CM_IO_WRITEBACK;
730 }
731 
732 static bool passthrough_mode(struct cache_features *f)
733 {
734 	return f->io_mode == CM_IO_PASSTHROUGH;
735 }
736 
737 static size_t get_per_bio_data_size(struct cache *cache)
738 {
739 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
740 }
741 
742 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
743 {
744 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
745 	BUG_ON(!pb);
746 	return pb;
747 }
748 
749 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
750 {
751 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
752 
753 	pb->tick = false;
754 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
755 	pb->all_io_entry = NULL;
756 	pb->len = 0;
757 
758 	return pb;
759 }
760 
761 /*----------------------------------------------------------------
762  * Remapping
763  *--------------------------------------------------------------*/
764 static void remap_to_origin(struct cache *cache, struct bio *bio)
765 {
766 	bio->bi_bdev = cache->origin_dev->bdev;
767 }
768 
769 static void remap_to_cache(struct cache *cache, struct bio *bio,
770 			   dm_cblock_t cblock)
771 {
772 	sector_t bi_sector = bio->bi_iter.bi_sector;
773 	sector_t block = from_cblock(cblock);
774 
775 	bio->bi_bdev = cache->cache_dev->bdev;
776 	if (!block_size_is_power_of_two(cache))
777 		bio->bi_iter.bi_sector =
778 			(block * cache->sectors_per_block) +
779 			sector_div(bi_sector, cache->sectors_per_block);
780 	else
781 		bio->bi_iter.bi_sector =
782 			(block << cache->sectors_per_block_shift) |
783 			(bi_sector & (cache->sectors_per_block - 1));
784 }
785 
786 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
787 {
788 	unsigned long flags;
789 	size_t pb_data_size = get_per_bio_data_size(cache);
790 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
791 
792 	spin_lock_irqsave(&cache->lock, flags);
793 	if (cache->need_tick_bio &&
794 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
795 		pb->tick = true;
796 		cache->need_tick_bio = false;
797 	}
798 	spin_unlock_irqrestore(&cache->lock, flags);
799 }
800 
801 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
802 				  dm_oblock_t oblock)
803 {
804 	check_if_tick_bio_needed(cache, bio);
805 	remap_to_origin(cache, bio);
806 	if (bio_data_dir(bio) == WRITE)
807 		clear_discard(cache, oblock_to_dblock(cache, oblock));
808 }
809 
810 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
811 				 dm_oblock_t oblock, dm_cblock_t cblock)
812 {
813 	check_if_tick_bio_needed(cache, bio);
814 	remap_to_cache(cache, bio, cblock);
815 	if (bio_data_dir(bio) == WRITE) {
816 		set_dirty(cache, oblock, cblock);
817 		clear_discard(cache, oblock_to_dblock(cache, oblock));
818 	}
819 }
820 
821 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
822 {
823 	sector_t block_nr = bio->bi_iter.bi_sector;
824 
825 	if (!block_size_is_power_of_two(cache))
826 		(void) sector_div(block_nr, cache->sectors_per_block);
827 	else
828 		block_nr >>= cache->sectors_per_block_shift;
829 
830 	return to_oblock(block_nr);
831 }
832 
833 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
834 {
835 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
836 }
837 
838 /*
839  * You must increment the deferred set whilst the prison cell is held.  To
840  * encourage this, we ask for 'cell' to be passed in.
841  */
842 static void inc_ds(struct cache *cache, struct bio *bio,
843 		   struct dm_bio_prison_cell *cell)
844 {
845 	size_t pb_data_size = get_per_bio_data_size(cache);
846 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
847 
848 	BUG_ON(!cell);
849 	BUG_ON(pb->all_io_entry);
850 
851 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
852 }
853 
854 static bool accountable_bio(struct cache *cache, struct bio *bio)
855 {
856 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
857 		!(bio->bi_rw & REQ_DISCARD));
858 }
859 
860 static void accounted_begin(struct cache *cache, struct bio *bio)
861 {
862 	size_t pb_data_size = get_per_bio_data_size(cache);
863 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
864 
865 	if (accountable_bio(cache, bio)) {
866 		pb->len = bio_sectors(bio);
867 		iot_io_begin(&cache->origin_tracker, pb->len);
868 	}
869 }
870 
871 static void accounted_complete(struct cache *cache, struct bio *bio)
872 {
873 	size_t pb_data_size = get_per_bio_data_size(cache);
874 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
875 
876 	iot_io_end(&cache->origin_tracker, pb->len);
877 }
878 
879 static void accounted_request(struct cache *cache, struct bio *bio)
880 {
881 	accounted_begin(cache, bio);
882 	generic_make_request(bio);
883 }
884 
885 static void issue(struct cache *cache, struct bio *bio)
886 {
887 	unsigned long flags;
888 
889 	if (!bio_triggers_commit(cache, bio)) {
890 		accounted_request(cache, bio);
891 		return;
892 	}
893 
894 	/*
895 	 * Batch together any bios that trigger commits and then issue a
896 	 * single commit for them in do_worker().
897 	 */
898 	spin_lock_irqsave(&cache->lock, flags);
899 	cache->commit_requested = true;
900 	bio_list_add(&cache->deferred_flush_bios, bio);
901 	spin_unlock_irqrestore(&cache->lock, flags);
902 }
903 
904 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
905 {
906 	inc_ds(cache, bio, cell);
907 	issue(cache, bio);
908 }
909 
910 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
911 {
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&cache->lock, flags);
915 	bio_list_add(&cache->deferred_writethrough_bios, bio);
916 	spin_unlock_irqrestore(&cache->lock, flags);
917 
918 	wake_worker(cache);
919 }
920 
921 static void writethrough_endio(struct bio *bio, int err)
922 {
923 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
924 
925 	dm_unhook_bio(&pb->hook_info, bio);
926 
927 	if (err) {
928 		bio_endio(bio, err);
929 		return;
930 	}
931 
932 	dm_bio_restore(&pb->bio_details, bio);
933 	remap_to_cache(pb->cache, bio, pb->cblock);
934 
935 	/*
936 	 * We can't issue this bio directly, since we're in interrupt
937 	 * context.  So it gets put on a bio list for processing by the
938 	 * worker thread.
939 	 */
940 	defer_writethrough_bio(pb->cache, bio);
941 }
942 
943 /*
944  * When running in writethrough mode we need to send writes to clean blocks
945  * to both the cache and origin devices.  In future we'd like to clone the
946  * bio and send them in parallel, but for now we're doing them in
947  * series as this is easier.
948  */
949 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
950 				       dm_oblock_t oblock, dm_cblock_t cblock)
951 {
952 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
953 
954 	pb->cache = cache;
955 	pb->cblock = cblock;
956 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
957 	dm_bio_record(&pb->bio_details, bio);
958 
959 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
960 }
961 
962 /*----------------------------------------------------------------
963  * Failure modes
964  *--------------------------------------------------------------*/
965 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
966 {
967 	return cache->features.mode;
968 }
969 
970 static const char *cache_device_name(struct cache *cache)
971 {
972 	return dm_device_name(dm_table_get_md(cache->ti->table));
973 }
974 
975 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
976 {
977 	const char *descs[] = {
978 		"write",
979 		"read-only",
980 		"fail"
981 	};
982 
983 	dm_table_event(cache->ti->table);
984 	DMINFO("%s: switching cache to %s mode",
985 	       cache_device_name(cache), descs[(int)mode]);
986 }
987 
988 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
989 {
990 	bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
991 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
992 
993 	if (new_mode == CM_WRITE && needs_check) {
994 		DMERR("%s: unable to switch cache to write mode until repaired.",
995 		      cache_device_name(cache));
996 		if (old_mode != new_mode)
997 			new_mode = old_mode;
998 		else
999 			new_mode = CM_READ_ONLY;
1000 	}
1001 
1002 	/* Never move out of fail mode */
1003 	if (old_mode == CM_FAIL)
1004 		new_mode = CM_FAIL;
1005 
1006 	switch (new_mode) {
1007 	case CM_FAIL:
1008 	case CM_READ_ONLY:
1009 		dm_cache_metadata_set_read_only(cache->cmd);
1010 		break;
1011 
1012 	case CM_WRITE:
1013 		dm_cache_metadata_set_read_write(cache->cmd);
1014 		break;
1015 	}
1016 
1017 	cache->features.mode = new_mode;
1018 
1019 	if (new_mode != old_mode)
1020 		notify_mode_switch(cache, new_mode);
1021 }
1022 
1023 static void abort_transaction(struct cache *cache)
1024 {
1025 	const char *dev_name = cache_device_name(cache);
1026 
1027 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1028 		return;
1029 
1030 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1031 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1032 		set_cache_mode(cache, CM_FAIL);
1033 	}
1034 
1035 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1036 	if (dm_cache_metadata_abort(cache->cmd)) {
1037 		DMERR("%s: failed to abort metadata transaction", dev_name);
1038 		set_cache_mode(cache, CM_FAIL);
1039 	}
1040 }
1041 
1042 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1043 {
1044 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1045 		    cache_device_name(cache), op, r);
1046 	abort_transaction(cache);
1047 	set_cache_mode(cache, CM_READ_ONLY);
1048 }
1049 
1050 /*----------------------------------------------------------------
1051  * Migration processing
1052  *
1053  * Migration covers moving data from the origin device to the cache, or
1054  * vice versa.
1055  *--------------------------------------------------------------*/
1056 static void inc_io_migrations(struct cache *cache)
1057 {
1058 	atomic_inc(&cache->nr_io_migrations);
1059 }
1060 
1061 static void dec_io_migrations(struct cache *cache)
1062 {
1063 	atomic_dec(&cache->nr_io_migrations);
1064 }
1065 
1066 static void __cell_release(struct cache *cache, struct dm_bio_prison_cell *cell,
1067 			   bool holder, struct bio_list *bios)
1068 {
1069 	(holder ? dm_cell_release : dm_cell_release_no_holder)
1070 		(cache->prison, cell, bios);
1071 	free_prison_cell(cache, cell);
1072 }
1073 
1074 static bool discard_or_flush(struct bio *bio)
1075 {
1076 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1077 }
1078 
1079 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1080 {
1081 	if (discard_or_flush(cell->holder))
1082 		/*
1083 		 * We have to handle these bios
1084 		 * individually.
1085 		 */
1086 		__cell_release(cache, cell, true, &cache->deferred_bios);
1087 
1088 	else
1089 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1090 }
1091 
1092 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1093 {
1094 	unsigned long flags;
1095 
1096 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1097 		/*
1098 		 * There was no prisoner to promote to holder, the
1099 		 * cell has been released.
