xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 79e790ff)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 
78 	spin_lock_irq(&iot->lock);
79 	r = __iot_idle_for(iot, jifs);
80 	spin_unlock_irq(&iot->lock);
81 
82 	return r;
83 }
84 
85 static void iot_io_begin(struct io_tracker *iot, sector_t len)
86 {
87 	spin_lock_irq(&iot->lock);
88 	iot->in_flight += len;
89 	spin_unlock_irq(&iot->lock);
90 }
91 
92 static void __iot_io_end(struct io_tracker *iot, sector_t len)
93 {
94 	if (!len)
95 		return;
96 
97 	iot->in_flight -= len;
98 	if (!iot->in_flight)
99 		iot->idle_time = jiffies;
100 }
101 
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&iot->lock, flags);
107 	__iot_io_end(iot, len);
108 	spin_unlock_irqrestore(&iot->lock, flags);
109 }
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118 	struct work_struct ws;
119 	blk_status_t input;
120 };
121 
122 static inline void init_continuation(struct continuation *k,
123 				     void (*fn)(struct work_struct *))
124 {
125 	INIT_WORK(&k->ws, fn);
126 	k->input = 0;
127 }
128 
129 static inline void queue_continuation(struct workqueue_struct *wq,
130 				      struct continuation *k)
131 {
132 	queue_work(wq, &k->ws);
133 }
134 
135 /*----------------------------------------------------------------*/
136 
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142 	/*
143 	 * The operation that everyone is waiting for.
144 	 */
145 	blk_status_t (*commit_op)(void *context);
146 	void *commit_context;
147 
148 	/*
149 	 * This is how bios should be issued once the commit op is complete
150 	 * (accounted_request).
151 	 */
152 	void (*issue_op)(struct bio *bio, void *context);
153 	void *issue_context;
154 
155 	/*
156 	 * Queued work gets put on here after commit.
157 	 */
158 	struct workqueue_struct *wq;
159 
160 	spinlock_t lock;
161 	struct list_head work_items;
162 	struct bio_list bios;
163 	struct work_struct commit_work;
164 
165 	bool commit_scheduled;
166 };
167 
168 static void __commit(struct work_struct *_ws)
169 {
170 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
171 	blk_status_t r;
172 	struct list_head work_items;
173 	struct work_struct *ws, *tmp;
174 	struct continuation *k;
175 	struct bio *bio;
176 	struct bio_list bios;
177 
178 	INIT_LIST_HEAD(&work_items);
179 	bio_list_init(&bios);
180 
181 	/*
182 	 * We have to grab these before the commit_op to avoid a race
183 	 * condition.
184 	 */
185 	spin_lock_irq(&b->lock);
186 	list_splice_init(&b->work_items, &work_items);
187 	bio_list_merge(&bios, &b->bios);
188 	bio_list_init(&b->bios);
189 	b->commit_scheduled = false;
190 	spin_unlock_irq(&b->lock);
191 
192 	r = b->commit_op(b->commit_context);
193 
194 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195 		k = container_of(ws, struct continuation, ws);
196 		k->input = r;
197 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198 		queue_work(b->wq, ws);
199 	}
200 
201 	while ((bio = bio_list_pop(&bios))) {
202 		if (r) {
203 			bio->bi_status = r;
204 			bio_endio(bio);
205 		} else
206 			b->issue_op(bio, b->issue_context);
207 	}
208 }
209 
210 static void batcher_init(struct batcher *b,
211 			 blk_status_t (*commit_op)(void *),
212 			 void *commit_context,
213 			 void (*issue_op)(struct bio *bio, void *),
214 			 void *issue_context,
215 			 struct workqueue_struct *wq)
216 {
217 	b->commit_op = commit_op;
218 	b->commit_context = commit_context;
219 	b->issue_op = issue_op;
220 	b->issue_context = issue_context;
221 	b->wq = wq;
222 
223 	spin_lock_init(&b->lock);
224 	INIT_LIST_HEAD(&b->work_items);
225 	bio_list_init(&b->bios);
226 	INIT_WORK(&b->commit_work, __commit);
227 	b->commit_scheduled = false;
228 }
229 
230 static void async_commit(struct batcher *b)
231 {
232 	queue_work(b->wq, &b->commit_work);
233 }
234 
235 static void continue_after_commit(struct batcher *b, struct continuation *k)
236 {
237 	bool commit_scheduled;
238 
239 	spin_lock_irq(&b->lock);
240 	commit_scheduled = b->commit_scheduled;
241 	list_add_tail(&k->ws.entry, &b->work_items);
242 	spin_unlock_irq(&b->lock);
243 
244 	if (commit_scheduled)
245 		async_commit(b);
246 }
247 
248 /*
249  * Bios are errored if commit failed.
250  */
251 static void issue_after_commit(struct batcher *b, struct bio *bio)
252 {
253        bool commit_scheduled;
254 
255        spin_lock_irq(&b->lock);
256        commit_scheduled = b->commit_scheduled;
257        bio_list_add(&b->bios, bio);
258        spin_unlock_irq(&b->lock);
259 
260        if (commit_scheduled)
261 	       async_commit(b);
262 }
263 
264 /*
265  * Call this if some urgent work is waiting for the commit to complete.
266  */
267 static void schedule_commit(struct batcher *b)
268 {
269 	bool immediate;
270 
271 	spin_lock_irq(&b->lock);
272 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273 	b->commit_scheduled = true;
274 	spin_unlock_irq(&b->lock);
275 
276 	if (immediate)
277 		async_commit(b);
278 }
279 
280 /*
281  * There are a couple of places where we let a bio run, but want to do some
282  * work before calling its endio function.  We do this by temporarily
283  * changing the endio fn.
284  */
285 struct dm_hook_info {
286 	bio_end_io_t *bi_end_io;
287 };
288 
289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290 			bio_end_io_t *bi_end_io, void *bi_private)
291 {
292 	h->bi_end_io = bio->bi_end_io;
293 
294 	bio->bi_end_io = bi_end_io;
295 	bio->bi_private = bi_private;
296 }
297 
298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299 {
300 	bio->bi_end_io = h->bi_end_io;
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 #define MIGRATION_POOL_SIZE 128
306 #define COMMIT_PERIOD HZ
307 #define MIGRATION_COUNT_WINDOW 10
308 
309 /*
310  * The block size of the device holding cache data must be
311  * between 32KB and 1GB.
312  */
313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315 
316 enum cache_metadata_mode {
317 	CM_WRITE,		/* metadata may be changed */
318 	CM_READ_ONLY,		/* metadata may not be changed */
319 	CM_FAIL
320 };
321 
322 enum cache_io_mode {
323 	/*
324 	 * Data is written to cached blocks only.  These blocks are marked
325 	 * dirty.  If you lose the cache device you will lose data.
326 	 * Potential performance increase for both reads and writes.
327 	 */
328 	CM_IO_WRITEBACK,
329 
330 	/*
331 	 * Data is written to both cache and origin.  Blocks are never
332 	 * dirty.  Potential performance benfit for reads only.
333 	 */
334 	CM_IO_WRITETHROUGH,
335 
336 	/*
337 	 * A degraded mode useful for various cache coherency situations
338 	 * (eg, rolling back snapshots).  Reads and writes always go to the
339 	 * origin.  If a write goes to a cached oblock, then the cache
340 	 * block is invalidated.
341 	 */
342 	CM_IO_PASSTHROUGH
343 };
344 
345 struct cache_features {
346 	enum cache_metadata_mode mode;
347 	enum cache_io_mode io_mode;
348 	unsigned metadata_version;
349 	bool discard_passdown:1;
350 };
351 
352 struct cache_stats {
353 	atomic_t read_hit;
354 	atomic_t read_miss;
355 	atomic_t write_hit;
356 	atomic_t write_miss;
357 	atomic_t demotion;
358 	atomic_t promotion;
359 	atomic_t writeback;
360 	atomic_t copies_avoided;
361 	atomic_t cache_cell_clash;
362 	atomic_t commit_count;
363 	atomic_t discard_count;
364 };
365 
366 struct cache {
367 	struct dm_target *ti;
368 	spinlock_t lock;
369 
370 	/*
371 	 * Fields for converting from sectors to blocks.
372 	 */
373 	int sectors_per_block_shift;
374 	sector_t sectors_per_block;
375 
376 	struct dm_cache_metadata *cmd;
377 
378 	/*
379 	 * Metadata is written to this device.
380 	 */
381 	struct dm_dev *metadata_dev;
382 
383 	/*
384 	 * The slower of the two data devices.  Typically a spindle.
385 	 */
386 	struct dm_dev *origin_dev;
387 
388 	/*
389 	 * The faster of the two data devices.  Typically an SSD.
390 	 */
391 	struct dm_dev *cache_dev;
392 
393 	/*
394 	 * Size of the origin device in _complete_ blocks and native sectors.
395 	 */
396 	dm_oblock_t origin_blocks;
397 	sector_t origin_sectors;
398 
399 	/*
400 	 * Size of the cache device in blocks.
401 	 */
402 	dm_cblock_t cache_size;
403 
404 	/*
405 	 * Invalidation fields.
406 	 */
407 	spinlock_t invalidation_lock;
408 	struct list_head invalidation_requests;
409 
410 	sector_t migration_threshold;
411 	wait_queue_head_t migration_wait;
412 	atomic_t nr_allocated_migrations;
413 
414 	/*
415 	 * The number of in flight migrations that are performing
416 	 * background io. eg, promotion, writeback.
417 	 */
418 	atomic_t nr_io_migrations;
419 
420 	struct bio_list deferred_bios;
421 
422 	struct rw_semaphore quiesce_lock;
423 
424 	/*
425 	 * origin_blocks entries, discarded if set.
426 	 */
427 	dm_dblock_t discard_nr_blocks;
428 	unsigned long *discard_bitset;
429 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
430 
431 	/*
432 	 * Rather than reconstructing the table line for the status we just
433 	 * save it and regurgitate.
434 	 */
435 	unsigned nr_ctr_args;
436 	const char **ctr_args;
437 
438 	struct dm_kcopyd_client *copier;
439 	struct work_struct deferred_bio_worker;
440 	struct work_struct migration_worker;
441 	struct workqueue_struct *wq;
442 	struct delayed_work waker;
443 	struct dm_bio_prison_v2 *prison;
444 
445 	/*
446 	 * cache_size entries, dirty if set
447 	 */
448 	unsigned long *dirty_bitset;
449 	atomic_t nr_dirty;
450 
451 	unsigned policy_nr_args;
452 	struct dm_cache_policy *policy;
453 
454 	/*
455 	 * Cache features such as write-through.
456 	 */
457 	struct cache_features features;
458 
459 	struct cache_stats stats;
460 
461 	bool need_tick_bio:1;
462 	bool sized:1;
463 	bool invalidate:1;
464 	bool commit_requested:1;
465 	bool loaded_mappings:1;
466 	bool loaded_discards:1;
467 
468 	struct rw_semaphore background_work_lock;
469 
470 	struct batcher committer;
471 	struct work_struct commit_ws;
472 
473 	struct io_tracker tracker;
474 
475 	mempool_t migration_pool;
476 
477 	struct bio_set bs;
478 };
479 
480 struct per_bio_data {
481 	bool tick:1;
482 	unsigned req_nr:2;
483 	struct dm_bio_prison_cell_v2 *cell;
484 	struct dm_hook_info hook_info;
485 	sector_t len;
486 };
487 
488 struct dm_cache_migration {
489 	struct continuation k;
490 	struct cache *cache;
491 
492 	struct policy_work *op;
493 	struct bio *overwrite_bio;
494 	struct dm_bio_prison_cell_v2 *cell;
495 
496 	dm_cblock_t invalidate_cblock;
497 	dm_oblock_t invalidate_oblock;
498 };
499 
500 /*----------------------------------------------------------------*/
501 
502 static bool writethrough_mode(struct cache *cache)
503 {
504 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
505 }
506 
507 static bool writeback_mode(struct cache *cache)
508 {
509 	return cache->features.io_mode == CM_IO_WRITEBACK;
510 }
511 
512 static inline bool passthrough_mode(struct cache *cache)
513 {
514 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
515 }
516 
517 /*----------------------------------------------------------------*/
518 
519 static void wake_deferred_bio_worker(struct cache *cache)
520 {
521 	queue_work(cache->wq, &cache->deferred_bio_worker);
522 }
523 
524 static void wake_migration_worker(struct cache *cache)
525 {
526 	if (passthrough_mode(cache))
527 		return;
528 
529 	queue_work(cache->wq, &cache->migration_worker);
530 }
531 
532 /*----------------------------------------------------------------*/
533 
534 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
535 {
536 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
537 }
538 
539 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
540 {
541 	dm_bio_prison_free_cell_v2(cache->prison, cell);
542 }
543 
544 static struct dm_cache_migration *alloc_migration(struct cache *cache)
545 {
546 	struct dm_cache_migration *mg;
547 
548 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
549 
550 	memset(mg, 0, sizeof(*mg));
551 
552 	mg->cache = cache;
553 	atomic_inc(&cache->nr_allocated_migrations);
554 
555 	return mg;
556 }
557 
558 static void free_migration(struct dm_cache_migration *mg)
559 {
560 	struct cache *cache = mg->cache;
561 
562 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
563 		wake_up(&cache->migration_wait);
564 
565 	mempool_free(mg, &cache->migration_pool);
566 }
567 
568 /*----------------------------------------------------------------*/
569 
570 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
571 {
572 	return to_oblock(from_oblock(b) + 1ull);
573 }
574 
575 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
576 {
577 	key->virtual = 0;
578 	key->dev = 0;
579 	key->block_begin = from_oblock(begin);
580 	key->block_end = from_oblock(end);
581 }
582 
583 /*
584  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
585  * level 1 which prevents *both* READs and WRITEs.
