1 /* 2 * Copyright (C) 2012 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm.h" 8 #include "dm-bio-prison-v2.h" 9 #include "dm-bio-record.h" 10 #include "dm-cache-metadata.h" 11 #include "dm-io-tracker.h" 12 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/init.h> 17 #include <linux/mempool.h> 18 #include <linux/module.h> 19 #include <linux/rwsem.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 23 #define DM_MSG_PREFIX "cache" 24 25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 26 "A percentage of time allocated for copying to and/or from cache"); 27 28 /*----------------------------------------------------------------*/ 29 30 /* 31 * Glossary: 32 * 33 * oblock: index of an origin block 34 * cblock: index of a cache block 35 * promotion: movement of a block from origin to cache 36 * demotion: movement of a block from cache to origin 37 * migration: movement of a block between the origin and cache device, 38 * either direction 39 */ 40 41 /*----------------------------------------------------------------*/ 42 43 /* 44 * Represents a chunk of future work. 'input' allows continuations to pass 45 * values between themselves, typically error values. 46 */ 47 struct continuation { 48 struct work_struct ws; 49 blk_status_t input; 50 }; 51 52 static inline void init_continuation(struct continuation *k, 53 void (*fn)(struct work_struct *)) 54 { 55 INIT_WORK(&k->ws, fn); 56 k->input = 0; 57 } 58 59 static inline void queue_continuation(struct workqueue_struct *wq, 60 struct continuation *k) 61 { 62 queue_work(wq, &k->ws); 63 } 64 65 /*----------------------------------------------------------------*/ 66 67 /* 68 * The batcher collects together pieces of work that need a particular 69 * operation to occur before they can proceed (typically a commit). 70 */ 71 struct batcher { 72 /* 73 * The operation that everyone is waiting for. 74 */ 75 blk_status_t (*commit_op)(void *context); 76 void *commit_context; 77 78 /* 79 * This is how bios should be issued once the commit op is complete 80 * (accounted_request). 81 */ 82 void (*issue_op)(struct bio *bio, void *context); 83 void *issue_context; 84 85 /* 86 * Queued work gets put on here after commit. 87 */ 88 struct workqueue_struct *wq; 89 90 spinlock_t lock; 91 struct list_head work_items; 92 struct bio_list bios; 93 struct work_struct commit_work; 94 95 bool commit_scheduled; 96 }; 97 98 static void __commit(struct work_struct *_ws) 99 { 100 struct batcher *b = container_of(_ws, struct batcher, commit_work); 101 blk_status_t r; 102 struct list_head work_items; 103 struct work_struct *ws, *tmp; 104 struct continuation *k; 105 struct bio *bio; 106 struct bio_list bios; 107 108 INIT_LIST_HEAD(&work_items); 109 bio_list_init(&bios); 110 111 /* 112 * We have to grab these before the commit_op to avoid a race 113 * condition. 114 */ 115 spin_lock_irq(&b->lock); 116 list_splice_init(&b->work_items, &work_items); 117 bio_list_merge(&bios, &b->bios); 118 bio_list_init(&b->bios); 119 b->commit_scheduled = false; 120 spin_unlock_irq(&b->lock); 121 122 r = b->commit_op(b->commit_context); 123 124 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 125 k = container_of(ws, struct continuation, ws); 126 k->input = r; 127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 128 queue_work(b->wq, ws); 129 } 130 131 while ((bio = bio_list_pop(&bios))) { 132 if (r) { 133 bio->bi_status = r; 134 bio_endio(bio); 135 } else 136 b->issue_op(bio, b->issue_context); 137 } 138 } 139 140 static void batcher_init(struct batcher *b, 141 blk_status_t (*commit_op)(void *), 142 void *commit_context, 143 void (*issue_op)(struct bio *bio, void *), 144 void *issue_context, 145 struct workqueue_struct *wq) 146 { 147 b->commit_op = commit_op; 148 b->commit_context = commit_context; 149 b->issue_op = issue_op; 150 b->issue_context = issue_context; 151 b->wq = wq; 152 153 spin_lock_init(&b->lock); 154 INIT_LIST_HEAD(&b->work_items); 155 bio_list_init(&b->bios); 156 INIT_WORK(&b->commit_work, __commit); 157 b->commit_scheduled = false; 158 } 159 160 static void async_commit(struct batcher *b) 161 { 162 queue_work(b->wq, &b->commit_work); 163 } 164 165 static void continue_after_commit(struct batcher *b, struct continuation *k) 166 { 167 bool commit_scheduled; 168 169 spin_lock_irq(&b->lock); 170 commit_scheduled = b->commit_scheduled; 171 list_add_tail(&k->ws.entry, &b->work_items); 172 spin_unlock_irq(&b->lock); 173 174 if (commit_scheduled) 175 async_commit(b); 176 } 177 178 /* 179 * Bios are errored if commit failed. 180 */ 181 static void issue_after_commit(struct batcher *b, struct bio *bio) 182 { 183 bool commit_scheduled; 184 185 spin_lock_irq(&b->lock); 186 commit_scheduled = b->commit_scheduled; 187 bio_list_add(&b->bios, bio); 188 spin_unlock_irq(&b->lock); 189 190 if (commit_scheduled) 191 async_commit(b); 192 } 193 194 /* 195 * Call this if some urgent work is waiting for the commit to complete. 196 */ 197 static void schedule_commit(struct batcher *b) 198 { 199 bool immediate; 200 201 spin_lock_irq(&b->lock); 202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 203 b->commit_scheduled = true; 204 spin_unlock_irq(&b->lock); 205 206 if (immediate) 207 async_commit(b); 208 } 209 210 /* 211 * There are a couple of places where we let a bio run, but want to do some 212 * work before calling its endio function. We do this by temporarily 213 * changing the endio fn. 214 */ 215 struct dm_hook_info { 216 bio_end_io_t *bi_end_io; 217 }; 218 219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 220 bio_end_io_t *bi_end_io, void *bi_private) 221 { 222 h->bi_end_io = bio->bi_end_io; 223 224 bio->bi_end_io = bi_end_io; 225 bio->bi_private = bi_private; 226 } 227 228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 229 { 230 bio->bi_end_io = h->bi_end_io; 231 } 232 233 /*----------------------------------------------------------------*/ 234 235 #define MIGRATION_POOL_SIZE 128 236 #define COMMIT_PERIOD HZ 237 #define MIGRATION_COUNT_WINDOW 10 238 239 /* 240 * The block size of the device holding cache data must be 241 * between 32KB and 1GB. 242 */ 243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 245 246 enum cache_metadata_mode { 247 CM_WRITE, /* metadata may be changed */ 248 CM_READ_ONLY, /* metadata may not be changed */ 249 CM_FAIL 250 }; 251 252 enum cache_io_mode { 253 /* 254 * Data is written to cached blocks only. These blocks are marked 255 * dirty. If you lose the cache device you will lose data. 256 * Potential performance increase for both reads and writes. 257 */ 258 CM_IO_WRITEBACK, 259 260 /* 261 * Data is written to both cache and origin. Blocks are never 262 * dirty. Potential performance benfit for reads only. 263 */ 264 CM_IO_WRITETHROUGH, 265 266 /* 267 * A degraded mode useful for various cache coherency situations 268 * (eg, rolling back snapshots). Reads and writes always go to the 269 * origin. If a write goes to a cached oblock, then the cache 270 * block is invalidated. 271 */ 272 CM_IO_PASSTHROUGH 273 }; 274 275 struct cache_features { 276 enum cache_metadata_mode mode; 277 enum cache_io_mode io_mode; 278 unsigned metadata_version; 279 bool discard_passdown:1; 280 }; 281 282 struct cache_stats { 283 atomic_t read_hit; 284 atomic_t read_miss; 285 atomic_t write_hit; 286 atomic_t write_miss; 287 atomic_t demotion; 288 atomic_t promotion; 289 atomic_t writeback; 290 atomic_t copies_avoided; 291 atomic_t cache_cell_clash; 292 atomic_t commit_count; 293 atomic_t discard_count; 294 }; 295 296 struct cache { 297 struct dm_target *ti; 298 spinlock_t lock; 299 300 /* 301 * Fields for converting from sectors to blocks. 302 */ 303 int sectors_per_block_shift; 304 sector_t sectors_per_block; 305 306 struct dm_cache_metadata *cmd; 307 308 /* 309 * Metadata is written to this device. 310 */ 311 struct dm_dev *metadata_dev; 312 313 /* 314 * The slower of the two data devices. Typically a spindle. 315 */ 316 struct dm_dev *origin_dev; 317 318 /* 319 * The faster of the two data devices. Typically an SSD. 320 */ 321 struct dm_dev *cache_dev; 322 323 /* 324 * Size of the origin device in _complete_ blocks and native sectors. 325 */ 326 dm_oblock_t origin_blocks; 327 sector_t origin_sectors; 328 329 /* 330 * Size of the cache device in blocks. 331 */ 332 dm_cblock_t cache_size; 333 334 /* 335 * Invalidation fields. 336 */ 337 spinlock_t invalidation_lock; 338 struct list_head invalidation_requests; 339 340 sector_t migration_threshold; 341 wait_queue_head_t migration_wait; 342 atomic_t nr_allocated_migrations; 343 344 /* 345 * The number of in flight migrations that are performing 346 * background io. eg, promotion, writeback. 347 */ 348 atomic_t nr_io_migrations; 349 350 struct bio_list deferred_bios; 351 352 struct rw_semaphore quiesce_lock; 353 354 /* 355 * origin_blocks entries, discarded if set. 356 */ 357 dm_dblock_t discard_nr_blocks; 358 unsigned long *discard_bitset; 359 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 360 361 /* 362 * Rather than reconstructing the table line for the status we just 363 * save it and regurgitate. 364 */ 365 unsigned nr_ctr_args; 366 const char **ctr_args; 367 368 struct dm_kcopyd_client *copier; 369 struct work_struct deferred_bio_worker; 370 struct work_struct migration_worker; 371 struct workqueue_struct *wq; 372 struct delayed_work waker; 373 struct dm_bio_prison_v2 *prison; 374 375 /* 376 * cache_size entries, dirty if set 377 */ 378 unsigned long *dirty_bitset; 379 atomic_t nr_dirty; 380 381 unsigned policy_nr_args; 382 struct dm_cache_policy *policy; 383 384 /* 385 * Cache features such as write-through. 