1100 		 */
1101 		free_prison_cell(cache, cell);
1102 		return;
1103 	}
1104 
1105 	spin_lock_irqsave(&cache->lock, flags);
1106 	__cell_defer(cache, cell);
1107 	spin_unlock_irqrestore(&cache->lock, flags);
1108 
1109 	wake_worker(cache);
1110 }
1111 
1112 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1113 {
1114 	dm_cell_error(cache->prison, cell, err);
1115 	dm_bio_prison_free_cell(cache->prison, cell);
1116 }
1117 
1118 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1119 {
1120 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1121 }
1122 
1123 static void free_io_migration(struct dm_cache_migration *mg)
1124 {
1125 	dec_io_migrations(mg->cache);
1126 	free_migration(mg);
1127 }
1128 
1129 static void migration_failure(struct dm_cache_migration *mg)
1130 {
1131 	struct cache *cache = mg->cache;
1132 	const char *dev_name = cache_device_name(cache);
1133 
1134 	if (mg->writeback) {
1135 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1136 		set_dirty(cache, mg->old_oblock, mg->cblock);
1137 		cell_defer(cache, mg->old_ocell, false);
1138 
1139 	} else if (mg->demote) {
1140 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1141 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1142 
1143 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1144 		if (mg->promote)
1145 			cell_defer(cache, mg->new_ocell, true);
1146 	} else {
1147 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1148 		policy_remove_mapping(cache->policy, mg->new_oblock);
1149 		cell_defer(cache, mg->new_ocell, true);
1150 	}
1151 
1152 	free_io_migration(mg);
1153 }
1154 
1155 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1156 {
1157 	int r;
1158 	unsigned long flags;
1159 	struct cache *cache = mg->cache;
1160 
1161 	if (mg->writeback) {
1162 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1163 		cell_defer(cache, mg->old_ocell, false);
1164 		free_io_migration(mg);
1165 		return;
1166 
1167 	} else if (mg->demote) {
1168 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1169 		if (r) {
1170 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1171 				    cache_device_name(cache));
1172 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1173 			policy_force_mapping(cache->policy, mg->new_oblock,
1174 					     mg->old_oblock);
1175 			if (mg->promote)
1176 				cell_defer(cache, mg->new_ocell, true);
1177 			free_io_migration(mg);
1178 			return;
1179 		}
1180 	} else {
1181 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1182 		if (r) {
1183 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1184 				    cache_device_name(cache));
1185 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1186 			policy_remove_mapping(cache->policy, mg->new_oblock);
1187 			free_io_migration(mg);
1188 			return;
1189 		}
1190 	}
1191 
1192 	spin_lock_irqsave(&cache->lock, flags);
1193 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1194 	cache->commit_requested = true;
1195 	spin_unlock_irqrestore(&cache->lock, flags);
1196 }
1197 
1198 static void migration_success_post_commit(struct dm_cache_migration *mg)
1199 {
1200 	unsigned long flags;
1201 	struct cache *cache = mg->cache;
1202 
1203 	if (mg->writeback) {
1204 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1205 			     cache_device_name(cache));
1206 		return;
1207 
1208 	} else if (mg->demote) {
1209 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1210 
1211 		if (mg->promote) {
1212 			mg->demote = false;
1213 
1214 			spin_lock_irqsave(&cache->lock, flags);
1215 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1216 			spin_unlock_irqrestore(&cache->lock, flags);
1217 
1218 		} else {
1219 			if (mg->invalidate)
1220 				policy_remove_mapping(cache->policy, mg->old_oblock);
1221 			free_io_migration(mg);
1222 		}
1223 
1224 	} else {
1225 		if (mg->requeue_holder) {
1226 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1227 			cell_defer(cache, mg->new_ocell, true);
1228 		} else {
1229 			/*
1230 			 * The block was promoted via an overwrite, so it's dirty.
1231 			 */
1232 			set_dirty(cache, mg->new_oblock, mg->cblock);
1233 			bio_endio(mg->new_ocell->holder, 0);
1234 			cell_defer(cache, mg->new_ocell, false);
1235 		}
1236 		free_io_migration(mg);
1237 	}
1238 }
1239 
1240 static void copy_complete(int read_err, unsigned long write_err, void *context)
1241 {
1242 	unsigned long flags;
1243 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1244 	struct cache *cache = mg->cache;
1245 
1246 	if (read_err || write_err)
1247 		mg->err = true;
1248 
1249 	spin_lock_irqsave(&cache->lock, flags);
1250 	list_add_tail(&mg->list, &cache->completed_migrations);
1251 	spin_unlock_irqrestore(&cache->lock, flags);
1252 
1253 	wake_worker(cache);
1254 }
1255 
1256 static void issue_copy(struct dm_cache_migration *mg)
1257 {
1258 	int r;
1259 	struct dm_io_region o_region, c_region;
1260 	struct cache *cache = mg->cache;
1261 	sector_t cblock = from_cblock(mg->cblock);
1262 
1263 	o_region.bdev = cache->origin_dev->bdev;
1264 	o_region.count = cache->sectors_per_block;
1265 
1266 	c_region.bdev = cache->cache_dev->bdev;
1267 	c_region.sector = cblock * cache->sectors_per_block;
1268 	c_region.count = cache->sectors_per_block;
1269 
1270 	if (mg->writeback || mg->demote) {
1271 		/* demote */
1272 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1273 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1274 	} else {
1275 		/* promote */
1276 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1277 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1278 	}
1279 
1280 	if (r < 0) {
1281 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1282 		migration_failure(mg);
1283 	}
1284 }
1285 
1286 static void overwrite_endio(struct bio *bio, int err)
1287 {
1288 	struct dm_cache_migration *mg = bio->bi_private;
1289 	struct cache *cache = mg->cache;
1290 	size_t pb_data_size = get_per_bio_data_size(cache);
1291 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1292 	unsigned long flags;
1293 
1294 	dm_unhook_bio(&pb->hook_info, bio);
1295 
1296 	if (err)
1297 		mg->err = true;
1298 
1299 	mg->requeue_holder = false;
1300 
1301 	spin_lock_irqsave(&cache->lock, flags);
1302 	list_add_tail(&mg->list, &cache->completed_migrations);
1303 	spin_unlock_irqrestore(&cache->lock, flags);
1304 
1305 	wake_worker(cache);
1306 }
1307 
1308 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1309 {
1310 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1311 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1312 
1313 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1314 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1315 
1316 	/*
1317 	 * No need to inc_ds() here, since the cell will be held for the
1318 	 * duration of the io.
1319 	 */
1320 	accounted_request(mg->cache, bio);
1321 }
1322 
1323 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1324 {
1325 	return (bio_data_dir(bio) == WRITE) &&
1326 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1327 }
1328 
1329 static void avoid_copy(struct dm_cache_migration *mg)
1330 {
1331 	atomic_inc(&mg->cache->stats.copies_avoided);
1332 	migration_success_pre_commit(mg);
1333 }
1334 
1335 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1336 				     dm_dblock_t *b, dm_dblock_t *e)
1337 {
1338 	sector_t sb = bio->bi_iter.bi_sector;
1339 	sector_t se = bio_end_sector(bio);
1340 
1341 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1342 
1343 	if (se - sb < cache->discard_block_size)
1344 		*e = *b;
1345 	else
1346 		*e = to_dblock(block_div(se, cache->discard_block_size));
1347 }
1348 
1349 static void issue_discard(struct dm_cache_migration *mg)
1350 {
1351 	dm_dblock_t b, e;
1352 	struct bio *bio = mg->new_ocell->holder;
1353 
1354 	calc_discard_block_range(mg->cache, bio, &b, &e);
1355 	while (b != e) {
1356 		set_discard(mg->cache, b);
1357 		b = to_dblock(from_dblock(b) + 1);
1358 	}
1359 
1360 	bio_endio(bio, 0);
1361 	cell_defer(mg->cache, mg->new_ocell, false);
1362 	free_migration(mg);
1363 }
1364 
1365 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1366 {
1367 	bool avoid;
1368 	struct cache *cache = mg->cache;
1369 
1370 	if (mg->discard) {
1371 		issue_discard(mg);
1372 		return;
1373 	}
1374 
1375 	if (mg->writeback || mg->demote)
1376 		avoid = !is_dirty(cache, mg->cblock) ||
1377 			is_discarded_oblock(cache, mg->old_oblock);
1378 	else {
1379 		struct bio *bio = mg->new_ocell->holder;
1380 
1381 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1382 
1383 		if (writeback_mode(&cache->features) &&
1384 		    !avoid && bio_writes_complete_block(cache, bio)) {
1385 			issue_overwrite(mg, bio);
1386 			return;
1387 		}
1388 	}
1389 
1390 	avoid ? avoid_copy(mg) : issue_copy(mg);
1391 }
1392 
1393 static void complete_migration(struct dm_cache_migration *mg)
1394 {
1395 	if (mg->err)
1396 		migration_failure(mg);
1397 	else
1398 		migration_success_pre_commit(mg);
1399 }
1400 
1401 static void process_migrations(struct cache *cache, struct list_head *head,
1402 			       void (*fn)(struct dm_cache_migration *))
1403 {
1404 	unsigned long flags;
1405 	struct list_head list;
1406 	struct dm_cache_migration *mg, *tmp;
1407 
1408 	INIT_LIST_HEAD(&list);
1409 	spin_lock_irqsave(&cache->lock, flags);
1410 	list_splice_init(head, &list);
1411 	spin_unlock_irqrestore(&cache->lock, flags);
1412 
1413 	list_for_each_entry_safe(mg, tmp, &list, list)
1414 		fn(mg);
1415 }
1416 
1417 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1418 {
1419 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1420 }
1421 
1422 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1423 {
1424 	unsigned long flags;
1425 	struct cache *cache = mg->cache;
1426 
1427 	spin_lock_irqsave(&cache->lock, flags);
1428 	__queue_quiesced_migration(mg);
1429 	spin_unlock_irqrestore(&cache->lock, flags);
1430 
1431 	wake_worker(cache);
1432 }
1433 
1434 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1435 {
1436 	unsigned long flags;
1437 	struct dm_cache_migration *mg, *tmp;
1438 
1439 	spin_lock_irqsave(&cache->lock, flags);
1440 	list_for_each_entry_safe(mg, tmp, work, list)
1441 		__queue_quiesced_migration(mg);
1442 	spin_unlock_irqrestore(&cache->lock, flags);
1443 
1444 	wake_worker(cache);
1445 }
1446 
1447 static void check_for_quiesced_migrations(struct cache *cache,
1448 					  struct per_bio_data *pb)
1449 {
1450 	struct list_head work;
1451 
1452 	if (!pb->all_io_entry)
1453 		return;
1454 
1455 	INIT_LIST_HEAD(&work);
1456 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1457 
1458 	if (!list_empty(&work))
1459 		queue_quiesced_migrations(cache, &work);
1460 }
1461 
1462 static void quiesce_migration(struct dm_cache_migration *mg)
1463 {
1464 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1465 		queue_quiesced_migration(mg);
1466 }
1467 
1468 static void promote(struct cache *cache, struct prealloc *structs,
1469 		    dm_oblock_t oblock, dm_cblock_t cblock,
1470 		    struct dm_bio_prison_cell *cell)
1471 {
1472 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1473 
1474 	mg->err = false;
1475 	mg->discard = false;
1476 	mg->writeback = false;
1477 	mg->demote = false;
1478 	mg->promote = true;
1479 	mg->requeue_holder = true;
1480 	mg->invalidate = false;
1481 	mg->cache = cache;
1482 	mg->new_oblock = oblock;
1483 	mg->cblock = cblock;
1484 	mg->old_ocell = NULL;
1485 	mg->new_ocell = cell;
1486 	mg->start_jiffies = jiffies;
1487 
1488 	inc_io_migrations(cache);
1489 	quiesce_migration(mg);
1490 }
1491 
1492 static void writeback(struct cache *cache, struct prealloc *structs,
1493 		      dm_oblock_t oblock, dm_cblock_t cblock,
1494 		      struct dm_bio_prison_cell *cell)
1495 {
1496 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1497 
1498 	mg->err = false;
1499 	mg->discard = false;
1500 	mg->writeback = true;
1501 	mg->demote = false;
1502 	mg->promote = false;
1503 	mg->requeue_holder = true;
1504 	mg->invalidate = false;
1505 	mg->cache = cache;
1506 	mg->old_oblock = oblock;
1507 	mg->cblock = cblock;
1508 	mg->old_ocell = cell;
1509 	mg->new_ocell = NULL;
1510 	mg->start_jiffies = jiffies;
1511 
1512 	inc_io_migrations(cache);
1513 	quiesce_migration(mg);
1514 }
1515 
1516 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1517 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1518 				dm_cblock_t cblock,
1519 				struct dm_bio_prison_cell *old_ocell,
1520 				struct dm_bio_prison_cell *new_ocell)
1521 {
1522 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1523 
1524 	mg->err = false;
1525 	mg->discard = false;
1526 	mg->writeback = false;
1527 	mg->demote = true;
1528 	mg->promote = true;
1529 	mg->requeue_holder = true;
1530 	mg->invalidate = false;
1531 	mg->cache = cache;
1532 	mg->old_oblock = old_oblock;
1533 	mg->new_oblock = new_oblock;
1534 	mg->cblock = cblock;
1535 	mg->old_ocell = old_ocell;
1536 	mg->new_ocell = new_ocell;
1537 	mg->start_jiffies = jiffies;
1538 
1539 	inc_io_migrations(cache);
1540 	quiesce_migration(mg);
1541 }
1542 
1543 /*
1544  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1545  * block are thrown away.