586  */
587 #define WRITE_LOCK_LEVEL 0
588 #define READ_WRITE_LOCK_LEVEL 1
589 
590 static unsigned lock_level(struct bio *bio)
591 {
592 	return bio_data_dir(bio) == WRITE ?
593 		WRITE_LOCK_LEVEL :
594 		READ_WRITE_LOCK_LEVEL;
595 }
596 
597 /*----------------------------------------------------------------
598  * Per bio data
599  *--------------------------------------------------------------*/
600 
601 static struct per_bio_data *get_per_bio_data(struct bio *bio)
602 {
603 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
604 	BUG_ON(!pb);
605 	return pb;
606 }
607 
608 static struct per_bio_data *init_per_bio_data(struct bio *bio)
609 {
610 	struct per_bio_data *pb = get_per_bio_data(bio);
611 
612 	pb->tick = false;
613 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
614 	pb->cell = NULL;
615 	pb->len = 0;
616 
617 	return pb;
618 }
619 
620 /*----------------------------------------------------------------*/
621 
622 static void defer_bio(struct cache *cache, struct bio *bio)
623 {
624 	spin_lock_irq(&cache->lock);
625 	bio_list_add(&cache->deferred_bios, bio);
626 	spin_unlock_irq(&cache->lock);
627 
628 	wake_deferred_bio_worker(cache);
629 }
630 
631 static void defer_bios(struct cache *cache, struct bio_list *bios)
632 {
633 	spin_lock_irq(&cache->lock);
634 	bio_list_merge(&cache->deferred_bios, bios);
635 	bio_list_init(bios);
636 	spin_unlock_irq(&cache->lock);
637 
638 	wake_deferred_bio_worker(cache);
639 }
640 
641 /*----------------------------------------------------------------*/
642 
643 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
644 {
645 	bool r;
646 	struct per_bio_data *pb;
647 	struct dm_cell_key_v2 key;
648 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
649 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
650 
651 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
652 
653 	build_key(oblock, end, &key);
654 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
655 	if (!r) {
656 		/*
657 		 * Failed to get the lock.
658 		 */
659 		free_prison_cell(cache, cell_prealloc);
660 		return r;
661 	}
662 
663 	if (cell != cell_prealloc)
664 		free_prison_cell(cache, cell_prealloc);
665 
666 	pb = get_per_bio_data(bio);
667 	pb->cell = cell;
668 
669 	return r;
670 }
671 
672 /*----------------------------------------------------------------*/
673 
674 static bool is_dirty(struct cache *cache, dm_cblock_t b)
675 {
676 	return test_bit(from_cblock(b), cache->dirty_bitset);
677 }
678 
679 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
680 {
681 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
682 		atomic_inc(&cache->nr_dirty);
683 		policy_set_dirty(cache->policy, cblock);
684 	}
685 }
686 
687 /*
688  * These two are called when setting after migrations to force the policy
689  * and dirty bitset to be in sync.
690  */
691 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
692 {
693 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
694 		atomic_inc(&cache->nr_dirty);
695 	policy_set_dirty(cache->policy, cblock);
696 }
697 
698 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
699 {
700 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
701 		if (atomic_dec_return(&cache->nr_dirty) == 0)
702 			dm_table_event(cache->ti->table);
703 	}
704 
705 	policy_clear_dirty(cache->policy, cblock);
706 }
707 
708 /*----------------------------------------------------------------*/
709 
710 static bool block_size_is_power_of_two(struct cache *cache)
711 {
712 	return cache->sectors_per_block_shift >= 0;
713 }
714 
715 static dm_block_t block_div(dm_block_t b, uint32_t n)
716 {
717 	do_div(b, n);
718 
719 	return b;
720 }
721 
722 static dm_block_t oblocks_per_dblock(struct cache *cache)
723 {
724 	dm_block_t oblocks = cache->discard_block_size;
725 
726 	if (block_size_is_power_of_two(cache))
727 		oblocks >>= cache->sectors_per_block_shift;
728 	else
729 		oblocks = block_div(oblocks, cache->sectors_per_block);
730 
731 	return oblocks;
732 }
733 
734 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
735 {
736 	return to_dblock(block_div(from_oblock(oblock),
737 				   oblocks_per_dblock(cache)));
738 }
739 
740 static void set_discard(struct cache *cache, dm_dblock_t b)
741 {
742 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
743 	atomic_inc(&cache->stats.discard_count);
744 
745 	spin_lock_irq(&cache->lock);
746 	set_bit(from_dblock(b), cache->discard_bitset);
747 	spin_unlock_irq(&cache->lock);
748 }
749 
750 static void clear_discard(struct cache *cache, dm_dblock_t b)
751 {
752 	spin_lock_irq(&cache->lock);
753 	clear_bit(from_dblock(b), cache->discard_bitset);
754 	spin_unlock_irq(&cache->lock);
755 }
756 
757 static bool is_discarded(struct cache *cache, dm_dblock_t b)
758 {
759 	int r;
760 	spin_lock_irq(&cache->lock);
761 	r = test_bit(from_dblock(b), cache->discard_bitset);
762 	spin_unlock_irq(&cache->lock);
763 
764 	return r;
765 }
766 
767 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
768 {
769 	int r;
770 	spin_lock_irq(&cache->lock);
771 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
772 		     cache->discard_bitset);
773 	spin_unlock_irq(&cache->lock);
774 
775 	return r;
776 }
777 
778 /*----------------------------------------------------------------
779  * Remapping
780  *--------------------------------------------------------------*/
781 static void remap_to_origin(struct cache *cache, struct bio *bio)
782 {
783 	bio_set_dev(bio, cache->origin_dev->bdev);
784 }
785 
786 static void remap_to_cache(struct cache *cache, struct bio *bio,
787 			   dm_cblock_t cblock)
788 {
789 	sector_t bi_sector = bio->bi_iter.bi_sector;
790 	sector_t block = from_cblock(cblock);
791 
792 	bio_set_dev(bio, cache->cache_dev->bdev);
793 	if (!block_size_is_power_of_two(cache))
794 		bio->bi_iter.bi_sector =
795 			(block * cache->sectors_per_block) +
796 			sector_div(bi_sector, cache->sectors_per_block);
797 	else
798 		bio->bi_iter.bi_sector =
799 			(block << cache->sectors_per_block_shift) |
800 			(bi_sector & (cache->sectors_per_block - 1));
801 }
802 
803 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
804 {
805 	struct per_bio_data *pb;
806 
807 	spin_lock_irq(&cache->lock);
808 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
809 	    bio_op(bio) != REQ_OP_DISCARD) {
810 		pb = get_per_bio_data(bio);
811 		pb->tick = true;
812 		cache->need_tick_bio = false;
813 	}
814 	spin_unlock_irq(&cache->lock);
815 }
816 
817 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
818 					    dm_oblock_t oblock, bool bio_has_pbd)
819 {
820 	if (bio_has_pbd)
821 		check_if_tick_bio_needed(cache, bio);
822 	remap_to_origin(cache, bio);
823 	if (bio_data_dir(bio) == WRITE)
824 		clear_discard(cache, oblock_to_dblock(cache, oblock));
825 }
826 
827 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
828 					  dm_oblock_t oblock)
829 {
830 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
831 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
832 }
833 
834 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
835 				 dm_oblock_t oblock, dm_cblock_t cblock)
836 {
837 	check_if_tick_bio_needed(cache, bio);
838 	remap_to_cache(cache, bio, cblock);
839 	if (bio_data_dir(bio) == WRITE) {
840 		set_dirty(cache, cblock);
841 		clear_discard(cache, oblock_to_dblock(cache, oblock));
842 	}
843 }
844 
845 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
846 {
847 	sector_t block_nr = bio->bi_iter.bi_sector;
848 
849 	if (!block_size_is_power_of_two(cache))
850 		(void) sector_div(block_nr, cache->sectors_per_block);
851 	else
852 		block_nr >>= cache->sectors_per_block_shift;
853 
854 	return to_oblock(block_nr);
855 }
856 
857 static bool accountable_bio(struct cache *cache, struct bio *bio)
858 {
859 	return bio_op(bio) != REQ_OP_DISCARD;
860 }
861 
862 static void accounted_begin(struct cache *cache, struct bio *bio)
863 {
864 	struct per_bio_data *pb;
865 
866 	if (accountable_bio(cache, bio)) {
867 		pb = get_per_bio_data(bio);
868 		pb->len = bio_sectors(bio);
869 		iot_io_begin(&cache->tracker, pb->len);
870 	}
871 }
872 
873 static void accounted_complete(struct cache *cache, struct bio *bio)
874 {
875 	struct per_bio_data *pb = get_per_bio_data(bio);
876 
877 	iot_io_end(&cache->tracker, pb->len);
878 }
879 
880 static void accounted_request(struct cache *cache, struct bio *bio)
881 {
882 	accounted_begin(cache, bio);
883 	submit_bio_noacct(bio);
884 }
885 
886 static void issue_op(struct bio *bio, void *context)
887 {
888 	struct cache *cache = context;
889 	accounted_request(cache, bio);
890 }
891 
892 /*
893  * When running in writethrough mode we need to send writes to clean blocks
894  * to both the cache and origin devices.  Clone the bio and send them in parallel.