386 */ 387 struct cache_features features; 388 389 struct cache_stats stats; 390 391 bool need_tick_bio:1; 392 bool sized:1; 393 bool invalidate:1; 394 bool commit_requested:1; 395 bool loaded_mappings:1; 396 bool loaded_discards:1; 397 398 struct rw_semaphore background_work_lock; 399 400 struct batcher committer; 401 struct work_struct commit_ws; 402 403 struct dm_io_tracker tracker; 404 405 mempool_t migration_pool; 406 407 struct bio_set bs; 408 }; 409 410 struct per_bio_data { 411 bool tick:1; 412 unsigned req_nr:2; 413 struct dm_bio_prison_cell_v2 *cell; 414 struct dm_hook_info hook_info; 415 sector_t len; 416 }; 417 418 struct dm_cache_migration { 419 struct continuation k; 420 struct cache *cache; 421 422 struct policy_work *op; 423 struct bio *overwrite_bio; 424 struct dm_bio_prison_cell_v2 *cell; 425 426 dm_cblock_t invalidate_cblock; 427 dm_oblock_t invalidate_oblock; 428 }; 429 430 /*----------------------------------------------------------------*/ 431 432 static bool writethrough_mode(struct cache *cache) 433 { 434 return cache->features.io_mode == CM_IO_WRITETHROUGH; 435 } 436 437 static bool writeback_mode(struct cache *cache) 438 { 439 return cache->features.io_mode == CM_IO_WRITEBACK; 440 } 441 442 static inline bool passthrough_mode(struct cache *cache) 443 { 444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 445 } 446 447 /*----------------------------------------------------------------*/ 448 449 static void wake_deferred_bio_worker(struct cache *cache) 450 { 451 queue_work(cache->wq, &cache->deferred_bio_worker); 452 } 453 454 static void wake_migration_worker(struct cache *cache) 455 { 456 if (passthrough_mode(cache)) 457 return; 458 459 queue_work(cache->wq, &cache->migration_worker); 460 } 461 462 /*----------------------------------------------------------------*/ 463 464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 465 { 466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 467 } 468 469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 470 { 471 dm_bio_prison_free_cell_v2(cache->prison, cell); 472 } 473 474 static struct dm_cache_migration *alloc_migration(struct cache *cache) 475 { 476 struct dm_cache_migration *mg; 477 478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 479 480 memset(mg, 0, sizeof(*mg)); 481 482 mg->cache = cache; 483 atomic_inc(&cache->nr_allocated_migrations); 484 485 return mg; 486 } 487 488 static void free_migration(struct dm_cache_migration *mg) 489 { 490 struct cache *cache = mg->cache; 491 492 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 493 wake_up(&cache->migration_wait); 494 495 mempool_free(mg, &cache->migration_pool); 496 } 497 498 /*----------------------------------------------------------------*/ 499 500 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 501 { 502 return to_oblock(from_oblock(b) + 1ull); 503 } 504 505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 506 { 507 key->virtual = 0; 508 key->dev = 0; 509 key->block_begin = from_oblock(begin); 510 key->block_end = from_oblock(end); 511 } 512 513 /* 514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 515 * level 1 which prevents *both* READs and WRITEs. 516 */ 517 #define WRITE_LOCK_LEVEL 0 518 #define READ_WRITE_LOCK_LEVEL 1 519 520 static unsigned lock_level(struct bio *bio) 521 { 522 return bio_data_dir(bio) == WRITE ? 523 WRITE_LOCK_LEVEL : 524 READ_WRITE_LOCK_LEVEL; 525 } 526 527 /*---------------------------------------------------------------- 528 * Per bio data 529 *--------------------------------------------------------------*/ 530 531 static struct per_bio_data *get_per_bio_data(struct bio *bio) 532 { 533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 534 BUG_ON(!pb); 535 return pb; 536 } 537 538 static struct per_bio_data *init_per_bio_data(struct bio *bio) 539 { 540 struct per_bio_data *pb = get_per_bio_data(bio); 541 542 pb->tick = false; 543 pb->req_nr = dm_bio_get_target_bio_nr(bio); 544 pb->cell = NULL; 545 pb->len = 0; 546 547 return pb; 548 } 549 550 /*----------------------------------------------------------------*/ 551 552 static void defer_bio(struct cache *cache, struct bio *bio) 553 { 554 spin_lock_irq(&cache->lock); 555 bio_list_add(&cache->deferred_bios, bio); 556 spin_unlock_irq(&cache->lock); 557 558 wake_deferred_bio_worker(cache); 559 } 560 561 static void defer_bios(struct cache *cache, struct bio_list *bios) 562 { 563 spin_lock_irq(&cache->lock); 564 bio_list_merge(&cache->deferred_bios, bios); 565 bio_list_init(bios); 566 spin_unlock_irq(&cache->lock); 567 568 wake_deferred_bio_worker(cache); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 574 { 575 bool r; 576 struct per_bio_data *pb; 577 struct dm_cell_key_v2 key; 578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 580 581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 582 583 build_key(oblock, end, &key); 584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 585 if (!r) { 586 /* 587 * Failed to get the lock. 588 */ 589 free_prison_cell(cache, cell_prealloc); 590 return r; 591 } 592 593 if (cell != cell_prealloc) 594 free_prison_cell(cache, cell_prealloc); 595 596 pb = get_per_bio_data(bio); 597 pb->cell = cell; 598 599 return r; 600 } 601 602 /*----------------------------------------------------------------*/ 603 604 static bool is_dirty(struct cache *cache, dm_cblock_t b) 605 { 606 return test_bit(from_cblock(b), cache->dirty_bitset); 607 } 608 609 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 610 { 611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 612 atomic_inc(&cache->nr_dirty); 613 policy_set_dirty(cache->policy, cblock); 614 } 615 } 616 617 /* 618 * These two are called when setting after migrations to force the policy 619 * and dirty bitset to be in sync. 620 */ 621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 622 { 623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 624 atomic_inc(&cache->nr_dirty); 625 policy_set_dirty(cache->policy, cblock); 626 } 627 628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 629 { 630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 631 if (atomic_dec_return(&cache->nr_dirty) == 0) 632 dm_table_event(cache->ti->table); 633 } 634 635 policy_clear_dirty(cache->policy, cblock); 636 } 637 638 /*----------------------------------------------------------------*/ 639 640 static bool block_size_is_power_of_two(struct cache *cache) 641 { 642 return cache->sectors_per_block_shift >= 0; 643 } 644 645 static dm_block_t block_div(dm_block_t b, uint32_t n) 646 { 647 do_div(b, n); 648 649 return b; 650 } 651 652 static dm_block_t oblocks_per_dblock(struct cache *cache) 653 { 654 dm_block_t oblocks = cache->discard_block_size; 655 656 if (block_size_is_power_of_two(cache)) 657 oblocks >>= cache->sectors_per_block_shift; 658 else 659 oblocks = block_div(oblocks, cache->sectors_per_block); 660 661 return oblocks; 662 } 663 664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 665 { 666 return to_dblock(block_div(from_oblock(oblock), 667 oblocks_per_dblock(cache))); 668 } 669 670 static void set_discard(struct cache *cache, dm_dblock_t b) 671 { 672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 673 atomic_inc(&cache->stats.discard_count); 674 675 spin_lock_irq(&cache->lock); 676 set_bit(from_dblock(b), cache->discard_bitset); 677 spin_unlock_irq(&cache->lock); 678 } 679 680 static void clear_discard(struct cache *cache, dm_dblock_t b) 681 { 682 spin_lock_irq(&cache->lock); 683 clear_bit(from_dblock(b), cache->discard_bitset); 684 spin_unlock_irq(&cache->lock); 685 } 686 687 static bool is_discarded(struct cache *cache, dm_dblock_t b) 688 { 689 int r; 690 spin_lock_irq(&cache->lock); 691 r = test_bit(from_dblock(b), cache->discard_bitset); 692 spin_unlock_irq(&cache->lock); 693 694 return r; 695 } 696 697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 698 { 699 int r; 700 spin_lock_irq(&cache->lock); 701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 702 cache->discard_bitset); 703 spin_unlock_irq(&cache->lock); 704 705 return r; 706 } 707 708 /*---------------------------------------------------------------- 709 * Remapping 710 *--------------------------------------------------------------*/ 711 static void remap_to_origin(struct cache *cache, struct bio *bio) 712 { 713 bio_set_dev(bio, cache->origin_dev->bdev); 714 } 715 716 static void remap_to_cache(struct cache *cache, struct bio *bio, 717 dm_cblock_t cblock) 718 { 719 sector_t bi_sector = bio->bi_iter.bi_sector; 720 sector_t block = from_cblock(cblock); 721 722 bio_set_dev(bio, cache->cache_dev->bdev); 723 if (!block_size_is_power_of_two(cache)) 724 bio->bi_iter.bi_sector = 725 (block * cache->sectors_per_block) + 726 sector_div(bi_sector, cache->sectors_per_block); 727 else 728 bio->bi_iter.bi_sector = 729 (block << cache->sectors_per_block_shift) | 730 (bi_sector & (cache->sectors_per_block - 1)); 731 } 732 733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 734 { 735 struct per_bio_data *pb; 736 737 spin_lock_irq(&cache->lock); 738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 739 bio_op(bio) != REQ_OP_DISCARD) { 740 pb = get_per_bio_data(bio); 741 pb->tick = true; 742 cache->need_tick_bio = false; 743 } 744 spin_unlock_irq(&cache->lock); 745 } 746 747 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 748 dm_oblock_t oblock) 749 { 750 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 751 check_if_tick_bio_needed(cache, bio); 752 remap_to_origin(cache, bio); 753 if (bio_data_dir(bio) == WRITE) 754 clear_discard(cache, oblock_to_dblock(cache, oblock)); 755 } 756 757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 758 dm_oblock_t oblock, dm_cblock_t cblock) 759 { 760 check_if_tick_bio_needed(cache, bio); 761 remap_to_cache(cache, bio, cblock); 762 if (bio_data_dir(bio) == WRITE) { 763 set_dirty(cache, cblock); 764 clear_discard(cache, oblock_to_dblock(cache, oblock)); 765 } 766 } 767 768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 769 { 770 sector_t block_nr = bio->bi_iter.bi_sector; 771 772 if (!block_size_is_power_of_two(cache)) 773 (void) sector_div(block_nr, cache->sectors_per_block); 774 else 775 block_nr >>= cache->sectors_per_block_shift; 776 777 return to_oblock(block_nr); 778 } 779 780 static bool accountable_bio(struct cache *cache, struct bio *bio) 781 { 782 return bio_op(bio) != REQ_OP_DISCARD; 783 } 784 785 static void accounted_begin(struct cache *cache, struct bio *bio) 786 { 787 struct per_bio_data *pb; 788 789 if (accountable_bio(cache, bio)) { 790 pb = get_per_bio_data(bio); 791 pb->len = bio_sectors(bio); 792 dm_iot_io_begin(&cache->tracker, pb->len); 793 } 794 } 795 796 static void accounted_complete(struct cache *cache, struct bio *bio) 797 { 798 struct per_bio_data *pb = get_per_bio_data(bio); 799 800 dm_iot_io_end(&cache->tracker, pb->len); 801 } 802 803 static void accounted_request(struct cache *cache, struct bio *bio) 804 { 805 accounted_begin(cache, bio); 806 dm_submit_bio_remap(bio, NULL); 807 } 808 809 static void issue_op(struct bio *bio, void *context) 810 { 811 struct cache *cache = context; 812 accounted_request(cache, bio); 813 } 814 815 /* 816 * When running in writethrough mode we need to send writes to clean blocks 817 * to both the cache and origin devices. Clone the bio and send them in parallel. 