1546  */
1547 static void invalidate(struct cache *cache, struct prealloc *structs,
1548 		       dm_oblock_t oblock, dm_cblock_t cblock,
1549 		       struct dm_bio_prison_cell *cell)
1550 {
1551 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1552 
1553 	mg->err = false;
1554 	mg->discard = false;
1555 	mg->writeback = false;
1556 	mg->demote = true;
1557 	mg->promote = false;
1558 	mg->requeue_holder = true;
1559 	mg->invalidate = true;
1560 	mg->cache = cache;
1561 	mg->old_oblock = oblock;
1562 	mg->cblock = cblock;
1563 	mg->old_ocell = cell;
1564 	mg->new_ocell = NULL;
1565 	mg->start_jiffies = jiffies;
1566 
1567 	inc_io_migrations(cache);
1568 	quiesce_migration(mg);
1569 }
1570 
1571 static void discard(struct cache *cache, struct prealloc *structs,
1572 		    struct dm_bio_prison_cell *cell)
1573 {
1574 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1575 
1576 	mg->err = false;
1577 	mg->discard = true;
1578 	mg->writeback = false;
1579 	mg->demote = false;
1580 	mg->promote = false;
1581 	mg->requeue_holder = false;
1582 	mg->invalidate = false;
1583 	mg->cache = cache;
1584 	mg->old_ocell = NULL;
1585 	mg->new_ocell = cell;
1586 	mg->start_jiffies = jiffies;
1587 
1588 	quiesce_migration(mg);
1589 }
1590 
1591 /*----------------------------------------------------------------
1592  * bio processing
1593  *--------------------------------------------------------------*/
1594 static void defer_bio(struct cache *cache, struct bio *bio)
1595 {
1596 	unsigned long flags;
1597 
1598 	spin_lock_irqsave(&cache->lock, flags);
1599 	bio_list_add(&cache->deferred_bios, bio);
1600 	spin_unlock_irqrestore(&cache->lock, flags);
1601 
1602 	wake_worker(cache);
1603 }
1604 
1605 static void process_flush_bio(struct cache *cache, struct bio *bio)
1606 {
1607 	size_t pb_data_size = get_per_bio_data_size(cache);
1608 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1609 
1610 	BUG_ON(bio->bi_iter.bi_size);
1611 	if (!pb->req_nr)
1612 		remap_to_origin(cache, bio);
1613 	else
1614 		remap_to_cache(cache, bio, 0);
1615 
1616 	/*
1617 	 * REQ_FLUSH is not directed at any particular block so we don't
1618 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1619 	 * by dm-core.
1620 	 */
1621 	issue(cache, bio);
1622 }
1623 
1624 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1625 				struct bio *bio)
1626 {
1627 	int r;
1628 	dm_dblock_t b, e;
1629 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1630 
1631 	calc_discard_block_range(cache, bio, &b, &e);
1632 	if (b == e) {
1633 		bio_endio(bio, 0);
1634 		return;
1635 	}
1636 
1637 	cell_prealloc = prealloc_get_cell(structs);
1638 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1639 			     (cell_free_fn) prealloc_put_cell,
1640 			     structs, &new_ocell);
1641 	if (r > 0)
1642 		return;
1643 
1644 	discard(cache, structs, new_ocell);
1645 }
1646 
1647 static bool spare_migration_bandwidth(struct cache *cache)
1648 {
1649 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1650 		cache->sectors_per_block;
1651 	return current_volume < cache->migration_threshold;
1652 }
1653 
1654 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1655 {
1656 	atomic_inc(bio_data_dir(bio) == READ ?
1657 		   &cache->stats.read_hit : &cache->stats.write_hit);
1658 }
1659 
1660 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1661 {
1662 	atomic_inc(bio_data_dir(bio) == READ ?
1663 		   &cache->stats.read_miss : &cache->stats.write_miss);
1664 }
1665 
1666 /*----------------------------------------------------------------*/
1667 
1668 struct inc_detail {
1669 	struct cache *cache;
1670 	struct bio_list bios_for_issue;
1671 	struct bio_list unhandled_bios;
1672 	bool any_writes;
1673 };
1674 
1675 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1676 {
1677 	struct bio *bio;
1678 	struct inc_detail *detail = context;
1679 	struct cache *cache = detail->cache;
1680 
1681 	inc_ds(cache, cell->holder, cell);
1682 	if (bio_data_dir(cell->holder) == WRITE)
1683 		detail->any_writes = true;
1684 
1685 	while ((bio = bio_list_pop(&cell->bios))) {
1686 		if (discard_or_flush(bio)) {
1687 			bio_list_add(&detail->unhandled_bios, bio);
1688 			continue;
1689 		}
1690 
1691 		if (bio_data_dir(bio) == WRITE)
1692 			detail->any_writes = true;
1693 
1694 		bio_list_add(&detail->bios_for_issue, bio);
1695 		inc_ds(cache, bio, cell);
1696 	}
1697 }
1698 
1699 // FIXME: refactor these two
1700 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1701 					       struct dm_bio_prison_cell *cell,
1702 					       dm_oblock_t oblock, bool issue_holder)
1703 {
1704 	struct bio *bio;
1705 	unsigned long flags;
1706 	struct inc_detail detail;
1707 
1708 	detail.cache = cache;
1709 	bio_list_init(&detail.bios_for_issue);
1710 	bio_list_init(&detail.unhandled_bios);
1711 	detail.any_writes = false;
1712 
1713 	spin_lock_irqsave(&cache->lock, flags);
1714 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1715 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1716 	spin_unlock_irqrestore(&cache->lock, flags);
1717 
1718 	remap_to_origin(cache, cell->holder);
1719 	if (issue_holder)
1720 		issue(cache, cell->holder);
1721 	else
1722 		accounted_begin(cache, cell->holder);
1723 
1724 	if (detail.any_writes)
1725 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1726 
1727 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1728 		remap_to_origin(cache, bio);
1729 		issue(cache, bio);
1730 	}
1731 }
1732 
1733 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1734 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1735 {
1736 	struct bio *bio;
1737 	unsigned long flags;
1738 	struct inc_detail detail;
1739 
1740 	detail.cache = cache;
1741 	bio_list_init(&detail.bios_for_issue);
1742 	bio_list_init(&detail.unhandled_bios);
1743 	detail.any_writes = false;
1744 
1745 	spin_lock_irqsave(&cache->lock, flags);
1746 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1747 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1748 	spin_unlock_irqrestore(&cache->lock, flags);
1749 
1750 	remap_to_cache(cache, cell->holder, cblock);
1751 	if (issue_holder)
1752 		issue(cache, cell->holder);
1753 	else
1754 		accounted_begin(cache, cell->holder);
1755 
1756 	if (detail.any_writes) {
1757 		set_dirty(cache, oblock, cblock);
1758 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1759 	}
1760 
1761 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1762 		remap_to_cache(cache, bio, cblock);
1763 		issue(cache, bio);
1764 	}
1765 }
1766 
1767 /*----------------------------------------------------------------*/
1768 
1769 struct old_oblock_lock {
1770 	struct policy_locker locker;
1771 	struct cache *cache;
1772 	struct prealloc *structs;
1773 	struct dm_bio_prison_cell *cell;
1774 };
1775 
1776 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1777 {
1778 	/* This should never be called */
1779 	BUG();
1780 	return 0;
1781 }
1782 
1783 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1784 {
1785 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1786 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1787 
1788 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1789 			  (cell_free_fn) prealloc_put_cell,
1790 			  l->structs, &l->cell);
1791 }
1792 
1793 static void process_cell(struct cache *cache, struct prealloc *structs,
1794 			 struct dm_bio_prison_cell *new_ocell)
1795 {
1796 	int r;
1797 	bool release_cell = true;
1798 	struct bio *bio = new_ocell->holder;
1799 	dm_oblock_t block = get_bio_block(cache, bio);
1800 	struct policy_result lookup_result;
1801 	bool passthrough = passthrough_mode(&cache->features);
1802 	bool fast_promotion, can_migrate;
1803 	struct old_oblock_lock ool;
1804 
1805 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1806 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1807 
1808 	ool.locker.fn = cell_locker;
1809 	ool.cache = cache;
1810 	ool.structs = structs;
1811 	ool.cell = NULL;
1812 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1813 		       bio, &ool.locker, &lookup_result);
1814 
1815 	if (r == -EWOULDBLOCK)
1816 		/* migration has been denied */
1817 		lookup_result.op = POLICY_MISS;
1818 
1819 	switch (lookup_result.op) {
1820 	case POLICY_HIT:
1821 		if (passthrough) {
1822 			inc_miss_counter(cache, bio);
1823 
1824 			/*
1825 			 * Passthrough always maps to the origin,
1826 			 * invalidating any cache blocks that are written
1827 			 * to.
1828 			 */
1829 
1830 			if (bio_data_dir(bio) == WRITE) {
1831 				atomic_inc(&cache->stats.demotion);
1832 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1833 				release_cell = false;
1834 
1835 			} else {
1836 				/* FIXME: factor out issue_origin() */
1837 				remap_to_origin_clear_discard(cache, bio, block);
1838 				inc_and_issue(cache, bio, new_ocell);
1839 			}
1840 		} else {
1841 			inc_hit_counter(cache, bio);
1842 
1843 			if (bio_data_dir(bio) == WRITE &&
1844 			    writethrough_mode(&cache->features) &&
1845 			    !is_dirty(cache, lookup_result.cblock)) {
1846 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1847 				inc_and_issue(cache, bio, new_ocell);
1848 
1849 			} else {
1850 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1851 				release_cell = false;
1852 			}
1853 		}
1854 
1855 		break;
1856 
1857 	case POLICY_MISS:
1858 		inc_miss_counter(cache, bio);
1859 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1860 		release_cell = false;
1861 		break;
1862 
1863 	case POLICY_NEW:
1864 		atomic_inc(&cache->stats.promotion);
1865 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1866 		release_cell = false;
1867 		break;
1868 
1869 	case POLICY_REPLACE:
1870 		atomic_inc(&cache->stats.demotion);
1871 		atomic_inc(&cache->stats.promotion);
1872 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1873 				    block, lookup_result.cblock,
1874 				    ool.cell, new_ocell);
1875 		release_cell = false;
1876 		break;
1877 
1878 	default:
1879 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1880 			    cache_device_name(cache), __func__,
1881 			    (unsigned) lookup_result.op);
1882 		bio_io_error(bio);
1883 	}
1884 
1885 	if (release_cell)
1886 		cell_defer(cache, new_ocell, false);
1887 }
1888 
1889 static void process_bio(struct cache *cache, struct prealloc *structs,
1890 			struct bio *bio)
1891 {
1892 	int r;
1893 	dm_oblock_t block = get_bio_block(cache, bio);
1894 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1895 
1896 	/*
1897 	 * Check to see if that block is currently migrating.