895  */
896 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
897 				      dm_oblock_t oblock, dm_cblock_t cblock)
898 {
899 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
900 
901 	BUG_ON(!origin_bio);
902 
903 	bio_chain(origin_bio, bio);
904 	/*
905 	 * Passing false to __remap_to_origin_clear_discard() skips
906 	 * all code that might use per_bio_data (since clone doesn't have it)
907 	 */
908 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
909 	submit_bio(origin_bio);
910 
911 	remap_to_cache(cache, bio, cblock);
912 }
913 
914 /*----------------------------------------------------------------
915  * Failure modes
916  *--------------------------------------------------------------*/
917 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
918 {
919 	return cache->features.mode;
920 }
921 
922 static const char *cache_device_name(struct cache *cache)
923 {
924 	return dm_table_device_name(cache->ti->table);
925 }
926 
927 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
928 {
929 	const char *descs[] = {
930 		"write",
931 		"read-only",
932 		"fail"
933 	};
934 
935 	dm_table_event(cache->ti->table);
936 	DMINFO("%s: switching cache to %s mode",
937 	       cache_device_name(cache), descs[(int)mode]);
938 }
939 
940 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
941 {
942 	bool needs_check;
943 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
944 
945 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
946 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
947 		      cache_device_name(cache));
948 		new_mode = CM_FAIL;
949 	}
950 
951 	if (new_mode == CM_WRITE && needs_check) {
952 		DMERR("%s: unable to switch cache to write mode until repaired.",
953 		      cache_device_name(cache));
954 		if (old_mode != new_mode)
955 			new_mode = old_mode;
956 		else
957 			new_mode = CM_READ_ONLY;
958 	}
959 
960 	/* Never move out of fail mode */
961 	if (old_mode == CM_FAIL)
962 		new_mode = CM_FAIL;
963 
964 	switch (new_mode) {
965 	case CM_FAIL:
966 	case CM_READ_ONLY:
967 		dm_cache_metadata_set_read_only(cache->cmd);
968 		break;
969 
970 	case CM_WRITE:
971 		dm_cache_metadata_set_read_write(cache->cmd);
972 		break;
973 	}
974 
975 	cache->features.mode = new_mode;
976 
977 	if (new_mode != old_mode)
978 		notify_mode_switch(cache, new_mode);
979 }
980 
981 static void abort_transaction(struct cache *cache)
982 {
983 	const char *dev_name = cache_device_name(cache);
984 
985 	if (get_cache_mode(cache) >= CM_READ_ONLY)
986 		return;
987 
988 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
989 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
990 		set_cache_mode(cache, CM_FAIL);
991 	}
992 
993 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
994 	if (dm_cache_metadata_abort(cache->cmd)) {
995 		DMERR("%s: failed to abort metadata transaction", dev_name);
996 		set_cache_mode(cache, CM_FAIL);
997 	}
998 }
999 
1000 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1001 {
1002 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1003 		    cache_device_name(cache), op, r);
1004 	abort_transaction(cache);
1005 	set_cache_mode(cache, CM_READ_ONLY);
1006 }
1007 
1008 /*----------------------------------------------------------------*/
1009 
1010 static void load_stats(struct cache *cache)
1011 {
1012 	struct dm_cache_statistics stats;
1013 
1014 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1015 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1016 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1017 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1018 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1019 }
1020 
1021 static void save_stats(struct cache *cache)
1022 {
1023 	struct dm_cache_statistics stats;
1024 
1025 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1026 		return;
1027 
1028 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1029 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1030 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1031 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1032 
1033 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1034 }
1035 
1036 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1037 {
1038 	switch (op) {
1039 	case POLICY_PROMOTE:
1040 		atomic_inc(&stats->promotion);
1041 		break;
1042 
1043 	case POLICY_DEMOTE:
1044 		atomic_inc(&stats->demotion);
1045 		break;
1046 
1047 	case POLICY_WRITEBACK:
1048 		atomic_inc(&stats->writeback);
1049 		break;
1050 	}
1051 }
1052 
1053 /*----------------------------------------------------------------
1054  * Migration processing
1055  *
1056  * Migration covers moving data from the origin device to the cache, or
1057  * vice versa.
1058  *--------------------------------------------------------------*/
1059 
1060 static void inc_io_migrations(struct cache *cache)
1061 {
1062 	atomic_inc(&cache->nr_io_migrations);
1063 }
1064 
1065 static void dec_io_migrations(struct cache *cache)
1066 {
1067 	atomic_dec(&cache->nr_io_migrations);
1068 }
1069 
1070 static bool discard_or_flush(struct bio *bio)
1071 {
1072 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1073 }
1074 
1075 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1076 				     dm_dblock_t *b, dm_dblock_t *e)
1077 {
1078 	sector_t sb = bio->bi_iter.bi_sector;
1079 	sector_t se = bio_end_sector(bio);
1080 
1081 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1082 
1083 	if (se - sb < cache->discard_block_size)
1084 		*e = *b;
1085 	else
1086 		*e = to_dblock(block_div(se, cache->discard_block_size));
1087 }
1088 
1089 /*----------------------------------------------------------------*/
1090 
1091 static void prevent_background_work(struct cache *cache)
1092 {
1093 	lockdep_off();
1094 	down_write(&cache->background_work_lock);
1095 	lockdep_on();
1096 }
1097 
1098 static void allow_background_work(struct cache *cache)
1099 {
1100 	lockdep_off();
1101 	up_write(&cache->background_work_lock);
1102 	lockdep_on();
1103 }
1104 
1105 static bool background_work_begin(struct cache *cache)
1106 {
1107 	bool r;
1108 
1109 	lockdep_off();
1110 	r = down_read_trylock(&cache->background_work_lock);
1111 	lockdep_on();
1112 
1113 	return r;
1114 }
1115 
1116 static void background_work_end(struct cache *cache)
1117 {
1118 	lockdep_off();
1119 	up_read(&cache->background_work_lock);
1120 	lockdep_on();
1121 }
1122 
1123 /*----------------------------------------------------------------*/
1124 
1125 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1126 {
1127 	return (bio_data_dir(bio) == WRITE) &&
1128 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1129 }
1130 
1131 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1132 {
1133 	return writeback_mode(cache) &&
1134 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1135 }
1136 
1137 static void quiesce(struct dm_cache_migration *mg,
1138 		    void (*continuation)(struct work_struct *))
1139 {
1140 	init_continuation(&mg->k, continuation);
1141 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1142 }
1143 
1144 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1145 {
1146 	struct continuation *k = container_of(ws, struct continuation, ws);
1147 	return container_of(k, struct dm_cache_migration, k);
1148 }
1149 
1150 static void copy_complete(int read_err, unsigned long write_err, void *context)
1151 {
1152 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1153 
1154 	if (read_err || write_err)
1155 		mg->k.input = BLK_STS_IOERR;
1156 
1157 	queue_continuation(mg->cache->wq, &mg->k);
1158 }
1159 
1160 static void copy(struct dm_cache_migration *mg, bool promote)
1161 {
1162 	struct dm_io_region o_region, c_region;
1163 	struct cache *cache = mg->cache;
1164 
1165 	o_region.bdev = cache->origin_dev->bdev;
1166 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1167 	o_region.count = cache->sectors_per_block;
1168 
1169 	c_region.bdev = cache->cache_dev->bdev;
1170 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1171 	c_region.count = cache->sectors_per_block;
1172 
1173 	if (promote)
1174 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1175 	else
1176 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1177 }
1178 
1179 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1180 {
1181 	struct per_bio_data *pb = get_per_bio_data(bio);
1182 
1183 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1184 		free_prison_cell(cache, pb->cell);
1185 	pb->cell = NULL;
1186 }
1187 
1188 static void overwrite_endio(struct bio *bio)
1189 {
1190 	struct dm_cache_migration *mg = bio->bi_private;
1191 	struct cache *cache = mg->cache;
1192 	struct per_bio_data *pb = get_per_bio_data(bio);
1193 
1194 	dm_unhook_bio(&pb->hook_info, bio);
1195 
1196 	if (bio->bi_status)
1197 		mg->k.input = bio->bi_status;
1198 
1199 	queue_continuation(cache->wq, &mg->k);
1200 }
1201 
1202 static void overwrite(struct dm_cache_migration *mg,
1203 		      void (*continuation)(struct work_struct *))
1204 {
1205 	struct bio *bio = mg->overwrite_bio;
1206 	struct per_bio_data *pb = get_per_bio_data(bio);
1207 
1208 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1209 
1210 	/*
1211 	 * The overwrite bio is part of the copy operation, as such it does
1212 	 * not set/clear discard or dirty flags.
1213 	 */
1214 	if (mg->op->op == POLICY_PROMOTE)
1215 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1216 	else
1217 		remap_to_origin(mg->cache, bio);
1218 
1219 	init_continuation(&mg->k, continuation);
1220 	accounted_request(mg->cache, bio);
1221 }
1222 
1223 /*
1224  * Migration steps:
1225  *
1226  * 1) exclusive lock preventing WRITEs
1227  * 2) quiesce
1228  * 3) copy or issue overwrite bio
1229  * 4) upgrade to exclusive lock preventing READs and WRITEs
1230  * 5) quiesce
1231  * 6) update metadata and commit
1232  * 7) unlock
1233  */
1234 static void mg_complete(struct dm_cache_migration *mg, bool success)
1235 {
1236 	struct bio_list bios;
1237 	struct cache *cache = mg->cache;
1238 	struct policy_work *op = mg->op;
1239 	dm_cblock_t cblock = op->cblock;
1240 
1241 	if (success)
1242 		update_stats(&cache->stats, op->op);
1243 
1244 	switch (op->op) {
1245 	case POLICY_PROMOTE:
1246 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1247 		policy_complete_background_work(cache->policy, op, success);
1248 
1249 		if (mg->overwrite_bio) {
1250 			if (success)
1251 				force_set_dirty(cache, cblock);
1252 			else if (mg->k.input)
1253 				mg->overwrite_bio->bi_status = mg->k.input;
1254 			else
1255 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1256 			bio_endio(mg->overwrite_bio);
1257 		} else {
1258 			if (success)
1259 				force_clear_dirty(cache, cblock);
1260 			dec_io_migrations(cache);
1261 		}
1262 		break;
1263 
1264 	case POLICY_DEMOTE:
1265 		/*
1266 		 * We clear dirty here to update the nr_dirty counter.
1267 		 */
1268 		if (success)
1269 			force_clear_dirty(cache, cblock);
1270 		policy_complete_background_work(cache->policy, op, success);
1271 		dec_io_migrations(cache);
1272 		break;
1273 
1274 	case POLICY_WRITEBACK:
1275 		if (success)
1276 			force_clear_dirty(cache, cblock);
1277 		policy_complete_background_work(cache->policy, op, success);
1278 		dec_io_migrations(cache);
1279 		break;
1280 	}
1281 
1282 	bio_list_init(&bios);
1283 	if (mg->cell) {
1284 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1285 			free_prison_cell(cache, mg->cell);
1286 	}
1287 
1288 	free_migration(mg);
1289 	defer_bios(cache, &bios);
1290 	wake_migration_worker(cache);
1291 
1292 	background_work_end(cache);
1293 }
1294 
1295 static void mg_success(struct work_struct *ws)
1296 {
1297 	struct dm_cache_migration *mg = ws_to_mg(ws);
1298 	mg_complete(mg, mg->k.input == 0);
1299 }
1300 
1301 static void mg_update_metadata(struct work_struct *ws)
1302 {
1303 	int r;
1304 	struct dm_cache_migration *mg = ws_to_mg(ws);
1305 	struct cache *cache = mg->cache;
1306 	struct policy_work *op = mg->op;
1307 
1308 	switch (op->op) {
1309 	case POLICY_PROMOTE:
1310 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1311 		if (r) {
1312 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1313 				    cache_device_name(cache));
1314 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1315 
1316 			mg_complete(mg, false);
1317 			return;
1318 		}
1319 		mg_complete(mg, true);
1320 		break;
1321 
1322 	case POLICY_DEMOTE:
1323 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1324 		if (r) {
1325 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1326 				    cache_device_name(cache));
1327 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1328 
1329 			mg_complete(mg, false);
1330 			return;
1331 		}
1332 
1333 		/*
1334 		 * It would be nice if we only had to commit when a REQ_FLUSH
1335 		 * comes through.  But there's one scenario that we have to
1336 		 * look out for:
1337 		 *
1338 		 * - vblock x in a cache block
1339 		 * - domotion occurs
1340 		 * - cache block gets reallocated and over written
1341 		 * - crash
1342 		 *
1343 		 * When we recover, because there was no commit the cache will
1344 		 * rollback to having the data for vblock x in the cache block.
1345 		 * But the cache block has since been overwritten, so it'll end
1346 		 * up pointing to data that was never in 'x' during the history
1347 		 * of the device.
1348 		 *
1349 		 * To avoid this issue we require a commit as part of the
1350 		 * demotion operation.
1351 		 */
1352 		init_continuation(&mg->k, mg_success);
1353 		continue_after_commit(&cache->committer, &mg->k);
1354 		schedule_commit(&cache->committer);
1355 		break;
1356 
1357 	case POLICY_WRITEBACK:
1358 		mg_complete(mg, true);
1359 		break;
1360 	}
1361 }
1362 
1363 static void mg_update_metadata_after_copy(struct work_struct *ws)
1364 {
1365 	struct dm_cache_migration *mg = ws_to_mg(ws);
1366 
1367 	/*
1368 	 * Did the copy succeed?
1369 	 */
1370 	if (mg->k.input)
1371 		mg_complete(mg, false);
1372 	else
1373 		mg_update_metadata(ws);
1374 }
1375 
1376 static void mg_upgrade_lock(struct work_struct *ws)
1377 {
1378 	int r;
1379 	struct dm_cache_migration *mg = ws_to_mg(ws);
1380 
1381 	/*
1382 	 * Did the copy succeed?
