1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison-v2.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/init.h> 16 #include <linux/mempool.h> 17 #include <linux/module.h> 18 #include <linux/rwsem.h> 19 #include <linux/slab.h> 20 #include <linux/vmalloc.h> 21 22 #define DM_MSG_PREFIX "cache" 23 24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 25 "A percentage of time allocated for copying to and/or from cache"); 26 27 /*----------------------------------------------------------------*/ 28 29 /* 30 * Glossary: 31 * 32 * oblock: index of an origin block 33 * cblock: index of a cache block 34 * promotion: movement of a block from origin to cache 35 * demotion: movement of a block from cache to origin 36 * migration: movement of a block between the origin and cache device, 37 * either direction 38 */ 39 40 /*----------------------------------------------------------------*/ 41 42 struct io_tracker { 43 spinlock_t lock; 44 45 /* 46 * Sectors of in-flight IO. 47 */ 48 sector_t in_flight; 49 50 /* 51 * The time, in jiffies, when this device became idle (if it is 52 * indeed idle). 53 */ 54 unsigned long idle_time; 55 unsigned long last_update_time; 56 }; 57 58 static void iot_init(struct io_tracker *iot) 59 { 60 spin_lock_init(&iot->lock); 61 iot->in_flight = 0ul; 62 iot->idle_time = 0ul; 63 iot->last_update_time = jiffies; 64 } 65 66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs) 67 { 68 if (iot->in_flight) 69 return false; 70 71 return time_after(jiffies, iot->idle_time + jifs); 72 } 73 74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs) 75 { 76 bool r; 77 78 spin_lock_irq(&iot->lock); 79 r = __iot_idle_for(iot, jifs); 80 spin_unlock_irq(&iot->lock); 81 82 return r; 83 } 84 85 static void iot_io_begin(struct io_tracker *iot, sector_t len) 86 { 87 spin_lock_irq(&iot->lock); 88 iot->in_flight += len; 89 spin_unlock_irq(&iot->lock); 90 } 91 92 static void __iot_io_end(struct io_tracker *iot, sector_t len) 93 { 94 if (!len) 95 return; 96 97 iot->in_flight -= len; 98 if (!iot->in_flight) 99 iot->idle_time = jiffies; 100 } 101 102 static void iot_io_end(struct io_tracker *iot, sector_t len) 103 { 104 unsigned long flags; 105 106 spin_lock_irqsave(&iot->lock, flags); 107 __iot_io_end(iot, len); 108 spin_unlock_irqrestore(&iot->lock, flags); 109 } 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Represents a chunk of future work. 'input' allows continuations to pass 115 * values between themselves, typically error values. 116 */ 117 struct continuation { 118 struct work_struct ws; 119 blk_status_t input; 120 }; 121 122 static inline void init_continuation(struct continuation *k, 123 void (*fn)(struct work_struct *)) 124 { 125 INIT_WORK(&k->ws, fn); 126 k->input = 0; 127 } 128 129 static inline void queue_continuation(struct workqueue_struct *wq, 130 struct continuation *k) 131 { 132 queue_work(wq, &k->ws); 133 } 134 135 /*----------------------------------------------------------------*/ 136 137 /* 138 * The batcher collects together pieces of work that need a particular 139 * operation to occur before they can proceed (typically a commit). 140 */ 141 struct batcher { 142 /* 143 * The operation that everyone is waiting for. 144 */ 145 blk_status_t (*commit_op)(void *context); 146 void *commit_context; 147 148 /* 149 * This is how bios should be issued once the commit op is complete 150 * (accounted_request). 151 */ 152 void (*issue_op)(struct bio *bio, void *context); 153 void *issue_context; 154 155 /* 156 * Queued work gets put on here after commit. 157 */ 158 struct workqueue_struct *wq; 159 160 spinlock_t lock; 161 struct list_head work_items; 162 struct bio_list bios; 163 struct work_struct commit_work; 164 165 bool commit_scheduled; 166 }; 167 168 static void __commit(struct work_struct *_ws) 169 { 170 struct batcher *b = container_of(_ws, struct batcher, commit_work); 171 blk_status_t r; 172 struct list_head work_items; 173 struct work_struct *ws, *tmp; 174 struct continuation *k; 175 struct bio *bio; 176 struct bio_list bios; 177 178 INIT_LIST_HEAD(&work_items); 179 bio_list_init(&bios); 180 181 /* 182 * We have to grab these before the commit_op to avoid a race 183 * condition. 184 */ 185 spin_lock_irq(&b->lock); 186 list_splice_init(&b->work_items, &work_items); 187 bio_list_merge(&bios, &b->bios); 188 bio_list_init(&b->bios); 189 b->commit_scheduled = false; 190 spin_unlock_irq(&b->lock); 191 192 r = b->commit_op(b->commit_context); 193 194 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 195 k = container_of(ws, struct continuation, ws); 196 k->input = r; 197 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 198 queue_work(b->wq, ws); 199 } 200 201 while ((bio = bio_list_pop(&bios))) { 202 if (r) { 203 bio->bi_status = r; 204 bio_endio(bio); 205 } else 206 b->issue_op(bio, b->issue_context); 207 } 208 } 209 210 static void batcher_init(struct batcher *b, 211 blk_status_t (*commit_op)(void *), 212 void *commit_context, 213 void (*issue_op)(struct bio *bio, void *), 214 void *issue_context, 215 struct workqueue_struct *wq) 216 { 217 b->commit_op = commit_op; 218 b->commit_context = commit_context; 219 b->issue_op = issue_op; 220 b->issue_context = issue_context; 221 b->wq = wq; 222 223 spin_lock_init(&b->lock); 224 INIT_LIST_HEAD(&b->work_items); 225 bio_list_init(&b->bios); 226 INIT_WORK(&b->commit_work, __commit); 227 b->commit_scheduled = false; 228 } 229 230 static void async_commit(struct batcher *b) 231 { 232 queue_work(b->wq, &b->commit_work); 233 } 234 235 static void continue_after_commit(struct batcher *b, struct continuation *k) 236 { 237 bool commit_scheduled; 238 239 spin_lock_irq(&b->lock); 240 commit_scheduled = b->commit_scheduled; 241 list_add_tail(&k->ws.entry, &b->work_items); 242 spin_unlock_irq(&b->lock); 243 244 if (commit_scheduled) 245 async_commit(b); 246 } 247 248 /* 249 * Bios are errored if commit failed. 250 */ 251 static void issue_after_commit(struct batcher *b, struct bio *bio) 252 { 253 bool commit_scheduled; 254 255 spin_lock_irq(&b->lock); 256 commit_scheduled = b->commit_scheduled; 257 bio_list_add(&b->bios, bio); 258 spin_unlock_irq(&b->lock); 259 260 if (commit_scheduled) 261 async_commit(b); 262 } 263 264 /* 265 * Call this if some urgent work is waiting for the commit to complete. 266 */ 267 static void schedule_commit(struct batcher *b) 268 { 269 bool immediate; 270 271 spin_lock_irq(&b->lock); 272 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 273 b->commit_scheduled = true; 274 spin_unlock_irq(&b->lock); 275 276 if (immediate) 277 async_commit(b); 278 } 279 280 /* 281 * There are a couple of places where we let a bio run, but want to do some 282 * work before calling its endio function. We do this by temporarily 283 * changing the endio fn. 284 */ 285 struct dm_hook_info { 286 bio_end_io_t *bi_end_io; 287 }; 288 289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 290 bio_end_io_t *bi_end_io, void *bi_private) 291 { 292 h->bi_end_io = bio->bi_end_io; 293 294 bio->bi_end_io = bi_end_io; 295 bio->bi_private = bi_private; 296 } 297 298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 299 { 300 bio->bi_end_io = h->bi_end_io; 301 } 302 303 /*----------------------------------------------------------------*/ 304 305 #define MIGRATION_POOL_SIZE 128 306 #define COMMIT_PERIOD HZ 307 #define MIGRATION_COUNT_WINDOW 10 308 309 /* 310 * The block size of the device holding cache data must be 311 * between 32KB and 1GB. 312 */ 313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 315 316 enum cache_metadata_mode { 317 CM_WRITE, /* metadata may be changed */ 318 CM_READ_ONLY, /* metadata may not be changed */ 319 CM_FAIL 320 }; 321 322 enum cache_io_mode { 323 /* 324 * Data is written to cached blocks only. These blocks are marked 325 * dirty. If you lose the cache device you will lose data. 326 * Potential performance increase for both reads and writes. 327 */ 328 CM_IO_WRITEBACK, 329 330 /* 331 * Data is written to both cache and origin. Blocks are never 332 * dirty. Potential performance benfit for reads only. 333 */ 334 CM_IO_WRITETHROUGH, 335 336 /* 337 * A degraded mode useful for various cache coherency situations 338 * (eg, rolling back snapshots). Reads and writes always go to the 339 * origin. If a write goes to a cached oblock, then the cache 340 * block is invalidated. 341 */ 342 CM_IO_PASSTHROUGH 343 }; 344 345 struct cache_features { 346 enum cache_metadata_mode mode; 347 enum cache_io_mode io_mode; 348 unsigned metadata_version; 349 bool discard_passdown:1; 350 }; 351 352 struct cache_stats { 353 atomic_t read_hit; 354 atomic_t read_miss; 355 atomic_t write_hit; 356 atomic_t write_miss; 357 atomic_t demotion; 358 atomic_t promotion; 359 atomic_t writeback; 360 atomic_t copies_avoided; 361 atomic_t cache_cell_clash; 362 atomic_t commit_count; 363 atomic_t discard_count; 364 }; 365 366 struct cache { 367 struct dm_target *ti; 368 spinlock_t lock; 369 370 /* 371 * Fields for converting from sectors to blocks. 372 */ 373 int sectors_per_block_shift; 374 sector_t sectors_per_block; 375 376 struct dm_cache_metadata *cmd; 377 378 /* 379 * Metadata is written to this device. 380 */ 381 struct dm_dev *metadata_dev; 382 383 /* 384 * The slower of the two data devices. Typically a spindle. 385 */ 386 struct dm_dev *origin_dev; 387 388 /* 389 * The faster of the two data devices. Typically an SSD. 390 */ 391 struct dm_dev *cache_dev; 392 393 /* 394 * Size of the origin device in _complete_ blocks and native sectors. 395 */ 396 dm_oblock_t origin_blocks; 397 sector_t origin_sectors; 398 399 /* 400 * Size of the cache device in blocks. 401 */ 402 dm_cblock_t cache_size; 403 404 /* 405 * Invalidation fields. 406 */ 407 spinlock_t invalidation_lock; 408 struct list_head invalidation_requests; 409 410 sector_t migration_threshold; 411 wait_queue_head_t migration_wait; 412 atomic_t nr_allocated_migrations; 413 414 /* 415 * The number of in flight migrations that are performing 416 * background io. eg, promotion, writeback. 417 */ 418 atomic_t nr_io_migrations; 419 420 struct bio_list deferred_bios; 421 422 struct rw_semaphore quiesce_lock; 423 424 /* 425 * origin_blocks entries, discarded if set. 426 */ 427 dm_dblock_t discard_nr_blocks; 428 unsigned long *discard_bitset; 429 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 430 431 /* 432 * Rather than reconstructing the table line for the status we just 433 * save it and regurgitate. 434 */ 435 unsigned nr_ctr_args; 436 const char **ctr_args; 437 438 struct dm_kcopyd_client *copier; 439 struct work_struct deferred_bio_worker; 440 struct work_struct migration_worker; 441 struct workqueue_struct *wq; 442 struct delayed_work waker; 443 struct dm_bio_prison_v2 *prison; 444 445 /* 446 * cache_size entries, dirty if set 447 */ 448 unsigned long *dirty_bitset; 449 atomic_t nr_dirty; 450 451 unsigned policy_nr_args; 452 struct dm_cache_policy *policy; 453 454 /* 455 * Cache features such as write-through. 