1898 	 */
1899 	cell_prealloc = prealloc_get_cell(structs);
1900 	r = bio_detain(cache, block, bio, cell_prealloc,
1901 		       (cell_free_fn) prealloc_put_cell,
1902 		       structs, &new_ocell);
1903 	if (r > 0)
1904 		return;
1905 
1906 	process_cell(cache, structs, new_ocell);
1907 }
1908 
1909 static int need_commit_due_to_time(struct cache *cache)
1910 {
1911 	return jiffies < cache->last_commit_jiffies ||
1912 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1913 }
1914 
1915 /*
1916  * A non-zero return indicates read_only or fail_io mode.
1917  */
1918 static int commit(struct cache *cache, bool clean_shutdown)
1919 {
1920 	int r;
1921 
1922 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1923 		return -EINVAL;
1924 
1925 	atomic_inc(&cache->stats.commit_count);
1926 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1927 	if (r)
1928 		metadata_operation_failed(cache, "dm_cache_commit", r);
1929 
1930 	return r;
1931 }
1932 
1933 static int commit_if_needed(struct cache *cache)
1934 {
1935 	int r = 0;
1936 
1937 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1938 	    dm_cache_changed_this_transaction(cache->cmd)) {
1939 		r = commit(cache, false);
1940 		cache->commit_requested = false;
1941 		cache->last_commit_jiffies = jiffies;
1942 	}
1943 
1944 	return r;
1945 }
1946 
1947 static void process_deferred_bios(struct cache *cache)
1948 {
1949 	bool prealloc_used = false;
1950 	unsigned long flags;
1951 	struct bio_list bios;
1952 	struct bio *bio;
1953 	struct prealloc structs;
1954 
1955 	memset(&structs, 0, sizeof(structs));
1956 	bio_list_init(&bios);
1957 
1958 	spin_lock_irqsave(&cache->lock, flags);
1959 	bio_list_merge(&bios, &cache->deferred_bios);
1960 	bio_list_init(&cache->deferred_bios);
1961 	spin_unlock_irqrestore(&cache->lock, flags);
1962 
1963 	while (!bio_list_empty(&bios)) {
1964 		/*
1965 		 * If we've got no free migration structs, and processing
1966 		 * this bio might require one, we pause until there are some
1967 		 * prepared mappings to process.
1968 		 */
1969 		if (prealloc_data_structs(cache, &structs)) {
1970 			spin_lock_irqsave(&cache->lock, flags);
1971 			bio_list_merge(&cache->deferred_bios, &bios);
1972 			spin_unlock_irqrestore(&cache->lock, flags);
1973 			break;
1974 		}
1975 
1976 		bio = bio_list_pop(&bios);
1977 
1978 		if (bio->bi_rw & REQ_FLUSH)
1979 			process_flush_bio(cache, bio);
1980 		else if (bio->bi_rw & REQ_DISCARD)
1981 			process_discard_bio(cache, &structs, bio);
1982 		else
1983 			process_bio(cache, &structs, bio);
1984 		prealloc_used = true;
1985 	}
1986 
1987 	if (prealloc_used)
1988 		prealloc_free_structs(cache, &structs);
1989 }
1990 
1991 static void process_deferred_cells(struct cache *cache)
1992 {
1993 	bool prealloc_used = false;
1994 	unsigned long flags;
1995 	struct dm_bio_prison_cell *cell, *tmp;
1996 	struct list_head cells;
1997 	struct prealloc structs;
1998 
1999 	memset(&structs, 0, sizeof(structs));
2000 
2001 	INIT_LIST_HEAD(&cells);
2002 
2003 	spin_lock_irqsave(&cache->lock, flags);
2004 	list_splice_init(&cache->deferred_cells, &cells);
2005 	spin_unlock_irqrestore(&cache->lock, flags);
2006 
2007 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2008 		/*
2009 		 * If we've got no free migration structs, and processing
2010 		 * this bio might require one, we pause until there are some
2011 		 * prepared mappings to process.
2012 		 */
2013 		if (prealloc_data_structs(cache, &structs)) {
2014 			spin_lock_irqsave(&cache->lock, flags);
2015 			list_splice(&cells, &cache->deferred_cells);
2016 			spin_unlock_irqrestore(&cache->lock, flags);
2017 			break;
2018 		}
2019 
2020 		process_cell(cache, &structs, cell);
2021 		prealloc_used = true;
2022 	}
2023 
2024 	if (prealloc_used)
2025 		prealloc_free_structs(cache, &structs);
2026 }
2027 
2028 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2029 {
2030 	unsigned long flags;
2031 	struct bio_list bios;
2032 	struct bio *bio;
2033 
2034 	bio_list_init(&bios);
2035 
2036 	spin_lock_irqsave(&cache->lock, flags);
2037 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2038 	bio_list_init(&cache->deferred_flush_bios);
2039 	spin_unlock_irqrestore(&cache->lock, flags);
2040 
2041 	/*
2042 	 * These bios have already been through inc_ds()
2043 	 */
2044 	while ((bio = bio_list_pop(&bios)))
2045 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2046 }
2047 
2048 static void process_deferred_writethrough_bios(struct cache *cache)
2049 {
2050 	unsigned long flags;
2051 	struct bio_list bios;
2052 	struct bio *bio;
2053 
2054 	bio_list_init(&bios);
2055 
2056 	spin_lock_irqsave(&cache->lock, flags);
2057 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2058 	bio_list_init(&cache->deferred_writethrough_bios);
2059 	spin_unlock_irqrestore(&cache->lock, flags);
2060 
2061 	/*
2062 	 * These bios have already been through inc_ds()
2063 	 */
2064 	while ((bio = bio_list_pop(&bios)))
2065 		accounted_request(cache, bio);
2066 }
2067 
2068 static void writeback_some_dirty_blocks(struct cache *cache)
2069 {
2070 	bool prealloc_used = false;
2071 	dm_oblock_t oblock;
2072 	dm_cblock_t cblock;
2073 	struct prealloc structs;
2074 	struct dm_bio_prison_cell *old_ocell;
2075 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2076 
2077 	memset(&structs, 0, sizeof(structs));
2078 
2079 	while (spare_migration_bandwidth(cache)) {
2080 		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2081 			break; /* no work to do */
2082 
2083 		if (prealloc_data_structs(cache, &structs) ||
2084 		    get_cell(cache, oblock, &structs, &old_ocell)) {
2085 			policy_set_dirty(cache->policy, oblock);
2086 			break;
2087 		}
2088 
2089 		writeback(cache, &structs, oblock, cblock, old_ocell);
2090 		prealloc_used = true;
2091 	}
2092 
2093 	if (prealloc_used)
2094 		prealloc_free_structs(cache, &structs);
2095 }
2096 
2097 /*----------------------------------------------------------------
2098  * Invalidations.
2099  * Dropping something from the cache *without* writing back.
2100  *--------------------------------------------------------------*/
2101 
2102 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2103 {
2104 	int r = 0;
2105 	uint64_t begin = from_cblock(req->cblocks->begin);
2106 	uint64_t end = from_cblock(req->cblocks->end);
2107 
2108 	while (begin != end) {
2109 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2110 		if (!r) {
2111 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2112 			if (r) {
2113 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2114 				break;
2115 			}
2116 
2117 		} else if (r == -ENODATA) {
2118 			/* harmless, already unmapped */
2119 			r = 0;
2120 
2121 		} else {
2122 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2123 			break;
2124 		}
2125 
2126 		begin++;
2127         }
2128 
2129 	cache->commit_requested = true;
2130 
2131 	req->err = r;
2132 	atomic_set(&req->complete, 1);
2133 
2134 	wake_up(&req->result_wait);
2135 }
2136 
2137 static void process_invalidation_requests(struct cache *cache)
2138 {
2139 	struct list_head list;
2140 	struct invalidation_request *req, *tmp;
2141 
2142 	INIT_LIST_HEAD(&list);
2143 	spin_lock(&cache->invalidation_lock);
2144 	list_splice_init(&cache->invalidation_requests, &list);
2145 	spin_unlock(&cache->invalidation_lock);
2146 
2147 	list_for_each_entry_safe (req, tmp, &list, list)
2148 		process_invalidation_request(cache, req);
2149 }
2150 
2151 /*----------------------------------------------------------------
2152  * Main worker loop
2153  *--------------------------------------------------------------*/
2154 static bool is_quiescing(struct cache *cache)
2155 {
2156 	return atomic_read(&cache->quiescing);
2157 }
2158 
2159 static void ack_quiescing(struct cache *cache)
2160 {
2161 	if (is_quiescing(cache)) {
2162 		atomic_inc(&cache->quiescing_ack);
2163 		wake_up(&cache->quiescing_wait);
2164 	}
2165 }
2166 
2167 static void wait_for_quiescing_ack(struct cache *cache)
2168 {
2169 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2170 }
2171 
2172 static void start_quiescing(struct cache *cache)
2173 {
2174 	atomic_inc(&cache->quiescing);
2175 	wait_for_quiescing_ack(cache);
2176 }
2177 
2178 static void stop_quiescing(struct cache *cache)
2179 {
2180 	atomic_set(&cache->quiescing, 0);
2181 	atomic_set(&cache->quiescing_ack, 0);
2182 }
2183 
2184 static void wait_for_migrations(struct cache *cache)
2185 {
2186 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2187 }
2188 
2189 static void stop_worker(struct cache *cache)
2190 {
2191 	cancel_delayed_work(&cache->waker);
2192 	flush_workqueue(cache->wq);
2193 }
2194 
2195 static void requeue_deferred_cells(struct cache *cache)
2196 {
2197 	unsigned long flags;
2198 	struct list_head cells;
2199 	struct dm_bio_prison_cell *cell, *tmp;
2200 
2201 	INIT_LIST_HEAD(&cells);
2202 	spin_lock_irqsave(&cache->lock, flags);
2203 	list_splice_init(&cache->deferred_cells, &cells);
2204 	spin_unlock_irqrestore(&cache->lock, flags);
2205 
2206 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2207 		cell_requeue(cache, cell);
2208 }
2209 
2210 static void requeue_deferred_bios(struct cache *cache)
2211 {
2212 	struct bio *bio;
2213 	struct bio_list bios;
2214 
2215 	bio_list_init(&bios);
2216 	bio_list_merge(&bios, &cache->deferred_bios);
2217 	bio_list_init(&cache->deferred_bios);
2218 
2219 	while ((bio = bio_list_pop(&bios)))
2220 		bio_endio(bio, DM_ENDIO_REQUEUE);
2221 }
2222 
2223 static int more_work(struct cache *cache)
2224 {
2225 	if (is_quiescing(cache))
2226 		return !list_empty(&cache->quiesced_migrations) ||
2227 			!list_empty(&cache->completed_migrations) ||
2228 			!list_empty(&cache->need_commit_migrations);
2229 	else
2230 		return !bio_list_empty(&cache->deferred_bios) ||
2231 			!list_empty(&cache->deferred_cells) ||
2232 			!bio_list_empty(&cache->deferred_flush_bios) ||
2233 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2234 			!list_empty(&cache->quiesced_migrations) ||
2235 			!list_empty(&cache->completed_migrations) ||
2236 			!list_empty(&cache->need_commit_migrations) ||
2237 			cache->invalidate;
2238 }
2239 
2240 static void do_worker(struct work_struct *ws)
2241 {
2242 	struct cache *cache = container_of(ws, struct cache, worker);
2243 
2244 	do {
2245 		if (!is_quiescing(cache)) {
2246 			writeback_some_dirty_blocks(cache);
2247 			process_deferred_writethrough_bios(cache);
2248 			process_deferred_bios(cache);
2249 			process_deferred_cells(cache);
2250 			process_invalidation_requests(cache);
2251 		}
2252 
2253 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2254 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2255 
2256 		if (commit_if_needed(cache)) {
2257 			process_deferred_flush_bios(cache, false);
2258 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2259 		} else {
2260 			process_deferred_flush_bios(cache, true);
2261 			process_migrations(cache, &cache->need_commit_migrations,
2262 					   migration_success_post_commit);
2263 		}
2264 
2265 		ack_quiescing(cache);
2266 
2267 	} while (more_work(cache));
2268 }
2269 
2270 /*
2271  * We want to commit periodically so that not too much
2272  * unwritten metadata builds up.