1383 	 */
1384 	if (mg->k.input)
1385 		mg_complete(mg, false);
1386 
1387 	else {
1388 		/*
1389 		 * Now we want the lock to prevent both reads and writes.
1390 		 */
1391 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1392 					    READ_WRITE_LOCK_LEVEL);
1393 		if (r < 0)
1394 			mg_complete(mg, false);
1395 
1396 		else if (r)
1397 			quiesce(mg, mg_update_metadata);
1398 
1399 		else
1400 			mg_update_metadata(ws);
1401 	}
1402 }
1403 
1404 static void mg_full_copy(struct work_struct *ws)
1405 {
1406 	struct dm_cache_migration *mg = ws_to_mg(ws);
1407 	struct cache *cache = mg->cache;
1408 	struct policy_work *op = mg->op;
1409 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1410 
1411 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1412 	    is_discarded_oblock(cache, op->oblock)) {
1413 		mg_upgrade_lock(ws);
1414 		return;
1415 	}
1416 
1417 	init_continuation(&mg->k, mg_upgrade_lock);
1418 	copy(mg, is_policy_promote);
1419 }
1420 
1421 static void mg_copy(struct work_struct *ws)
1422 {
1423 	struct dm_cache_migration *mg = ws_to_mg(ws);
1424 
1425 	if (mg->overwrite_bio) {
1426 		/*
1427 		 * No exclusive lock was held when we last checked if the bio
1428 		 * was optimisable.  So we have to check again in case things
1429 		 * have changed (eg, the block may no longer be discarded).
1430 		 */
1431 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1432 			/*
1433 			 * Fallback to a real full copy after doing some tidying up.
1434 			 */
1435 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1436 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1437 			mg->overwrite_bio = NULL;
1438 			inc_io_migrations(mg->cache);
1439 			mg_full_copy(ws);
1440 			return;
1441 		}
1442 
1443 		/*
1444 		 * It's safe to do this here, even though it's new data
1445 		 * because all IO has been locked out of the block.
1446 		 *
1447 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1448 		 * so _not_ using mg_upgrade_lock() as continutation.
1449 		 */
1450 		overwrite(mg, mg_update_metadata_after_copy);
1451 
1452 	} else
1453 		mg_full_copy(ws);
1454 }
1455 
1456 static int mg_lock_writes(struct dm_cache_migration *mg)
1457 {
1458 	int r;
1459 	struct dm_cell_key_v2 key;
1460 	struct cache *cache = mg->cache;
1461 	struct dm_bio_prison_cell_v2 *prealloc;
1462 
1463 	prealloc = alloc_prison_cell(cache);
1464 
1465 	/*
1466 	 * Prevent writes to the block, but allow reads to continue.
1467 	 * Unless we're using an overwrite bio, in which case we lock
1468 	 * everything.
1469 	 */
1470 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1471 	r = dm_cell_lock_v2(cache->prison, &key,
1472 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1473 			    prealloc, &mg->cell);
1474 	if (r < 0) {
1475 		free_prison_cell(cache, prealloc);
1476 		mg_complete(mg, false);
1477 		return r;
1478 	}
1479 
1480 	if (mg->cell != prealloc)
1481 		free_prison_cell(cache, prealloc);
1482 
1483 	if (r == 0)
1484 		mg_copy(&mg->k.ws);
1485 	else
1486 		quiesce(mg, mg_copy);
1487 
1488 	return 0;
1489 }
1490 
1491 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1492 {
1493 	struct dm_cache_migration *mg;
1494 
1495 	if (!background_work_begin(cache)) {
1496 		policy_complete_background_work(cache->policy, op, false);
1497 		return -EPERM;
1498 	}
1499 
1500 	mg = alloc_migration(cache);
1501 
1502 	mg->op = op;
1503 	mg->overwrite_bio = bio;
1504 
1505 	if (!bio)
1506 		inc_io_migrations(cache);
1507 
1508 	return mg_lock_writes(mg);
1509 }
1510 
1511 /*----------------------------------------------------------------
1512  * invalidation processing
1513  *--------------------------------------------------------------*/
1514 
1515 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1516 {
1517 	struct bio_list bios;
1518 	struct cache *cache = mg->cache;
1519 
1520 	bio_list_init(&bios);
1521 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1522 		free_prison_cell(cache, mg->cell);
1523 
1524 	if (!success && mg->overwrite_bio)
1525 		bio_io_error(mg->overwrite_bio);
1526 
1527 	free_migration(mg);
1528 	defer_bios(cache, &bios);
1529 
1530 	background_work_end(cache);
1531 }
1532 
1533 static void invalidate_completed(struct work_struct *ws)
1534 {
1535 	struct dm_cache_migration *mg = ws_to_mg(ws);
1536 	invalidate_complete(mg, !mg->k.input);
1537 }
1538 
1539 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1540 {
1541 	int r = policy_invalidate_mapping(cache->policy, cblock);
1542 	if (!r) {
1543 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1544 		if (r) {
1545 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1546 				    cache_device_name(cache));
1547 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1548 		}
1549 
1550 	} else if (r == -ENODATA) {
1551 		/*
1552 		 * Harmless, already unmapped.
1553 		 */
1554 		r = 0;
1555 
1556 	} else
1557 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1558 
1559 	return r;
1560 }
1561 
1562 static void invalidate_remove(struct work_struct *ws)
1563 {
1564 	int r;
1565 	struct dm_cache_migration *mg = ws_to_mg(ws);
1566 	struct cache *cache = mg->cache;
1567 
1568 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1569 	if (r) {
1570 		invalidate_complete(mg, false);
1571 		return;
1572 	}
1573 
1574 	init_continuation(&mg->k, invalidate_completed);
1575 	continue_after_commit(&cache->committer, &mg->k);
1576 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1577 	mg->overwrite_bio = NULL;
1578 	schedule_commit(&cache->committer);
1579 }
1580 
1581 static int invalidate_lock(struct dm_cache_migration *mg)
1582 {
1583 	int r;
1584 	struct dm_cell_key_v2 key;
1585 	struct cache *cache = mg->cache;
1586 	struct dm_bio_prison_cell_v2 *prealloc;
1587 
1588 	prealloc = alloc_prison_cell(cache);
1589 
1590 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1591 	r = dm_cell_lock_v2(cache->prison, &key,
1592 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1593 	if (r < 0) {
1594 		free_prison_cell(cache, prealloc);
1595 		invalidate_complete(mg, false);
1596 		return r;
1597 	}
1598 
1599 	if (mg->cell != prealloc)
1600 		free_prison_cell(cache, prealloc);
1601 
1602 	if (r)
1603 		quiesce(mg, invalidate_remove);
1604 
1605 	else {
1606 		/*
1607 		 * We can't call invalidate_remove() directly here because we
1608 		 * might still be in request context.
1609 		 */
1610 		init_continuation(&mg->k, invalidate_remove);
1611 		queue_work(cache->wq, &mg->k.ws);
1612 	}
1613 
1614 	return 0;
1615 }
1616 
1617 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1618 			    dm_oblock_t oblock, struct bio *bio)
1619 {
1620 	struct dm_cache_migration *mg;
1621 
1622 	if (!background_work_begin(cache))
1623 		return -EPERM;
1624 
1625 	mg = alloc_migration(cache);
1626 
1627 	mg->overwrite_bio = bio;
1628 	mg->invalidate_cblock = cblock;
1629 	mg->invalidate_oblock = oblock;
1630 
1631 	return invalidate_lock(mg);
1632 }
1633 
1634 /*----------------------------------------------------------------
1635  * bio processing
1636  *--------------------------------------------------------------*/
1637 
1638 enum busy {
1639 	IDLE,
1640 	BUSY
1641 };
1642 
1643 static enum busy spare_migration_bandwidth(struct cache *cache)
1644 {
1645 	bool idle = iot_idle_for(&cache->tracker, HZ);
1646 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1647 		cache->sectors_per_block;
1648 
1649 	if (idle && current_volume <= cache->migration_threshold)
1650 		return IDLE;
1651 	else
1652 		return BUSY;
1653 }
1654 
1655 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656 {
1657 	atomic_inc(bio_data_dir(bio) == READ ?
1658 		   &cache->stats.read_hit : &cache->stats.write_hit);
1659 }
1660 
1661 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662 {
1663 	atomic_inc(bio_data_dir(bio) == READ ?
1664 		   &cache->stats.read_miss : &cache->stats.write_miss);
1665 }
1666 
1667 /*----------------------------------------------------------------*/
1668 
1669 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1670 		   bool *commit_needed)
1671 {
1672 	int r, data_dir;
1673 	bool rb, background_queued;
1674 	dm_cblock_t cblock;
1675 
1676 	*commit_needed = false;
1677 
1678 	rb = bio_detain_shared(cache, block, bio);
1679 	if (!rb) {
1680 		/*
1681 		 * An exclusive lock is held for this block, so we have to
1682 		 * wait.  We set the commit_needed flag so the current
1683 		 * transaction will be committed asap, allowing this lock
1684 		 * to be dropped.
1685 		 */
1686 		*commit_needed = true;
1687 		return DM_MAPIO_SUBMITTED;
1688 	}
1689 
1690 	data_dir = bio_data_dir(bio);
1691 
1692 	if (optimisable_bio(cache, bio, block)) {
1693 		struct policy_work *op = NULL;
1694 
1695 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1696 		if (unlikely(r && r != -ENOENT)) {
1697 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1698 				    cache_device_name(cache), r);
1699 			bio_io_error(bio);
1700 			return DM_MAPIO_SUBMITTED;
1701 		}
1702 
1703 		if (r == -ENOENT && op) {
1704 			bio_drop_shared_lock(cache, bio);
1705 			BUG_ON(op->op != POLICY_PROMOTE);
1706 			mg_start(cache, op, bio);
1707 			return DM_MAPIO_SUBMITTED;
1708 		}
1709 	} else {
1710 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1711 		if (unlikely(r && r != -ENOENT)) {
1712 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1713 				    cache_device_name(cache), r);
1714 			bio_io_error(bio);
1715 			return DM_MAPIO_SUBMITTED;
1716 		}
1717 
1718 		if (background_queued)
1719 			wake_migration_worker(cache);
1720 	}
1721 
1722 	if (r == -ENOENT) {
1723 		struct per_bio_data *pb = get_per_bio_data(bio);
1724 
1725 		/*
1726 		 * Miss.
1727 		 */
1728 		inc_miss_counter(cache, bio);
1729 		if (pb->req_nr == 0) {
1730 			accounted_begin(cache, bio);
1731 			remap_to_origin_clear_discard(cache, bio, block);
1732 		} else {
1733 			/*
1734 			 * This is a duplicate writethrough io that is no
1735 			 * longer needed because the block has been demoted.
1736 			 */
1737 			bio_endio(bio);
1738 			return DM_MAPIO_SUBMITTED;
1739 		}
1740 	} else {
1741 		/*
1742 		 * Hit.
1743 		 */
1744 		inc_hit_counter(cache, bio);
1745 
1746 		/*
1747 		 * Passthrough always maps to the origin, invalidating any
1748 		 * cache blocks that are written to.
1749 		 */
1750 		if (passthrough_mode(cache)) {
1751 			if (bio_data_dir(bio) == WRITE) {
1752 				bio_drop_shared_lock(cache, bio);
1753 				atomic_inc(&cache->stats.demotion);
1754 				invalidate_start(cache, cblock, block, bio);
1755 			} else
1756 				remap_to_origin_clear_discard(cache, bio, block);
1757 		} else {
1758 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1759 			    !is_dirty(cache, cblock)) {
1760 				remap_to_origin_and_cache(cache, bio, block, cblock);
1761 				accounted_begin(cache, bio);
1762 			} else
1763 				remap_to_cache_dirty(cache, bio, block, cblock);
1764 		}
1765 	}
1766 
1767 	/*
1768 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1769 	 */
1770 	if (bio->bi_opf & REQ_FUA) {
1771 		/*
1772 		 * issue_after_commit will call accounted_begin a second time.  So
1773 		 * we call accounted_complete() to avoid double accounting.