818 */ 819 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 820 dm_oblock_t oblock, dm_cblock_t cblock) 821 { 822 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio, 823 GFP_NOIO, &cache->bs); 824 825 BUG_ON(!origin_bio); 826 827 bio_chain(origin_bio, bio); 828 829 if (bio_data_dir(origin_bio) == WRITE) 830 clear_discard(cache, oblock_to_dblock(cache, oblock)); 831 submit_bio(origin_bio); 832 833 remap_to_cache(cache, bio, cblock); 834 } 835 836 /*---------------------------------------------------------------- 837 * Failure modes 838 *--------------------------------------------------------------*/ 839 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 840 { 841 return cache->features.mode; 842 } 843 844 static const char *cache_device_name(struct cache *cache) 845 { 846 return dm_table_device_name(cache->ti->table); 847 } 848 849 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 850 { 851 const char *descs[] = { 852 "write", 853 "read-only", 854 "fail" 855 }; 856 857 dm_table_event(cache->ti->table); 858 DMINFO("%s: switching cache to %s mode", 859 cache_device_name(cache), descs[(int)mode]); 860 } 861 862 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 863 { 864 bool needs_check; 865 enum cache_metadata_mode old_mode = get_cache_mode(cache); 866 867 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 868 DMERR("%s: unable to read needs_check flag, setting failure mode.", 869 cache_device_name(cache)); 870 new_mode = CM_FAIL; 871 } 872 873 if (new_mode == CM_WRITE && needs_check) { 874 DMERR("%s: unable to switch cache to write mode until repaired.", 875 cache_device_name(cache)); 876 if (old_mode != new_mode) 877 new_mode = old_mode; 878 else 879 new_mode = CM_READ_ONLY; 880 } 881 882 /* Never move out of fail mode */ 883 if (old_mode == CM_FAIL) 884 new_mode = CM_FAIL; 885 886 switch (new_mode) { 887 case CM_FAIL: 888 case CM_READ_ONLY: 889 dm_cache_metadata_set_read_only(cache->cmd); 890 break; 891 892 case CM_WRITE: 893 dm_cache_metadata_set_read_write(cache->cmd); 894 break; 895 } 896 897 cache->features.mode = new_mode; 898 899 if (new_mode != old_mode) 900 notify_mode_switch(cache, new_mode); 901 } 902 903 static void abort_transaction(struct cache *cache) 904 { 905 const char *dev_name = cache_device_name(cache); 906 907 if (get_cache_mode(cache) >= CM_READ_ONLY) 908 return; 909 910 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 911 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 912 set_cache_mode(cache, CM_FAIL); 913 } 914 915 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 916 if (dm_cache_metadata_abort(cache->cmd)) { 917 DMERR("%s: failed to abort metadata transaction", dev_name); 918 set_cache_mode(cache, CM_FAIL); 919 } 920 } 921 922 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 923 { 924 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 925 cache_device_name(cache), op, r); 926 abort_transaction(cache); 927 set_cache_mode(cache, CM_READ_ONLY); 928 } 929 930 /*----------------------------------------------------------------*/ 931 932 static void load_stats(struct cache *cache) 933 { 934 struct dm_cache_statistics stats; 935 936 dm_cache_metadata_get_stats(cache->cmd, &stats); 937 atomic_set(&cache->stats.read_hit, stats.read_hits); 938 atomic_set(&cache->stats.read_miss, stats.read_misses); 939 atomic_set(&cache->stats.write_hit, stats.write_hits); 940 atomic_set(&cache->stats.write_miss, stats.write_misses); 941 } 942 943 static void save_stats(struct cache *cache) 944 { 945 struct dm_cache_statistics stats; 946 947 if (get_cache_mode(cache) >= CM_READ_ONLY) 948 return; 949 950 stats.read_hits = atomic_read(&cache->stats.read_hit); 951 stats.read_misses = atomic_read(&cache->stats.read_miss); 952 stats.write_hits = atomic_read(&cache->stats.write_hit); 953 stats.write_misses = atomic_read(&cache->stats.write_miss); 954 955 dm_cache_metadata_set_stats(cache->cmd, &stats); 956 } 957 958 static void update_stats(struct cache_stats *stats, enum policy_operation op) 959 { 960 switch (op) { 961 case POLICY_PROMOTE: 962 atomic_inc(&stats->promotion); 963 break; 964 965 case POLICY_DEMOTE: 966 atomic_inc(&stats->demotion); 967 break; 968 969 case POLICY_WRITEBACK: 970 atomic_inc(&stats->writeback); 971 break; 972 } 973 } 974 975 /*---------------------------------------------------------------- 976 * Migration processing 977 * 978 * Migration covers moving data from the origin device to the cache, or 979 * vice versa. 980 *--------------------------------------------------------------*/ 981 982 static void inc_io_migrations(struct cache *cache) 983 { 984 atomic_inc(&cache->nr_io_migrations); 985 } 986 987 static void dec_io_migrations(struct cache *cache) 988 { 989 atomic_dec(&cache->nr_io_migrations); 990 } 991 992 static bool discard_or_flush(struct bio *bio) 993 { 994 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 995 } 996 997 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 998 dm_dblock_t *b, dm_dblock_t *e) 999 { 1000 sector_t sb = bio->bi_iter.bi_sector; 1001 sector_t se = bio_end_sector(bio); 1002 1003 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1004 1005 if (se - sb < cache->discard_block_size) 1006 *e = *b; 1007 else 1008 *e = to_dblock(block_div(se, cache->discard_block_size)); 1009 } 1010 1011 /*----------------------------------------------------------------*/ 1012 1013 static void prevent_background_work(struct cache *cache) 1014 { 1015 lockdep_off(); 1016 down_write(&cache->background_work_lock); 1017 lockdep_on(); 1018 } 1019 1020 static void allow_background_work(struct cache *cache) 1021 { 1022 lockdep_off(); 1023 up_write(&cache->background_work_lock); 1024 lockdep_on(); 1025 } 1026 1027 static bool background_work_begin(struct cache *cache) 1028 { 1029 bool r; 1030 1031 lockdep_off(); 1032 r = down_read_trylock(&cache->background_work_lock); 1033 lockdep_on(); 1034 1035 return r; 1036 } 1037 1038 static void background_work_end(struct cache *cache) 1039 { 1040 lockdep_off(); 1041 up_read(&cache->background_work_lock); 1042 lockdep_on(); 1043 } 1044 1045 /*----------------------------------------------------------------*/ 1046 1047 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1048 { 1049 return (bio_data_dir(bio) == WRITE) && 1050 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1051 } 1052 1053 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1054 { 1055 return writeback_mode(cache) && 1056 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1057 } 1058 1059 static void quiesce(struct dm_cache_migration *mg, 1060 void (*continuation)(struct work_struct *)) 1061 { 1062 init_continuation(&mg->k, continuation); 1063 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1064 } 1065 1066 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1067 { 1068 struct continuation *k = container_of(ws, struct continuation, ws); 1069 return container_of(k, struct dm_cache_migration, k); 1070 } 1071 1072 static void copy_complete(int read_err, unsigned long write_err, void *context) 1073 { 1074 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1075 1076 if (read_err || write_err) 1077 mg->k.input = BLK_STS_IOERR; 1078 1079 queue_continuation(mg->cache->wq, &mg->k); 1080 } 1081 1082 static void copy(struct dm_cache_migration *mg, bool promote) 1083 { 1084 struct dm_io_region o_region, c_region; 1085 struct cache *cache = mg->cache; 1086 1087 o_region.bdev = cache->origin_dev->bdev; 1088 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1089 o_region.count = cache->sectors_per_block; 1090 1091 c_region.bdev = cache->cache_dev->bdev; 1092 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1093 c_region.count = cache->sectors_per_block; 1094 1095 if (promote) 1096 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1097 else 1098 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1099 } 1100 1101 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1102 { 1103 struct per_bio_data *pb = get_per_bio_data(bio); 1104 1105 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1106 free_prison_cell(cache, pb->cell); 1107 pb->cell = NULL; 1108 } 1109 1110 static void overwrite_endio(struct bio *bio) 1111 { 1112 struct dm_cache_migration *mg = bio->bi_private; 1113 struct cache *cache = mg->cache; 1114 struct per_bio_data *pb = get_per_bio_data(bio); 1115 1116 dm_unhook_bio(&pb->hook_info, bio); 1117 1118 if (bio->bi_status) 1119 mg->k.input = bio->bi_status; 1120 1121 queue_continuation(cache->wq, &mg->k); 1122 } 1123 1124 static void overwrite(struct dm_cache_migration *mg, 1125 void (*continuation)(struct work_struct *)) 1126 { 1127 struct bio *bio = mg->overwrite_bio; 1128 struct per_bio_data *pb = get_per_bio_data(bio); 1129 1130 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1131 1132 /* 1133 * The overwrite bio is part of the copy operation, as such it does 1134 * not set/clear discard or dirty flags. 1135 */ 1136 if (mg->op->op == POLICY_PROMOTE) 1137 remap_to_cache(mg->cache, bio, mg->op->cblock); 1138 else 1139 remap_to_origin(mg->cache, bio); 1140 1141 init_continuation(&mg->k, continuation); 1142 accounted_request(mg->cache, bio); 1143 } 1144 1145 /* 1146 * Migration steps: 1147 * 1148 * 1) exclusive lock preventing WRITEs 1149 * 2) quiesce 1150 * 3) copy or issue overwrite bio 1151 * 4) upgrade to exclusive lock preventing READs and WRITEs 1152 * 5) quiesce 1153 * 6) update metadata and commit 1154 * 7) unlock 1155 */ 1156 static void mg_complete(struct dm_cache_migration *mg, bool success) 1157 { 1158 struct bio_list bios; 1159 struct cache *cache = mg->cache; 1160 struct policy_work *op = mg->op; 1161 dm_cblock_t cblock = op->cblock; 1162 1163 if (success) 1164 update_stats(&cache->stats, op->op); 1165 1166 switch (op->op) { 1167 case POLICY_PROMOTE: 1168 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1169 policy_complete_background_work(cache->policy, op, success); 1170 1171 if (mg->overwrite_bio) { 1172 if (success) 1173 force_set_dirty(cache, cblock); 1174 else if (mg->k.input) 1175 mg->overwrite_bio->bi_status = mg->k.input; 1176 else 1177 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1178 bio_endio(mg->overwrite_bio); 1179 } else { 1180 if (success) 1181 force_clear_dirty(cache, cblock); 1182 dec_io_migrations(cache); 1183 } 1184 break; 1185 1186 case POLICY_DEMOTE: 1187 /* 1188 * We clear dirty here to update the nr_dirty counter. 1189 */ 1190 if (success) 1191 force_clear_dirty(cache, cblock); 1192 policy_complete_background_work(cache->policy, op, success); 1193 dec_io_migrations(cache); 1194 break; 1195 1196 case POLICY_WRITEBACK: 1197 if (success) 1198 force_clear_dirty(cache, cblock); 1199 policy_complete_background_work(cache->policy, op, success); 1200 dec_io_migrations(cache); 1201 break; 1202 } 1203 1204 bio_list_init(&bios); 1205 if (mg->cell) { 1206 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1207 free_prison_cell(cache, mg->cell); 1208 } 1209 1210 free_migration(mg); 1211 defer_bios(cache, &bios); 1212 wake_migration_worker(cache); 1213 1214 background_work_end(cache); 1215 } 1216 1217 static void mg_success(struct work_struct *ws) 1218 { 1219 struct dm_cache_migration *mg = ws_to_mg(ws); 1220 mg_complete(mg, mg->k.input == 0); 1221 } 1222 1223 static void mg_update_metadata(struct work_struct *ws) 1224 { 1225 int r; 1226 struct dm_cache_migration *mg = ws_to_mg(ws); 1227 struct cache *cache = mg->cache; 1228 struct policy_work *op = mg->op; 1229 1230 switch (op->op) { 1231 case POLICY_PROMOTE: 1232 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1233 if (r) { 1234 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1235 cache_device_name(cache)); 1236 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1237 1238 mg_complete(mg, false); 1239 return; 1240 } 1241 mg_complete(mg, true); 1242 break; 1243 1244 case POLICY_DEMOTE: 1245 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1246 if (r) { 1247 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1248 cache_device_name(cache)); 1249 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1250 1251 mg_complete(mg, false); 1252 return; 1253 } 1254 1255 /* 1256 * It would be nice if we only had to commit when a REQ_FLUSH 1257 * comes through. But there's one scenario that we have to 1258 * look out for: 1259 * 1260 * - vblock x in a cache block 1261 * - domotion occurs 1262 * - cache block gets reallocated and over written 1263 * - crash 1264 * 1265 * When we recover, because there was no commit the cache will 1266 * rollback to having the data for vblock x in the cache block. 