2273  */
2274 static void do_waker(struct work_struct *ws)
2275 {
2276 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2277 	policy_tick(cache->policy, true);
2278 	wake_worker(cache);
2279 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2280 }
2281 
2282 /*----------------------------------------------------------------*/
2283 
2284 static int is_congested(struct dm_dev *dev, int bdi_bits)
2285 {
2286 	struct request_queue *q = bdev_get_queue(dev->bdev);
2287 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2288 }
2289 
2290 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2291 {
2292 	struct cache *cache = container_of(cb, struct cache, callbacks);
2293 
2294 	return is_congested(cache->origin_dev, bdi_bits) ||
2295 		is_congested(cache->cache_dev, bdi_bits);
2296 }
2297 
2298 /*----------------------------------------------------------------
2299  * Target methods
2300  *--------------------------------------------------------------*/
2301 
2302 /*
2303  * This function gets called on the error paths of the constructor, so we
2304  * have to cope with a partially initialised struct.
2305  */
2306 static void destroy(struct cache *cache)
2307 {
2308 	unsigned i;
2309 
2310 	if (cache->migration_pool)
2311 		mempool_destroy(cache->migration_pool);
2312 
2313 	if (cache->all_io_ds)
2314 		dm_deferred_set_destroy(cache->all_io_ds);
2315 
2316 	if (cache->prison)
2317 		dm_bio_prison_destroy(cache->prison);
2318 
2319 	if (cache->wq)
2320 		destroy_workqueue(cache->wq);
2321 
2322 	if (cache->dirty_bitset)
2323 		free_bitset(cache->dirty_bitset);
2324 
2325 	if (cache->discard_bitset)
2326 		free_bitset(cache->discard_bitset);
2327 
2328 	if (cache->copier)
2329 		dm_kcopyd_client_destroy(cache->copier);
2330 
2331 	if (cache->cmd)
2332 		dm_cache_metadata_close(cache->cmd);
2333 
2334 	if (cache->metadata_dev)
2335 		dm_put_device(cache->ti, cache->metadata_dev);
2336 
2337 	if (cache->origin_dev)
2338 		dm_put_device(cache->ti, cache->origin_dev);
2339 
2340 	if (cache->cache_dev)
2341 		dm_put_device(cache->ti, cache->cache_dev);
2342 
2343 	if (cache->policy)
2344 		dm_cache_policy_destroy(cache->policy);
2345 
2346 	for (i = 0; i < cache->nr_ctr_args ; i++)
2347 		kfree(cache->ctr_args[i]);
2348 	kfree(cache->ctr_args);
2349 
2350 	kfree(cache);
2351 }
2352 
2353 static void cache_dtr(struct dm_target *ti)
2354 {
2355 	struct cache *cache = ti->private;
2356 
2357 	destroy(cache);
2358 }
2359 
2360 static sector_t get_dev_size(struct dm_dev *dev)
2361 {
2362 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2363 }
2364 
2365 /*----------------------------------------------------------------*/
2366 
2367 /*
2368  * Construct a cache device mapping.
2369  *
2370  * cache <metadata dev> <cache dev> <origin dev> <block size>
2371  *       <#feature args> [<feature arg>]*
2372  *       <policy> <#policy args> [<policy arg>]*
2373  *
2374  * metadata dev    : fast device holding the persistent metadata
2375  * cache dev	   : fast device holding cached data blocks
2376  * origin dev	   : slow device holding original data blocks
2377  * block size	   : cache unit size in sectors
2378  *
2379  * #feature args   : number of feature arguments passed
2380  * feature args    : writethrough.  (The default is writeback.)
2381  *
2382  * policy	   : the replacement policy to use
2383  * #policy args    : an even number of policy arguments corresponding
2384  *		     to key/value pairs passed to the policy
2385  * policy args	   : key/value pairs passed to the policy
2386  *		     E.g. 'sequential_threshold 1024'
2387  *		     See cache-policies.txt for details.
2388  *
2389  * Optional feature arguments are:
2390  *   writethrough  : write through caching that prohibits cache block
2391  *		     content from being different from origin block content.
2392  *		     Without this argument, the default behaviour is to write
2393  *		     back cache block contents later for performance reasons,
2394  *		     so they may differ from the corresponding origin blocks.
2395  */
2396 struct cache_args {
2397 	struct dm_target *ti;
2398 
2399 	struct dm_dev *metadata_dev;
2400 
2401 	struct dm_dev *cache_dev;
2402 	sector_t cache_sectors;
2403 
2404 	struct dm_dev *origin_dev;
2405 	sector_t origin_sectors;
2406 
2407 	uint32_t block_size;
2408 
2409 	const char *policy_name;
2410 	int policy_argc;
2411 	const char **policy_argv;
2412 
2413 	struct cache_features features;
2414 };
2415 
2416 static void destroy_cache_args(struct cache_args *ca)
2417 {
2418 	if (ca->metadata_dev)
2419 		dm_put_device(ca->ti, ca->metadata_dev);
2420 
2421 	if (ca->cache_dev)
2422 		dm_put_device(ca->ti, ca->cache_dev);
2423 
2424 	if (ca->origin_dev)
2425 		dm_put_device(ca->ti, ca->origin_dev);
2426 
2427 	kfree(ca);
2428 }
2429 
2430 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2431 {
2432 	if (!as->argc) {
2433 		*error = "Insufficient args";
2434 		return false;
2435 	}
2436 
2437 	return true;
2438 }
2439 
2440 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2441 			      char **error)
2442 {
2443 	int r;
2444 	sector_t metadata_dev_size;
2445 	char b[BDEVNAME_SIZE];
2446 
2447 	if (!at_least_one_arg(as, error))
2448 		return -EINVAL;
2449 
2450 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2451 			  &ca->metadata_dev);
2452 	if (r) {
2453 		*error = "Error opening metadata device";
2454 		return r;
2455 	}
2456 
2457 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2458 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2459 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2460 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2461 
2462 	return 0;
2463 }
2464 
2465 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2466 			   char **error)
2467 {
2468 	int r;
2469 
2470 	if (!at_least_one_arg(as, error))
2471 		return -EINVAL;
2472 
2473 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2474 			  &ca->cache_dev);
2475 	if (r) {
2476 		*error = "Error opening cache device";
2477 		return r;
2478 	}
2479 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2480 
2481 	return 0;
2482 }
2483 
2484 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2485 			    char **error)
2486 {
2487 	int r;
2488 
2489 	if (!at_least_one_arg(as, error))
2490 		return -EINVAL;
2491 
2492 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2493 			  &ca->origin_dev);
2494 	if (r) {
2495 		*error = "Error opening origin device";
2496 		return r;
2497 	}
2498 
2499 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2500 	if (ca->ti->len > ca->origin_sectors) {
2501 		*error = "Device size larger than cached device";
2502 		return -EINVAL;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2509 			    char **error)
2510 {
2511 	unsigned long block_size;
2512 
2513 	if (!at_least_one_arg(as, error))
2514 		return -EINVAL;
2515 
2516 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2517 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2518 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2519 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2520 		*error = "Invalid data block size";
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (block_size > ca->cache_sectors) {
2525 		*error = "Data block size is larger than the cache device";
2526 		return -EINVAL;
2527 	}
2528 
2529 	ca->block_size = block_size;
2530 
2531 	return 0;
2532 }
2533 
2534 static void init_features(struct cache_features *cf)
2535 {
2536 	cf->mode = CM_WRITE;
2537 	cf->io_mode = CM_IO_WRITEBACK;
2538 }
2539 
2540 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2541 			  char **error)
2542 {
2543 	static struct dm_arg _args[] = {
2544 		{0, 1, "Invalid number of cache feature arguments"},
2545 	};
2546 
2547 	int r;
2548 	unsigned argc;
2549 	const char *arg;
2550 	struct cache_features *cf = &ca->features;
2551 
2552 	init_features(cf);
2553 
2554 	r = dm_read_arg_group(_args, as, &argc, error);
2555 	if (r)
2556 		return -EINVAL;
2557 
2558 	while (argc--) {
2559 		arg = dm_shift_arg(as);
2560 
2561 		if (!strcasecmp(arg, "writeback"))
2562 			cf->io_mode = CM_IO_WRITEBACK;
2563 
2564 		else if (!strcasecmp(arg, "writethrough"))
2565 			cf->io_mode = CM_IO_WRITETHROUGH;
2566 
2567 		else if (!strcasecmp(arg, "passthrough"))
2568 			cf->io_mode = CM_IO_PASSTHROUGH;
2569 
2570 		else {
2571 			*error = "Unrecognised cache feature requested";
2572 			return -EINVAL;
2573 		}
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2580 			char **error)
2581 {
2582 	static struct dm_arg _args[] = {
2583 		{0, 1024, "Invalid number of policy arguments"},
2584 	};
2585 
2586 	int r;
2587 
2588 	if (!at_least_one_arg(as, error))
2589 		return -EINVAL;
2590 
2591 	ca->policy_name = dm_shift_arg(as);
2592 
2593 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2594 	if (r)
2595 		return -EINVAL;
2596 
2597 	ca->policy_argv = (const char **)as->argv;
2598 	dm_consume_args(as, ca->policy_argc);
2599 
2600 	return 0;
2601 }
2602 
2603 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2604 			    char **error)
2605 {
2606 	int r;
2607 	struct dm_arg_set as;
2608 
2609 	as.argc = argc;
2610 	as.argv = argv;
2611 
2612 	r = parse_metadata_dev(ca, &as, error);
2613 	if (r)
2614 		return r;
2615 
2616 	r = parse_cache_dev(ca, &as, error);
2617 	if (r)
2618 		return r;
2619 
2620 	r = parse_origin_dev(ca, &as, error);
2621 	if (r)
2622 		return r;
2623 
2624 	r = parse_block_size(ca, &as, error);
2625 	if (r)
2626 		return r;
2627 
2628 	r = parse_features(ca, &as, error);
2629 	if (r)
2630 		return r;
2631 
2632 	r = parse_policy(ca, &as, error);
2633 	if (r)
2634 		return r;
2635 
2636 	return 0;
2637 }
2638 
2639 /*----------------------------------------------------------------*/
2640 
2641 static struct kmem_cache *migration_cache;
2642 
2643 #define NOT_CORE_OPTION 1
2644 
2645 static int process_config_option(struct cache *cache, const char *key, const char *value)
2646 {
2647 	unsigned long tmp;
2648 
2649 	if (!strcasecmp(key, "migration_threshold")) {
2650 		if (kstrtoul(value, 10, &tmp))
2651 			return -EINVAL;
2652 
2653 		cache->migration_threshold = tmp;
2654 		return 0;
2655 	}
2656 
2657 	return NOT_CORE_OPTION;
2658 }
2659 
2660 static int set_config_value(struct cache *cache, const char *key, const char *value)
2661 {
2662 	int r = process_config_option(cache, key, value);
2663 
2664 	if (r == NOT_CORE_OPTION)
2665 		r = policy_set_config_value(cache->policy, key, value);
2666 
2667 	if (r)
2668 		DMWARN("bad config value for %s: %s", key, value);
2669 
2670 	return r;
2671 }
2672 
2673 static int set_config_values(struct cache *cache, int argc, const char **argv)
2674 {
2675 	int r = 0;
2676 
2677 	if (argc & 1) {
2678 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2679 		return -EINVAL;
2680 	}
2681 
2682 	while (argc) {
2683 		r = set_config_value(cache, argv[0], argv[1]);
2684 		if (r)
2685 			break;
2686 
2687 		argc -= 2;
2688 		argv += 2;
2689 	}
2690 
2691 	return r;
2692 }
2693 
2694 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2695 			       char **error)
2696 {
2697 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2698 							   cache->cache_size,
2699 							   cache->origin_sectors,
2700 							   cache->sectors_per_block);
2701 	if (IS_ERR(p)) {
2702 		*error = "Error creating cache's policy";
2703 		return PTR_ERR(p);
2704 	}
2705 	cache->policy = p;
2706 
2707 	return 0;
2708 }
2709 
2710 /*
2711  * We want the discard block size to be at least the size of the cache
2712  * block size and have no more than 2^14 discard blocks across the origin.