456 */ 457 struct cache_features features; 458 459 struct cache_stats stats; 460 461 bool need_tick_bio:1; 462 bool sized:1; 463 bool invalidate:1; 464 bool commit_requested:1; 465 bool loaded_mappings:1; 466 bool loaded_discards:1; 467 468 struct rw_semaphore background_work_lock; 469 470 struct batcher committer; 471 struct work_struct commit_ws; 472 473 struct io_tracker tracker; 474 475 mempool_t migration_pool; 476 477 struct bio_set bs; 478 }; 479 480 struct per_bio_data { 481 bool tick:1; 482 unsigned req_nr:2; 483 struct dm_bio_prison_cell_v2 *cell; 484 struct dm_hook_info hook_info; 485 sector_t len; 486 }; 487 488 struct dm_cache_migration { 489 struct continuation k; 490 struct cache *cache; 491 492 struct policy_work *op; 493 struct bio *overwrite_bio; 494 struct dm_bio_prison_cell_v2 *cell; 495 496 dm_cblock_t invalidate_cblock; 497 dm_oblock_t invalidate_oblock; 498 }; 499 500 /*----------------------------------------------------------------*/ 501 502 static bool writethrough_mode(struct cache *cache) 503 { 504 return cache->features.io_mode == CM_IO_WRITETHROUGH; 505 } 506 507 static bool writeback_mode(struct cache *cache) 508 { 509 return cache->features.io_mode == CM_IO_WRITEBACK; 510 } 511 512 static inline bool passthrough_mode(struct cache *cache) 513 { 514 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 515 } 516 517 /*----------------------------------------------------------------*/ 518 519 static void wake_deferred_bio_worker(struct cache *cache) 520 { 521 queue_work(cache->wq, &cache->deferred_bio_worker); 522 } 523 524 static void wake_migration_worker(struct cache *cache) 525 { 526 if (passthrough_mode(cache)) 527 return; 528 529 queue_work(cache->wq, &cache->migration_worker); 530 } 531 532 /*----------------------------------------------------------------*/ 533 534 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 535 { 536 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 537 } 538 539 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 540 { 541 dm_bio_prison_free_cell_v2(cache->prison, cell); 542 } 543 544 static struct dm_cache_migration *alloc_migration(struct cache *cache) 545 { 546 struct dm_cache_migration *mg; 547 548 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 549 550 memset(mg, 0, sizeof(*mg)); 551 552 mg->cache = cache; 553 atomic_inc(&cache->nr_allocated_migrations); 554 555 return mg; 556 } 557 558 static void free_migration(struct dm_cache_migration *mg) 559 { 560 struct cache *cache = mg->cache; 561 562 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 563 wake_up(&cache->migration_wait); 564 565 mempool_free(mg, &cache->migration_pool); 566 } 567 568 /*----------------------------------------------------------------*/ 569 570 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 571 { 572 return to_oblock(from_oblock(b) + 1ull); 573 } 574 575 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 576 { 577 key->virtual = 0; 578 key->dev = 0; 579 key->block_begin = from_oblock(begin); 580 key->block_end = from_oblock(end); 581 } 582 583 /* 584 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 585 * level 1 which prevents *both* READs and WRITEs. 586 */ 587 #define WRITE_LOCK_LEVEL 0 588 #define READ_WRITE_LOCK_LEVEL 1 589 590 static unsigned lock_level(struct bio *bio) 591 { 592 return bio_data_dir(bio) == WRITE ? 593 WRITE_LOCK_LEVEL : 594 READ_WRITE_LOCK_LEVEL; 595 } 596 597 /*---------------------------------------------------------------- 598 * Per bio data 599 *--------------------------------------------------------------*/ 600 601 static struct per_bio_data *get_per_bio_data(struct bio *bio) 602 { 603 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 604 BUG_ON(!pb); 605 return pb; 606 } 607 608 static struct per_bio_data *init_per_bio_data(struct bio *bio) 609 { 610 struct per_bio_data *pb = get_per_bio_data(bio); 611 612 pb->tick = false; 613 pb->req_nr = dm_bio_get_target_bio_nr(bio); 614 pb->cell = NULL; 615 pb->len = 0; 616 617 return pb; 618 } 619 620 /*----------------------------------------------------------------*/ 621 622 static void defer_bio(struct cache *cache, struct bio *bio) 623 { 624 spin_lock_irq(&cache->lock); 625 bio_list_add(&cache->deferred_bios, bio); 626 spin_unlock_irq(&cache->lock); 627 628 wake_deferred_bio_worker(cache); 629 } 630 631 static void defer_bios(struct cache *cache, struct bio_list *bios) 632 { 633 spin_lock_irq(&cache->lock); 634 bio_list_merge(&cache->deferred_bios, bios); 635 bio_list_init(bios); 636 spin_unlock_irq(&cache->lock); 637 638 wake_deferred_bio_worker(cache); 639 } 640 641 /*----------------------------------------------------------------*/ 642 643 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 644 { 645 bool r; 646 struct per_bio_data *pb; 647 struct dm_cell_key_v2 key; 648 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 649 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 650 651 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 652 653 build_key(oblock, end, &key); 654 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 655 if (!r) { 656 /* 657 * Failed to get the lock. 658 */ 659 free_prison_cell(cache, cell_prealloc); 660 return r; 661 } 662 663 if (cell != cell_prealloc) 664 free_prison_cell(cache, cell_prealloc); 665 666 pb = get_per_bio_data(bio); 667 pb->cell = cell; 668 669 return r; 670 } 671 672 /*----------------------------------------------------------------*/ 673 674 static bool is_dirty(struct cache *cache, dm_cblock_t b) 675 { 676 return test_bit(from_cblock(b), cache->dirty_bitset); 677 } 678 679 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 680 { 681 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 682 atomic_inc(&cache->nr_dirty); 683 policy_set_dirty(cache->policy, cblock); 684 } 685 } 686 687 /* 688 * These two are called when setting after migrations to force the policy 689 * and dirty bitset to be in sync. 690 */ 691 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 692 { 693 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 694 atomic_inc(&cache->nr_dirty); 695 policy_set_dirty(cache->policy, cblock); 696 } 697 698 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 699 { 700 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 701 if (atomic_dec_return(&cache->nr_dirty) == 0) 702 dm_table_event(cache->ti->table); 703 } 704 705 policy_clear_dirty(cache->policy, cblock); 706 } 707 708 /*----------------------------------------------------------------*/ 709 710 static bool block_size_is_power_of_two(struct cache *cache) 711 { 712 return cache->sectors_per_block_shift >= 0; 713 } 714 715 static dm_block_t block_div(dm_block_t b, uint32_t n) 716 { 717 do_div(b, n); 718 719 return b; 720 } 721 722 static dm_block_t oblocks_per_dblock(struct cache *cache) 723 { 724 dm_block_t oblocks = cache->discard_block_size; 725 726 if (block_size_is_power_of_two(cache)) 727 oblocks >>= cache->sectors_per_block_shift; 728 else 729 oblocks = block_div(oblocks, cache->sectors_per_block); 730 731 return oblocks; 732 } 733 734 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 735 { 736 return to_dblock(block_div(from_oblock(oblock), 737 oblocks_per_dblock(cache))); 738 } 739 740 static void set_discard(struct cache *cache, dm_dblock_t b) 741 { 742 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 743 atomic_inc(&cache->stats.discard_count); 744 745 spin_lock_irq(&cache->lock); 746 set_bit(from_dblock(b), cache->discard_bitset); 747 spin_unlock_irq(&cache->lock); 748 } 749 750 static void clear_discard(struct cache *cache, dm_dblock_t b) 751 { 752 spin_lock_irq(&cache->lock); 753 clear_bit(from_dblock(b), cache->discard_bitset); 754 spin_unlock_irq(&cache->lock); 755 } 756 757 static bool is_discarded(struct cache *cache, dm_dblock_t b) 758 { 759 int r; 760 spin_lock_irq(&cache->lock); 761 r = test_bit(from_dblock(b), cache->discard_bitset); 762 spin_unlock_irq(&cache->lock); 763 764 return r; 765 } 766 767 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 768 { 769 int r; 770 spin_lock_irq(&cache->lock); 771 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 772 cache->discard_bitset); 773 spin_unlock_irq(&cache->lock); 774 775 return r; 776 } 777 778 /*---------------------------------------------------------------- 779 * Remapping 780 *--------------------------------------------------------------*/ 781 static void remap_to_origin(struct cache *cache, struct bio *bio) 782 { 783 bio_set_dev(bio, cache->origin_dev->bdev); 784 } 785 786 static void remap_to_cache(struct cache *cache, struct bio *bio, 787 dm_cblock_t cblock) 788 { 789 sector_t bi_sector = bio->bi_iter.bi_sector; 790 sector_t block = from_cblock(cblock); 791 792 bio_set_dev(bio, cache->cache_dev->bdev); 793 if (!block_size_is_power_of_two(cache)) 794 bio->bi_iter.bi_sector = 795 (block * cache->sectors_per_block) + 796 sector_div(bi_sector, cache->sectors_per_block); 797 else 798 bio->bi_iter.bi_sector = 799 (block << cache->sectors_per_block_shift) | 800 (bi_sector & (cache->sectors_per_block - 1)); 801 } 802 803 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 804 { 805 struct per_bio_data *pb; 806 807 spin_lock_irq(&cache->lock); 808 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 809 bio_op(bio) != REQ_OP_DISCARD) { 810 pb = get_per_bio_data(bio); 811 pb->tick = true; 812 cache->need_tick_bio = false; 813 } 814 spin_unlock_irq(&cache->lock); 815 } 816 817 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 818 dm_oblock_t oblock, bool bio_has_pbd) 819 { 820 if (bio_has_pbd) 821 check_if_tick_bio_needed(cache, bio); 822 remap_to_origin(cache, bio); 823 if (bio_data_dir(bio) == WRITE) 824 clear_discard(cache, oblock_to_dblock(cache, oblock)); 825 } 826 827 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 828 dm_oblock_t oblock) 829 { 830 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 831 __remap_to_origin_clear_discard(cache, bio, oblock, true); 832 } 833 834 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 835 dm_oblock_t oblock, dm_cblock_t cblock) 836 { 837 check_if_tick_bio_needed(cache, bio); 838 remap_to_cache(cache, bio, cblock); 839 if (bio_data_dir(bio) == WRITE) { 840 set_dirty(cache, cblock); 841 clear_discard(cache, oblock_to_dblock(cache, oblock)); 842 } 843 } 844 845 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 846 { 847 sector_t block_nr = bio->bi_iter.bi_sector; 848 849 if (!block_size_is_power_of_two(cache)) 850 (void) sector_div(block_nr, cache->sectors_per_block); 851 else 852 block_nr >>= cache->sectors_per_block_shift; 853 854 return to_oblock(block_nr); 855 } 856 857 static bool accountable_bio(struct cache *cache, struct bio *bio) 858 { 859 return bio_op(bio) != REQ_OP_DISCARD; 860 } 861 862 static void accounted_begin(struct cache *cache, struct bio *bio) 863 { 864 struct per_bio_data *pb; 865 866 if (accountable_bio(cache, bio)) { 867 pb = get_per_bio_data(bio); 868 pb->len = bio_sectors(bio); 869 iot_io_begin(&cache->tracker, pb->len); 870 } 871 } 872 873 static void accounted_complete(struct cache *cache, struct bio *bio) 874 { 875 struct per_bio_data *pb = get_per_bio_data(bio); 876 877 iot_io_end(&cache->tracker, pb->len); 878 } 879 880 static void accounted_request(struct cache *cache, struct bio *bio) 881 { 882 accounted_begin(cache, bio); 883 submit_bio_noacct(bio); 884 } 885 886 static void issue_op(struct bio *bio, void *context) 887 { 888 struct cache *cache = context; 889 accounted_request(cache, bio); 890 } 891 892 /* 893 * When running in writethrough mode we need to send writes to clean blocks 894 * to both the cache and origin devices. Clone the bio and send them in parallel. 