1267 * But the cache block has since been overwritten, so it'll end 1268 * up pointing to data that was never in 'x' during the history 1269 * of the device. 1270 * 1271 * To avoid this issue we require a commit as part of the 1272 * demotion operation. 1273 */ 1274 init_continuation(&mg->k, mg_success); 1275 continue_after_commit(&cache->committer, &mg->k); 1276 schedule_commit(&cache->committer); 1277 break; 1278 1279 case POLICY_WRITEBACK: 1280 mg_complete(mg, true); 1281 break; 1282 } 1283 } 1284 1285 static void mg_update_metadata_after_copy(struct work_struct *ws) 1286 { 1287 struct dm_cache_migration *mg = ws_to_mg(ws); 1288 1289 /* 1290 * Did the copy succeed? 1291 */ 1292 if (mg->k.input) 1293 mg_complete(mg, false); 1294 else 1295 mg_update_metadata(ws); 1296 } 1297 1298 static void mg_upgrade_lock(struct work_struct *ws) 1299 { 1300 int r; 1301 struct dm_cache_migration *mg = ws_to_mg(ws); 1302 1303 /* 1304 * Did the copy succeed? 1305 */ 1306 if (mg->k.input) 1307 mg_complete(mg, false); 1308 1309 else { 1310 /* 1311 * Now we want the lock to prevent both reads and writes. 1312 */ 1313 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1314 READ_WRITE_LOCK_LEVEL); 1315 if (r < 0) 1316 mg_complete(mg, false); 1317 1318 else if (r) 1319 quiesce(mg, mg_update_metadata); 1320 1321 else 1322 mg_update_metadata(ws); 1323 } 1324 } 1325 1326 static void mg_full_copy(struct work_struct *ws) 1327 { 1328 struct dm_cache_migration *mg = ws_to_mg(ws); 1329 struct cache *cache = mg->cache; 1330 struct policy_work *op = mg->op; 1331 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1332 1333 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1334 is_discarded_oblock(cache, op->oblock)) { 1335 mg_upgrade_lock(ws); 1336 return; 1337 } 1338 1339 init_continuation(&mg->k, mg_upgrade_lock); 1340 copy(mg, is_policy_promote); 1341 } 1342 1343 static void mg_copy(struct work_struct *ws) 1344 { 1345 struct dm_cache_migration *mg = ws_to_mg(ws); 1346 1347 if (mg->overwrite_bio) { 1348 /* 1349 * No exclusive lock was held when we last checked if the bio 1350 * was optimisable. So we have to check again in case things 1351 * have changed (eg, the block may no longer be discarded). 1352 */ 1353 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1354 /* 1355 * Fallback to a real full copy after doing some tidying up. 1356 */ 1357 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1358 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1359 mg->overwrite_bio = NULL; 1360 inc_io_migrations(mg->cache); 1361 mg_full_copy(ws); 1362 return; 1363 } 1364 1365 /* 1366 * It's safe to do this here, even though it's new data 1367 * because all IO has been locked out of the block. 1368 * 1369 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1370 * so _not_ using mg_upgrade_lock() as continutation. 1371 */ 1372 overwrite(mg, mg_update_metadata_after_copy); 1373 1374 } else 1375 mg_full_copy(ws); 1376 } 1377 1378 static int mg_lock_writes(struct dm_cache_migration *mg) 1379 { 1380 int r; 1381 struct dm_cell_key_v2 key; 1382 struct cache *cache = mg->cache; 1383 struct dm_bio_prison_cell_v2 *prealloc; 1384 1385 prealloc = alloc_prison_cell(cache); 1386 1387 /* 1388 * Prevent writes to the block, but allow reads to continue. 1389 * Unless we're using an overwrite bio, in which case we lock 1390 * everything. 1391 */ 1392 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1393 r = dm_cell_lock_v2(cache->prison, &key, 1394 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1395 prealloc, &mg->cell); 1396 if (r < 0) { 1397 free_prison_cell(cache, prealloc); 1398 mg_complete(mg, false); 1399 return r; 1400 } 1401 1402 if (mg->cell != prealloc) 1403 free_prison_cell(cache, prealloc); 1404 1405 if (r == 0) 1406 mg_copy(&mg->k.ws); 1407 else 1408 quiesce(mg, mg_copy); 1409 1410 return 0; 1411 } 1412 1413 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1414 { 1415 struct dm_cache_migration *mg; 1416 1417 if (!background_work_begin(cache)) { 1418 policy_complete_background_work(cache->policy, op, false); 1419 return -EPERM; 1420 } 1421 1422 mg = alloc_migration(cache); 1423 1424 mg->op = op; 1425 mg->overwrite_bio = bio; 1426 1427 if (!bio) 1428 inc_io_migrations(cache); 1429 1430 return mg_lock_writes(mg); 1431 } 1432 1433 /*---------------------------------------------------------------- 1434 * invalidation processing 1435 *--------------------------------------------------------------*/ 1436 1437 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1438 { 1439 struct bio_list bios; 1440 struct cache *cache = mg->cache; 1441 1442 bio_list_init(&bios); 1443 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1444 free_prison_cell(cache, mg->cell); 1445 1446 if (!success && mg->overwrite_bio) 1447 bio_io_error(mg->overwrite_bio); 1448 1449 free_migration(mg); 1450 defer_bios(cache, &bios); 1451 1452 background_work_end(cache); 1453 } 1454 1455 static void invalidate_completed(struct work_struct *ws) 1456 { 1457 struct dm_cache_migration *mg = ws_to_mg(ws); 1458 invalidate_complete(mg, !mg->k.input); 1459 } 1460 1461 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1462 { 1463 int r = policy_invalidate_mapping(cache->policy, cblock); 1464 if (!r) { 1465 r = dm_cache_remove_mapping(cache->cmd, cblock); 1466 if (r) { 1467 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1468 cache_device_name(cache)); 1469 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1470 } 1471 1472 } else if (r == -ENODATA) { 1473 /* 1474 * Harmless, already unmapped. 1475 */ 1476 r = 0; 1477 1478 } else 1479 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1480 1481 return r; 1482 } 1483 1484 static void invalidate_remove(struct work_struct *ws) 1485 { 1486 int r; 1487 struct dm_cache_migration *mg = ws_to_mg(ws); 1488 struct cache *cache = mg->cache; 1489 1490 r = invalidate_cblock(cache, mg->invalidate_cblock); 1491 if (r) { 1492 invalidate_complete(mg, false); 1493 return; 1494 } 1495 1496 init_continuation(&mg->k, invalidate_completed); 1497 continue_after_commit(&cache->committer, &mg->k); 1498 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1499 mg->overwrite_bio = NULL; 1500 schedule_commit(&cache->committer); 1501 } 1502 1503 static int invalidate_lock(struct dm_cache_migration *mg) 1504 { 1505 int r; 1506 struct dm_cell_key_v2 key; 1507 struct cache *cache = mg->cache; 1508 struct dm_bio_prison_cell_v2 *prealloc; 1509 1510 prealloc = alloc_prison_cell(cache); 1511 1512 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1513 r = dm_cell_lock_v2(cache->prison, &key, 1514 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1515 if (r < 0) { 1516 free_prison_cell(cache, prealloc); 1517 invalidate_complete(mg, false); 1518 return r; 1519 } 1520 1521 if (mg->cell != prealloc) 1522 free_prison_cell(cache, prealloc); 1523 1524 if (r) 1525 quiesce(mg, invalidate_remove); 1526 1527 else { 1528 /* 1529 * We can't call invalidate_remove() directly here because we 1530 * might still be in request context. 1531 */ 1532 init_continuation(&mg->k, invalidate_remove); 1533 queue_work(cache->wq, &mg->k.ws); 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1540 dm_oblock_t oblock, struct bio *bio) 1541 { 1542 struct dm_cache_migration *mg; 1543 1544 if (!background_work_begin(cache)) 1545 return -EPERM; 1546 1547 mg = alloc_migration(cache); 1548 1549 mg->overwrite_bio = bio; 1550 mg->invalidate_cblock = cblock; 1551 mg->invalidate_oblock = oblock; 1552 1553 return invalidate_lock(mg); 1554 } 1555 1556 /*---------------------------------------------------------------- 1557 * bio processing 1558 *--------------------------------------------------------------*/ 1559 1560 enum busy { 1561 IDLE, 1562 BUSY 1563 }; 1564 1565 static enum busy spare_migration_bandwidth(struct cache *cache) 1566 { 1567 bool idle = dm_iot_idle_for(&cache->tracker, HZ); 1568 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1569 cache->sectors_per_block; 1570 1571 if (idle && current_volume <= cache->migration_threshold) 1572 return IDLE; 1573 else 1574 return BUSY; 1575 } 1576 1577 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1578 { 1579 atomic_inc(bio_data_dir(bio) == READ ? 1580 &cache->stats.read_hit : &cache->stats.write_hit); 1581 } 1582 1583 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1584 { 1585 atomic_inc(bio_data_dir(bio) == READ ? 1586 &cache->stats.read_miss : &cache->stats.write_miss); 1587 } 1588 1589 /*----------------------------------------------------------------*/ 1590 1591 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1592 bool *commit_needed) 1593 { 1594 int r, data_dir; 1595 bool rb, background_queued; 1596 dm_cblock_t cblock; 1597 1598 *commit_needed = false; 1599 1600 rb = bio_detain_shared(cache, block, bio); 1601 if (!rb) { 1602 /* 1603 * An exclusive lock is held for this block, so we have to 1604 * wait. We set the commit_needed flag so the current 1605 * transaction will be committed asap, allowing this lock 1606 * to be dropped. 1607 */ 1608 *commit_needed = true; 1609 return DM_MAPIO_SUBMITTED; 1610 } 1611 1612 data_dir = bio_data_dir(bio); 1613 1614 if (optimisable_bio(cache, bio, block)) { 1615 struct policy_work *op = NULL; 1616 1617 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1618 if (unlikely(r && r != -ENOENT)) { 1619 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1620 cache_device_name(cache), r); 1621 bio_io_error(bio); 1622 return DM_MAPIO_SUBMITTED; 1623 } 1624 1625 if (r == -ENOENT && op) { 1626 bio_drop_shared_lock(cache, bio); 1627 BUG_ON(op->op != POLICY_PROMOTE); 1628 mg_start(cache, op, bio); 1629 return DM_MAPIO_SUBMITTED; 1630 } 1631 } else { 1632 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1633 if (unlikely(r && r != -ENOENT)) { 1634 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1635 cache_device_name(cache), r); 1636 bio_io_error(bio); 1637 return DM_MAPIO_SUBMITTED; 1638 } 1639 1640 if (background_queued) 1641 wake_migration_worker(cache); 1642 } 1643 1644 if (r == -ENOENT) { 1645 struct per_bio_data *pb = get_per_bio_data(bio); 1646 1647 /* 1648 * Miss. 1649 */ 1650 inc_miss_counter(cache, bio); 1651 if (pb->req_nr == 0) { 1652 accounted_begin(cache, bio); 1653 remap_to_origin_clear_discard(cache, bio, block); 1654 } else { 1655 /* 1656 * This is a duplicate writethrough io that is no 1657 * longer needed because the block has been demoted. 