2713  */
2714 #define MAX_DISCARD_BLOCKS (1 << 14)
2715 
2716 static bool too_many_discard_blocks(sector_t discard_block_size,
2717 				    sector_t origin_size)
2718 {
2719 	(void) sector_div(origin_size, discard_block_size);
2720 
2721 	return origin_size > MAX_DISCARD_BLOCKS;
2722 }
2723 
2724 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2725 					     sector_t origin_size)
2726 {
2727 	sector_t discard_block_size = cache_block_size;
2728 
2729 	if (origin_size)
2730 		while (too_many_discard_blocks(discard_block_size, origin_size))
2731 			discard_block_size *= 2;
2732 
2733 	return discard_block_size;
2734 }
2735 
2736 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2737 {
2738 	dm_block_t nr_blocks = from_cblock(size);
2739 
2740 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2741 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2742 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2743 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2744 			     (unsigned long long) nr_blocks);
2745 
2746 	cache->cache_size = size;
2747 }
2748 
2749 #define DEFAULT_MIGRATION_THRESHOLD 2048
2750 
2751 static int cache_create(struct cache_args *ca, struct cache **result)
2752 {
2753 	int r = 0;
2754 	char **error = &ca->ti->error;
2755 	struct cache *cache;
2756 	struct dm_target *ti = ca->ti;
2757 	dm_block_t origin_blocks;
2758 	struct dm_cache_metadata *cmd;
2759 	bool may_format = ca->features.mode == CM_WRITE;
2760 
2761 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2762 	if (!cache)
2763 		return -ENOMEM;
2764 
2765 	cache->ti = ca->ti;
2766 	ti->private = cache;
2767 	ti->num_flush_bios = 2;
2768 	ti->flush_supported = true;
2769 
2770 	ti->num_discard_bios = 1;
2771 	ti->discards_supported = true;
2772 	ti->discard_zeroes_data_unsupported = true;
2773 	ti->split_discard_bios = false;
2774 
2775 	cache->features = ca->features;
2776 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2777 
2778 	cache->callbacks.congested_fn = cache_is_congested;
2779 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2780 
2781 	cache->metadata_dev = ca->metadata_dev;
2782 	cache->origin_dev = ca->origin_dev;
2783 	cache->cache_dev = ca->cache_dev;
2784 
2785 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2786 
2787 	/* FIXME: factor out this whole section */
2788 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2789 	origin_blocks = block_div(origin_blocks, ca->block_size);
2790 	cache->origin_blocks = to_oblock(origin_blocks);
2791 
2792 	cache->sectors_per_block = ca->block_size;
2793 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2794 		r = -EINVAL;
2795 		goto bad;
2796 	}
2797 
2798 	if (ca->block_size & (ca->block_size - 1)) {
2799 		dm_block_t cache_size = ca->cache_sectors;
2800 
2801 		cache->sectors_per_block_shift = -1;
2802 		cache_size = block_div(cache_size, ca->block_size);
2803 		set_cache_size(cache, to_cblock(cache_size));
2804 	} else {
2805 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2806 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2807 	}
2808 
2809 	r = create_cache_policy(cache, ca, error);
2810 	if (r)
2811 		goto bad;
2812 
2813 	cache->policy_nr_args = ca->policy_argc;
2814 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2815 
2816 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2817 	if (r) {
2818 		*error = "Error setting cache policy's config values";
2819 		goto bad;
2820 	}
2821 
2822 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2823 				     ca->block_size, may_format,
2824 				     dm_cache_policy_get_hint_size(cache->policy));
2825 	if (IS_ERR(cmd)) {
2826 		*error = "Error creating metadata object";
2827 		r = PTR_ERR(cmd);
2828 		goto bad;
2829 	}
2830 	cache->cmd = cmd;
2831 	set_cache_mode(cache, CM_WRITE);
2832 	if (get_cache_mode(cache) != CM_WRITE) {
2833 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2834 		r = -EINVAL;
2835 		goto bad;
2836 	}
2837 
2838 	if (passthrough_mode(&cache->features)) {
2839 		bool all_clean;
2840 
2841 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2842 		if (r) {
2843 			*error = "dm_cache_metadata_all_clean() failed";
2844 			goto bad;
2845 		}
2846 
2847 		if (!all_clean) {
2848 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2849 			r = -EINVAL;
2850 			goto bad;
2851 		}
2852 	}
2853 
2854 	spin_lock_init(&cache->lock);
2855 	INIT_LIST_HEAD(&cache->deferred_cells);
2856 	bio_list_init(&cache->deferred_bios);
2857 	bio_list_init(&cache->deferred_flush_bios);
2858 	bio_list_init(&cache->deferred_writethrough_bios);
2859 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2860 	INIT_LIST_HEAD(&cache->completed_migrations);
2861 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2862 	atomic_set(&cache->nr_allocated_migrations, 0);
2863 	atomic_set(&cache->nr_io_migrations, 0);
2864 	init_waitqueue_head(&cache->migration_wait);
2865 
2866 	init_waitqueue_head(&cache->quiescing_wait);
2867 	atomic_set(&cache->quiescing, 0);
2868 	atomic_set(&cache->quiescing_ack, 0);
2869 
2870 	r = -ENOMEM;
2871 	atomic_set(&cache->nr_dirty, 0);
2872 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2873 	if (!cache->dirty_bitset) {
2874 		*error = "could not allocate dirty bitset";
2875 		goto bad;
2876 	}
2877 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2878 
2879 	cache->discard_block_size =
2880 		calculate_discard_block_size(cache->sectors_per_block,
2881 					     cache->origin_sectors);
2882 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2883 							      cache->discard_block_size));
2884 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2885 	if (!cache->discard_bitset) {
2886 		*error = "could not allocate discard bitset";
2887 		goto bad;
2888 	}
2889 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2890 
2891 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2892 	if (IS_ERR(cache->copier)) {
2893 		*error = "could not create kcopyd client";
2894 		r = PTR_ERR(cache->copier);
2895 		goto bad;
2896 	}
2897 
2898 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899 	if (!cache->wq) {
2900 		*error = "could not create workqueue for metadata object";
2901 		goto bad;
2902 	}
2903 	INIT_WORK(&cache->worker, do_worker);
2904 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2905 	cache->last_commit_jiffies = jiffies;
2906 
2907 	cache->prison = dm_bio_prison_create();
2908 	if (!cache->prison) {
2909 		*error = "could not create bio prison";
2910 		goto bad;
2911 	}
2912 
2913 	cache->all_io_ds = dm_deferred_set_create();
2914 	if (!cache->all_io_ds) {
2915 		*error = "could not create all_io deferred set";
2916 		goto bad;
2917 	}
2918 
2919 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2920 							 migration_cache);
2921 	if (!cache->migration_pool) {
2922 		*error = "Error creating cache's migration mempool";
2923 		goto bad;
2924 	}
2925 
2926 	cache->need_tick_bio = true;
2927 	cache->sized = false;
2928 	cache->invalidate = false;
2929 	cache->commit_requested = false;
2930 	cache->loaded_mappings = false;
2931 	cache->loaded_discards = false;
2932 
2933 	load_stats(cache);
2934 
2935 	atomic_set(&cache->stats.demotion, 0);
2936 	atomic_set(&cache->stats.promotion, 0);
2937 	atomic_set(&cache->stats.copies_avoided, 0);
2938 	atomic_set(&cache->stats.cache_cell_clash, 0);
2939 	atomic_set(&cache->stats.commit_count, 0);
2940 	atomic_set(&cache->stats.discard_count, 0);
2941 
2942 	spin_lock_init(&cache->invalidation_lock);
2943 	INIT_LIST_HEAD(&cache->invalidation_requests);
2944 
2945 	iot_init(&cache->origin_tracker);
2946 
2947 	*result = cache;
2948 	return 0;
2949 
2950 bad:
2951 	destroy(cache);
2952 	return r;
2953 }
2954 
2955 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2956 {
2957 	unsigned i;
2958 	const char **copy;
2959 
2960 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2961 	if (!copy)
2962 		return -ENOMEM;
2963 	for (i = 0; i < argc; i++) {
2964 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2965 		if (!copy[i]) {
2966 			while (i--)
2967 				kfree(copy[i]);
2968 			kfree(copy);
2969 			return -ENOMEM;
2970 		}
2971 	}
2972 
2973 	cache->nr_ctr_args = argc;
2974 	cache->ctr_args = copy;
2975 
2976 	return 0;
2977 }
2978 
2979 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2980 {
2981 	int r = -EINVAL;
2982 	struct cache_args *ca;
2983 	struct cache *cache = NULL;
2984 
2985 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2986 	if (!ca) {
2987 		ti->error = "Error allocating memory for cache";
2988 		return -ENOMEM;
2989 	}
2990 	ca->ti = ti;
2991 
2992 	r = parse_cache_args(ca, argc, argv, &ti->error);
2993 	if (r)
2994 		goto out;
2995 
2996 	r = cache_create(ca, &cache);
2997 	if (r)
2998 		goto out;
2999 
3000 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3001 	if (r) {
3002 		destroy(cache);
3003 		goto out;
3004 	}
3005 
3006 	ti->private = cache;
3007 
3008 out:
3009 	destroy_cache_args(ca);
3010 	return r;
3011 }
3012 
3013 /*----------------------------------------------------------------*/
3014 
3015 static int cache_map(struct dm_target *ti, struct bio *bio)
3016 {
3017 	struct cache *cache = ti->private;
3018 
3019 	int r;
3020 	struct dm_bio_prison_cell *cell = NULL;
3021 	dm_oblock_t block = get_bio_block(cache, bio);
3022 	size_t pb_data_size = get_per_bio_data_size(cache);
3023 	bool can_migrate = false;
3024 	bool fast_promotion;
3025 	struct policy_result lookup_result;
3026 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3027 	struct old_oblock_lock ool;
3028 
3029 	ool.locker.fn = null_locker;
3030 
3031 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3032 		/*
3033 		 * This can only occur if the io goes to a partial block at
3034 		 * the end of the origin device.  We don't cache these.
3035 		 * Just remap to the origin and carry on.
3036 		 */
3037 		remap_to_origin(cache, bio);
3038 		accounted_begin(cache, bio);
3039 		return DM_MAPIO_REMAPPED;
3040 	}
3041 
3042 	if (discard_or_flush(bio)) {
3043 		defer_bio(cache, bio);
3044 		return DM_MAPIO_SUBMITTED;
3045 	}
3046 
3047 	/*
3048 	 * Check to see if that block is currently migrating.