895 */ 896 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 897 dm_oblock_t oblock, dm_cblock_t cblock) 898 { 899 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs); 900 901 BUG_ON(!origin_bio); 902 903 bio_chain(origin_bio, bio); 904 /* 905 * Passing false to __remap_to_origin_clear_discard() skips 906 * all code that might use per_bio_data (since clone doesn't have it) 907 */ 908 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false); 909 submit_bio(origin_bio); 910 911 remap_to_cache(cache, bio, cblock); 912 } 913 914 /*---------------------------------------------------------------- 915 * Failure modes 916 *--------------------------------------------------------------*/ 917 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 918 { 919 return cache->features.mode; 920 } 921 922 static const char *cache_device_name(struct cache *cache) 923 { 924 return dm_table_device_name(cache->ti->table); 925 } 926 927 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 928 { 929 const char *descs[] = { 930 "write", 931 "read-only", 932 "fail" 933 }; 934 935 dm_table_event(cache->ti->table); 936 DMINFO("%s: switching cache to %s mode", 937 cache_device_name(cache), descs[(int)mode]); 938 } 939 940 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 941 { 942 bool needs_check; 943 enum cache_metadata_mode old_mode = get_cache_mode(cache); 944 945 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 946 DMERR("%s: unable to read needs_check flag, setting failure mode.", 947 cache_device_name(cache)); 948 new_mode = CM_FAIL; 949 } 950 951 if (new_mode == CM_WRITE && needs_check) { 952 DMERR("%s: unable to switch cache to write mode until repaired.", 953 cache_device_name(cache)); 954 if (old_mode != new_mode) 955 new_mode = old_mode; 956 else 957 new_mode = CM_READ_ONLY; 958 } 959 960 /* Never move out of fail mode */ 961 if (old_mode == CM_FAIL) 962 new_mode = CM_FAIL; 963 964 switch (new_mode) { 965 case CM_FAIL: 966 case CM_READ_ONLY: 967 dm_cache_metadata_set_read_only(cache->cmd); 968 break; 969 970 case CM_WRITE: 971 dm_cache_metadata_set_read_write(cache->cmd); 972 break; 973 } 974 975 cache->features.mode = new_mode; 976 977 if (new_mode != old_mode) 978 notify_mode_switch(cache, new_mode); 979 } 980 981 static void abort_transaction(struct cache *cache) 982 { 983 const char *dev_name = cache_device_name(cache); 984 985 if (get_cache_mode(cache) >= CM_READ_ONLY) 986 return; 987 988 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 989 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 990 set_cache_mode(cache, CM_FAIL); 991 } 992 993 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 994 if (dm_cache_metadata_abort(cache->cmd)) { 995 DMERR("%s: failed to abort metadata transaction", dev_name); 996 set_cache_mode(cache, CM_FAIL); 997 } 998 } 999 1000 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 1001 { 1002 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1003 cache_device_name(cache), op, r); 1004 abort_transaction(cache); 1005 set_cache_mode(cache, CM_READ_ONLY); 1006 } 1007 1008 /*----------------------------------------------------------------*/ 1009 1010 static void load_stats(struct cache *cache) 1011 { 1012 struct dm_cache_statistics stats; 1013 1014 dm_cache_metadata_get_stats(cache->cmd, &stats); 1015 atomic_set(&cache->stats.read_hit, stats.read_hits); 1016 atomic_set(&cache->stats.read_miss, stats.read_misses); 1017 atomic_set(&cache->stats.write_hit, stats.write_hits); 1018 atomic_set(&cache->stats.write_miss, stats.write_misses); 1019 } 1020 1021 static void save_stats(struct cache *cache) 1022 { 1023 struct dm_cache_statistics stats; 1024 1025 if (get_cache_mode(cache) >= CM_READ_ONLY) 1026 return; 1027 1028 stats.read_hits = atomic_read(&cache->stats.read_hit); 1029 stats.read_misses = atomic_read(&cache->stats.read_miss); 1030 stats.write_hits = atomic_read(&cache->stats.write_hit); 1031 stats.write_misses = atomic_read(&cache->stats.write_miss); 1032 1033 dm_cache_metadata_set_stats(cache->cmd, &stats); 1034 } 1035 1036 static void update_stats(struct cache_stats *stats, enum policy_operation op) 1037 { 1038 switch (op) { 1039 case POLICY_PROMOTE: 1040 atomic_inc(&stats->promotion); 1041 break; 1042 1043 case POLICY_DEMOTE: 1044 atomic_inc(&stats->demotion); 1045 break; 1046 1047 case POLICY_WRITEBACK: 1048 atomic_inc(&stats->writeback); 1049 break; 1050 } 1051 } 1052 1053 /*---------------------------------------------------------------- 1054 * Migration processing 1055 * 1056 * Migration covers moving data from the origin device to the cache, or 1057 * vice versa. 1058 *--------------------------------------------------------------*/ 1059 1060 static void inc_io_migrations(struct cache *cache) 1061 { 1062 atomic_inc(&cache->nr_io_migrations); 1063 } 1064 1065 static void dec_io_migrations(struct cache *cache) 1066 { 1067 atomic_dec(&cache->nr_io_migrations); 1068 } 1069 1070 static bool discard_or_flush(struct bio *bio) 1071 { 1072 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 1073 } 1074 1075 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 1076 dm_dblock_t *b, dm_dblock_t *e) 1077 { 1078 sector_t sb = bio->bi_iter.bi_sector; 1079 sector_t se = bio_end_sector(bio); 1080 1081 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1082 1083 if (se - sb < cache->discard_block_size) 1084 *e = *b; 1085 else 1086 *e = to_dblock(block_div(se, cache->discard_block_size)); 1087 } 1088 1089 /*----------------------------------------------------------------*/ 1090 1091 static void prevent_background_work(struct cache *cache) 1092 { 1093 lockdep_off(); 1094 down_write(&cache->background_work_lock); 1095 lockdep_on(); 1096 } 1097 1098 static void allow_background_work(struct cache *cache) 1099 { 1100 lockdep_off(); 1101 up_write(&cache->background_work_lock); 1102 lockdep_on(); 1103 } 1104 1105 static bool background_work_begin(struct cache *cache) 1106 { 1107 bool r; 1108 1109 lockdep_off(); 1110 r = down_read_trylock(&cache->background_work_lock); 1111 lockdep_on(); 1112 1113 return r; 1114 } 1115 1116 static void background_work_end(struct cache *cache) 1117 { 1118 lockdep_off(); 1119 up_read(&cache->background_work_lock); 1120 lockdep_on(); 1121 } 1122 1123 /*----------------------------------------------------------------*/ 1124 1125 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1126 { 1127 return (bio_data_dir(bio) == WRITE) && 1128 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1129 } 1130 1131 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1132 { 1133 return writeback_mode(cache) && 1134 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1135 } 1136 1137 static void quiesce(struct dm_cache_migration *mg, 1138 void (*continuation)(struct work_struct *)) 1139 { 1140 init_continuation(&mg->k, continuation); 1141 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1142 } 1143 1144 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1145 { 1146 struct continuation *k = container_of(ws, struct continuation, ws); 1147 return container_of(k, struct dm_cache_migration, k); 1148 } 1149 1150 static void copy_complete(int read_err, unsigned long write_err, void *context) 1151 { 1152 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1153 1154 if (read_err || write_err) 1155 mg->k.input = BLK_STS_IOERR; 1156 1157 queue_continuation(mg->cache->wq, &mg->k); 1158 } 1159 1160 static void copy(struct dm_cache_migration *mg, bool promote) 1161 { 1162 struct dm_io_region o_region, c_region; 1163 struct cache *cache = mg->cache; 1164 1165 o_region.bdev = cache->origin_dev->bdev; 1166 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1167 o_region.count = cache->sectors_per_block; 1168 1169 c_region.bdev = cache->cache_dev->bdev; 1170 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1171 c_region.count = cache->sectors_per_block; 1172 1173 if (promote) 1174 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1175 else 1176 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1177 } 1178 1179 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1180 { 1181 struct per_bio_data *pb = get_per_bio_data(bio); 1182 1183 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1184 free_prison_cell(cache, pb->cell); 1185 pb->cell = NULL; 1186 } 1187 1188 static void overwrite_endio(struct bio *bio) 1189 { 1190 struct dm_cache_migration *mg = bio->bi_private; 1191 struct cache *cache = mg->cache; 1192 struct per_bio_data *pb = get_per_bio_data(bio); 1193 1194 dm_unhook_bio(&pb->hook_info, bio); 1195 1196 if (bio->bi_status) 1197 mg->k.input = bio->bi_status; 1198 1199 queue_continuation(cache->wq, &mg->k); 1200 } 1201 1202 static void overwrite(struct dm_cache_migration *mg, 1203 void (*continuation)(struct work_struct *)) 1204 { 1205 struct bio *bio = mg->overwrite_bio; 1206 struct per_bio_data *pb = get_per_bio_data(bio); 1207 1208 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1209 1210 /* 1211 * The overwrite bio is part of the copy operation, as such it does 1212 * not set/clear discard or dirty flags. 1213 */ 1214 if (mg->op->op == POLICY_PROMOTE) 1215 remap_to_cache(mg->cache, bio, mg->op->cblock); 1216 else 1217 remap_to_origin(mg->cache, bio); 1218 1219 init_continuation(&mg->k, continuation); 1220 accounted_request(mg->cache, bio); 1221 } 1222 1223 /* 1224 * Migration steps: 1225 * 1226 * 1) exclusive lock preventing WRITEs 1227 * 2) quiesce 1228 * 3) copy or issue overwrite bio 1229 * 4) upgrade to exclusive lock preventing READs and WRITEs 1230 * 5) quiesce 1231 * 6) update metadata and commit 1232 * 7) unlock 1233 */ 1234 static void mg_complete(struct dm_cache_migration *mg, bool success) 1235 { 1236 struct bio_list bios; 1237 struct cache *cache = mg->cache; 1238 struct policy_work *op = mg->op; 1239 dm_cblock_t cblock = op->cblock; 1240 1241 if (success) 1242 update_stats(&cache->stats, op->op); 1243 1244 switch (op->op) { 1245 case POLICY_PROMOTE: 1246 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1247 policy_complete_background_work(cache->policy, op, success); 1248 1249 if (mg->overwrite_bio) { 1250 if (success) 1251 force_set_dirty(cache, cblock); 1252 else if (mg->k.input) 1253 mg->overwrite_bio->bi_status = mg->k.input; 1254 else 1255 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1256 bio_endio(mg->overwrite_bio); 1257 } else { 1258 if (success) 1259 force_clear_dirty(cache, cblock); 1260 dec_io_migrations(cache); 1261 } 1262 break; 1263 1264 case POLICY_DEMOTE: 1265 /* 1266 * We clear dirty here to update the nr_dirty counter. 1267 */ 1268 if (success) 1269 force_clear_dirty(cache, cblock); 1270 policy_complete_background_work(cache->policy, op, success); 1271 dec_io_migrations(cache); 1272 break; 1273 1274 case POLICY_WRITEBACK: 1275 if (success) 1276 force_clear_dirty(cache, cblock); 1277 policy_complete_background_work(cache->policy, op, success); 1278 dec_io_migrations(cache); 1279 break; 1280 } 1281 1282 bio_list_init(&bios); 1283 if (mg->cell) { 1284 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1285 free_prison_cell(cache, mg->cell); 1286 } 1287 1288 free_migration(mg); 1289 defer_bios(cache, &bios); 1290 wake_migration_worker(cache); 1291 1292 background_work_end(cache); 1293 } 1294 1295 static void mg_success(struct work_struct *ws) 1296 { 1297 struct dm_cache_migration *mg = ws_to_mg(ws); 1298 mg_complete(mg, mg->k.input == 0); 1299 } 1300 1301 static void mg_update_metadata(struct work_struct *ws) 1302 { 1303 int r; 1304 struct dm_cache_migration *mg = ws_to_mg(ws); 1305 struct cache *cache = mg->cache; 1306 struct policy_work *op = mg->op; 1307 1308 switch (op->op) { 1309 case POLICY_PROMOTE: 1310 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1311 if (r) { 1312 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1313 cache_device_name(cache)); 1314 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1315 1316 mg_complete(mg, false); 1317 return; 1318 } 1319 mg_complete(mg, true); 1320 break; 1321 1322 case POLICY_DEMOTE: 1323 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1324 if (r) { 1325 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1326 cache_device_name(cache)); 1327 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1328 1329 mg_complete(mg, false); 1330 return; 1331 } 1332 1333 /* 1334 * It would be nice if we only had to commit when a REQ_FLUSH 1335 * comes through. But there's one scenario that we have to 1336 * look out for: 1337 * 1338 * - vblock x in a cache block 1339 * - domotion occurs 1340 * - cache block gets reallocated and over written 1341 * - crash 1342 * 1343 * When we recover, because there was no commit the cache will 1344 * rollback to having the data for vblock x in the cache block. 