1658 */ 1659 bio_endio(bio); 1660 return DM_MAPIO_SUBMITTED; 1661 } 1662 } else { 1663 /* 1664 * Hit. 1665 */ 1666 inc_hit_counter(cache, bio); 1667 1668 /* 1669 * Passthrough always maps to the origin, invalidating any 1670 * cache blocks that are written to. 1671 */ 1672 if (passthrough_mode(cache)) { 1673 if (bio_data_dir(bio) == WRITE) { 1674 bio_drop_shared_lock(cache, bio); 1675 atomic_inc(&cache->stats.demotion); 1676 invalidate_start(cache, cblock, block, bio); 1677 } else 1678 remap_to_origin_clear_discard(cache, bio, block); 1679 } else { 1680 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1681 !is_dirty(cache, cblock)) { 1682 remap_to_origin_and_cache(cache, bio, block, cblock); 1683 accounted_begin(cache, bio); 1684 } else 1685 remap_to_cache_dirty(cache, bio, block, cblock); 1686 } 1687 } 1688 1689 /* 1690 * dm core turns FUA requests into a separate payload and FLUSH req. 1691 */ 1692 if (bio->bi_opf & REQ_FUA) { 1693 /* 1694 * issue_after_commit will call accounted_begin a second time. So 1695 * we call accounted_complete() to avoid double accounting. 1696 */ 1697 accounted_complete(cache, bio); 1698 issue_after_commit(&cache->committer, bio); 1699 *commit_needed = true; 1700 return DM_MAPIO_SUBMITTED; 1701 } 1702 1703 return DM_MAPIO_REMAPPED; 1704 } 1705 1706 static bool process_bio(struct cache *cache, struct bio *bio) 1707 { 1708 bool commit_needed; 1709 1710 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1711 dm_submit_bio_remap(bio, NULL); 1712 1713 return commit_needed; 1714 } 1715 1716 /* 1717 * A non-zero return indicates read_only or fail_io mode. 1718 */ 1719 static int commit(struct cache *cache, bool clean_shutdown) 1720 { 1721 int r; 1722 1723 if (get_cache_mode(cache) >= CM_READ_ONLY) 1724 return -EINVAL; 1725 1726 atomic_inc(&cache->stats.commit_count); 1727 r = dm_cache_commit(cache->cmd, clean_shutdown); 1728 if (r) 1729 metadata_operation_failed(cache, "dm_cache_commit", r); 1730 1731 return r; 1732 } 1733 1734 /* 1735 * Used by the batcher. 1736 */ 1737 static blk_status_t commit_op(void *context) 1738 { 1739 struct cache *cache = context; 1740 1741 if (dm_cache_changed_this_transaction(cache->cmd)) 1742 return errno_to_blk_status(commit(cache, false)); 1743 1744 return 0; 1745 } 1746 1747 /*----------------------------------------------------------------*/ 1748 1749 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1750 { 1751 struct per_bio_data *pb = get_per_bio_data(bio); 1752 1753 if (!pb->req_nr) 1754 remap_to_origin(cache, bio); 1755 else 1756 remap_to_cache(cache, bio, 0); 1757 1758 issue_after_commit(&cache->committer, bio); 1759 return true; 1760 } 1761 1762 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1763 { 1764 dm_dblock_t b, e; 1765 1766 // FIXME: do we need to lock the region? Or can we just assume the 1767 // user wont be so foolish as to issue discard concurrently with 1768 // other IO? 1769 calc_discard_block_range(cache, bio, &b, &e); 1770 while (b != e) { 1771 set_discard(cache, b); 1772 b = to_dblock(from_dblock(b) + 1); 1773 } 1774 1775 if (cache->features.discard_passdown) { 1776 remap_to_origin(cache, bio); 1777 dm_submit_bio_remap(bio, NULL); 1778 } else 1779 bio_endio(bio); 1780 1781 return false; 1782 } 1783 1784 static void process_deferred_bios(struct work_struct *ws) 1785 { 1786 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1787 1788 bool commit_needed = false; 1789 struct bio_list bios; 1790 struct bio *bio; 1791 1792 bio_list_init(&bios); 1793 1794 spin_lock_irq(&cache->lock); 1795 bio_list_merge(&bios, &cache->deferred_bios); 1796 bio_list_init(&cache->deferred_bios); 1797 spin_unlock_irq(&cache->lock); 1798 1799 while ((bio = bio_list_pop(&bios))) { 1800 if (bio->bi_opf & REQ_PREFLUSH) 1801 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1802 1803 else if (bio_op(bio) == REQ_OP_DISCARD) 1804 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1805 1806 else 1807 commit_needed = process_bio(cache, bio) || commit_needed; 1808 } 1809 1810 if (commit_needed) 1811 schedule_commit(&cache->committer); 1812 } 1813 1814 /*---------------------------------------------------------------- 1815 * Main worker loop 1816 *--------------------------------------------------------------*/ 1817 1818 static void requeue_deferred_bios(struct cache *cache) 1819 { 1820 struct bio *bio; 1821 struct bio_list bios; 1822 1823 bio_list_init(&bios); 1824 bio_list_merge(&bios, &cache->deferred_bios); 1825 bio_list_init(&cache->deferred_bios); 1826 1827 while ((bio = bio_list_pop(&bios))) { 1828 bio->bi_status = BLK_STS_DM_REQUEUE; 1829 bio_endio(bio); 1830 } 1831 } 1832 1833 /* 1834 * We want to commit periodically so that not too much 1835 * unwritten metadata builds up. 1836 */ 1837 static void do_waker(struct work_struct *ws) 1838 { 1839 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1840 1841 policy_tick(cache->policy, true); 1842 wake_migration_worker(cache); 1843 schedule_commit(&cache->committer); 1844 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1845 } 1846 1847 static void check_migrations(struct work_struct *ws) 1848 { 1849 int r; 1850 struct policy_work *op; 1851 struct cache *cache = container_of(ws, struct cache, migration_worker); 1852 enum busy b; 1853 1854 for (;;) { 1855 b = spare_migration_bandwidth(cache); 1856 1857 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1858 if (r == -ENODATA) 1859 break; 1860 1861 if (r) { 1862 DMERR_LIMIT("%s: policy_background_work failed", 1863 cache_device_name(cache)); 1864 break; 1865 } 1866 1867 r = mg_start(cache, op, NULL); 1868 if (r) 1869 break; 1870 } 1871 } 1872 1873 /*---------------------------------------------------------------- 1874 * Target methods 1875 *--------------------------------------------------------------*/ 1876 1877 /* 1878 * This function gets called on the error paths of the constructor, so we 1879 * have to cope with a partially initialised struct. 1880 */ 1881 static void destroy(struct cache *cache) 1882 { 1883 unsigned i; 1884 1885 mempool_exit(&cache->migration_pool); 1886 1887 if (cache->prison) 1888 dm_bio_prison_destroy_v2(cache->prison); 1889 1890 if (cache->wq) 1891 destroy_workqueue(cache->wq); 1892 1893 if (cache->dirty_bitset) 1894 free_bitset(cache->dirty_bitset); 1895 1896 if (cache->discard_bitset) 1897 free_bitset(cache->discard_bitset); 1898 1899 if (cache->copier) 1900 dm_kcopyd_client_destroy(cache->copier); 1901 1902 if (cache->cmd) 1903 dm_cache_metadata_close(cache->cmd); 1904 1905 if (cache->metadata_dev) 1906 dm_put_device(cache->ti, cache->metadata_dev); 1907 1908 if (cache->origin_dev) 1909 dm_put_device(cache->ti, cache->origin_dev); 1910 1911 if (cache->cache_dev) 1912 dm_put_device(cache->ti, cache->cache_dev); 1913 1914 if (cache->policy) 1915 dm_cache_policy_destroy(cache->policy); 1916 1917 for (i = 0; i < cache->nr_ctr_args ; i++) 1918 kfree(cache->ctr_args[i]); 1919 kfree(cache->ctr_args); 1920 1921 bioset_exit(&cache->bs); 1922 1923 kfree(cache); 1924 } 1925 1926 static void cache_dtr(struct dm_target *ti) 1927 { 1928 struct cache *cache = ti->private; 1929 1930 destroy(cache); 1931 } 1932 1933 static sector_t get_dev_size(struct dm_dev *dev) 1934 { 1935 return bdev_nr_sectors(dev->bdev); 1936 } 1937 1938 /*----------------------------------------------------------------*/ 1939 1940 /* 1941 * Construct a cache device mapping. 1942 * 1943 * cache <metadata dev> <cache dev> <origin dev> <block size> 1944 * <#feature args> [<feature arg>]* 1945 * <policy> <#policy args> [<policy arg>]* 1946 * 1947 * metadata dev : fast device holding the persistent metadata 1948 * cache dev : fast device holding cached data blocks 1949 * origin dev : slow device holding original data blocks 1950 * block size : cache unit size in sectors 1951 * 1952 * #feature args : number of feature arguments passed 1953 * feature args : writethrough. (The default is writeback.) 1954 * 1955 * policy : the replacement policy to use 1956 * #policy args : an even number of policy arguments corresponding 1957 * to key/value pairs passed to the policy 1958 * policy args : key/value pairs passed to the policy 1959 * E.g. 'sequential_threshold 1024' 1960 * See cache-policies.txt for details. 1961 * 1962 * Optional feature arguments are: 1963 * writethrough : write through caching that prohibits cache block 1964 * content from being different from origin block content. 1965 * Without this argument, the default behaviour is to write 1966 * back cache block contents later for performance reasons, 1967 * so they may differ from the corresponding origin blocks. 1968 */ 1969 struct cache_args { 1970 struct dm_target *ti; 1971 1972 struct dm_dev *metadata_dev; 1973 1974 struct dm_dev *cache_dev; 1975 sector_t cache_sectors; 1976 1977 struct dm_dev *origin_dev; 1978 sector_t origin_sectors; 1979 1980 uint32_t block_size; 1981 1982 const char *policy_name; 1983 int policy_argc; 1984 const char **policy_argv; 1985 1986 struct cache_features features; 1987 }; 1988 1989 static void destroy_cache_args(struct cache_args *ca) 1990 { 1991 if (ca->metadata_dev) 1992 dm_put_device(ca->ti, ca->metadata_dev); 1993 1994 if (ca->cache_dev) 1995 dm_put_device(ca->ti, ca->cache_dev); 1996 1997 if (ca->origin_dev) 1998 dm_put_device(ca->ti, ca->origin_dev); 1999 2000 kfree(ca); 2001 } 2002 2003 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2004 { 2005 if (!as->argc) { 2006 *error = "Insufficient args"; 2007 return false; 2008 } 2009 2010 return true; 2011 } 2012 2013 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2014 char **error) 2015 { 2016 int r; 2017 sector_t metadata_dev_size; 2018 2019 if (!at_least_one_arg(as, error)) 2020 return -EINVAL; 2021 2022 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2023 &ca->metadata_dev); 2024 if (r) { 2025 *error = "Error opening metadata device"; 2026 return r; 2027 } 2028 2029 metadata_dev_size = get_dev_size(ca->metadata_dev); 2030 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2031 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 2032 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS); 2033 2034 return 0; 2035 } 2036 2037 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2038 char **error) 2039 { 2040 int r; 2041 2042 if (!at_least_one_arg(as, error)) 2043 return -EINVAL; 2044 2045 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2046 &ca->cache_dev); 2047 if (r) { 2048 *error = "Error opening cache device"; 2049 return r; 2050 } 2051 ca->cache_sectors = get_dev_size(ca->cache_dev); 2052 2053 return 0; 2054 } 2055 2056 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2057 char **error) 2058 { 2059 int r; 2060 2061 if (!at_least_one_arg(as, error)) 2062 return -EINVAL; 2063 2064 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, 2065 &ca->origin_dev); 2066 if (r) { 2067 *error = "Error opening origin device"; 2068 return r; 2069 } 2070 2071 ca->origin_sectors = get_dev_size(ca->origin_dev); 2072 if (ca->ti->len > ca->origin_sectors) { 2073 *error = "Device size larger than cached device"; 2074 return -EINVAL; 2075 } 2076 2077 return 0; 2078 } 2079 2080 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2081 char **error) 2082 { 2083 unsigned long block_size; 2084 2085 if (!at_least_one_arg(as, error)) 2086 return -EINVAL; 2087 2088 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2089 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2090 