1774 		 */
1775 		accounted_complete(cache, bio);
1776 		issue_after_commit(&cache->committer, bio);
1777 		*commit_needed = true;
1778 		return DM_MAPIO_SUBMITTED;
1779 	}
1780 
1781 	return DM_MAPIO_REMAPPED;
1782 }
1783 
1784 static bool process_bio(struct cache *cache, struct bio *bio)
1785 {
1786 	bool commit_needed;
1787 
1788 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1789 		submit_bio_noacct(bio);
1790 
1791 	return commit_needed;
1792 }
1793 
1794 /*
1795  * A non-zero return indicates read_only or fail_io mode.
1796  */
1797 static int commit(struct cache *cache, bool clean_shutdown)
1798 {
1799 	int r;
1800 
1801 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1802 		return -EINVAL;
1803 
1804 	atomic_inc(&cache->stats.commit_count);
1805 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1806 	if (r)
1807 		metadata_operation_failed(cache, "dm_cache_commit", r);
1808 
1809 	return r;
1810 }
1811 
1812 /*
1813  * Used by the batcher.
1814  */
1815 static blk_status_t commit_op(void *context)
1816 {
1817 	struct cache *cache = context;
1818 
1819 	if (dm_cache_changed_this_transaction(cache->cmd))
1820 		return errno_to_blk_status(commit(cache, false));
1821 
1822 	return 0;
1823 }
1824 
1825 /*----------------------------------------------------------------*/
1826 
1827 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1828 {
1829 	struct per_bio_data *pb = get_per_bio_data(bio);
1830 
1831 	if (!pb->req_nr)
1832 		remap_to_origin(cache, bio);
1833 	else
1834 		remap_to_cache(cache, bio, 0);
1835 
1836 	issue_after_commit(&cache->committer, bio);
1837 	return true;
1838 }
1839 
1840 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1841 {
1842 	dm_dblock_t b, e;
1843 
1844 	// FIXME: do we need to lock the region?  Or can we just assume the
1845 	// user wont be so foolish as to issue discard concurrently with
1846 	// other IO?
1847 	calc_discard_block_range(cache, bio, &b, &e);
1848 	while (b != e) {
1849 		set_discard(cache, b);
1850 		b = to_dblock(from_dblock(b) + 1);
1851 	}
1852 
1853 	if (cache->features.discard_passdown) {
1854 		remap_to_origin(cache, bio);
1855 		submit_bio_noacct(bio);
1856 	} else
1857 		bio_endio(bio);
1858 
1859 	return false;
1860 }
1861 
1862 static void process_deferred_bios(struct work_struct *ws)
1863 {
1864 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1865 
1866 	bool commit_needed = false;
1867 	struct bio_list bios;
1868 	struct bio *bio;
1869 
1870 	bio_list_init(&bios);
1871 
1872 	spin_lock_irq(&cache->lock);
1873 	bio_list_merge(&bios, &cache->deferred_bios);
1874 	bio_list_init(&cache->deferred_bios);
1875 	spin_unlock_irq(&cache->lock);
1876 
1877 	while ((bio = bio_list_pop(&bios))) {
1878 		if (bio->bi_opf & REQ_PREFLUSH)
1879 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1880 
1881 		else if (bio_op(bio) == REQ_OP_DISCARD)
1882 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1883 
1884 		else
1885 			commit_needed = process_bio(cache, bio) || commit_needed;
1886 	}
1887 
1888 	if (commit_needed)
1889 		schedule_commit(&cache->committer);
1890 }
1891 
1892 /*----------------------------------------------------------------
1893  * Main worker loop
1894  *--------------------------------------------------------------*/
1895 
1896 static void requeue_deferred_bios(struct cache *cache)
1897 {
1898 	struct bio *bio;
1899 	struct bio_list bios;
1900 
1901 	bio_list_init(&bios);
1902 	bio_list_merge(&bios, &cache->deferred_bios);
1903 	bio_list_init(&cache->deferred_bios);
1904 
1905 	while ((bio = bio_list_pop(&bios))) {
1906 		bio->bi_status = BLK_STS_DM_REQUEUE;
1907 		bio_endio(bio);
1908 	}
1909 }
1910 
1911 /*
1912  * We want to commit periodically so that not too much
1913  * unwritten metadata builds up.
1914  */
1915 static void do_waker(struct work_struct *ws)
1916 {
1917 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1918 
1919 	policy_tick(cache->policy, true);
1920 	wake_migration_worker(cache);
1921 	schedule_commit(&cache->committer);
1922 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1923 }
1924 
1925 static void check_migrations(struct work_struct *ws)
1926 {
1927 	int r;
1928 	struct policy_work *op;
1929 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1930 	enum busy b;
1931 
1932 	for (;;) {
1933 		b = spare_migration_bandwidth(cache);
1934 
1935 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1936 		if (r == -ENODATA)
1937 			break;
1938 
1939 		if (r) {
1940 			DMERR_LIMIT("%s: policy_background_work failed",
1941 				    cache_device_name(cache));
1942 			break;
1943 		}
1944 
1945 		r = mg_start(cache, op, NULL);
1946 		if (r)
1947 			break;
1948 	}
1949 }
1950 
1951 /*----------------------------------------------------------------
1952  * Target methods
1953  *--------------------------------------------------------------*/
1954 
1955 /*
1956  * This function gets called on the error paths of the constructor, so we
1957  * have to cope with a partially initialised struct.
1958  */
1959 static void destroy(struct cache *cache)
1960 {
1961 	unsigned i;
1962 
1963 	mempool_exit(&cache->migration_pool);
1964 
1965 	if (cache->prison)
1966 		dm_bio_prison_destroy_v2(cache->prison);
1967 
1968 	if (cache->wq)
1969 		destroy_workqueue(cache->wq);
1970 
1971 	if (cache->dirty_bitset)
1972 		free_bitset(cache->dirty_bitset);
1973 
1974 	if (cache->discard_bitset)
1975 		free_bitset(cache->discard_bitset);
1976 
1977 	if (cache->copier)
1978 		dm_kcopyd_client_destroy(cache->copier);
1979 
1980 	if (cache->cmd)
1981 		dm_cache_metadata_close(cache->cmd);
1982 
1983 	if (cache->metadata_dev)
1984 		dm_put_device(cache->ti, cache->metadata_dev);
1985 
1986 	if (cache->origin_dev)
1987 		dm_put_device(cache->ti, cache->origin_dev);
1988 
1989 	if (cache->cache_dev)
1990 		dm_put_device(cache->ti, cache->cache_dev);
1991 
1992 	if (cache->policy)
1993 		dm_cache_policy_destroy(cache->policy);
1994 
1995 	for (i = 0; i < cache->nr_ctr_args ; i++)
1996 		kfree(cache->ctr_args[i]);
1997 	kfree(cache->ctr_args);
1998 
1999 	bioset_exit(&cache->bs);
2000 
2001 	kfree(cache);
2002 }
2003 
2004 static void cache_dtr(struct dm_target *ti)
2005 {
2006 	struct cache *cache = ti->private;
2007 
2008 	destroy(cache);
2009 }
2010 
2011 static sector_t get_dev_size(struct dm_dev *dev)
2012 {
2013 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2014 }
2015 
2016 /*----------------------------------------------------------------*/
2017 
2018 /*
2019  * Construct a cache device mapping.
2020  *
2021  * cache <metadata dev> <cache dev> <origin dev> <block size>
2022  *       <#feature args> [<feature arg>]*
2023  *       <policy> <#policy args> [<policy arg>]*
2024  *
2025  * metadata dev    : fast device holding the persistent metadata
2026  * cache dev	   : fast device holding cached data blocks
2027  * origin dev	   : slow device holding original data blocks
2028  * block size	   : cache unit size in sectors
2029  *
2030  * #feature args   : number of feature arguments passed
2031  * feature args    : writethrough.  (The default is writeback.)
2032  *
2033  * policy	   : the replacement policy to use
2034  * #policy args    : an even number of policy arguments corresponding
2035  *		     to key/value pairs passed to the policy
2036  * policy args	   : key/value pairs passed to the policy
2037  *		     E.g. 'sequential_threshold 1024'
2038  *		     See cache-policies.txt for details.
2039  *
2040  * Optional feature arguments are:
2041  *   writethrough  : write through caching that prohibits cache block
2042  *		     content from being different from origin block content.
2043  *		     Without this argument, the default behaviour is to write
2044  *		     back cache block contents later for performance reasons,
2045  *		     so they may differ from the corresponding origin blocks.
2046  */
2047 struct cache_args {
2048 	struct dm_target *ti;
2049 
2050 	struct dm_dev *metadata_dev;
2051 
2052 	struct dm_dev *cache_dev;
2053 	sector_t cache_sectors;
2054 
2055 	struct dm_dev *origin_dev;
2056 	sector_t origin_sectors;
2057 
2058 	uint32_t block_size;
2059 
2060 	const char *policy_name;
2061 	int policy_argc;
2062 	const char **policy_argv;
2063 
2064 	struct cache_features features;
2065 };
2066 
2067 static void destroy_cache_args(struct cache_args *ca)
2068 {
2069 	if (ca->metadata_dev)
2070 		dm_put_device(ca->ti, ca->metadata_dev);
2071 
2072 	if (ca->cache_dev)
2073 		dm_put_device(ca->ti, ca->cache_dev);
2074 
2075 	if (ca->origin_dev)
2076 		dm_put_device(ca->ti, ca->origin_dev);
2077 
2078 	kfree(ca);
2079 }
2080 
2081 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2082 {
2083 	if (!as->argc) {
2084 		*error = "Insufficient args";
2085 		return false;
2086 	}
2087 
2088 	return true;
2089 }
2090 
2091 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2092 			      char **error)
2093 {
2094 	int r;
2095 	sector_t metadata_dev_size;
2096 	char b[BDEVNAME_SIZE];
2097 
2098 	if (!at_least_one_arg(as, error))
2099 		return -EINVAL;
2100 
2101 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2102 			  &ca->metadata_dev);
2103 	if (r) {
2104 		*error = "Error opening metadata device";
2105 		return r;
2106 	}
2107 
2108 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2109 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2110 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2111 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2112 
2113 	return 0;
2114 }
2115 
2116 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2117 			   char **error)
2118 {
2119 	int r;
2120 
2121 	if (!at_least_one_arg(as, error))
2122 		return -EINVAL;
2123 
2124 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2125 			  &ca->cache_dev);
2126 	if (r) {
2127 		*error = "Error opening cache device";
2128 		return r;
2129 	}
2130 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2131 
2132 	return 0;
2133 }
2134 
2135 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2136 			    char **error)
2137 {
2138 	int r;
2139 
2140 	if (!at_least_one_arg(as, error))
2141 		return -EINVAL;
2142 
2143 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2144 			  &ca->origin_dev);
2145 	if (r) {
2146 		*error = "Error opening origin device";
2147 		return r;
2148 	}
2149 
2150 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2151 	if (ca->ti->len > ca->origin_sectors) {
2152 		*error = "Device size larger than cached device";
2153 		return -EINVAL;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2160 			    char **error)
2161 {
2162 	unsigned long block_size;
2163 
2164 	if (!at_least_one_arg(as, error))
2165 		return -EINVAL;
2166 
2167 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2168 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2169 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2170 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2171 		*error = "Invalid data block size";
2172 		return -EINVAL;
2173 	}
2174 
2175 	if (block_size > ca->cache_sectors) {
2176 		*error = "Data block size is larger than the cache device";
2177 		return -EINVAL;
2178 	}
2179 
2180 	ca->block_size = block_size;
2181 
2182 	return 0;
2183 }
2184 
2185 static void init_features(struct cache_features *cf)
2186 {
2187 	cf->mode = CM_WRITE;
2188 	cf->io_mode = CM_IO_WRITEBACK;
2189 	cf->metadata_version = 1;
2190 	cf->discard_passdown = true;
2191 }
2192 
2193 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2194 			  char **error)
2195 {
2196 	static const struct dm_arg _args[] = {
2197 		{0, 3, "Invalid number of cache feature arguments"},
2198 	};
2199 
2200 	int r, mode_ctr = 0;
2201 	unsigned argc;
2202 	const char *arg;
2203 	struct cache_features *cf = &ca->features;
2204 
2205 	init_features(cf);
2206 
2207 	r = dm_read_arg_group(_args, as, &argc, error);
2208 	if (r)
2209 		return -EINVAL;
2210 
2211 	while (argc--) {
2212 		arg = dm_shift_arg(as);
2213 
2214 		if (!strcasecmp(arg, "writeback")) {
2215 			cf->io_mode = CM_IO_WRITEBACK;
2216 			mode_ctr++;
2217 		}
2218 
2219 		else if (!strcasecmp(arg, "writethrough")) {
2220 			cf->io_mode = CM_IO_WRITETHROUGH;
2221 			mode_ctr++;
2222 		}
2223 
2224 		else if (!strcasecmp(arg, "passthrough")) {
2225 			cf->io_mode = CM_IO_PASSTHROUGH;
2226 			mode_ctr++;
2227 		}
2228 
2229 		else if (!strcasecmp(arg, "metadata2"))
2230 			cf->metadata_version = 2;
2231 
2232 		else if (!strcasecmp(arg, "no_discard_passdown"))
2233 			cf->discard_passdown = false;
2234 
2235 		else {