1345 * But the cache block has since been overwritten, so it'll end 1346 * up pointing to data that was never in 'x' during the history 1347 * of the device. 1348 * 1349 * To avoid this issue we require a commit as part of the 1350 * demotion operation. 1351 */ 1352 init_continuation(&mg->k, mg_success); 1353 continue_after_commit(&cache->committer, &mg->k); 1354 schedule_commit(&cache->committer); 1355 break; 1356 1357 case POLICY_WRITEBACK: 1358 mg_complete(mg, true); 1359 break; 1360 } 1361 } 1362 1363 static void mg_update_metadata_after_copy(struct work_struct *ws) 1364 { 1365 struct dm_cache_migration *mg = ws_to_mg(ws); 1366 1367 /* 1368 * Did the copy succeed? 1369 */ 1370 if (mg->k.input) 1371 mg_complete(mg, false); 1372 else 1373 mg_update_metadata(ws); 1374 } 1375 1376 static void mg_upgrade_lock(struct work_struct *ws) 1377 { 1378 int r; 1379 struct dm_cache_migration *mg = ws_to_mg(ws); 1380 1381 /* 1382 * Did the copy succeed? 1383 */ 1384 if (mg->k.input) 1385 mg_complete(mg, false); 1386 1387 else { 1388 /* 1389 * Now we want the lock to prevent both reads and writes. 1390 */ 1391 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1392 READ_WRITE_LOCK_LEVEL); 1393 if (r < 0) 1394 mg_complete(mg, false); 1395 1396 else if (r) 1397 quiesce(mg, mg_update_metadata); 1398 1399 else 1400 mg_update_metadata(ws); 1401 } 1402 } 1403 1404 static void mg_full_copy(struct work_struct *ws) 1405 { 1406 struct dm_cache_migration *mg = ws_to_mg(ws); 1407 struct cache *cache = mg->cache; 1408 struct policy_work *op = mg->op; 1409 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1410 1411 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1412 is_discarded_oblock(cache, op->oblock)) { 1413 mg_upgrade_lock(ws); 1414 return; 1415 } 1416 1417 init_continuation(&mg->k, mg_upgrade_lock); 1418 copy(mg, is_policy_promote); 1419 } 1420 1421 static void mg_copy(struct work_struct *ws) 1422 { 1423 struct dm_cache_migration *mg = ws_to_mg(ws); 1424 1425 if (mg->overwrite_bio) { 1426 /* 1427 * No exclusive lock was held when we last checked if the bio 1428 * was optimisable. So we have to check again in case things 1429 * have changed (eg, the block may no longer be discarded). 1430 */ 1431 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1432 /* 1433 * Fallback to a real full copy after doing some tidying up. 1434 */ 1435 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1436 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1437 mg->overwrite_bio = NULL; 1438 inc_io_migrations(mg->cache); 1439 mg_full_copy(ws); 1440 return; 1441 } 1442 1443 /* 1444 * It's safe to do this here, even though it's new data 1445 * because all IO has been locked out of the block. 1446 * 1447 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1448 * so _not_ using mg_upgrade_lock() as continutation. 1449 */ 1450 overwrite(mg, mg_update_metadata_after_copy); 1451 1452 } else 1453 mg_full_copy(ws); 1454 } 1455 1456 static int mg_lock_writes(struct dm_cache_migration *mg) 1457 { 1458 int r; 1459 struct dm_cell_key_v2 key; 1460 struct cache *cache = mg->cache; 1461 struct dm_bio_prison_cell_v2 *prealloc; 1462 1463 prealloc = alloc_prison_cell(cache); 1464 1465 /* 1466 * Prevent writes to the block, but allow reads to continue. 1467 * Unless we're using an overwrite bio, in which case we lock 1468 * everything. 1469 */ 1470 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1471 r = dm_cell_lock_v2(cache->prison, &key, 1472 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1473 prealloc, &mg->cell); 1474 if (r < 0) { 1475 free_prison_cell(cache, prealloc); 1476 mg_complete(mg, false); 1477 return r; 1478 } 1479 1480 if (mg->cell != prealloc) 1481 free_prison_cell(cache, prealloc); 1482 1483 if (r == 0) 1484 mg_copy(&mg->k.ws); 1485 else 1486 quiesce(mg, mg_copy); 1487 1488 return 0; 1489 } 1490 1491 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1492 { 1493 struct dm_cache_migration *mg; 1494 1495 if (!background_work_begin(cache)) { 1496 policy_complete_background_work(cache->policy, op, false); 1497 return -EPERM; 1498 } 1499 1500 mg = alloc_migration(cache); 1501 1502 mg->op = op; 1503 mg->overwrite_bio = bio; 1504 1505 if (!bio) 1506 inc_io_migrations(cache); 1507 1508 return mg_lock_writes(mg); 1509 } 1510 1511 /*---------------------------------------------------------------- 1512 * invalidation processing 1513 *--------------------------------------------------------------*/ 1514 1515 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1516 { 1517 struct bio_list bios; 1518 struct cache *cache = mg->cache; 1519 1520 bio_list_init(&bios); 1521 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1522 free_prison_cell(cache, mg->cell); 1523 1524 if (!success && mg->overwrite_bio) 1525 bio_io_error(mg->overwrite_bio); 1526 1527 free_migration(mg); 1528 defer_bios(cache, &bios); 1529 1530 background_work_end(cache); 1531 } 1532 1533 static void invalidate_completed(struct work_struct *ws) 1534 { 1535 struct dm_cache_migration *mg = ws_to_mg(ws); 1536 invalidate_complete(mg, !mg->k.input); 1537 } 1538 1539 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1540 { 1541 int r = policy_invalidate_mapping(cache->policy, cblock); 1542 if (!r) { 1543 r = dm_cache_remove_mapping(cache->cmd, cblock); 1544 if (r) { 1545 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1546 cache_device_name(cache)); 1547 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1548 } 1549 1550 } else if (r == -ENODATA) { 1551 /* 1552 * Harmless, already unmapped. 1553 */ 1554 r = 0; 1555 1556 } else 1557 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1558 1559 return r; 1560 } 1561 1562 static void invalidate_remove(struct work_struct *ws) 1563 { 1564 int r; 1565 struct dm_cache_migration *mg = ws_to_mg(ws); 1566 struct cache *cache = mg->cache; 1567 1568 r = invalidate_cblock(cache, mg->invalidate_cblock); 1569 if (r) { 1570 invalidate_complete(mg, false); 1571 return; 1572 } 1573 1574 init_continuation(&mg->k, invalidate_completed); 1575 continue_after_commit(&cache->committer, &mg->k); 1576 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1577 mg->overwrite_bio = NULL; 1578 schedule_commit(&cache->committer); 1579 } 1580 1581 static int invalidate_lock(struct dm_cache_migration *mg) 1582 { 1583 int r; 1584 struct dm_cell_key_v2 key; 1585 struct cache *cache = mg->cache; 1586 struct dm_bio_prison_cell_v2 *prealloc; 1587 1588 prealloc = alloc_prison_cell(cache); 1589 1590 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1591 r = dm_cell_lock_v2(cache->prison, &key, 1592 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1593 if (r < 0) { 1594 free_prison_cell(cache, prealloc); 1595 invalidate_complete(mg, false); 1596 return r; 1597 } 1598 1599 if (mg->cell != prealloc) 1600 free_prison_cell(cache, prealloc); 1601 1602 if (r) 1603 quiesce(mg, invalidate_remove); 1604 1605 else { 1606 /* 1607 * We can't call invalidate_remove() directly here because we 1608 * might still be in request context. 1609 */ 1610 init_continuation(&mg->k, invalidate_remove); 1611 queue_work(cache->wq, &mg->k.ws); 1612 } 1613 1614 return 0; 1615 } 1616 1617 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1618 dm_oblock_t oblock, struct bio *bio) 1619 { 1620 struct dm_cache_migration *mg; 1621 1622 if (!background_work_begin(cache)) 1623 return -EPERM; 1624 1625 mg = alloc_migration(cache); 1626 1627 mg->overwrite_bio = bio; 1628 mg->invalidate_cblock = cblock; 1629 mg->invalidate_oblock = oblock; 1630 1631 return invalidate_lock(mg); 1632 } 1633 1634 /*---------------------------------------------------------------- 1635 * bio processing 1636 *--------------------------------------------------------------*/ 1637 1638 enum busy { 1639 IDLE, 1640 BUSY 1641 }; 1642 1643 static enum busy spare_migration_bandwidth(struct cache *cache) 1644 { 1645 bool idle = iot_idle_for(&cache->tracker, HZ); 1646 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1647 cache->sectors_per_block; 1648 1649 if (idle && current_volume <= cache->migration_threshold) 1650 return IDLE; 1651 else 1652 return BUSY; 1653 } 1654 1655 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1656 { 1657 atomic_inc(bio_data_dir(bio) == READ ? 1658 &cache->stats.read_hit : &cache->stats.write_hit); 1659 } 1660 1661 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1662 { 1663 atomic_inc(bio_data_dir(bio) == READ ? 1664 &cache->stats.read_miss : &cache->stats.write_miss); 1665 } 1666 1667 /*----------------------------------------------------------------*/ 1668 1669 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1670 bool *commit_needed) 1671 { 1672 int r, data_dir; 1673 bool rb, background_queued; 1674 dm_cblock_t cblock; 1675 1676 *commit_needed = false; 1677 1678 rb = bio_detain_shared(cache, block, bio); 1679 if (!rb) { 1680 /* 1681 * An exclusive lock is held for this block, so we have to 1682 * wait. We set the commit_needed flag so the current 1683 * transaction will be committed asap, allowing this lock 1684 * to be dropped. 1685 */ 1686 *commit_needed = true; 1687 return DM_MAPIO_SUBMITTED; 1688 } 1689 1690 data_dir = bio_data_dir(bio); 1691 1692 if (optimisable_bio(cache, bio, block)) { 1693 struct policy_work *op = NULL; 1694 1695 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1696 if (unlikely(r && r != -ENOENT)) { 1697 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1698 cache_device_name(cache), r); 1699 bio_io_error(bio); 1700 return DM_MAPIO_SUBMITTED; 1701 } 1702 1703 if (r == -ENOENT && op) { 1704 bio_drop_shared_lock(cache, bio); 1705 BUG_ON(op->op != POLICY_PROMOTE); 1706 mg_start(cache, op, bio); 1707 return DM_MAPIO_SUBMITTED; 1708 } 1709 } else { 1710 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1711 if (unlikely(r && r != -ENOENT)) { 1712 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1713 cache_device_name(cache), r); 1714 bio_io_error(bio); 1715 return DM_MAPIO_SUBMITTED; 1716 } 1717 1718 if (background_queued) 1719 wake_migration_worker(cache); 1720 } 1721 1722 if (r == -ENOENT) { 1723 struct per_bio_data *pb = get_per_bio_data(bio); 1724 1725 /* 1726 * Miss. 1727 */ 1728 inc_miss_counter(cache, bio); 1729 if (pb->req_nr == 0) { 1730 accounted_begin(cache, bio); 1731 remap_to_origin_clear_discard(cache, bio, block); 1732 } else { 1733 /* 1734 * This is a duplicate writethrough io that is no 1735 * longer needed because the block has been demoted. 1736 */ 1737 bio_endio(bio); 1738 return DM_MAPIO_SUBMITTED; 1739 } 1740 } else { 1741 /* 1742 * Hit. 1743 */ 1744 inc_hit_counter(cache, bio); 1745 1746 /* 1747 * Passthrough always maps to the origin, invalidating any 1748 * cache blocks that are written to. 1749 */ 1750 if (passthrough_mode(cache)) { 1751 if (bio_data_dir(bio) == WRITE) { 1752 bio_drop_shared_lock(cache, bio); 1753 atomic_inc(&cache->stats.demotion); 1754 invalidate_start(cache, cblock, block, bio); 1755 } else 1756 remap_to_origin_clear_discard(cache, bio, block); 1757 } else { 1758 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1759 !is_dirty(cache, cblock)) { 1760 remap_to_origin_and_cache(cache, bio, block, cblock); 1761 accounted_begin(cache, bio); 1762 } else 1763 remap_to_cache_dirty(cache, bio, block, cblock); 1764 } 1765 } 1766 1767 /* 1768 * dm core turns FUA requests into a separate payload and FLUSH req. 1769 */ 1770 if (bio->bi_opf & REQ_FUA) { 1771 /* 1772 * issue_after_commit will call accounted_begin a second time. So 1773 * we call accounted_complete() to avoid double accounting. 