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2091 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2092 *error = "Invalid data block size"; 2093 return -EINVAL; 2094 } 2095 2096 if (block_size > ca->cache_sectors) { 2097 *error = "Data block size is larger than the cache device"; 2098 return -EINVAL; 2099 } 2100 2101 ca->block_size = block_size; 2102 2103 return 0; 2104 } 2105 2106 static void init_features(struct cache_features *cf) 2107 { 2108 cf->mode = CM_WRITE; 2109 cf->io_mode = CM_IO_WRITEBACK; 2110 cf->metadata_version = 1; 2111 cf->discard_passdown = true; 2112 } 2113 2114 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2115 char **error) 2116 { 2117 static const struct dm_arg _args[] = { 2118 {0, 3, "Invalid number of cache feature arguments"}, 2119 }; 2120 2121 int r, mode_ctr = 0; 2122 unsigned argc; 2123 const char *arg; 2124 struct cache_features *cf = &ca->features; 2125 2126 init_features(cf); 2127 2128 r = dm_read_arg_group(_args, as, &argc, error); 2129 if (r) 2130 return -EINVAL; 2131 2132 while (argc--) { 2133 arg = dm_shift_arg(as); 2134 2135 if (!strcasecmp(arg, "writeback")) { 2136 cf->io_mode = CM_IO_WRITEBACK; 2137 mode_ctr++; 2138 } 2139 2140 else if (!strcasecmp(arg, "writethrough")) { 2141 cf->io_mode = CM_IO_WRITETHROUGH; 2142 mode_ctr++; 2143 } 2144 2145 else if (!strcasecmp(arg, "passthrough")) { 2146 cf->io_mode = CM_IO_PASSTHROUGH; 2147 mode_ctr++; 2148 } 2149 2150 else if (!strcasecmp(arg, "metadata2")) 2151 cf->metadata_version = 2; 2152 2153 else if (!strcasecmp(arg, "no_discard_passdown")) 2154 cf->discard_passdown = false; 2155 2156 else { 2157 *error = "Unrecognised cache feature requested"; 2158 return -EINVAL; 2159 } 2160 } 2161 2162 if (mode_ctr > 1) { 2163 *error = "Duplicate cache io_mode features requested"; 2164 return -EINVAL; 2165 } 2166 2167 return 0; 2168 } 2169 2170 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2171 char **error) 2172 { 2173 static const struct dm_arg _args[] = { 2174 {0, 1024, "Invalid number of policy arguments"}, 2175 }; 2176 2177 int r; 2178 2179 if (!at_least_one_arg(as, error)) 2180 return -EINVAL; 2181 2182 ca->policy_name = dm_shift_arg(as); 2183 2184 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2185 if (r) 2186 return -EINVAL; 2187 2188 ca->policy_argv = (const char **)as->argv; 2189 dm_consume_args(as, ca->policy_argc); 2190 2191 return 0; 2192 } 2193 2194 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2195 char **error) 2196 { 2197 int r; 2198 struct dm_arg_set as; 2199 2200 as.argc = argc; 2201 as.argv = argv; 2202 2203 r = parse_metadata_dev(ca, &as, error); 2204 if (r) 2205 return r; 2206 2207 r = parse_cache_dev(ca, &as, error); 2208 if (r) 2209 return r; 2210 2211 r = parse_origin_dev(ca, &as, error); 2212 if (r) 2213 return r; 2214 2215 r = parse_block_size(ca, &as, error); 2216 if (r) 2217 return r; 2218 2219 r = parse_features(ca, &as, error); 2220 if (r) 2221 return r; 2222 2223 r = parse_policy(ca, &as, error); 2224 if (r) 2225 return r; 2226 2227 return 0; 2228 } 2229 2230 /*----------------------------------------------------------------*/ 2231 2232 static struct kmem_cache *migration_cache; 2233 2234 #define NOT_CORE_OPTION 1 2235 2236 static int process_config_option(struct cache *cache, const char *key, const char *value) 2237 { 2238 unsigned long tmp; 2239 2240 if (!strcasecmp(key, "migration_threshold")) { 2241 if (kstrtoul(value, 10, &tmp)) 2242 return -EINVAL; 2243 2244 cache->migration_threshold = tmp; 2245 return 0; 2246 } 2247 2248 return NOT_CORE_OPTION; 2249 } 2250 2251 static int set_config_value(struct cache *cache, const char *key, const char *value) 2252 { 2253 int r = process_config_option(cache, key, value); 2254 2255 if (r == NOT_CORE_OPTION) 2256 r = policy_set_config_value(cache->policy, key, value); 2257 2258 if (r) 2259 DMWARN("bad config value for %s: %s", key, value); 2260 2261 return r; 2262 } 2263 2264 static int set_config_values(struct cache *cache, int argc, const char **argv) 2265 { 2266 int r = 0; 2267 2268 if (argc & 1) { 2269 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2270 return -EINVAL; 2271 } 2272 2273 while (argc) { 2274 r = set_config_value(cache, argv[0], argv[1]); 2275 if (r) 2276 break; 2277 2278 argc -= 2; 2279 argv += 2; 2280 } 2281 2282 return r; 2283 } 2284 2285 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2286 char **error) 2287 { 2288 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2289 cache->cache_size, 2290 cache->origin_sectors, 2291 cache->sectors_per_block); 2292 if (IS_ERR(p)) { 2293 *error = "Error creating cache's policy"; 2294 return PTR_ERR(p); 2295 } 2296 cache->policy = p; 2297 BUG_ON(!cache->policy); 2298 2299 return 0; 2300 } 2301 2302 /* 2303 * We want the discard block size to be at least the size of the cache 2304 * block size and have no more than 2^14 discard blocks across the origin. 2305 */ 2306 #define MAX_DISCARD_BLOCKS (1 << 14) 2307 2308 static bool too_many_discard_blocks(sector_t discard_block_size, 2309 sector_t origin_size) 2310 { 2311 (void) sector_div(origin_size, discard_block_size); 2312 2313 return origin_size > MAX_DISCARD_BLOCKS; 2314 } 2315 2316 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2317 sector_t origin_size) 2318 { 2319 sector_t discard_block_size = cache_block_size; 2320 2321 if (origin_size) 2322 while (too_many_discard_blocks(discard_block_size, origin_size)) 2323 discard_block_size *= 2; 2324 2325 return discard_block_size; 2326 } 2327 2328 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2329 { 2330 dm_block_t nr_blocks = from_cblock(size); 2331 2332 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2333 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2334 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2335 "Please consider increasing the cache block size to reduce the overall cache block count.", 2336 (unsigned long long) nr_blocks); 2337 2338 cache->cache_size = size; 2339 } 2340 2341 #define DEFAULT_MIGRATION_THRESHOLD 2048 2342 2343 static int cache_create(struct cache_args *ca, struct cache **result) 2344 { 2345 int r = 0; 2346 char **error = &ca->ti->error; 2347 struct cache *cache; 2348 struct dm_target *ti = ca->ti; 2349 dm_block_t origin_blocks; 2350 struct dm_cache_metadata *cmd; 2351 bool may_format = ca->features.mode == CM_WRITE; 2352 2353 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2354 if (!cache) 2355 return -ENOMEM; 2356 2357 cache->ti = ca->ti; 2358 ti->private = cache; 2359 ti->accounts_remapped_io = true; 2360 ti->num_flush_bios = 2; 2361 ti->flush_supported = true; 2362 2363 ti->num_discard_bios = 1; 2364 ti->discards_supported = true; 2365 2366 ti->per_io_data_size = sizeof(struct per_bio_data); 2367 2368 cache->features = ca->features; 2369 if (writethrough_mode(cache)) { 2370 /* Create bioset for writethrough bios issued to origin */ 2371 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2372 if (r) 2373 goto bad; 2374 } 2375 2376 cache->metadata_dev = ca->metadata_dev; 2377 cache->origin_dev = ca->origin_dev; 2378 cache->cache_dev = ca->cache_dev; 2379 2380 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2381 2382 origin_blocks = cache->origin_sectors = ca->origin_sectors; 2383 origin_blocks = block_div(origin_blocks, ca->block_size); 2384 cache->origin_blocks = to_oblock(origin_blocks); 2385 2386 cache->sectors_per_block = ca->block_size; 2387 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2388 r = -EINVAL; 2389 goto bad; 2390 } 2391 2392 if (ca->block_size & (ca->block_size - 1)) { 2393 dm_block_t cache_size = ca->cache_sectors; 2394 2395 cache->sectors_per_block_shift = -1; 2396 cache_size = block_div(cache_size, ca->block_size); 2397 set_cache_size(cache, to_cblock(cache_size)); 2398 } else { 2399 cache->sectors_per_block_shift = __ffs(ca->block_size); 2400 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2401 } 2402 2403 r = create_cache_policy(cache, ca, error); 2404 if (r) 2405 goto bad; 2406 2407 cache->policy_nr_args = ca->policy_argc; 2408 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2409 2410 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2411 if (r) { 2412 *error = "Error setting cache policy's config values"; 2413 goto bad; 2414 } 2415 2416 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2417 ca->block_size, may_format, 2418 dm_cache_policy_get_hint_size(cache->policy), 2419 ca->features.metadata_version); 2420 if (IS_ERR(cmd)) { 2421 *error = "Error creating metadata object"; 2422 r = PTR_ERR(cmd); 2423 goto bad; 2424 } 2425 cache->cmd = cmd; 2426 set_cache_mode(cache, CM_WRITE); 2427 if (get_cache_mode(cache) != CM_WRITE) { 2428 *error = "Unable to get write access to metadata, please check/repair metadata."; 2429 r = -EINVAL; 2430 goto bad; 2431 } 2432 2433 if (passthrough_mode(cache)) { 2434 bool all_clean; 2435 2436 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2437 if (r) { 2438 *error = "dm_cache_metadata_all_clean() failed"; 2439 goto bad; 2440 } 2441 2442 if (!all_clean) { 2443 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2444 r = -EINVAL; 2445 goto bad; 2446 } 2447 2448 policy_allow_migrations(cache->policy, false); 2449 } 2450 2451 spin_lock_init(&cache->lock); 2452 bio_list_init(&cache->deferred_bios); 2453 atomic_set(&cache->nr_allocated_migrations, 0); 2454 atomic_set(&cache->nr_io_migrations, 0); 2455 init_waitqueue_head(&cache->migration_wait); 2456 2457 r = -ENOMEM; 2458 atomic_set(&cache->nr_dirty, 0); 2459 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2460 if (!cache->dirty_bitset) { 2461 *error = "could not allocate dirty bitset"; 2462 goto bad; 2463 } 2464 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2465 2466 cache->discard_block_size = 2467 calculate_discard_block_size(cache->sectors_per_block, 2468 cache->origin_sectors); 2469 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2470 cache->discard_block_size)); 2471 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2472 if (!cache->discard_bitset) { 2473 *error = "could not allocate discard bitset"; 2474 goto bad; 2475 } 2476 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2477 2478 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2479 if (IS_ERR(cache->copier)) { 2480 *error = "could not create kcopyd client"; 2481 r = PTR_ERR(cache->copier); 2482 goto bad; 2483 } 2484 2485 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2486 if (!cache->wq) { 2487 *error = "could not create workqueue for metadata object"; 2488 goto bad; 2489 } 2490 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2491 INIT_WORK(&cache->migration_worker, check_migrations); 2492 INIT_DELAYED_WORK(&cache->waker, do_waker); 2493 2494 cache->prison = dm_bio_prison_create_v2(cache->wq); 2495 if (!cache->prison) { 2496 *error = "could not create bio prison"; 2497 goto bad; 2498 } 2499 2500 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2501 migration_cache); 2502 if (r) { 2503 *error = "Error creating cache's migration mempool"; 2504 goto bad; 2505 } 2506 