2236 			*error = "Unrecognised cache feature requested";
2237 			return -EINVAL;
2238 		}
2239 	}
2240 
2241 	if (mode_ctr > 1) {
2242 		*error = "Duplicate cache io_mode features requested";
2243 		return -EINVAL;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2250 			char **error)
2251 {
2252 	static const struct dm_arg _args[] = {
2253 		{0, 1024, "Invalid number of policy arguments"},
2254 	};
2255 
2256 	int r;
2257 
2258 	if (!at_least_one_arg(as, error))
2259 		return -EINVAL;
2260 
2261 	ca->policy_name = dm_shift_arg(as);
2262 
2263 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2264 	if (r)
2265 		return -EINVAL;
2266 
2267 	ca->policy_argv = (const char **)as->argv;
2268 	dm_consume_args(as, ca->policy_argc);
2269 
2270 	return 0;
2271 }
2272 
2273 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2274 			    char **error)
2275 {
2276 	int r;
2277 	struct dm_arg_set as;
2278 
2279 	as.argc = argc;
2280 	as.argv = argv;
2281 
2282 	r = parse_metadata_dev(ca, &as, error);
2283 	if (r)
2284 		return r;
2285 
2286 	r = parse_cache_dev(ca, &as, error);
2287 	if (r)
2288 		return r;
2289 
2290 	r = parse_origin_dev(ca, &as, error);
2291 	if (r)
2292 		return r;
2293 
2294 	r = parse_block_size(ca, &as, error);
2295 	if (r)
2296 		return r;
2297 
2298 	r = parse_features(ca, &as, error);
2299 	if (r)
2300 		return r;
2301 
2302 	r = parse_policy(ca, &as, error);
2303 	if (r)
2304 		return r;
2305 
2306 	return 0;
2307 }
2308 
2309 /*----------------------------------------------------------------*/
2310 
2311 static struct kmem_cache *migration_cache;
2312 
2313 #define NOT_CORE_OPTION 1
2314 
2315 static int process_config_option(struct cache *cache, const char *key, const char *value)
2316 {
2317 	unsigned long tmp;
2318 
2319 	if (!strcasecmp(key, "migration_threshold")) {
2320 		if (kstrtoul(value, 10, &tmp))
2321 			return -EINVAL;
2322 
2323 		cache->migration_threshold = tmp;
2324 		return 0;
2325 	}
2326 
2327 	return NOT_CORE_OPTION;
2328 }
2329 
2330 static int set_config_value(struct cache *cache, const char *key, const char *value)
2331 {
2332 	int r = process_config_option(cache, key, value);
2333 
2334 	if (r == NOT_CORE_OPTION)
2335 		r = policy_set_config_value(cache->policy, key, value);
2336 
2337 	if (r)
2338 		DMWARN("bad config value for %s: %s", key, value);
2339 
2340 	return r;
2341 }
2342 
2343 static int set_config_values(struct cache *cache, int argc, const char **argv)
2344 {
2345 	int r = 0;
2346 
2347 	if (argc & 1) {
2348 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2349 		return -EINVAL;
2350 	}
2351 
2352 	while (argc) {
2353 		r = set_config_value(cache, argv[0], argv[1]);
2354 		if (r)
2355 			break;
2356 
2357 		argc -= 2;
2358 		argv += 2;
2359 	}
2360 
2361 	return r;
2362 }
2363 
2364 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2365 			       char **error)
2366 {
2367 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2368 							   cache->cache_size,
2369 							   cache->origin_sectors,
2370 							   cache->sectors_per_block);
2371 	if (IS_ERR(p)) {
2372 		*error = "Error creating cache's policy";
2373 		return PTR_ERR(p);
2374 	}
2375 	cache->policy = p;
2376 	BUG_ON(!cache->policy);
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  * We want the discard block size to be at least the size of the cache
2383  * block size and have no more than 2^14 discard blocks across the origin.
2384  */
2385 #define MAX_DISCARD_BLOCKS (1 << 14)
2386 
2387 static bool too_many_discard_blocks(sector_t discard_block_size,
2388 				    sector_t origin_size)
2389 {
2390 	(void) sector_div(origin_size, discard_block_size);
2391 
2392 	return origin_size > MAX_DISCARD_BLOCKS;
2393 }
2394 
2395 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2396 					     sector_t origin_size)
2397 {
2398 	sector_t discard_block_size = cache_block_size;
2399 
2400 	if (origin_size)
2401 		while (too_many_discard_blocks(discard_block_size, origin_size))
2402 			discard_block_size *= 2;
2403 
2404 	return discard_block_size;
2405 }
2406 
2407 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2408 {
2409 	dm_block_t nr_blocks = from_cblock(size);
2410 
2411 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2412 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2413 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2414 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2415 			     (unsigned long long) nr_blocks);
2416 
2417 	cache->cache_size = size;
2418 }
2419 
2420 #define DEFAULT_MIGRATION_THRESHOLD 2048
2421 
2422 static int cache_create(struct cache_args *ca, struct cache **result)
2423 {
2424 	int r = 0;
2425 	char **error = &ca->ti->error;
2426 	struct cache *cache;
2427 	struct dm_target *ti = ca->ti;
2428 	dm_block_t origin_blocks;
2429 	struct dm_cache_metadata *cmd;
2430 	bool may_format = ca->features.mode == CM_WRITE;
2431 
2432 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2433 	if (!cache)
2434 		return -ENOMEM;
2435 
2436 	cache->ti = ca->ti;
2437 	ti->private = cache;
2438 	ti->num_flush_bios = 2;
2439 	ti->flush_supported = true;
2440 
2441 	ti->num_discard_bios = 1;
2442 	ti->discards_supported = true;
2443 
2444 	ti->per_io_data_size = sizeof(struct per_bio_data);
2445 
2446 	cache->features = ca->features;
2447 	if (writethrough_mode(cache)) {
2448 		/* Create bioset for writethrough bios issued to origin */
2449 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2450 		if (r)
2451 			goto bad;
2452 	}
2453 
2454 	cache->metadata_dev = ca->metadata_dev;
2455 	cache->origin_dev = ca->origin_dev;
2456 	cache->cache_dev = ca->cache_dev;
2457 
2458 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2459 
2460 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2461 	origin_blocks = block_div(origin_blocks, ca->block_size);
2462 	cache->origin_blocks = to_oblock(origin_blocks);
2463 
2464 	cache->sectors_per_block = ca->block_size;
2465 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2466 		r = -EINVAL;
2467 		goto bad;
2468 	}
2469 
2470 	if (ca->block_size & (ca->block_size - 1)) {
2471 		dm_block_t cache_size = ca->cache_sectors;
2472 
2473 		cache->sectors_per_block_shift = -1;
2474 		cache_size = block_div(cache_size, ca->block_size);
2475 		set_cache_size(cache, to_cblock(cache_size));
2476 	} else {
2477 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2478 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2479 	}
2480 
2481 	r = create_cache_policy(cache, ca, error);
2482 	if (r)
2483 		goto bad;
2484 
2485 	cache->policy_nr_args = ca->policy_argc;
2486 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2487 
2488 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2489 	if (r) {
2490 		*error = "Error setting cache policy's config values";
2491 		goto bad;
2492 	}
2493 
2494 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2495 				     ca->block_size, may_format,
2496 				     dm_cache_policy_get_hint_size(cache->policy),
2497 				     ca->features.metadata_version);
2498 	if (IS_ERR(cmd)) {
2499 		*error = "Error creating metadata object";
2500 		r = PTR_ERR(cmd);
2501 		goto bad;
2502 	}
2503 	cache->cmd = cmd;
2504 	set_cache_mode(cache, CM_WRITE);
2505 	if (get_cache_mode(cache) != CM_WRITE) {
2506 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2507 		r = -EINVAL;
2508 		goto bad;
2509 	}
2510 
2511 	if (passthrough_mode(cache)) {
2512 		bool all_clean;
2513 
2514 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2515 		if (r) {
2516 			*error = "dm_cache_metadata_all_clean() failed";
2517 			goto bad;
2518 		}
2519 
2520 		if (!all_clean) {
2521 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2522 			r = -EINVAL;
2523 			goto bad;
2524 		}
2525 
2526 		policy_allow_migrations(cache->policy, false);
2527 	}
2528 
2529 	spin_lock_init(&cache->lock);
2530 	bio_list_init(&cache->deferred_bios);
2531 	atomic_set(&cache->nr_allocated_migrations, 0);
2532 	atomic_set(&cache->nr_io_migrations, 0);
2533 	init_waitqueue_head(&cache->migration_wait);
2534 
2535 	r = -ENOMEM;
2536 	atomic_set(&cache->nr_dirty, 0);
2537 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2538 	if (!cache->dirty_bitset) {
2539 		*error = "could not allocate dirty bitset";
2540 		goto bad;
2541 	}
2542 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2543 
2544 	cache->discard_block_size =
2545 		calculate_discard_block_size(cache->sectors_per_block,
2546 					     cache->origin_sectors);
2547 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2548 							      cache->discard_block_size));
2549 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2550 	if (!cache->discard_bitset) {
2551 		*error = "could not allocate discard bitset";
2552 		goto bad;
2553 	}
2554 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2555 
2556 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2557 	if (IS_ERR(cache->copier)) {
2558 		*error = "could not create kcopyd client";
2559 		r = PTR_ERR(cache->copier);
2560 		goto bad;
2561 	}
2562 
2563 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2564 	if (!cache->wq) {
2565 		*error = "could not create workqueue for metadata object";
2566 		goto bad;
2567 	}
2568 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2569 	INIT_WORK(&cache->migration_worker, check_migrations);
2570 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2571 
2572 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2573 	if (!cache->prison) {
2574 		*error = "could not create bio prison";
2575 		goto bad;
2576 	}
2577 
2578 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2579 				   migration_cache);
2580 	if (r) {
2581 		*error = "Error creating cache's migration mempool";
2582 		goto bad;
2583 	}
2584 
2585 	cache->need_tick_bio = true;
2586 	cache->sized = false;
2587 	cache->invalidate = false;
2588 	cache->commit_requested = false;
2589 	cache->loaded_mappings = false;
2590 	cache->loaded_discards = false;
2591 
2592 	load_stats(cache);
2593 
2594 	atomic_set(&cache->stats.demotion, 0);
2595 	atomic_set(&cache->stats.promotion, 0);
2596 	atomic_set(&cache->stats.copies_avoided, 0);
2597 	atomic_set(&cache->stats.cache_cell_clash, 0);
2598 	atomic_set(&cache->stats.commit_count, 0);
2599 	atomic_set(&cache->stats.discard_count, 0);
2600 
2601 	spin_lock_init(&cache->invalidation_lock);
2602 	INIT_LIST_HEAD(&cache->invalidation_requests);
2603 
2604 	batcher_init(&cache->committer, commit_op, cache,
2605 		     issue_op, cache, cache->wq);
2606 	iot_init(&cache->tracker);
2607 
2608 	init_rwsem(&cache->background_work_lock);
2609 	prevent_background_work(cache);
2610 
2611 	*result = cache;
2612 	return 0;
2613 bad:
2614 	destroy(cache);
2615 	return r;
2616 }
2617 
2618 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2619 {
2620 	unsigned i;
2621 	const char **copy;
2622 
2623 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2624 	if (!copy)
2625 		return -ENOMEM;
2626 	for (i = 0; i < argc; i++) {
2627 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2628 		if (!copy[i]) {
2629 			while (i--)
2630 				kfree(copy[i]);
2631 			kfree(copy);
2632 			return -ENOMEM;
2633 		}
2634 	}
2635 
2636 	cache->nr_ctr_args = argc;
2637 	cache->ctr_args = copy;
2638 
2639 	return 0;
2640 }
2641 
2642 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2643 {
2644 	int r = -EINVAL;
2645 	struct cache_args *ca;
2646 	struct cache *cache = NULL;
2647 
2648 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2649 	if (!ca) {
2650 		ti->error = "Error allocating memory for cache";
2651 		return -ENOMEM;
2652 	}
2653 	ca->ti = ti;
2654 
2655 	r = parse_cache_args(ca, argc, argv, &ti->error);
2656 	if (r)
2657 		goto out;
2658 
2659 	r = cache_create(ca, &cache);
2660 	if (r)
2661 		goto out;
2662 
2663 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2664 	if (r) {
2665 		destroy(cache);
2666 		goto out;
2667 	}
2668 
2669 	ti->private = cache;
2670 out:
2671 	destroy_cache_args(ca);
2672 	return r;
2673 }
2674 
2675 /*----------------------------------------------------------------*/
2676 
2677 static int cache_map(struct dm_target *ti, struct bio *bio)
2678 {
2679 	struct cache *cache = ti->private;
2680 
2681 	int r;
2682 	bool commit_needed;
2683 	dm_oblock_t block = get_bio_block(cache, bio);
2684 
2685 	init_per_bio_data(bio);
2686 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2687 		/*
2688 		 * This can only occur if the io goes to a partial block at
2689 		 * the end of the origin device.  We don't cache these.