3049 	 */
3050 	cell = alloc_prison_cell(cache);
3051 	if (!cell) {
3052 		defer_bio(cache, bio);
3053 		return DM_MAPIO_SUBMITTED;
3054 	}
3055 
3056 	r = bio_detain(cache, block, bio, cell,
3057 		       (cell_free_fn) free_prison_cell,
3058 		       cache, &cell);
3059 	if (r) {
3060 		if (r < 0)
3061 			defer_bio(cache, bio);
3062 
3063 		return DM_MAPIO_SUBMITTED;
3064 	}
3065 
3066 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3067 
3068 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3069 		       bio, &ool.locker, &lookup_result);
3070 	if (r == -EWOULDBLOCK) {
3071 		cell_defer(cache, cell, true);
3072 		return DM_MAPIO_SUBMITTED;
3073 
3074 	} else if (r) {
3075 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3076 			    cache_device_name(cache), r);
3077 		cell_defer(cache, cell, false);
3078 		bio_io_error(bio);
3079 		return DM_MAPIO_SUBMITTED;
3080 	}
3081 
3082 	r = DM_MAPIO_REMAPPED;
3083 	switch (lookup_result.op) {
3084 	case POLICY_HIT:
3085 		if (passthrough_mode(&cache->features)) {
3086 			if (bio_data_dir(bio) == WRITE) {
3087 				/*
3088 				 * We need to invalidate this block, so
3089 				 * defer for the worker thread.
3090 				 */
3091 				cell_defer(cache, cell, true);
3092 				r = DM_MAPIO_SUBMITTED;
3093 
3094 			} else {
3095 				inc_miss_counter(cache, bio);
3096 				remap_to_origin_clear_discard(cache, bio, block);
3097 				accounted_begin(cache, bio);
3098 				inc_ds(cache, bio, cell);
3099 				// FIXME: we want to remap hits or misses straight
3100 				// away rather than passing over to the worker.
3101 				cell_defer(cache, cell, false);
3102 			}
3103 
3104 		} else {
3105 			inc_hit_counter(cache, bio);
3106 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3107 			    !is_dirty(cache, lookup_result.cblock)) {
3108 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3109 				accounted_begin(cache, bio);
3110 				inc_ds(cache, bio, cell);
3111 				cell_defer(cache, cell, false);
3112 
3113 			} else
3114 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3115 		}
3116 		break;
3117 
3118 	case POLICY_MISS:
3119 		inc_miss_counter(cache, bio);
3120 		if (pb->req_nr != 0) {
3121 			/*
3122 			 * This is a duplicate writethrough io that is no
3123 			 * longer needed because the block has been demoted.
3124 			 */
3125 			bio_endio(bio, 0);
3126 			// FIXME: remap everything as a miss
3127 			cell_defer(cache, cell, false);
3128 			r = DM_MAPIO_SUBMITTED;
3129 
3130 		} else
3131 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3132 		break;
3133 
3134 	default:
3135 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3136 			    cache_device_name(cache), __func__,
3137 			    (unsigned) lookup_result.op);
3138 		cell_defer(cache, cell, false);
3139 		bio_io_error(bio);
3140 		r = DM_MAPIO_SUBMITTED;
3141 	}
3142 
3143 	return r;
3144 }
3145 
3146 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3147 {
3148 	struct cache *cache = ti->private;
3149 	unsigned long flags;
3150 	size_t pb_data_size = get_per_bio_data_size(cache);
3151 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3152 
3153 	if (pb->tick) {
3154 		policy_tick(cache->policy, false);
3155 
3156 		spin_lock_irqsave(&cache->lock, flags);
3157 		cache->need_tick_bio = true;
3158 		spin_unlock_irqrestore(&cache->lock, flags);
3159 	}
3160 
3161 	check_for_quiesced_migrations(cache, pb);
3162 	accounted_complete(cache, bio);
3163 
3164 	return 0;
3165 }
3166 
3167 static int write_dirty_bitset(struct cache *cache)
3168 {
3169 	unsigned i, r;
3170 
3171 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3172 		return -EINVAL;
3173 
3174 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3175 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3176 				       is_dirty(cache, to_cblock(i)));
3177 		if (r) {
3178 			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3179 			return r;
3180 		}
3181 	}
3182 
3183 	return 0;
3184 }
3185 
3186 static int write_discard_bitset(struct cache *cache)
3187 {
3188 	unsigned i, r;
3189 
3190 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3191 		return -EINVAL;
3192 
3193 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3194 					   cache->discard_nr_blocks);
3195 	if (r) {
3196 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3197 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3198 		return r;
3199 	}
3200 
3201 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3202 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3203 					 is_discarded(cache, to_dblock(i)));
3204 		if (r) {
3205 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3206 			return r;
3207 		}
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 static int write_hints(struct cache *cache)
3214 {
3215 	int r;
3216 
3217 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3218 		return -EINVAL;
3219 
3220 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3221 	if (r) {
3222 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3223 		return r;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 /*
3230  * returns true on success
3231  */
3232 static bool sync_metadata(struct cache *cache)
3233 {
3234 	int r1, r2, r3, r4;
3235 
3236 	r1 = write_dirty_bitset(cache);
3237 	if (r1)
3238 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3239 
3240 	r2 = write_discard_bitset(cache);
3241 	if (r2)
3242 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3243 
3244 	save_stats(cache);
3245 
3246 	r3 = write_hints(cache);
3247 	if (r3)
3248 		DMERR("%s: could not write hints", cache_device_name(cache));
3249 
3250 	/*
3251 	 * If writing the above metadata failed, we still commit, but don't
3252 	 * set the clean shutdown flag.  This will effectively force every
3253 	 * dirty bit to be set on reload.
3254 	 */
3255 	r4 = commit(cache, !r1 && !r2 && !r3);
3256 	if (r4)
3257 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3258 
3259 	return !r1 && !r2 && !r3 && !r4;
3260 }
3261 
3262 static void cache_postsuspend(struct dm_target *ti)
3263 {
3264 	struct cache *cache = ti->private;
3265 
3266 	start_quiescing(cache);
3267 	wait_for_migrations(cache);
3268 	stop_worker(cache);
3269 	requeue_deferred_bios(cache);
3270 	requeue_deferred_cells(cache);
3271 	stop_quiescing(cache);
3272 
3273 	if (get_cache_mode(cache) == CM_WRITE)
3274 		(void) sync_metadata(cache);
3275 }
3276 
3277 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3278 			bool dirty, uint32_t hint, bool hint_valid)
3279 {
3280 	int r;
3281 	struct cache *cache = context;
3282 
3283 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3284 	if (r)
3285 		return r;
3286 
3287 	if (dirty)
3288 		set_dirty(cache, oblock, cblock);
3289 	else
3290 		clear_dirty(cache, oblock, cblock);
3291 
3292 	return 0;
3293 }
3294 
3295 /*
3296  * The discard block size in the on disk metadata is not
3297  * neccessarily the same as we're currently using.  So we have to
3298  * be careful to only set the discarded attribute if we know it
3299  * covers a complete block of the new size.
3300  */
3301 struct discard_load_info {
3302 	struct cache *cache;
3303 
3304 	/*
3305 	 * These blocks are sized using the on disk dblock size, rather
3306 	 * than the current one.
3307 	 */
3308 	dm_block_t block_size;
3309 	dm_block_t discard_begin, discard_end;
3310 };
3311 
3312 static void discard_load_info_init(struct cache *cache,
3313 				   struct discard_load_info *li)
3314 {
3315 	li->cache = cache;
3316 	li->discard_begin = li->discard_end = 0;
3317 }
3318 
3319 static void set_discard_range(struct discard_load_info *li)
3320 {
3321 	sector_t b, e;
3322 
3323 	if (li->discard_begin == li->discard_end)
3324 		return;
3325 
3326 	/*
3327 	 * Convert to sectors.
3328 	 */
3329 	b = li->discard_begin * li->block_size;
3330 	e = li->discard_end * li->block_size;
3331 
3332 	/*
3333 	 * Then convert back to the current dblock size.
3334 	 */
3335 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3336 	sector_div(e, li->cache->discard_block_size);
3337 
3338 	/*
3339 	 * The origin may have shrunk, so we need to check we're still in
3340 	 * bounds.
3341 	 */
3342 	if (e > from_dblock(li->cache->discard_nr_blocks))
3343 		e = from_dblock(li->cache->discard_nr_blocks);
3344 
3345 	for (; b < e; b++)
3346 		set_discard(li->cache, to_dblock(b));
3347 }
3348 
3349 static int load_discard(void *context, sector_t discard_block_size,
3350 			dm_dblock_t dblock, bool discard)
3351 {
3352 	struct discard_load_info *li = context;
3353 
3354 	li->block_size = discard_block_size;
3355 
3356 	if (discard) {
3357 		if (from_dblock(dblock) == li->discard_end)
3358 			/*
3359 			 * We're already in a discard range, just extend it.
3360 			 */
3361 			li->discard_end = li->discard_end + 1ULL;
3362 
3363 		else {
3364 			/*
3365 			 * Emit the old range and start a new one.
3366 			 */
3367 			set_discard_range(li);
3368 			li->discard_begin = from_dblock(dblock);
3369 			li->discard_end = li->discard_begin + 1ULL;
3370 		}
3371 	} else {
3372 		set_discard_range(li);
3373 		li->discard_begin = li->discard_end = 0;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3380 {
3381 	sector_t size = get_dev_size(cache->cache_dev);
3382 	(void) sector_div(size, cache->sectors_per_block);
3383 	return to_cblock(size);
3384 }
3385 
3386 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3387 {
3388 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3389 		return true;
3390 
3391 	/*
3392 	 * We can't drop a dirty block when shrinking the cache.
3393 	 */
3394 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3395 		new_size = to_cblock(from_cblock(new_size) + 1);
3396 		if (is_dirty(cache, new_size)) {
3397 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3398 			      cache_device_name(cache),
3399 			      (unsigned long long) from_cblock(new_size));
3400 			return false;
3401 		}
3402 	}
3403 
3404 	return true;
3405 }
3406 
3407 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3408 {
3409 	int r;
3410 
3411 	r = dm_cache_resize(cache->cmd, new_size);
3412 	if (r) {
3413 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3414 		metadata_operation_failed(cache, "dm_cache_resize", r);
3415 		return r;
3416 	}
3417 
3418 	set_cache_size(cache, new_size);
3419 
3420 	return 0;
3421 }
3422 
3423 static int cache_preresume(struct dm_target *ti)
3424 {
3425 	int r = 0;
3426 	struct cache *cache = ti->private;
3427 	dm_cblock_t csize = get_cache_dev_size(cache);
3428 
3429 	/*
3430 	 * Check to see if the cache has resized.
3431 	 */
3432 	if (!cache->sized) {
3433 		r = resize_cache_dev(cache, csize);
3434 		if (r)
3435 			return r;
3436 
3437 		cache->sized = true;
3438 
3439 	} else if (csize != cache->cache_size) {
3440 		if (!can_resize(cache, csize))
3441 			return -EINVAL;
3442 
3443 		r = resize_cache_dev(cache, csize);
3444 		if (r)
3445 			return r;
3446 	}
3447 
3448 	if (!cache->loaded_mappings) {
3449 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3450 					   load_mapping, cache);
3451 		if (r) {
3452 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3453 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3454 			return r;
3455 		}
3456 
3457 		cache->loaded_mappings = true;
3458 	}
3459 
3460 	if (!cache->loaded_discards) {
3461 		struct discard_load_info li;
3462 
3463 		/*
3464 		 * The discard bitset could have been resized, or the
3465 		 * discard block size changed.  To be safe we start by
3466 		 * setting every dblock to not discarded.