2507 cache->need_tick_bio = true; 2508 cache->sized = false; 2509 cache->invalidate = false; 2510 cache->commit_requested = false; 2511 cache->loaded_mappings = false; 2512 cache->loaded_discards = false; 2513 2514 load_stats(cache); 2515 2516 atomic_set(&cache->stats.demotion, 0); 2517 atomic_set(&cache->stats.promotion, 0); 2518 atomic_set(&cache->stats.copies_avoided, 0); 2519 atomic_set(&cache->stats.cache_cell_clash, 0); 2520 atomic_set(&cache->stats.commit_count, 0); 2521 atomic_set(&cache->stats.discard_count, 0); 2522 2523 spin_lock_init(&cache->invalidation_lock); 2524 INIT_LIST_HEAD(&cache->invalidation_requests); 2525 2526 batcher_init(&cache->committer, commit_op, cache, 2527 issue_op, cache, cache->wq); 2528 dm_iot_init(&cache->tracker); 2529 2530 init_rwsem(&cache->background_work_lock); 2531 prevent_background_work(cache); 2532 2533 *result = cache; 2534 return 0; 2535 bad: 2536 destroy(cache); 2537 return r; 2538 } 2539 2540 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2541 { 2542 unsigned i; 2543 const char **copy; 2544 2545 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2546 if (!copy) 2547 return -ENOMEM; 2548 for (i = 0; i < argc; i++) { 2549 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2550 if (!copy[i]) { 2551 while (i--) 2552 kfree(copy[i]); 2553 kfree(copy); 2554 return -ENOMEM; 2555 } 2556 } 2557 2558 cache->nr_ctr_args = argc; 2559 cache->ctr_args = copy; 2560 2561 return 0; 2562 } 2563 2564 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) 2565 { 2566 int r = -EINVAL; 2567 struct cache_args *ca; 2568 struct cache *cache = NULL; 2569 2570 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2571 if (!ca) { 2572 ti->error = "Error allocating memory for cache"; 2573 return -ENOMEM; 2574 } 2575 ca->ti = ti; 2576 2577 r = parse_cache_args(ca, argc, argv, &ti->error); 2578 if (r) 2579 goto out; 2580 2581 r = cache_create(ca, &cache); 2582 if (r) 2583 goto out; 2584 2585 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2586 if (r) { 2587 destroy(cache); 2588 goto out; 2589 } 2590 2591 ti->private = cache; 2592 out: 2593 destroy_cache_args(ca); 2594 return r; 2595 } 2596 2597 /*----------------------------------------------------------------*/ 2598 2599 static int cache_map(struct dm_target *ti, struct bio *bio) 2600 { 2601 struct cache *cache = ti->private; 2602 2603 int r; 2604 bool commit_needed; 2605 dm_oblock_t block = get_bio_block(cache, bio); 2606 2607 init_per_bio_data(bio); 2608 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2609 /* 2610 * This can only occur if the io goes to a partial block at 2611 * the end of the origin device. We don't cache these. 2612 * Just remap to the origin and carry on. 2613 */ 2614 remap_to_origin(cache, bio); 2615 accounted_begin(cache, bio); 2616 return DM_MAPIO_REMAPPED; 2617 } 2618 2619 if (discard_or_flush(bio)) { 2620 defer_bio(cache, bio); 2621 return DM_MAPIO_SUBMITTED; 2622 } 2623 2624 r = map_bio(cache, bio, block, &commit_needed); 2625 if (commit_needed) 2626 schedule_commit(&cache->committer); 2627 2628 return r; 2629 } 2630 2631 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2632 { 2633 struct cache *cache = ti->private; 2634 unsigned long flags; 2635 struct per_bio_data *pb = get_per_bio_data(bio); 2636 2637 if (pb->tick) { 2638 policy_tick(cache->policy, false); 2639 2640 spin_lock_irqsave(&cache->lock, flags); 2641 cache->need_tick_bio = true; 2642 spin_unlock_irqrestore(&cache->lock, flags); 2643 } 2644 2645 bio_drop_shared_lock(cache, bio); 2646 accounted_complete(cache, bio); 2647 2648 return DM_ENDIO_DONE; 2649 } 2650 2651 static int write_dirty_bitset(struct cache *cache) 2652 { 2653 int r; 2654 2655 if (get_cache_mode(cache) >= CM_READ_ONLY) 2656 return -EINVAL; 2657 2658 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2659 if (r) 2660 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2661 2662 return r; 2663 } 2664 2665 static int write_discard_bitset(struct cache *cache) 2666 { 2667 unsigned i, r; 2668 2669 if (get_cache_mode(cache) >= CM_READ_ONLY) 2670 return -EINVAL; 2671 2672 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2673 cache->discard_nr_blocks); 2674 if (r) { 2675 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2676 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2677 return r; 2678 } 2679 2680 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2681 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2682 is_discarded(cache, to_dblock(i))); 2683 if (r) { 2684 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2685 return r; 2686 } 2687 } 2688 2689 return 0; 2690 } 2691 2692 static int write_hints(struct cache *cache) 2693 { 2694 int r; 2695 2696 if (get_cache_mode(cache) >= CM_READ_ONLY) 2697 return -EINVAL; 2698 2699 r = dm_cache_write_hints(cache->cmd, cache->policy); 2700 if (r) { 2701 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2702 return r; 2703 } 2704 2705 return 0; 2706 } 2707 2708 /* 2709 * returns true on success 2710 */ 2711 static bool sync_metadata(struct cache *cache) 2712 { 2713 int r1, r2, r3, r4; 2714 2715 r1 = write_dirty_bitset(cache); 2716 if (r1) 2717 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2718 2719 r2 = write_discard_bitset(cache); 2720 if (r2) 2721 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2722 2723 save_stats(cache); 2724 2725 r3 = write_hints(cache); 2726 if (r3) 2727 DMERR("%s: could not write hints", cache_device_name(cache)); 2728 2729 /* 2730 * If writing the above metadata failed, we still commit, but don't 2731 * set the clean shutdown flag. This will effectively force every 2732 * dirty bit to be set on reload. 2733 */ 2734 r4 = commit(cache, !r1 && !r2 && !r3); 2735 if (r4) 2736 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2737 2738 return !r1 && !r2 && !r3 && !r4; 2739 } 2740 2741 static void cache_postsuspend(struct dm_target *ti) 2742 { 2743 struct cache *cache = ti->private; 2744 2745 prevent_background_work(cache); 2746 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2747 2748 cancel_delayed_work_sync(&cache->waker); 2749 drain_workqueue(cache->wq); 2750 WARN_ON(cache->tracker.in_flight); 2751 2752 /* 2753 * If it's a flush suspend there won't be any deferred bios, so this 2754 * call is harmless. 2755 */ 2756 requeue_deferred_bios(cache); 2757 2758 if (get_cache_mode(cache) == CM_WRITE) 2759 (void) sync_metadata(cache); 2760 } 2761 2762 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2763 bool dirty, uint32_t hint, bool hint_valid) 2764 { 2765 struct cache *cache = context; 2766 2767 if (dirty) { 2768 set_bit(from_cblock(cblock), cache->dirty_bitset); 2769 atomic_inc(&cache->nr_dirty); 2770 } else 2771 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2772 2773 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2774 } 2775 2776 /* 2777 * The discard block size in the on disk metadata is not 2778 * necessarily the same as we're currently using. So we have to 2779 * be careful to only set the discarded attribute if we know it 2780 * covers a complete block of the new size. 2781 */ 2782 struct discard_load_info { 2783 struct cache *cache; 2784 2785 /* 2786 * These blocks are sized using the on disk dblock size, rather 2787 * than the current one. 2788 */ 2789 dm_block_t block_size; 2790 dm_block_t discard_begin, discard_end; 2791 }; 2792 2793 static void discard_load_info_init(struct cache *cache, 2794 struct discard_load_info *li) 2795 { 2796 li->cache = cache; 2797 li->discard_begin = li->discard_end = 0; 2798 } 2799 2800 static void set_discard_range(struct discard_load_info *li) 2801 { 2802 sector_t b, e; 2803 2804 if (li->discard_begin == li->discard_end) 2805 return; 2806 2807 /* 2808 * Convert to sectors. 2809 */ 2810 b = li->discard_begin * li->block_size; 2811 e = li->discard_end * li->block_size; 2812 2813 /* 2814 * Then convert back to the current dblock size. 2815 */ 2816 b = dm_sector_div_up(b, li->cache->discard_block_size); 2817 sector_div(e, li->cache->discard_block_size); 2818 2819 /* 2820 * The origin may have shrunk, so we need to check we're still in 2821 * bounds. 2822 */ 2823 if (e > from_dblock(li->cache->discard_nr_blocks)) 2824 e = from_dblock(li->cache->discard_nr_blocks); 2825 2826 for (; b < e; b++) 2827 set_discard(li->cache, to_dblock(b)); 2828 } 2829 2830 static int load_discard(void *context, sector_t discard_block_size, 2831 dm_dblock_t dblock, bool discard) 2832 { 2833 struct discard_load_info *li = context; 2834 2835 li->block_size = discard_block_size; 2836 2837 if (discard) { 2838 if (from_dblock(dblock) == li->discard_end) 2839 /* 2840 * We're already in a discard range, just extend it. 2841 */ 2842 li->discard_end = li->discard_end + 1ULL; 2843 2844 else { 2845 /* 2846 * Emit the old range and start a new one. 2847 */ 2848 set_discard_range(li); 2849 li->discard_begin = from_dblock(dblock); 2850 li->discard_end = li->discard_begin + 1ULL; 2851 } 2852 } else { 2853 set_discard_range(li); 2854 li->discard_begin = li->discard_end = 0; 2855 } 2856 2857 return 0; 2858 } 2859 2860 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2861 { 2862 sector_t size = get_dev_size(cache->cache_dev); 2863 (void) sector_div(size, cache->sectors_per_block); 2864 return to_cblock(size); 2865 } 2866 2867 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2868 { 2869 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2870 if (cache->sized) { 2871 DMERR("%s: unable to extend cache due to missing cache table reload", 2872 cache_device_name(cache)); 2873 return false; 2874 } 2875 } 2876 2877 /* 2878 * We can't drop a dirty block when shrinking the cache. 2879 */ 2880 while (from_cblock(new_size) < from_cblock(cache->cache_size)) { 2881 new_size = to_cblock(from_cblock(new_size) + 1); 2882 if (is_dirty(cache, new_size)) { 2883 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2884 cache_device_name(cache), 2885 (unsigned long long) from_cblock(new_size)); 2886 return false; 2887 } 2888 } 2889 2890 return true; 2891 } 2892 2893 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2894 { 2895 int r; 2896 2897 r = dm_cache_resize(cache->cmd, new_size); 2898 if (r) { 2899 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2900 metadata_operation_failed(cache, "dm_cache_resize", r); 2901 return r; 2902 } 2903 2904 set_cache_size(cache, new_size); 2905 2906 return 0; 2907 } 2908 2909 static int cache_preresume(struct dm_target *ti) 2910 { 2911 int r = 0; 2912 struct cache *cache = ti->private; 2913 dm_cblock_t csize = get_cache_dev_size(cache); 2914 2915 /* 2916 * Check to see if the cache has resized. 2917 */ 2918 if (!cache->sized) { 2919 r = resize_cache_dev(cache, csize); 2920 if (r) 2921 return r; 2922 2923 cache->sized = true; 2924 2925 } else if (csize != cache->cache_size) { 2926 if (!can_resize(cache, csize)) 2927 return -EINVAL; 2928 2929 r = resize_cache_dev(cache, csize); 2930 if (r) 2931 return r; 2932 } 2933 2934 if (!cache->loaded_mappings) { 2935 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2936 load_mapping, cache); 2937 if (r) { 2938 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 2939 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 2940 return r; 2941 } 2942 2943 cache->loaded_mappings = true; 2944 } 2945 2946 if (!cache->loaded_discards) { 2947 struct discard_load_info li; 2948 2949 /* 2950 * The discard bitset could have been resized, or the 2951 * discard block size changed. To be safe we start by 2952 * setting every dblock to not discarded. 