2690 		 * Just remap to the origin and carry on.
2691 		 */
2692 		remap_to_origin(cache, bio);
2693 		accounted_begin(cache, bio);
2694 		return DM_MAPIO_REMAPPED;
2695 	}
2696 
2697 	if (discard_or_flush(bio)) {
2698 		defer_bio(cache, bio);
2699 		return DM_MAPIO_SUBMITTED;
2700 	}
2701 
2702 	r = map_bio(cache, bio, block, &commit_needed);
2703 	if (commit_needed)
2704 		schedule_commit(&cache->committer);
2705 
2706 	return r;
2707 }
2708 
2709 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2710 {
2711 	struct cache *cache = ti->private;
2712 	unsigned long flags;
2713 	struct per_bio_data *pb = get_per_bio_data(bio);
2714 
2715 	if (pb->tick) {
2716 		policy_tick(cache->policy, false);
2717 
2718 		spin_lock_irqsave(&cache->lock, flags);
2719 		cache->need_tick_bio = true;
2720 		spin_unlock_irqrestore(&cache->lock, flags);
2721 	}
2722 
2723 	bio_drop_shared_lock(cache, bio);
2724 	accounted_complete(cache, bio);
2725 
2726 	return DM_ENDIO_DONE;
2727 }
2728 
2729 static int write_dirty_bitset(struct cache *cache)
2730 {
2731 	int r;
2732 
2733 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2734 		return -EINVAL;
2735 
2736 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2737 	if (r)
2738 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2739 
2740 	return r;
2741 }
2742 
2743 static int write_discard_bitset(struct cache *cache)
2744 {
2745 	unsigned i, r;
2746 
2747 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2748 		return -EINVAL;
2749 
2750 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2751 					   cache->discard_nr_blocks);
2752 	if (r) {
2753 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2754 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2755 		return r;
2756 	}
2757 
2758 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2759 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2760 					 is_discarded(cache, to_dblock(i)));
2761 		if (r) {
2762 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2763 			return r;
2764 		}
2765 	}
2766 
2767 	return 0;
2768 }
2769 
2770 static int write_hints(struct cache *cache)
2771 {
2772 	int r;
2773 
2774 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2775 		return -EINVAL;
2776 
2777 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2778 	if (r) {
2779 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2780 		return r;
2781 	}
2782 
2783 	return 0;
2784 }
2785 
2786 /*
2787  * returns true on success
2788  */
2789 static bool sync_metadata(struct cache *cache)
2790 {
2791 	int r1, r2, r3, r4;
2792 
2793 	r1 = write_dirty_bitset(cache);
2794 	if (r1)
2795 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2796 
2797 	r2 = write_discard_bitset(cache);
2798 	if (r2)
2799 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2800 
2801 	save_stats(cache);
2802 
2803 	r3 = write_hints(cache);
2804 	if (r3)
2805 		DMERR("%s: could not write hints", cache_device_name(cache));
2806 
2807 	/*
2808 	 * If writing the above metadata failed, we still commit, but don't
2809 	 * set the clean shutdown flag.  This will effectively force every
2810 	 * dirty bit to be set on reload.
2811 	 */
2812 	r4 = commit(cache, !r1 && !r2 && !r3);
2813 	if (r4)
2814 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2815 
2816 	return !r1 && !r2 && !r3 && !r4;
2817 }
2818 
2819 static void cache_postsuspend(struct dm_target *ti)
2820 {
2821 	struct cache *cache = ti->private;
2822 
2823 	prevent_background_work(cache);
2824 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2825 
2826 	cancel_delayed_work_sync(&cache->waker);
2827 	drain_workqueue(cache->wq);
2828 	WARN_ON(cache->tracker.in_flight);
2829 
2830 	/*
2831 	 * If it's a flush suspend there won't be any deferred bios, so this
2832 	 * call is harmless.
2833 	 */
2834 	requeue_deferred_bios(cache);
2835 
2836 	if (get_cache_mode(cache) == CM_WRITE)
2837 		(void) sync_metadata(cache);
2838 }
2839 
2840 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2841 			bool dirty, uint32_t hint, bool hint_valid)
2842 {
2843 	struct cache *cache = context;
2844 
2845 	if (dirty) {
2846 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2847 		atomic_inc(&cache->nr_dirty);
2848 	} else
2849 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2850 
2851 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2852 }
2853 
2854 /*
2855  * The discard block size in the on disk metadata is not
2856  * neccessarily the same as we're currently using.  So we have to
2857  * be careful to only set the discarded attribute if we know it
2858  * covers a complete block of the new size.
2859  */
2860 struct discard_load_info {
2861 	struct cache *cache;
2862 
2863 	/*
2864 	 * These blocks are sized using the on disk dblock size, rather
2865 	 * than the current one.
2866 	 */
2867 	dm_block_t block_size;
2868 	dm_block_t discard_begin, discard_end;
2869 };
2870 
2871 static void discard_load_info_init(struct cache *cache,
2872 				   struct discard_load_info *li)
2873 {
2874 	li->cache = cache;
2875 	li->discard_begin = li->discard_end = 0;
2876 }
2877 
2878 static void set_discard_range(struct discard_load_info *li)
2879 {
2880 	sector_t b, e;
2881 
2882 	if (li->discard_begin == li->discard_end)
2883 		return;
2884 
2885 	/*
2886 	 * Convert to sectors.
2887 	 */
2888 	b = li->discard_begin * li->block_size;
2889 	e = li->discard_end * li->block_size;
2890 
2891 	/*
2892 	 * Then convert back to the current dblock size.
2893 	 */
2894 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2895 	sector_div(e, li->cache->discard_block_size);
2896 
2897 	/*
2898 	 * The origin may have shrunk, so we need to check we're still in
2899 	 * bounds.
2900 	 */
2901 	if (e > from_dblock(li->cache->discard_nr_blocks))
2902 		e = from_dblock(li->cache->discard_nr_blocks);
2903 
2904 	for (; b < e; b++)
2905 		set_discard(li->cache, to_dblock(b));
2906 }
2907 
2908 static int load_discard(void *context, sector_t discard_block_size,
2909 			dm_dblock_t dblock, bool discard)
2910 {
2911 	struct discard_load_info *li = context;
2912 
2913 	li->block_size = discard_block_size;
2914 
2915 	if (discard) {
2916 		if (from_dblock(dblock) == li->discard_end)
2917 			/*
2918 			 * We're already in a discard range, just extend it.
2919 			 */
2920 			li->discard_end = li->discard_end + 1ULL;
2921 
2922 		else {
2923 			/*
2924 			 * Emit the old range and start a new one.
2925 			 */
2926 			set_discard_range(li);
2927 			li->discard_begin = from_dblock(dblock);
2928 			li->discard_end = li->discard_begin + 1ULL;
2929 		}
2930 	} else {
2931 		set_discard_range(li);
2932 		li->discard_begin = li->discard_end = 0;
2933 	}
2934 
2935 	return 0;
2936 }
2937 
2938 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2939 {
2940 	sector_t size = get_dev_size(cache->cache_dev);
2941 	(void) sector_div(size, cache->sectors_per_block);
2942 	return to_cblock(size);
2943 }
2944 
2945 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2946 {
2947 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2948 		if (cache->sized) {
2949 			DMERR("%s: unable to extend cache due to missing cache table reload",
2950 			      cache_device_name(cache));
2951 			return false;
2952 		}
2953 	}
2954 
2955 	/*
2956 	 * We can't drop a dirty block when shrinking the cache.
2957 	 */
2958 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2959 		new_size = to_cblock(from_cblock(new_size) + 1);
2960 		if (is_dirty(cache, new_size)) {
2961 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2962 			      cache_device_name(cache),
2963 			      (unsigned long long) from_cblock(new_size));
2964 			return false;
2965 		}
2966 	}
2967 
2968 	return true;
2969 }
2970 
2971 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2972 {
2973 	int r;
2974 
2975 	r = dm_cache_resize(cache->cmd, new_size);
2976 	if (r) {
2977 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2978 		metadata_operation_failed(cache, "dm_cache_resize", r);
2979 		return r;
2980 	}
2981 
2982 	set_cache_size(cache, new_size);
2983 
2984 	return 0;
2985 }
2986 
2987 static int cache_preresume(struct dm_target *ti)
2988 {
2989 	int r = 0;
2990 	struct cache *cache = ti->private;
2991 	dm_cblock_t csize = get_cache_dev_size(cache);
2992 
2993 	/*
2994 	 * Check to see if the cache has resized.
2995 	 */
2996 	if (!cache->sized) {
2997 		r = resize_cache_dev(cache, csize);
2998 		if (r)
2999 			return r;
3000 
3001 		cache->sized = true;
3002 
3003 	} else if (csize != cache->cache_size) {
3004 		if (!can_resize(cache, csize))
3005 			return -EINVAL;
3006 
3007 		r = resize_cache_dev(cache, csize);
3008 		if (r)
3009 			return r;
3010 	}
3011 
3012 	if (!cache->loaded_mappings) {
3013 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3014 					   load_mapping, cache);
3015 		if (r) {
3016 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3017 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3018 			return r;
3019 		}
3020 
3021 		cache->loaded_mappings = true;
3022 	}
3023 
3024 	if (!cache->loaded_discards) {
3025 		struct discard_load_info li;
3026 
3027 		/*
3028 		 * The discard bitset could have been resized, or the
3029 		 * discard block size changed.  To be safe we start by
3030 		 * setting every dblock to not discarded.