3467 		 */
3468 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3469 
3470 		discard_load_info_init(cache, &li);
3471 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3472 		if (r) {
3473 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3474 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3475 			return r;
3476 		}
3477 		set_discard_range(&li);
3478 
3479 		cache->loaded_discards = true;
3480 	}
3481 
3482 	return r;
3483 }
3484 
3485 static void cache_resume(struct dm_target *ti)
3486 {
3487 	struct cache *cache = ti->private;
3488 
3489 	cache->need_tick_bio = true;
3490 	do_waker(&cache->waker.work);
3491 }
3492 
3493 /*
3494  * Status format:
3495  *
3496  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3497  * <cache block size> <#used cache blocks>/<#total cache blocks>
3498  * <#read hits> <#read misses> <#write hits> <#write misses>
3499  * <#demotions> <#promotions> <#dirty>
3500  * <#features> <features>*
3501  * <#core args> <core args>
3502  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3503  */
3504 static void cache_status(struct dm_target *ti, status_type_t type,
3505 			 unsigned status_flags, char *result, unsigned maxlen)
3506 {
3507 	int r = 0;
3508 	unsigned i;
3509 	ssize_t sz = 0;
3510 	dm_block_t nr_free_blocks_metadata = 0;
3511 	dm_block_t nr_blocks_metadata = 0;
3512 	char buf[BDEVNAME_SIZE];
3513 	struct cache *cache = ti->private;
3514 	dm_cblock_t residency;
3515 
3516 	switch (type) {
3517 	case STATUSTYPE_INFO:
3518 		if (get_cache_mode(cache) == CM_FAIL) {
3519 			DMEMIT("Fail");
3520 			break;
3521 		}
3522 
3523 		/* Commit to ensure statistics aren't out-of-date */
3524 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3525 			(void) commit(cache, false);
3526 
3527 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3528 		if (r) {
3529 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3530 			      cache_device_name(cache), r);
3531 			goto err;
3532 		}
3533 
3534 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3535 		if (r) {
3536 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3537 			      cache_device_name(cache), r);
3538 			goto err;
3539 		}
3540 
3541 		residency = policy_residency(cache->policy);
3542 
3543 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3544 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3545 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3546 		       (unsigned long long)nr_blocks_metadata,
3547 		       cache->sectors_per_block,
3548 		       (unsigned long long) from_cblock(residency),
3549 		       (unsigned long long) from_cblock(cache->cache_size),
3550 		       (unsigned) atomic_read(&cache->stats.read_hit),
3551 		       (unsigned) atomic_read(&cache->stats.read_miss),
3552 		       (unsigned) atomic_read(&cache->stats.write_hit),
3553 		       (unsigned) atomic_read(&cache->stats.write_miss),
3554 		       (unsigned) atomic_read(&cache->stats.demotion),
3555 		       (unsigned) atomic_read(&cache->stats.promotion),
3556 		       (unsigned long) atomic_read(&cache->nr_dirty));
3557 
3558 		if (writethrough_mode(&cache->features))
3559 			DMEMIT("1 writethrough ");
3560 
3561 		else if (passthrough_mode(&cache->features))
3562 			DMEMIT("1 passthrough ");
3563 
3564 		else if (writeback_mode(&cache->features))
3565 			DMEMIT("1 writeback ");
3566 
3567 		else {
3568 			DMERR("%s: internal error: unknown io mode: %d",
3569 			      cache_device_name(cache), (int) cache->features.io_mode);
3570 			goto err;
3571 		}
3572 
3573 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3574 
3575 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3576 		if (sz < maxlen) {
3577 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3578 			if (r)
3579 				DMERR("%s: policy_emit_config_values returned %d",
3580 				      cache_device_name(cache), r);
3581 		}
3582 
3583 		if (get_cache_mode(cache) == CM_READ_ONLY)
3584 			DMEMIT("ro ");
3585 		else
3586 			DMEMIT("rw ");
3587 
3588 		if (dm_cache_metadata_needs_check(cache->cmd))
3589 			DMEMIT("needs_check ");
3590 		else
3591 			DMEMIT("- ");
3592 
3593 		break;
3594 
3595 	case STATUSTYPE_TABLE:
3596 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3597 		DMEMIT("%s ", buf);
3598 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3599 		DMEMIT("%s ", buf);
3600 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3601 		DMEMIT("%s", buf);
3602 
3603 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3604 			DMEMIT(" %s", cache->ctr_args[i]);
3605 		if (cache->nr_ctr_args)
3606 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3607 	}
3608 
3609 	return;
3610 
3611 err:
3612 	DMEMIT("Error");
3613 }
3614 
3615 /*
3616  * A cache block range can take two forms:
3617  *
3618  * i) A single cblock, eg. '3456'
3619  * ii) A begin and end cblock with dots between, eg. 123-234
3620  */
3621 static int parse_cblock_range(struct cache *cache, const char *str,
3622 			      struct cblock_range *result)
3623 {
3624 	char dummy;
3625 	uint64_t b, e;
3626 	int r;
3627 
3628 	/*
3629 	 * Try and parse form (ii) first.
3630 	 */
3631 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3632 	if (r < 0)
3633 		return r;
3634 
3635 	if (r == 2) {
3636 		result->begin = to_cblock(b);
3637 		result->end = to_cblock(e);
3638 		return 0;
3639 	}
3640 
3641 	/*
3642 	 * That didn't work, try form (i).
3643 	 */
3644 	r = sscanf(str, "%llu%c", &b, &dummy);
3645 	if (r < 0)
3646 		return r;
3647 
3648 	if (r == 1) {
3649 		result->begin = to_cblock(b);
3650 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3651 		return 0;
3652 	}
3653 
3654 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3655 	return -EINVAL;
3656 }
3657 
3658 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3659 {
3660 	uint64_t b = from_cblock(range->begin);
3661 	uint64_t e = from_cblock(range->end);
3662 	uint64_t n = from_cblock(cache->cache_size);
3663 
3664 	if (b >= n) {
3665 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3666 		      cache_device_name(cache), b, n);
3667 		return -EINVAL;
3668 	}
3669 
3670 	if (e > n) {
3671 		DMERR("%s: end cblock out of range: %llu > %llu",
3672 		      cache_device_name(cache), e, n);
3673 		return -EINVAL;
3674 	}
3675 
3676 	if (b >= e) {
3677 		DMERR("%s: invalid cblock range: %llu >= %llu",
3678 		      cache_device_name(cache), b, e);
3679 		return -EINVAL;
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3686 {
3687 	struct invalidation_request req;
3688 
3689 	INIT_LIST_HEAD(&req.list);
3690 	req.cblocks = range;
3691 	atomic_set(&req.complete, 0);
3692 	req.err = 0;
3693 	init_waitqueue_head(&req.result_wait);
3694 
3695 	spin_lock(&cache->invalidation_lock);
3696 	list_add(&req.list, &cache->invalidation_requests);
3697 	spin_unlock(&cache->invalidation_lock);
3698 	wake_worker(cache);
3699 
3700 	wait_event(req.result_wait, atomic_read(&req.complete));
3701 	return req.err;
3702 }
3703 
3704 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3705 					      const char **cblock_ranges)
3706 {
3707 	int r = 0;
3708 	unsigned i;
3709 	struct cblock_range range;
3710 
3711 	if (!passthrough_mode(&cache->features)) {
3712 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3713 		      cache_device_name(cache));
3714 		return -EPERM;
3715 	}
3716 
3717 	for (i = 0; i < count; i++) {
3718 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3719 		if (r)
3720 			break;
3721 
3722 		r = validate_cblock_range(cache, &range);
3723 		if (r)
3724 			break;
3725 
3726 		/*
3727 		 * Pass begin and end origin blocks to the worker and wake it.
3728 		 */
3729 		r = request_invalidation(cache, &range);
3730 		if (r)
3731 			break;
3732 	}
3733 
3734 	return r;
3735 }
3736 
3737 /*
3738  * Supports
3739  *	"<key> <value>"
3740  * and
3741  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3742  *
3743  * The key migration_threshold is supported by the cache target core.
3744  */
3745 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3746 {
3747 	struct cache *cache = ti->private;
3748 
3749 	if (!argc)
3750 		return -EINVAL;
3751 
3752 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3753 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3754 		      cache_device_name(cache));
3755 		return -EOPNOTSUPP;
3756 	}
3757 
3758 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3759 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3760 
3761 	if (argc != 2)
3762 		return -EINVAL;
3763 
3764 	return set_config_value(cache, argv[0], argv[1]);
3765 }
3766 
3767 static int cache_iterate_devices(struct dm_target *ti,
3768 				 iterate_devices_callout_fn fn, void *data)
3769 {
3770 	int r = 0;
3771 	struct cache *cache = ti->private;
3772 
3773 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3774 	if (!r)
3775 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3776 
3777 	return r;
3778 }
3779 
3780 /*
3781  * We assume I/O is going to the origin (which is the volume
3782  * more likely to have restrictions e.g. by being striped).
3783  * (Looking up the exact location of the data would be expensive
3784  * and could always be out of date by the time the bio is submitted.)
3785  */
3786 static int cache_bvec_merge(struct dm_target *ti,
3787 			    struct bvec_merge_data *bvm,
3788 			    struct bio_vec *biovec, int max_size)
3789 {
3790 	struct cache *cache = ti->private;
3791 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3792 
3793 	if (!q->merge_bvec_fn)
3794 		return max_size;
3795 
3796 	bvm->bi_bdev = cache->origin_dev->bdev;
3797 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3798 }
3799 
3800 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3801 {
3802 	/*
3803 	 * FIXME: these limits may be incompatible with the cache device
3804 	 */
3805 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3806 					    cache->origin_sectors);
3807 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3808 }
3809 
3810 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3811 {
3812 	struct cache *cache = ti->private;
3813 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3814 
3815 	/*
3816 	 * If the system-determined stacked limits are compatible with the
3817 	 * cache's blocksize (io_opt is a factor) do not override them.
3818 	 */
3819 	if (io_opt_sectors < cache->sectors_per_block ||
3820 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3821 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3822 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3823 	}
3824 	set_discard_limits(cache, limits);
3825 }
3826 
3827 /*----------------------------------------------------------------*/
3828 
3829 static struct target_type cache_target = {
3830 	.name = "cache",
3831 	.version = {1, 8, 0},
3832 	.module = THIS_MODULE,
3833 	.ctr = cache_ctr,
3834 	.dtr = cache_dtr,
3835 	.map = cache_map,
3836 	.end_io = cache_end_io,
3837 	.postsuspend = cache_postsuspend,
3838 	.preresume = cache_preresume,
3839 	.resume = cache_resume,
3840 	.status = cache_status,
3841 	.message = cache_message,
3842 	.iterate_devices = cache_iterate_devices,
3843 	.merge = cache_bvec_merge,
3844 	.io_hints = cache_io_hints,
3845 };
3846 
3847 static int __init dm_cache_init(void)
3848 {
3849 	int r;
3850 
3851 	r = dm_register_target(&cache_target);
3852 	if (r) {
3853 		DMERR("cache target registration failed: %d", r);
3854 		return r;
3855 	}
3856 
3857 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3858 	if (!migration_cache) {
3859 		dm_unregister_target(&cache_target);
3860 		return -ENOMEM;
3861 	}
3862 
3863 	return 0;
3864 }
3865 
3866 static void __exit dm_cache_exit(void)
3867 {
3868 	dm_unregister_target(&cache_target);
3869 	kmem_cache_destroy(migration_cache);
3870 }
3871 
3872 module_init(dm_cache_init);
3873 module_exit(dm_cache_exit);
3874 
3875 MODULE_DESCRIPTION(DM_NAME " cache target");
3876 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3877 MODULE_LICENSE("GPL");
3878