1774 */ 1775 accounted_complete(cache, bio); 1776 issue_after_commit(&cache->committer, bio); 1777 *commit_needed = true; 1778 return DM_MAPIO_SUBMITTED; 1779 } 1780 1781 return DM_MAPIO_REMAPPED; 1782 } 1783 1784 static bool process_bio(struct cache *cache, struct bio *bio) 1785 { 1786 bool commit_needed; 1787 1788 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1789 submit_bio_noacct(bio); 1790 1791 return commit_needed; 1792 } 1793 1794 /* 1795 * A non-zero return indicates read_only or fail_io mode. 1796 */ 1797 static int commit(struct cache *cache, bool clean_shutdown) 1798 { 1799 int r; 1800 1801 if (get_cache_mode(cache) >= CM_READ_ONLY) 1802 return -EINVAL; 1803 1804 atomic_inc(&cache->stats.commit_count); 1805 r = dm_cache_commit(cache->cmd, clean_shutdown); 1806 if (r) 1807 metadata_operation_failed(cache, "dm_cache_commit", r); 1808 1809 return r; 1810 } 1811 1812 /* 1813 * Used by the batcher. 1814 */ 1815 static blk_status_t commit_op(void *context) 1816 { 1817 struct cache *cache = context; 1818 1819 if (dm_cache_changed_this_transaction(cache->cmd)) 1820 return errno_to_blk_status(commit(cache, false)); 1821 1822 return 0; 1823 } 1824 1825 /*----------------------------------------------------------------*/ 1826 1827 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1828 { 1829 struct per_bio_data *pb = get_per_bio_data(bio); 1830 1831 if (!pb->req_nr) 1832 remap_to_origin(cache, bio); 1833 else 1834 remap_to_cache(cache, bio, 0); 1835 1836 issue_after_commit(&cache->committer, bio); 1837 return true; 1838 } 1839 1840 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1841 { 1842 dm_dblock_t b, e; 1843 1844 // FIXME: do we need to lock the region? Or can we just assume the 1845 // user wont be so foolish as to issue discard concurrently with 1846 // other IO? 1847 calc_discard_block_range(cache, bio, &b, &e); 1848 while (b != e) { 1849 set_discard(cache, b); 1850 b = to_dblock(from_dblock(b) + 1); 1851 } 1852 1853 if (cache->features.discard_passdown) { 1854 remap_to_origin(cache, bio); 1855 submit_bio_noacct(bio); 1856 } else 1857 bio_endio(bio); 1858 1859 return false; 1860 } 1861 1862 static void process_deferred_bios(struct work_struct *ws) 1863 { 1864 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1865 1866 bool commit_needed = false; 1867 struct bio_list bios; 1868 struct bio *bio; 1869 1870 bio_list_init(&bios); 1871 1872 spin_lock_irq(&cache->lock); 1873 bio_list_merge(&bios, &cache->deferred_bios); 1874 bio_list_init(&cache->deferred_bios); 1875 spin_unlock_irq(&cache->lock); 1876 1877 while ((bio = bio_list_pop(&bios))) { 1878 if (bio->bi_opf & REQ_PREFLUSH) 1879 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1880 1881 else if (bio_op(bio) == REQ_OP_DISCARD) 1882 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1883 1884 else 1885 commit_needed = process_bio(cache, bio) || commit_needed; 1886 } 1887 1888 if (commit_needed) 1889 schedule_commit(&cache->committer); 1890 } 1891 1892 /*---------------------------------------------------------------- 1893 * Main worker loop 1894 *--------------------------------------------------------------*/ 1895 1896 static void requeue_deferred_bios(struct cache *cache) 1897 { 1898 struct bio *bio; 1899 struct bio_list bios; 1900 1901 bio_list_init(&bios); 1902 bio_list_merge(&bios, &cache->deferred_bios); 1903 bio_list_init(&cache->deferred_bios); 1904 1905 while ((bio = bio_list_pop(&bios))) { 1906 bio->bi_status = BLK_STS_DM_REQUEUE; 1907 bio_endio(bio); 1908 } 1909 } 1910 1911 /* 1912 * We want to commit periodically so that not too much 1913 * unwritten metadata builds up. 1914 */ 1915 static void do_waker(struct work_struct *ws) 1916 { 1917 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1918 1919 policy_tick(cache->policy, true); 1920 wake_migration_worker(cache); 1921 schedule_commit(&cache->committer); 1922 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1923 } 1924 1925 static void check_migrations(struct work_struct *ws) 1926 { 1927 int r; 1928 struct policy_work *op; 1929 struct cache *cache = container_of(ws, struct cache, migration_worker); 1930 enum busy b; 1931 1932 for (;;) { 1933 b = spare_migration_bandwidth(cache); 1934 1935 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1936 if (r == -ENODATA) 1937 break; 1938 1939 if (r) { 1940 DMERR_LIMIT("%s: policy_background_work failed", 1941 cache_device_name(cache)); 1942 break; 1943 } 1944 1945 r = mg_start(cache, op, NULL); 1946 if (r) 1947 break; 1948 } 1949 } 1950 1951 /*---------------------------------------------------------------- 1952 * Target methods 1953 *--------------------------------------------------------------*/ 1954 1955 /* 1956 * This function gets called on the error paths of the constructor, so we 1957 * have to cope with a partially initialised struct. 1958 */ 1959 static void destroy(struct cache *cache) 1960 { 1961 unsigned i; 1962 1963 mempool_exit(&cache->migration_pool); 1964 1965 if (cache->prison) 1966 dm_bio_prison_destroy_v2(cache->prison); 1967 1968 if (cache->wq) 1969 destroy_workqueue(cache->wq); 1970 1971 if (cache->dirty_bitset) 1972 free_bitset(cache->dirty_bitset); 1973 1974 if (cache->discard_bitset) 1975 free_bitset(cache->discard_bitset); 1976 1977 if (cache->copier) 1978 dm_kcopyd_client_destroy(cache->copier); 1979 1980 if (cache->cmd) 1981 dm_cache_metadata_close(cache->cmd); 1982 1983 if (cache->metadata_dev) 1984 dm_put_device(cache->ti, cache->metadata_dev); 1985 1986 if (cache->origin_dev) 1987 dm_put_device(cache->ti, cache->origin_dev); 1988 1989 if (cache->cache_dev) 1990 dm_put_device(cache->ti, cache->cache_dev); 1991 1992 if (cache->policy) 1993 dm_cache_policy_destroy(cache->policy); 1994 1995 for (i = 0; i < cache->nr_ctr_args ; i++) 1996 kfree(cache->ctr_args[i]); 1997 kfree(cache->ctr_args); 1998 1999 bioset_exit(&cache->bs); 2000 2001 kfree(cache); 2002 } 2003 2004 static void cache_dtr(struct dm_target *ti) 2005 { 2006 struct cache *cache = ti->private; 2007 2008 destroy(cache); 2009 } 2010 2011 static sector_t get_dev_size(struct dm_dev *dev) 2012 { 2013 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; 2014 } 2015 2016 /*----------------------------------------------------------------*/ 2017 2018 /* 2019 * Construct a cache device mapping. 2020 * 2021 * cache <metadata dev> <cache dev> <origin dev> <block size> 2022 * <#feature args> [<feature arg>]* 2023 * <policy> <#policy args> [<policy arg>]* 2024 * 2025 * metadata dev : fast device holding the persistent metadata 2026 * cache dev : fast device holding cached data blocks 2027 * origin dev : slow device holding original data blocks 2028 * block size : cache unit size in sectors 2029 * 2030 * #feature args : number of feature arguments passed 2031 * feature args : writethrough. (The default is writeback.) 2032 * 2033 * policy : the replacement policy to use 2034 * #policy args : an even number of policy arguments corresponding 2035 * to key/value pairs passed to the policy 2036 * policy args : key/value pairs passed to the policy 2037 * E.g. 'sequential_threshold 1024' 2038 * See cache-policies.txt for details. 2039 * 2040 * Optional feature arguments are: 2041 * writethrough : write through caching that prohibits cache block 2042 * content from being different from origin block content. 2043 * Without this argument, the default behaviour is to write 2044 * back cache block contents later for performance reasons, 2045 * so they may differ from the corresponding origin blocks. 2046 */ 2047 struct cache_args { 2048 struct dm_target *ti; 2049 2050 struct dm_dev *metadata_dev; 2051 2052 struct dm_dev *cache_dev; 2053 sector_t cache_sectors; 2054 2055 struct dm_dev *origin_dev; 2056 sector_t origin_sectors; 2057 2058 uint32_t block_size; 2059 2060 const char *policy_name; 2061 int policy_argc; 2062 const char **policy_argv; 2063 2064 struct cache_features features; 2065 }; 2066 2067 static void destroy_cache_args(struct cache_args *ca) 2068 { 2069 if (ca->metadata_dev) 2070 dm_put_device(ca->ti, ca->metadata_dev); 2071 2072 if (ca->cache_dev) 2073 dm_put_device(ca->ti, ca->cache_dev); 2074 2075 if (ca->origin_dev) 2076 dm_put_device(ca->ti, ca->origin_dev); 2077 2078 kfree(ca); 2079 } 2080 2081 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2082 { 2083 if (!as->argc) { 2084 *error = "Insufficient args"; 2085 return false; 2086 } 2087 2088 return true; 2089 } 2090 2091 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2092 char **error) 2093 { 2094 int r; 2095 sector_t metadata_dev_size; 2096 char b[BDEVNAME_SIZE]; 2097 2098 if (!at_least_one_arg(as, error)) 2099 return -EINVAL; 2100 2101 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2102 &ca->metadata_dev); 2103 if (r) { 2104 *error = "Error opening metadata device"; 2105 return r; 2106 } 2107 2108 metadata_dev_size = get_dev_size(ca->metadata_dev); 2109 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2110 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2111 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 2112 2113 return 0; 2114 } 2115 2116 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2117 char **error) 2118 { 2119 int r; 2120 2121 if (!at_least_one_arg(as, error)) 2122 return -EINVAL; 2123 2124 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2125 &ca->cache_dev); 2126 if (r) { 2127 *error = "Error opening cache device"; 2128 return r; 2129 } 2130 ca->cache_sectors = get_dev_size(ca->cache_dev); 2131 2132 return 0; 2133 } 2134 2135 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2136 char **error) 2137 { 2138 int r; 2139 2140 if (!at_least_one_arg(as, error)) 2141 return -EINVAL; 2142 2143 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2144 &ca->origin_dev); 2145 if (r) { 2146 *error = "Error opening origin device"; 2147 return r; 2148 } 2149 2150 ca->origin_sectors = get_dev_size(ca->origin_dev); 2151 if (ca->ti->len > ca->origin_sectors) { 2152 *error = "Device size larger than cached device"; 2153 return -EINVAL; 2154 } 2155 2156 return 0; 2157 } 2158 2159 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2160 char **error) 2161 { 2162 unsigned long block_size; 2163 2164 if (!at_least_one_arg(as, error)) 2165 return -EINVAL; 2166 2167 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2168 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2169 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2170 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2171 *error = "Invalid data block size"; 2172 return -EINVAL; 2173 } 2174 2175 if (block_size > ca->cache_sectors) { 2176 *error = "Data block size is larger than the cache device"; 2177 return -EINVAL; 2178 } 2179 2180 ca->block_size = block_size; 2181 2182 return 0; 2183 } 2184 2185 static void init_features(struct cache_features *cf) 2186 { 2187 cf->mode = CM_WRITE; 2188 cf->io_mode = CM_IO_WRITEBACK; 2189 cf->metadata_version = 1; 2190 cf->discard_passdown = true; 2191 } 2192 2193 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2194 char **error) 2195 { 2196 static const struct dm_arg _args[] = { 2197 {0, 3, "Invalid number of cache feature arguments"}, 2198 }; 2199 2200 int r, mode_ctr = 0; 2201 unsigned argc; 2202 const char *arg; 2203 struct cache_features *cf = &ca->features; 2204 2205 init_features(cf); 2206 2207 r = dm_read_arg_group(_args, as, &argc, error); 2208 if (r) 2209 return -EINVAL; 2210 2211 while (argc--) { 2212 arg = dm_shift_arg(as); 2213 2214 if (!strcasecmp(arg, "writeback")) { 2215 cf->io_mode = CM_IO_WRITEBACK; 2216 mode_ctr++; 2217 } 2218 2219 else if (!strcasecmp(arg, "writethrough")) { 2220 cf->io_mode = CM_IO_WRITETHROUGH; 2221 mode_ctr++; 2222 } 2223 2224 else if (!strcasecmp(arg, "passthrough")) { 2225 cf->io_mode = CM_IO_PASSTHROUGH; 2226 mode_ctr++; 2227 } 2228 2229 else if (!strcasecmp(arg, "metadata2")) 2230 cf->metadata_version = 2; 2231 2232 else if (!strcasecmp(arg, "no_discard_passdown")) 2233 cf->discard_passdown = false; 2234 2235 else { 2236 *error = "Unrecognised cache feature requested"; 2237 return -EINVAL; 2238 } 2239 } 2240 2241 if (mode_ctr > 1) { 2242 *error = "Duplicate cache io_mode features requested"; 2243 return -EINVAL; 2244 } 2245 2246 return 0; 2247 } 2248 2249 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2250 char **error) 2251 { 2252 static const struct dm_arg _args[] = { 2253 {0, 1024, "Invalid number of policy arguments"}, 2254 }; 2255 2256 int r; 2257 2258 if (!at_least_one_arg(as, error)) 2259 return -EINVAL; 2260 2261 ca->policy_name = dm_shift_arg(as); 2262 2263 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2264 if (r) 2265 return -EINVAL; 2266 2267 ca->policy_argv = (const char **)as->argv; 2268 dm_consume_args(as, ca->policy_argc); 2269 2270 return 0; 2271 } 2272 2273 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2274 char **error) 2275 { 2276 int r; 2277 struct dm_arg_set as; 2278 2279 as.argc = argc; 2280 as.argv = argv; 2281 2282 r = parse_metadata_dev(ca, &as, error); 2283 if (r) 2284 return r; 2285 2286 r = parse_cache_dev(ca, &as, error); 2287 if (r) 2288 return r; 2289 2290 r = parse_origin_dev(ca, &as, error); 2291 if (r) 2292 return r; 2293 2294 r = parse_block_size(ca, &as, error); 2295 if (r) 2296 return r; 2297 2298 r = parse_features(ca, &as, error); 2299 if (r) 2300 return r; 2301 2302 r = parse_policy(ca, &as, error); 2303 if (r) 2304 return r; 2305 2306 return 0; 2307 } 2308 2309 /*----------------------------------------------------------------*/ 2310 2311 static struct kmem_cache *migration_cache; 2312 2313 #define NOT_CORE_OPTION 1 2314 2315 static int process_config_option(struct cache *cache, const char *key, const char *value) 2316 { 2317 unsigned long tmp; 2318 2319 if (!strcasecmp(key, "migration_threshold")) { 2320 if (kstrtoul(value, 10, &tmp)) 2321 return -EINVAL; 2322 2323 cache->migration_threshold = tmp; 2324 return 0; 2325 } 2326 2327 return NOT_CORE_OPTION; 2328 } 2329 2330 static int set_config_value(struct cache *cache, const char *key, const char *value) 2331 { 2332 int r = process_config_option(cache, key, value); 2333 2334 if (r == NOT_CORE_OPTION) 2335 r = policy_set_config_value(cache->policy, key, value); 2336 2337 if (r) 2338 DMWARN("bad config value for %s: %s", key, value); 2339 2340 return r; 2341 } 2342 2343 static int set_config_values(struct cache *cache, int argc, const char **argv) 2344 { 2345 int r = 0; 2346 2347 if (argc & 1) { 2348 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2349 return -EINVAL; 2350 } 2351 2352 while (argc) { 2353 r = set_config_value(cache, argv[0], argv[1]); 2354 if (r) 2355 break; 2356 2357 argc -= 2; 2358 argv += 2; 2359 } 2360 2361 return r; 2362 } 2363 2364 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2365 char **error) 2366 { 2367 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2368 cache->cache_size, 2369 cache->origin_sectors, 2370 cache->sectors_per_block); 2371 if (IS_ERR(p)) { 2372 *error = "Error creating cache's policy"; 2373 return PTR_ERR(p); 2374 } 2375 cache->policy = p; 2376 BUG_ON(!cache->policy); 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * We want the discard block size to be at least the size of the cache 2383 * block size and have no more than 2^14 discard blocks across the origin. 2384 */ 2385 #define MAX_DISCARD_BLOCKS (1 << 14) 2386 2387 static bool too_many_discard_blocks(sector_t discard_block_size, 2388 sector_t origin_size) 2389 { 2390 (void) sector_div(origin_size, discard_block_size); 2391 2392 return origin_size > MAX_DISCARD_BLOCKS; 2393 } 2394 2395 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2396 sector_t origin_size) 2397 { 2398 sector_t discard_block_size = cache_block_size; 2399 2400 if (origin_size) 2401 while (too_many_discard_blocks(discard_block_size, origin_size)) 2402 discard_block_size *= 2; 2403 2404 return discard_block_size; 2405 } 2406 2407 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2408 { 2409 dm_block_t nr_blocks = from_cblock(size); 2410 2411 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2412 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2413 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2414 "Please consider increasing the cache block size to reduce the overall cache block count.", 2415 (unsigned long long) nr_blocks); 2416 2417 cache->cache_size = size; 2418 } 2419 2420 #define DEFAULT_MIGRATION_THRESHOLD 2048 2421 2422 static int cache_create(struct cache_args *ca, struct cache **result) 2423 { 2424 int r = 0; 2425 char **error = &ca->ti->error; 2426 struct cache *cache; 2427 struct dm_target *ti = ca->ti; 2428 dm_block_t origin_blocks; 2429 struct dm_cache_metadata *cmd; 2430 bool may_format = ca->features.mode == CM_WRITE; 2431 2432 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2433 if (!cache) 2434 return -ENOMEM; 2435 2436 cache->ti = ca->ti; 2437 ti->private = cache; 2438 ti->num_flush_bios = 2; 2439 ti->flush_supported = true; 2440 2441 ti->num_discard_bios = 1; 2442 ti->discards_supported = true; 2443 2444 ti->per_io_data_size = sizeof(struct per_bio_data); 2445 2446 cache->features = ca->features; 2447 if (writethrough_mode(cache)) { 2448 /* Create bioset for writethrough bios issued to origin */ 2449 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2450 if (r) 2451 goto bad; 2452 } 2453 2454 cache->metadata_dev = ca->metadata_dev; 2455 cache->origin_dev = ca->origin_dev; 2456 cache->cache_dev = ca->cache_dev; 2457 2458 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2459 2460 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2461 origin_blocks = block_div(origin_blocks, ca->block_size); 2462 cache->origin_blocks = to_oblock(origin_blocks); 2463 2464 cache->sectors_per_block = ca->block_size; 2465 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2466 r = -EINVAL; 2467 goto bad; 2468 } 2469 2470 if (ca->block_size & (ca->block_size - 1)) { 2471 dm_block_t cache_size = ca->cache_sectors; 2472 2473 cache->sectors_per_block_shift = -1; 2474 cache_size = block_div(cache_size, ca->block_size); 2475 set_cache_size(cache, to_cblock(cache_size)); 2476 } else { 2477 cache->sectors_per_block_shift = __ffs(ca->block_size); 2478 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2479 } 2480 2481 r = create_cache_policy(cache, ca, error); 2482 if (r) 2483 goto bad; 2484 2485 cache->policy_nr_args = ca->policy_argc; 2486 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2487 2488 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2489 if (r) { 2490 *error = "Error setting cache policy's config values"; 2491 goto bad; 2492 } 2493 2494 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2495 ca->block_size, may_format, 2496 dm_cache_policy_get_hint_size(cache->policy), 2497 ca->features.metadata_version); 2498 if (IS_ERR(cmd)) { 2499 *error = "Error creating metadata object"; 2500 r = PTR_ERR(cmd); 2501 goto bad; 2502 } 2503 cache->cmd = cmd; 2504 set_cache_mode(cache, CM_WRITE); 2505 if (get_cache_mode(cache) != CM_WRITE) { 2506 *error = "Unable to get write access to metadata, please check/repair metadata."; 2507 r = -EINVAL; 2508 goto bad; 2509 } 2510 2511 if (passthrough_mode(cache)) { 2512 bool all_clean; 2513 2514 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2515 if (r) { 2516 *error = "dm_cache_metadata_all_clean() failed"; 2517 goto bad; 2518 } 2519 2520 if (!all_clean) { 2521 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2522 r = -EINVAL; 2523 goto bad; 2524 } 2525 2526 policy_allow_migrations(cache->policy, false); 2527 } 2528 2529 spin_lock_init(&cache->lock); 2530 bio_list_init(&cache->deferred_bios); 2531 atomic_set(&cache->nr_allocated_migrations, 0); 2532 atomic_set(&cache->nr_io_migrations, 0); 2533 init_waitqueue_head(&cache->migration_wait); 2534 2535 r = -ENOMEM; 2536 atomic_set(&cache->nr_dirty, 0); 2537 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2538 if (!cache->dirty_bitset) { 2539 *error = "could not allocate dirty bitset"; 2540 goto bad; 2541 } 2542 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2543 2544 cache->discard_block_size = 2545 calculate_discard_block_size(cache->sectors_per_block, 2546 cache->origin_sectors); 2547 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2548 cache->discard_block_size)); 2549 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2550 if (!cache->discard_bitset) { 2551 *error = "could not allocate discard bitset"; 2552 goto bad; 2553 } 2554 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2555 2556 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2557 if (IS_ERR(cache->copier)) { 2558 *error = "could not create kcopyd client"; 2559 r = PTR_ERR(cache->copier); 2560 goto bad; 2561 } 2562 2563 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2564 if (!cache->wq) { 2565 *error = "could not create workqueue for metadata object"; 2566 goto bad; 2567 } 2568 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2569 INIT_WORK(&cache->migration_worker, check_migrations); 2570 INIT_DELAYED_WORK(&cache->waker, do_waker); 2571 2572 cache->prison = dm_bio_prison_create_v2(cache->wq); 2573 if (!cache->prison) { 2574 *error = "could not create bio prison"; 2575 goto bad; 2576 } 2577 2578 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2579 migration_cache); 2580 if (r) { 2581 *error = "Error creating cache's migration mempool"; 2582 goto bad; 2583 } 2584 2585 cache->need_tick_bio = true; 2586 cache->sized = false; 2587 cache->invalidate = false; 2588 cache->commit_requested = false; 2589 cache->loaded_mappings = false; 2590 cache->loaded_discards = false; 2591 2592 load_stats(cache); 2593 2594 atomic_set(&cache->stats.demotion, 0); 2595 atomic_set(&cache->stats.promotion, 0); 2596 atomic_set(&cache->stats.copies_avoided, 0); 2597 atomic_set(&cache->stats.cache_cell_clash, 0); 2598 atomic_set(&cache->stats.commit_count, 0); 2599 atomic_set(&cache->stats.discard_count, 0); 2600 2601 spin_lock_init(&cache->invalidation_lock); 2602 INIT_LIST_HEAD(&cache->invalidation_requests); 2603 2604 batcher_init(&cache->committer, commit_op, cache, 2605 issue_op, cache, cache->wq); 2606 iot_init(&cache->tracker); 2607 2608 init_rwsem(&cache->background_work_lock); 2609 prevent_background_work(cache); 2610 2611 *result = cache; 2612 return 0; 2613 bad: 2614 destroy(cache); 2615 return r; 2616 } 2617 2618 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2619 { 2620 unsigned i; 2621 const char **copy; 2622 2623 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2624 if (!copy) 2625 return -ENOMEM; 2626 for (i = 0; i < argc; i++) { 2627 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2628 if (!copy[i]) { 2629 while (i--) 2630 kfree(copy[i]); 2631 kfree(copy); 2632 return -ENOMEM; 2633 } 2634 } 2635 2636 cache->nr_ctr_args = argc; 2637 cache->ctr_args = copy; 2638 2639 return 0; 2640 } 2641 2642 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2643 { 2644 int r = -EINVAL; 2645 struct cache_args *ca; 2646 struct cache *cache = NULL; 2647 2648 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2649 if (!ca) { 2650 ti->error = "Error allocating memory for cache"; 2651 return -ENOMEM; 2652 } 2653 ca->ti = ti; 2654 2655 r = parse_cache_args(ca, argc, argv, &ti->error); 2656 if (r) 2657 goto out; 2658 2659 r = cache_create(ca, &cache); 2660 if (r) 2661 goto out; 2662 2663 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2664 if (r) { 2665 destroy(cache); 2666 goto out; 2667 } 2668 2669 ti->private = cache; 2670 out: 2671 destroy_cache_args(ca); 2672 return r; 2673 } 2674 2675 /*----------------------------------------------------------------*/ 2676 2677 static int cache_map(struct dm_target *ti, struct bio *bio) 2678 { 2679 struct cache *cache = ti->private; 2680 2681 int r; 2682 bool commit_needed; 2683 dm_oblock_t block = get_bio_block(cache, bio); 2684 2685 init_per_bio_data(bio); 2686 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2687 /* 2688 * This can only occur if the io goes to a partial block at 2689 * the end of the origin device. We don't cache these. 