3031 		 */
3032 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3033 
3034 		discard_load_info_init(cache, &li);
3035 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3036 		if (r) {
3037 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3038 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3039 			return r;
3040 		}
3041 		set_discard_range(&li);
3042 
3043 		cache->loaded_discards = true;
3044 	}
3045 
3046 	return r;
3047 }
3048 
3049 static void cache_resume(struct dm_target *ti)
3050 {
3051 	struct cache *cache = ti->private;
3052 
3053 	cache->need_tick_bio = true;
3054 	allow_background_work(cache);
3055 	do_waker(&cache->waker.work);
3056 }
3057 
3058 static void emit_flags(struct cache *cache, char *result,
3059 		       unsigned maxlen, ssize_t *sz_ptr)
3060 {
3061 	ssize_t sz = *sz_ptr;
3062 	struct cache_features *cf = &cache->features;
3063 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3064 
3065 	DMEMIT("%u ", count);
3066 
3067 	if (cf->metadata_version == 2)
3068 		DMEMIT("metadata2 ");
3069 
3070 	if (writethrough_mode(cache))
3071 		DMEMIT("writethrough ");
3072 
3073 	else if (passthrough_mode(cache))
3074 		DMEMIT("passthrough ");
3075 
3076 	else if (writeback_mode(cache))
3077 		DMEMIT("writeback ");
3078 
3079 	else {
3080 		DMEMIT("unknown ");
3081 		DMERR("%s: internal error: unknown io mode: %d",
3082 		      cache_device_name(cache), (int) cf->io_mode);
3083 	}
3084 
3085 	if (!cf->discard_passdown)
3086 		DMEMIT("no_discard_passdown ");
3087 
3088 	*sz_ptr = sz;
3089 }
3090 
3091 /*
3092  * Status format:
3093  *
3094  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3095  * <cache block size> <#used cache blocks>/<#total cache blocks>
3096  * <#read hits> <#read misses> <#write hits> <#write misses>
3097  * <#demotions> <#promotions> <#dirty>
3098  * <#features> <features>*
3099  * <#core args> <core args>
3100  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3101  */
3102 static void cache_status(struct dm_target *ti, status_type_t type,
3103 			 unsigned status_flags, char *result, unsigned maxlen)
3104 {
3105 	int r = 0;
3106 	unsigned i;
3107 	ssize_t sz = 0;
3108 	dm_block_t nr_free_blocks_metadata = 0;
3109 	dm_block_t nr_blocks_metadata = 0;
3110 	char buf[BDEVNAME_SIZE];
3111 	struct cache *cache = ti->private;
3112 	dm_cblock_t residency;
3113 	bool needs_check;
3114 
3115 	switch (type) {
3116 	case STATUSTYPE_INFO:
3117 		if (get_cache_mode(cache) == CM_FAIL) {
3118 			DMEMIT("Fail");
3119 			break;
3120 		}
3121 
3122 		/* Commit to ensure statistics aren't out-of-date */
3123 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3124 			(void) commit(cache, false);
3125 
3126 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3127 		if (r) {
3128 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3129 			      cache_device_name(cache), r);
3130 			goto err;
3131 		}
3132 
3133 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3134 		if (r) {
3135 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3136 			      cache_device_name(cache), r);
3137 			goto err;
3138 		}
3139 
3140 		residency = policy_residency(cache->policy);
3141 
3142 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3143 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3144 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3145 		       (unsigned long long)nr_blocks_metadata,
3146 		       (unsigned long long)cache->sectors_per_block,
3147 		       (unsigned long long) from_cblock(residency),
3148 		       (unsigned long long) from_cblock(cache->cache_size),
3149 		       (unsigned) atomic_read(&cache->stats.read_hit),
3150 		       (unsigned) atomic_read(&cache->stats.read_miss),
3151 		       (unsigned) atomic_read(&cache->stats.write_hit),
3152 		       (unsigned) atomic_read(&cache->stats.write_miss),
3153 		       (unsigned) atomic_read(&cache->stats.demotion),
3154 		       (unsigned) atomic_read(&cache->stats.promotion),
3155 		       (unsigned long) atomic_read(&cache->nr_dirty));
3156 
3157 		emit_flags(cache, result, maxlen, &sz);
3158 
3159 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3160 
3161 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3162 		if (sz < maxlen) {
3163 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3164 			if (r)
3165 				DMERR("%s: policy_emit_config_values returned %d",
3166 				      cache_device_name(cache), r);
3167 		}
3168 
3169 		if (get_cache_mode(cache) == CM_READ_ONLY)
3170 			DMEMIT("ro ");
3171 		else
3172 			DMEMIT("rw ");
3173 
3174 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3175 
3176 		if (r || needs_check)
3177 			DMEMIT("needs_check ");
3178 		else
3179 			DMEMIT("- ");
3180 
3181 		break;
3182 
3183 	case STATUSTYPE_TABLE:
3184 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3185 		DMEMIT("%s ", buf);
3186 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3187 		DMEMIT("%s ", buf);
3188 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3189 		DMEMIT("%s", buf);
3190 
3191 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3192 			DMEMIT(" %s", cache->ctr_args[i]);
3193 		if (cache->nr_ctr_args)
3194 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3195 	}
3196 
3197 	return;
3198 
3199 err:
3200 	DMEMIT("Error");
3201 }
3202 
3203 /*
3204  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3205  * the one-past-the-end value.
3206  */
3207 struct cblock_range {
3208 	dm_cblock_t begin;
3209 	dm_cblock_t end;
3210 };
3211 
3212 /*
3213  * A cache block range can take two forms:
3214  *
3215  * i) A single cblock, eg. '3456'
3216  * ii) A begin and end cblock with a dash between, eg. 123-234
3217  */
3218 static int parse_cblock_range(struct cache *cache, const char *str,
3219 			      struct cblock_range *result)
3220 {
3221 	char dummy;
3222 	uint64_t b, e;
3223 	int r;
3224 
3225 	/*
3226 	 * Try and parse form (ii) first.
3227 	 */
3228 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3229 	if (r < 0)
3230 		return r;
3231 
3232 	if (r == 2) {
3233 		result->begin = to_cblock(b);
3234 		result->end = to_cblock(e);
3235 		return 0;
3236 	}
3237 
3238 	/*
3239 	 * That didn't work, try form (i).
3240 	 */
3241 	r = sscanf(str, "%llu%c", &b, &dummy);
3242 	if (r < 0)
3243 		return r;
3244 
3245 	if (r == 1) {
3246 		result->begin = to_cblock(b);
3247 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3248 		return 0;
3249 	}
3250 
3251 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3252 	return -EINVAL;
3253 }
3254 
3255 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3256 {
3257 	uint64_t b = from_cblock(range->begin);
3258 	uint64_t e = from_cblock(range->end);
3259 	uint64_t n = from_cblock(cache->cache_size);
3260 
3261 	if (b >= n) {
3262 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3263 		      cache_device_name(cache), b, n);
3264 		return -EINVAL;
3265 	}
3266 
3267 	if (e > n) {
3268 		DMERR("%s: end cblock out of range: %llu > %llu",
3269 		      cache_device_name(cache), e, n);
3270 		return -EINVAL;
3271 	}
3272 
3273 	if (b >= e) {
3274 		DMERR("%s: invalid cblock range: %llu >= %llu",
3275 		      cache_device_name(cache), b, e);
3276 		return -EINVAL;
3277 	}
3278 
3279 	return 0;
3280 }
3281 
3282 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3283 {
3284 	return to_cblock(from_cblock(b) + 1);
3285 }
3286 
3287 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3288 {
3289 	int r = 0;
3290 
3291 	/*
3292 	 * We don't need to do any locking here because we know we're in
3293 	 * passthrough mode.  There's is potential for a race between an
3294 	 * invalidation triggered by an io and an invalidation message.  This
3295 	 * is harmless, we must not worry if the policy call fails.
3296 	 */
3297 	while (range->begin != range->end) {
3298 		r = invalidate_cblock(cache, range->begin);
3299 		if (r)
3300 			return r;
3301 
3302 		range->begin = cblock_succ(range->begin);
3303 	}
3304 
3305 	cache->commit_requested = true;
3306 	return r;
3307 }
3308 
3309 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3310 					      const char **cblock_ranges)
3311 {
3312 	int r = 0;
3313 	unsigned i;
3314 	struct cblock_range range;
3315 
3316 	if (!passthrough_mode(cache)) {
3317 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3318 		      cache_device_name(cache));
3319 		return -EPERM;
3320 	}
3321 
3322 	for (i = 0; i < count; i++) {
3323 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3324 		if (r)
3325 			break;
3326 
3327 		r = validate_cblock_range(cache, &range);
3328 		if (r)
3329 			break;
3330 
3331 		/*
3332 		 * Pass begin and end origin blocks to the worker and wake it.
3333 		 */
3334 		r = request_invalidation(cache, &range);
3335 		if (r)
3336 			break;
3337 	}
3338 
3339 	return r;
3340 }
3341 
3342 /*
3343  * Supports
3344  *	"<key> <value>"
3345  * and
3346  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3347  *
3348  * The key migration_threshold is supported by the cache target core.
3349  */
3350 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3351 			 char *result, unsigned maxlen)
3352 {
3353 	struct cache *cache = ti->private;
3354 
3355 	if (!argc)
3356 		return -EINVAL;
3357 
3358 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3359 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3360 		      cache_device_name(cache));
3361 		return -EOPNOTSUPP;
3362 	}
3363 
3364 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3365 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3366 
3367 	if (argc != 2)
3368 		return -EINVAL;
3369 
3370 	return set_config_value(cache, argv[0], argv[1]);
3371 }
3372 
3373 static int cache_iterate_devices(struct dm_target *ti,
3374 				 iterate_devices_callout_fn fn, void *data)
3375 {
3376 	int r = 0;
3377 	struct cache *cache = ti->private;
3378 
3379 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3380 	if (!r)
3381 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3382 
3383 	return r;
3384 }
3385 
3386 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3387 {
3388 	struct request_queue *q = bdev_get_queue(origin_bdev);
3389 
3390 	return blk_queue_discard(q);
3391 }
3392 
3393 /*
3394  * If discard_passdown was enabled verify that the origin device
3395  * supports discards.  Disable discard_passdown if not.
3396  */
3397 static void disable_passdown_if_not_supported(struct cache *cache)
3398 {
3399 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3400 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3401 	const char *reason = NULL;
3402 	char buf[BDEVNAME_SIZE];
3403 
3404 	if (!cache->features.discard_passdown)
3405 		return;
3406 
3407 	if (!origin_dev_supports_discard(origin_bdev))
3408 		reason = "discard unsupported";
3409 
3410 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3411 		reason = "max discard sectors smaller than a block";
3412 
3413 	if (reason) {
3414 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3415 		       bdevname(origin_bdev, buf), reason);
3416 		cache->features.discard_passdown = false;
3417 	}
3418 }
3419 
3420 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3421 {
3422 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3423 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3424 
3425 	if (!cache->features.discard_passdown) {
3426 		/* No passdown is done so setting own virtual limits */
3427 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3428 						    cache->origin_sectors);
3429 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3430 		return;
3431 	}
3432 
3433 	/*
3434 	 * cache_iterate_devices() is stacking both origin and fast device limits
3435 	 * but discards aren't passed to fast device, so inherit origin's limits.
3436 	 */
3437 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3438 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3439 	limits->discard_granularity = origin_limits->discard_granularity;
3440 	limits->discard_alignment = origin_limits->discard_alignment;
3441 	limits->discard_misaligned = origin_limits->discard_misaligned;
3442 }
3443 
3444 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3445 {
3446 	struct cache *cache = ti->private;
3447 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3448 
3449 	/*
3450 	 * If the system-determined stacked limits are compatible with the
3451 	 * cache's blocksize (io_opt is a factor) do not override them.
3452 	 */
3453 	if (io_opt_sectors < cache->sectors_per_block ||
3454 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3455 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3456 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3457 	}
3458 
3459 	disable_passdown_if_not_supported(cache);
3460 	set_discard_limits(cache, limits);
3461 }
3462 
3463 /*----------------------------------------------------------------*/
3464 
3465 static struct target_type cache_target = {
3466 	.name = "cache",
3467 	.version = {2, 2, 0},
3468 	.module = THIS_MODULE,
3469 	.ctr = cache_ctr,
3470 	.dtr = cache_dtr,
3471 	.map = cache_map,
3472 	.end_io = cache_end_io,
3473 	.postsuspend = cache_postsuspend,
3474 	.preresume = cache_preresume,
3475 	.resume = cache_resume,
3476 	.status = cache_status,
3477 	.message = cache_message,
3478 	.iterate_devices = cache_iterate_devices,
3479 	.io_hints = cache_io_hints,
3480 };
3481 
3482 static int __init dm_cache_init(void)
3483 {
3484 	int r;
3485 
3486 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3487 	if (!migration_cache)
3488 		return -ENOMEM;
3489 
3490 	r = dm_register_target(&cache_target);
3491 	if (r) {
3492 		DMERR("cache target registration failed: %d", r);
3493 		kmem_cache_destroy(migration_cache);
3494 		return r;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 static void __exit dm_cache_exit(void)
3501 {
3502 	dm_unregister_target(&cache_target);
3503 	kmem_cache_destroy(migration_cache);
3504 }
3505 
3506 module_init(dm_cache_init);
3507 module_exit(dm_cache_exit);
3508 
3509 MODULE_DESCRIPTION(DM_NAME " cache target");
3510 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3511 MODULE_LICENSE("GPL");
3512