2690 * Just remap to the origin and carry on. 2691 */ 2692 remap_to_origin(cache, bio); 2693 accounted_begin(cache, bio); 2694 return DM_MAPIO_REMAPPED; 2695 } 2696 2697 if (discard_or_flush(bio)) { 2698 defer_bio(cache, bio); 2699 return DM_MAPIO_SUBMITTED; 2700 } 2701 2702 r = map_bio(cache, bio, block, &commit_needed); 2703 if (commit_needed) 2704 schedule_commit(&cache->committer); 2705 2706 return r; 2707 } 2708 2709 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2710 { 2711 struct cache *cache = ti->private; 2712 unsigned long flags; 2713 struct per_bio_data *pb = get_per_bio_data(bio); 2714 2715 if (pb->tick) { 2716 policy_tick(cache->policy, false); 2717 2718 spin_lock_irqsave(&cache->lock, flags); 2719 cache->need_tick_bio = true; 2720 spin_unlock_irqrestore(&cache->lock, flags); 2721 } 2722 2723 bio_drop_shared_lock(cache, bio); 2724 accounted_complete(cache, bio); 2725 2726 return DM_ENDIO_DONE; 2727 } 2728 2729 static int write_dirty_bitset(struct cache *cache) 2730 { 2731 int r; 2732 2733 if (get_cache_mode(cache) >= CM_READ_ONLY) 2734 return -EINVAL; 2735 2736 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2737 if (r) 2738 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2739 2740 return r; 2741 } 2742 2743 static int write_discard_bitset(struct cache *cache) 2744 { 2745 unsigned i, r; 2746 2747 if (get_cache_mode(cache) >= CM_READ_ONLY) 2748 return -EINVAL; 2749 2750 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2751 cache->discard_nr_blocks); 2752 if (r) { 2753 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2754 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2755 return r; 2756 } 2757 2758 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2759 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2760 is_discarded(cache, to_dblock(i))); 2761 if (r) { 2762 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2763 return r; 2764 } 2765 } 2766 2767 return 0; 2768 } 2769 2770 static int write_hints(struct cache *cache) 2771 { 2772 int r; 2773 2774 if (get_cache_mode(cache) >= CM_READ_ONLY) 2775 return -EINVAL; 2776 2777 r = dm_cache_write_hints(cache->cmd, cache->policy); 2778 if (r) { 2779 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2780 return r; 2781 } 2782 2783 return 0; 2784 } 2785 2786 /* 2787 * returns true on success 2788 */ 2789 static bool sync_metadata(struct cache *cache) 2790 { 2791 int r1, r2, r3, r4; 2792 2793 r1 = write_dirty_bitset(cache); 2794 if (r1) 2795 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2796 2797 r2 = write_discard_bitset(cache); 2798 if (r2) 2799 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2800 2801 save_stats(cache); 2802 2803 r3 = write_hints(cache); 2804 if (r3) 2805 DMERR("%s: could not write hints", cache_device_name(cache)); 2806 2807 /* 2808 * If writing the above metadata failed, we still commit, but don't 2809 * set the clean shutdown flag. This will effectively force every 2810 * dirty bit to be set on reload. 2811 */ 2812 r4 = commit(cache, !r1 && !r2 && !r3); 2813 if (r4) 2814 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2815 2816 return !r1 && !r2 && !r3 && !r4; 2817 } 2818 2819 static void cache_postsuspend(struct dm_target *ti) 2820 { 2821 struct cache *cache = ti->private; 2822 2823 prevent_background_work(cache); 2824 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2825 2826 cancel_delayed_work_sync(&cache->waker); 2827 drain_workqueue(cache->wq); 2828 WARN_ON(cache->tracker.in_flight); 2829 2830 /* 2831 * If it's a flush suspend there won't be any deferred bios, so this 2832 * call is harmless. 2833 */ 2834 requeue_deferred_bios(cache); 2835 2836 if (get_cache_mode(cache) == CM_WRITE) 2837 (void) sync_metadata(cache); 2838 } 2839 2840 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2841 bool dirty, uint32_t hint, bool hint_valid) 2842 { 2843 int r; 2844 struct cache *cache = context; 2845 2846 if (dirty) { 2847 set_bit(from_cblock(cblock), cache->dirty_bitset); 2848 atomic_inc(&cache->nr_dirty); 2849 } else 2850 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2851 2852 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2853 if (r) 2854 return r; 2855 2856 return 0; 2857 } 2858 2859 /* 2860 * The discard block size in the on disk metadata is not 2861 * neccessarily the same as we're currently using. So we have to 2862 * be careful to only set the discarded attribute if we know it 2863 * covers a complete block of the new size. 2864 */ 2865 struct discard_load_info { 2866 struct cache *cache; 2867 2868 /* 2869 * These blocks are sized using the on disk dblock size, rather 2870 * than the current one. 2871 */ 2872 dm_block_t block_size; 2873 dm_block_t discard_begin, discard_end; 2874 }; 2875 2876 static void discard_load_info_init(struct cache *cache, 2877 struct discard_load_info *li) 2878 { 2879 li->cache = cache; 2880 li->discard_begin = li->discard_end = 0; 2881 } 2882 2883 static void set_discard_range(struct discard_load_info *li) 2884 { 2885 sector_t b, e; 2886 2887 if (li->discard_begin == li->discard_end) 2888 return; 2889 2890 /* 2891 * Convert to sectors. 2892 */ 2893 b = li->discard_begin * li->block_size; 2894 e = li->discard_end * li->block_size; 2895 2896 /* 2897 * Then convert back to the current dblock size. 2898 */ 2899 b = dm_sector_div_up(b, li->cache->discard_block_size); 2900 sector_div(e, li->cache->discard_block_size); 2901 2902 /* 2903 * The origin may have shrunk, so we need to check we're still in 2904 * bounds. 2905 */ 2906 if (e > from_dblock(li->cache->discard_nr_blocks)) 2907 e = from_dblock(li->cache->discard_nr_blocks); 2908 2909 for (; b < e; b++) 2910 set_discard(li->cache, to_dblock(b)); 2911 } 2912 2913 static int load_discard(void *context, sector_t discard_block_size, 2914 dm_dblock_t dblock, bool discard) 2915 { 2916 struct discard_load_info *li = context; 2917 2918 li->block_size = discard_block_size; 2919 2920 if (discard) { 2921 if (from_dblock(dblock) == li->discard_end) 2922 /* 2923 * We're already in a discard range, just extend it. 2924 */ 2925 li->discard_end = li->discard_end + 1ULL; 2926 2927 else { 2928 /* 2929 * Emit the old range and start a new one. 2930 */ 2931 set_discard_range(li); 2932 li->discard_begin = from_dblock(dblock); 2933 li->discard_end = li->discard_begin + 1ULL; 2934 } 2935 } else { 2936 set_discard_range(li); 2937 li->discard_begin = li->discard_end = 0; 2938 } 2939 2940 return 0; 2941 } 2942 2943 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2944 { 2945 sector_t size = get_dev_size(cache->cache_dev); 2946 (void) sector_div(size, cache->sectors_per_block); 2947 return to_cblock(size); 2948 } 2949 2950 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2951 { 2952 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2953 if (cache->sized) { 2954 DMERR("%s: unable to extend cache due to missing cache table reload", 2955 cache_device_name(cache)); 2956 return false; 2957 } 2958 } 2959 2960 /* 2961 * We can't drop a dirty block when shrinking the cache. 2962 */ 2963 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2964 new_size = to_cblock(from_cblock(new_size) + 1); 2965 if (is_dirty(cache, new_size)) { 2966 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2967 cache_device_name(cache), 2968 (unsigned long long) from_cblock(new_size)); 2969 return false; 2970 } 2971 } 2972 2973 return true; 2974 } 2975 2976 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2977 { 2978 int r; 2979 2980 r = dm_cache_resize(cache->cmd, new_size); 2981 if (r) { 2982 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2983 metadata_operation_failed(cache, "dm_cache_resize", r); 2984 return r; 2985 } 2986 2987 set_cache_size(cache, new_size); 2988 2989 return 0; 2990 } 2991 2992 static int cache_preresume(struct dm_target *ti) 2993 { 2994 int r = 0; 2995 struct cache *cache = ti->private; 2996 dm_cblock_t csize = get_cache_dev_size(cache); 2997 2998 /* 2999 * Check to see if the cache has resized. 3000 */ 3001 if (!cache->sized) { 3002 r = resize_cache_dev(cache, csize); 3003 if (r) 3004 return r; 3005 3006 cache->sized = true; 3007 3008 } else if (csize != cache->cache_size) { 3009 if (!can_resize(cache, csize)) 3010 return -EINVAL; 3011 3012 r = resize_cache_dev(cache, csize); 3013 if (r) 3014 return r; 3015 } 3016 3017 if (!cache->loaded_mappings) { 3018 r = dm_cache_load_mappings(cache->cmd, cache->policy, 3019 load_mapping, cache); 3020 if (r) { 3021 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 3022 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 3023 return r; 3024 } 3025 3026 cache->loaded_mappings = true; 3027 } 3028 3029 if (!cache->loaded_discards) { 3030 struct discard_load_info li; 3031 3032 /* 3033 * The discard bitset could have been resized, or the 3034 * discard block size changed. To be safe we start by 3035 * setting every dblock to not discarded. 3036 */ 3037 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 3038 3039 discard_load_info_init(cache, &li); 3040 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 3041 if (r) { 3042 DMERR("%s: could not load origin discards", cache_device_name(cache)); 3043 metadata_operation_failed(cache, "dm_cache_load_discards", r); 3044 return r; 3045 } 3046 set_discard_range(&li); 3047 3048 cache->loaded_discards = true; 3049 } 3050 3051 return r; 3052 } 3053 3054 static void cache_resume(struct dm_target *ti) 3055 { 3056 struct cache *cache = ti->private; 3057 3058 cache->need_tick_bio = true; 3059 allow_background_work(cache); 3060 do_waker(&cache->waker.work); 3061 } 3062 3063 static void emit_flags(struct cache *cache, char *result, 3064 unsigned maxlen, ssize_t *sz_ptr) 3065 { 3066 ssize_t sz = *sz_ptr; 3067 struct cache_features *cf = &cache->features; 3068 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 3069 3070 DMEMIT("%u ", count); 3071 3072 if (cf->metadata_version == 2) 3073 DMEMIT("metadata2 "); 3074 3075 if (writethrough_mode(cache)) 3076 DMEMIT("writethrough "); 3077 3078 else if (passthrough_mode(cache)) 3079 DMEMIT("passthrough "); 3080 3081 else if (writeback_mode(cache)) 3082 DMEMIT("writeback "); 3083 3084 else { 3085 DMEMIT("unknown "); 3086 DMERR("%s: internal error: unknown io mode: %d", 3087 cache_device_name(cache), (int) cf->io_mode); 3088 } 3089 3090 if (!cf->discard_passdown) 3091 DMEMIT("no_discard_passdown "); 3092 3093 *sz_ptr = sz; 3094 } 3095 3096 /* 3097 * Status format: 3098 * 3099 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3100 * <cache block size> <#used cache blocks>/<#total cache blocks> 3101 * <#read hits> <#read misses> <#write hits> <#write misses> 3102 * <#demotions> <#promotions> <#dirty> 3103 * <#features> <features>* 3104 * <#core args> <core args> 3105 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3106 */ 3107 static void cache_status(struct dm_target *ti, status_type_t type, 3108 unsigned status_flags, char *result, unsigned maxlen) 3109 { 3110 int r = 0; 3111 unsigned i; 3112 ssize_t sz = 0; 3113 dm_block_t nr_free_blocks_metadata = 0; 3114 dm_block_t nr_blocks_metadata = 0; 3115 char buf[BDEVNAME_SIZE]; 3116 struct cache *cache = ti->private; 3117 dm_cblock_t residency; 3118 bool needs_check; 3119 3120 switch (type) { 3121 case STATUSTYPE_INFO: 3122 if (get_cache_mode(cache) == CM_FAIL) { 3123 DMEMIT("Fail"); 3124 break; 3125 } 3126 3127 /* Commit to ensure statistics aren't out-of-date */ 3128 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3129 (void) commit(cache, false); 3130 3131 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3132 if (r) { 3133 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3134 cache_device_name(cache), r); 3135 goto err; 3136 } 3137 3138 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3139 if (r) { 3140 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3141 cache_device_name(cache), r); 3142 goto err; 3143 } 3144 3145 residency = policy_residency(cache->policy); 3146 3147 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3148 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, 3149 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3150 (unsigned long long)nr_blocks_metadata, 3151 (unsigned long long)cache->sectors_per_block, 3152 (unsigned long long) from_cblock(residency), 3153 (unsigned long long) from_cblock(cache->cache_size), 3154 (unsigned) atomic_read(&cache->stats.read_hit), 3155 (unsigned) atomic_read(&cache->stats.read_miss), 3156 (unsigned) atomic_read(&cache->stats.write_hit), 3157 (unsigned) atomic_read(&cache->stats.write_miss), 3158 (unsigned) atomic_read(&cache->stats.demotion), 3159 (unsigned) atomic_read(&cache->stats.promotion), 3160 (unsigned long) atomic_read(&cache->nr_dirty)); 3161 3162 emit_flags(cache, result, maxlen, &sz); 3163 3164 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3165 3166 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3167 if (sz < maxlen) { 3168 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3169 if (r) 3170 DMERR("%s: policy_emit_config_values returned %d", 3171 cache_device_name(cache), r); 3172 } 3173 3174 if (get_cache_mode(cache) == CM_READ_ONLY) 3175 DMEMIT("ro "); 3176 else 3177 DMEMIT("rw "); 3178 3179 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3180 3181 if (r || needs_check) 3182 DMEMIT("needs_check "); 3183 else 3184 DMEMIT("- "); 3185 3186 break; 3187 3188 case STATUSTYPE_TABLE: 3189 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3190 DMEMIT("%s ", buf); 3191 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3192 DMEMIT("%s ", buf); 3193 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3194 DMEMIT("%s", buf); 3195 3196 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3197 DMEMIT(" %s", cache->ctr_args[i]); 3198 if (cache->nr_ctr_args) 3199 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3200 } 3201 3202 return; 3203 3204 err: 3205 DMEMIT("Error"); 3206 } 3207 3208 /* 3209 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3210 * the one-past-the-end value. 3211 */ 3212 struct cblock_range { 3213 dm_cblock_t begin; 3214 dm_cblock_t end; 3215 }; 3216 3217 /* 3218 * A cache block range can take two forms: 3219 * 3220 * i) A single cblock, eg. '3456' 3221 * ii) A begin and end cblock with a dash between, eg. 123-234 3222 */ 3223 static int parse_cblock_range(struct cache *cache, const char *str, 3224 struct cblock_range *result) 3225 { 3226 char dummy; 3227 uint64_t b, e; 3228 int r; 3229 3230 /* 3231 * Try and parse form (ii) first. 3232 */ 3233 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3234 if (r < 0) 3235 return r; 3236 3237 if (r == 2) { 3238 result->begin = to_cblock(b); 3239 result->end = to_cblock(e); 3240 return 0; 3241 } 3242 3243 /* 3244 * That didn't work, try form (i). 3245 */ 3246 r = sscanf(str, "%llu%c", &b, &dummy); 3247 if (r < 0) 3248 return r; 3249 3250 if (r == 1) { 3251 result->begin = to_cblock(b); 3252 result->end = to_cblock(from_cblock(result->begin) + 1u); 3253 return 0; 3254 } 3255 3256 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3257 return -EINVAL; 3258 } 3259 3260 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3261 { 3262 uint64_t b = from_cblock(range->begin); 3263 uint64_t e = from_cblock(range->end); 3264 uint64_t n = from_cblock(cache->cache_size); 3265 3266 if (b >= n) { 3267 DMERR("%s: begin cblock out of range: %llu >= %llu", 3268 cache_device_name(cache), b, n); 3269 return -EINVAL; 3270 } 3271 3272 if (e > n) { 3273 DMERR("%s: end cblock out of range: %llu > %llu", 3274 cache_device_name(cache), e, n); 3275 return -EINVAL; 3276 } 3277 3278 if (b >= e) { 3279 DMERR("%s: invalid cblock range: %llu >= %llu", 3280 cache_device_name(cache), b, e); 3281 return -EINVAL; 3282 } 3283 3284 return 0; 3285 } 3286 3287 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3288 { 3289 return to_cblock(from_cblock(b) + 1); 3290 } 3291 3292 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3293 { 3294 int r = 0; 3295 3296 /* 3297 * We don't need to do any locking here because we know we're in 3298 * passthrough mode. There's is potential for a race between an 3299 * invalidation triggered by an io and an invalidation message. This 3300 * is harmless, we must not worry if the policy call fails. 3301 */ 3302 while (range->begin != range->end) { 3303 r = invalidate_cblock(cache, range->begin); 3304 if (r) 3305 return r; 3306 3307 range->begin = cblock_succ(range->begin); 3308 } 3309 3310 cache->commit_requested = true; 3311 return r; 3312 } 3313 3314 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 3315 const char **cblock_ranges) 3316 { 3317 int r = 0; 3318 unsigned i; 3319 struct cblock_range range; 3320 3321 if (!passthrough_mode(cache)) { 3322 DMERR("%s: cache has to be in passthrough mode for invalidation", 3323 cache_device_name(cache)); 3324 return -EPERM; 3325 } 3326 3327 for (i = 0; i < count; i++) { 3328 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3329 if (r) 3330 break; 3331 3332 r = validate_cblock_range(cache, &range); 3333 if (r) 3334 break; 3335 3336 /* 3337 * Pass begin and end origin blocks to the worker and wake it. 3338 */ 3339 r = request_invalidation(cache, &range); 3340 if (r) 3341 break; 3342 } 3343 3344 return r; 3345 } 3346 3347 /* 3348 * Supports 3349 * "<key> <value>" 3350 * and 3351 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3352 * 3353 * The key migration_threshold is supported by the cache target core. 3354 */ 3355 static int cache_message(struct dm_target *ti, unsigned argc, char **argv, 3356 char *result, unsigned maxlen) 3357 { 3358 struct cache *cache = ti->private; 3359 3360 if (!argc) 3361 return -EINVAL; 3362 3363 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3364 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3365 cache_device_name(cache)); 3366 return -EOPNOTSUPP; 3367 } 3368 3369 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3370 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3371 3372 if (argc != 2) 3373 return -EINVAL; 3374 3375 return set_config_value(cache, argv[0], argv[1]); 3376 } 3377 3378 static int cache_iterate_devices(struct dm_target *ti, 3379 iterate_devices_callout_fn fn, void *data) 3380 { 3381 int r = 0; 3382 struct cache *cache = ti->private; 3383 3384 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3385 if (!r) 3386 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3387 3388 return r; 3389 } 3390 3391 static bool origin_dev_supports_discard(struct block_device *origin_bdev) 3392 { 3393 struct request_queue *q = bdev_get_queue(origin_bdev); 3394 3395 return q && blk_queue_discard(q); 3396 } 3397 3398 /* 3399 * If discard_passdown was enabled verify that the origin device 3400 * supports discards. Disable discard_passdown if not. 3401 */ 3402 static void disable_passdown_if_not_supported(struct cache *cache) 3403 { 3404 struct block_device *origin_bdev = cache->origin_dev->bdev; 3405 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3406 const char *reason = NULL; 3407 char buf[BDEVNAME_SIZE]; 3408 3409 if (!cache->features.discard_passdown) 3410 return; 3411 3412 if (!origin_dev_supports_discard(origin_bdev)) 3413 reason = "discard unsupported"; 3414 3415 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3416 reason = "max discard sectors smaller than a block"; 3417 3418 if (reason) { 3419 DMWARN("Origin device (%s) %s: Disabling discard passdown.", 3420 bdevname(origin_bdev, buf), reason); 3421 cache->features.discard_passdown = false; 3422 } 3423 } 3424 3425 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3426 { 3427 struct block_device *origin_bdev = cache->origin_dev->bdev; 3428 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3429 3430 if (!cache->features.discard_passdown) { 3431 /* No passdown is done so setting own virtual limits */ 3432 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3433 cache->origin_sectors); 3434 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3435 return; 3436 } 3437 3438 /* 3439 * cache_iterate_devices() is stacking both origin and fast device limits 3440 * but discards aren't passed to fast device, so inherit origin's limits. 3441 */ 3442 limits->max_discard_sectors = origin_limits->max_discard_sectors; 3443 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3444 limits->discard_granularity = origin_limits->discard_granularity; 3445 limits->discard_alignment = origin_limits->discard_alignment; 3446 limits->discard_misaligned = origin_limits->discard_misaligned; 3447 } 3448 3449 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3450 { 3451 struct cache *cache = ti->private; 3452 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3453 3454 /* 3455 * If the system-determined stacked limits are compatible with the 3456 * cache's blocksize (io_opt is a factor) do not override them. 3457 */ 3458 if (io_opt_sectors < cache->sectors_per_block || 3459 do_div(io_opt_sectors, cache->sectors_per_block)) { 3460 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3461 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3462 } 3463 3464 disable_passdown_if_not_supported(cache); 3465 set_discard_limits(cache, limits); 3466 } 3467 3468 /*----------------------------------------------------------------*/ 3469 3470 static struct target_type cache_target = { 3471 .name = "cache", 3472 .version = {2, 2, 0}, 3473 .module = THIS_MODULE, 3474 .ctr = cache_ctr, 3475 .dtr = cache_dtr, 3476 .map = cache_map, 3477 .end_io = cache_end_io, 3478 .postsuspend = cache_postsuspend, 3479 .preresume = cache_preresume, 3480 .resume = cache_resume, 3481 .status = cache_status, 3482 .message = cache_message, 3483 .iterate_devices = cache_iterate_devices, 3484 .io_hints = cache_io_hints, 3485 }; 3486 3487 static int __init dm_cache_init(void) 3488 { 3489 int r; 3490 3491 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3492 if (!migration_cache) 3493 return -ENOMEM; 3494 3495 r = dm_register_target(&cache_target); 3496 if (r) { 3497 DMERR("cache target registration failed: %d", r); 3498 kmem_cache_destroy(migration_cache); 3499 return r; 3500 } 3501 3502 return 0; 3503 } 3504 3505 static void __exit dm_cache_exit(void) 3506 { 3507 dm_unregister_target(&cache_target); 3508 kmem_cache_destroy(migration_cache); 3509 } 3510 3511 module_init(dm_cache_init); 3512 module_exit(dm_cache_exit); 3513 3514 MODULE_DESCRIPTION(DM_NAME " cache target"); 3515 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3516 MODULE_LICENSE("GPL"); 3517