2953 */ 2954 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2955 2956 discard_load_info_init(cache, &li); 2957 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 2958 if (r) { 2959 DMERR("%s: could not load origin discards", cache_device_name(cache)); 2960 metadata_operation_failed(cache, "dm_cache_load_discards", r); 2961 return r; 2962 } 2963 set_discard_range(&li); 2964 2965 cache->loaded_discards = true; 2966 } 2967 2968 return r; 2969 } 2970 2971 static void cache_resume(struct dm_target *ti) 2972 { 2973 struct cache *cache = ti->private; 2974 2975 cache->need_tick_bio = true; 2976 allow_background_work(cache); 2977 do_waker(&cache->waker.work); 2978 } 2979 2980 static void emit_flags(struct cache *cache, char *result, 2981 unsigned maxlen, ssize_t *sz_ptr) 2982 { 2983 ssize_t sz = *sz_ptr; 2984 struct cache_features *cf = &cache->features; 2985 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 2986 2987 DMEMIT("%u ", count); 2988 2989 if (cf->metadata_version == 2) 2990 DMEMIT("metadata2 "); 2991 2992 if (writethrough_mode(cache)) 2993 DMEMIT("writethrough "); 2994 2995 else if (passthrough_mode(cache)) 2996 DMEMIT("passthrough "); 2997 2998 else if (writeback_mode(cache)) 2999 DMEMIT("writeback "); 3000 3001 else { 3002 DMEMIT("unknown "); 3003 DMERR("%s: internal error: unknown io mode: %d", 3004 cache_device_name(cache), (int) cf->io_mode); 3005 } 3006 3007 if (!cf->discard_passdown) 3008 DMEMIT("no_discard_passdown "); 3009 3010 *sz_ptr = sz; 3011 } 3012 3013 /* 3014 * Status format: 3015 * 3016 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3017 * <cache block size> <#used cache blocks>/<#total cache blocks> 3018 * <#read hits> <#read misses> <#write hits> <#write misses> 3019 * <#demotions> <#promotions> <#dirty> 3020 * <#features> <features>* 3021 * <#core args> <core args> 3022 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3023 */ 3024 static void cache_status(struct dm_target *ti, status_type_t type, 3025 unsigned status_flags, char *result, unsigned maxlen) 3026 { 3027 int r = 0; 3028 unsigned i; 3029 ssize_t sz = 0; 3030 dm_block_t nr_free_blocks_metadata = 0; 3031 dm_block_t nr_blocks_metadata = 0; 3032 char buf[BDEVNAME_SIZE]; 3033 struct cache *cache = ti->private; 3034 dm_cblock_t residency; 3035 bool needs_check; 3036 3037 switch (type) { 3038 case STATUSTYPE_INFO: 3039 if (get_cache_mode(cache) == CM_FAIL) { 3040 DMEMIT("Fail"); 3041 break; 3042 } 3043 3044 /* Commit to ensure statistics aren't out-of-date */ 3045 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3046 (void) commit(cache, false); 3047 3048 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3049 if (r) { 3050 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3051 cache_device_name(cache), r); 3052 goto err; 3053 } 3054 3055 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3056 if (r) { 3057 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3058 cache_device_name(cache), r); 3059 goto err; 3060 } 3061 3062 residency = policy_residency(cache->policy); 3063 3064 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3065 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, 3066 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3067 (unsigned long long)nr_blocks_metadata, 3068 (unsigned long long)cache->sectors_per_block, 3069 (unsigned long long) from_cblock(residency), 3070 (unsigned long long) from_cblock(cache->cache_size), 3071 (unsigned) atomic_read(&cache->stats.read_hit), 3072 (unsigned) atomic_read(&cache->stats.read_miss), 3073 (unsigned) atomic_read(&cache->stats.write_hit), 3074 (unsigned) atomic_read(&cache->stats.write_miss), 3075 (unsigned) atomic_read(&cache->stats.demotion), 3076 (unsigned) atomic_read(&cache->stats.promotion), 3077 (unsigned long) atomic_read(&cache->nr_dirty)); 3078 3079 emit_flags(cache, result, maxlen, &sz); 3080 3081 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3082 3083 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3084 if (sz < maxlen) { 3085 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3086 if (r) 3087 DMERR("%s: policy_emit_config_values returned %d", 3088 cache_device_name(cache), r); 3089 } 3090 3091 if (get_cache_mode(cache) == CM_READ_ONLY) 3092 DMEMIT("ro "); 3093 else 3094 DMEMIT("rw "); 3095 3096 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3097 3098 if (r || needs_check) 3099 DMEMIT("needs_check "); 3100 else 3101 DMEMIT("- "); 3102 3103 break; 3104 3105 case STATUSTYPE_TABLE: 3106 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3107 DMEMIT("%s ", buf); 3108 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3109 DMEMIT("%s ", buf); 3110 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3111 DMEMIT("%s", buf); 3112 3113 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3114 DMEMIT(" %s", cache->ctr_args[i]); 3115 if (cache->nr_ctr_args) 3116 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3117 break; 3118 3119 case STATUSTYPE_IMA: 3120 DMEMIT_TARGET_NAME_VERSION(ti->type); 3121 if (get_cache_mode(cache) == CM_FAIL) 3122 DMEMIT(",metadata_mode=fail"); 3123 else if (get_cache_mode(cache) == CM_READ_ONLY) 3124 DMEMIT(",metadata_mode=ro"); 3125 else 3126 DMEMIT(",metadata_mode=rw"); 3127 3128 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3129 DMEMIT(",cache_metadata_device=%s", buf); 3130 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3131 DMEMIT(",cache_device=%s", buf); 3132 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3133 DMEMIT(",cache_origin_device=%s", buf); 3134 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n'); 3135 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n'); 3136 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n'); 3137 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n'); 3138 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y'); 3139 DMEMIT(";"); 3140 break; 3141 } 3142 3143 return; 3144 3145 err: 3146 DMEMIT("Error"); 3147 } 3148 3149 /* 3150 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3151 * the one-past-the-end value. 3152 */ 3153 struct cblock_range { 3154 dm_cblock_t begin; 3155 dm_cblock_t end; 3156 }; 3157 3158 /* 3159 * A cache block range can take two forms: 3160 * 3161 * i) A single cblock, eg. '3456' 3162 * ii) A begin and end cblock with a dash between, eg. 123-234 3163 */ 3164 static int parse_cblock_range(struct cache *cache, const char *str, 3165 struct cblock_range *result) 3166 { 3167 char dummy; 3168 uint64_t b, e; 3169 int r; 3170 3171 /* 3172 * Try and parse form (ii) first. 3173 */ 3174 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3175 if (r < 0) 3176 return r; 3177 3178 if (r == 2) { 3179 result->begin = to_cblock(b); 3180 result->end = to_cblock(e); 3181 return 0; 3182 } 3183 3184 /* 3185 * That didn't work, try form (i). 3186 */ 3187 r = sscanf(str, "%llu%c", &b, &dummy); 3188 if (r < 0) 3189 return r; 3190 3191 if (r == 1) { 3192 result->begin = to_cblock(b); 3193 result->end = to_cblock(from_cblock(result->begin) + 1u); 3194 return 0; 3195 } 3196 3197 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3198 return -EINVAL; 3199 } 3200 3201 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3202 { 3203 uint64_t b = from_cblock(range->begin); 3204 uint64_t e = from_cblock(range->end); 3205 uint64_t n = from_cblock(cache->cache_size); 3206 3207 if (b >= n) { 3208 DMERR("%s: begin cblock out of range: %llu >= %llu", 3209 cache_device_name(cache), b, n); 3210 return -EINVAL; 3211 } 3212 3213 if (e > n) { 3214 DMERR("%s: end cblock out of range: %llu > %llu", 3215 cache_device_name(cache), e, n); 3216 return -EINVAL; 3217 } 3218 3219 if (b >= e) { 3220 DMERR("%s: invalid cblock range: %llu >= %llu", 3221 cache_device_name(cache), b, e); 3222 return -EINVAL; 3223 } 3224 3225 return 0; 3226 } 3227 3228 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3229 { 3230 return to_cblock(from_cblock(b) + 1); 3231 } 3232 3233 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3234 { 3235 int r = 0; 3236 3237 /* 3238 * We don't need to do any locking here because we know we're in 3239 * passthrough mode. There's is potential for a race between an 3240 * invalidation triggered by an io and an invalidation message. This 3241 * is harmless, we must not worry if the policy call fails. 3242 */ 3243 while (range->begin != range->end) { 3244 r = invalidate_cblock(cache, range->begin); 3245 if (r) 3246 return r; 3247 3248 range->begin = cblock_succ(range->begin); 3249 } 3250 3251 cache->commit_requested = true; 3252 return r; 3253 } 3254 3255 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, 3256 const char **cblock_ranges) 3257 { 3258 int r = 0; 3259 unsigned i; 3260 struct cblock_range range; 3261 3262 if (!passthrough_mode(cache)) { 3263 DMERR("%s: cache has to be in passthrough mode for invalidation", 3264 cache_device_name(cache)); 3265 return -EPERM; 3266 } 3267 3268 for (i = 0; i < count; i++) { 3269 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3270 if (r) 3271 break; 3272 3273 r = validate_cblock_range(cache, &range); 3274 if (r) 3275 break; 3276 3277 /* 3278 * Pass begin and end origin blocks to the worker and wake it. 3279 */ 3280 r = request_invalidation(cache, &range); 3281 if (r) 3282 break; 3283 } 3284 3285 return r; 3286 } 3287 3288 /* 3289 * Supports 3290 * "<key> <value>" 3291 * and 3292 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3293 * 3294 * The key migration_threshold is supported by the cache target core. 3295 */ 3296 static int cache_message(struct dm_target *ti, unsigned argc, char **argv, 3297 char *result, unsigned maxlen) 3298 { 3299 struct cache *cache = ti->private; 3300 3301 if (!argc) 3302 return -EINVAL; 3303 3304 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3305 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3306 cache_device_name(cache)); 3307 return -EOPNOTSUPP; 3308 } 3309 3310 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3311 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3312 3313 if (argc != 2) 3314 return -EINVAL; 3315 3316 return set_config_value(cache, argv[0], argv[1]); 3317 } 3318 3319 static int cache_iterate_devices(struct dm_target *ti, 3320 iterate_devices_callout_fn fn, void *data) 3321 { 3322 int r = 0; 3323 struct cache *cache = ti->private; 3324 3325 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3326 if (!r) 3327 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3328 3329 return r; 3330 } 3331 3332 /* 3333 * If discard_passdown was enabled verify that the origin device 3334 * supports discards. Disable discard_passdown if not. 3335 */ 3336 static void disable_passdown_if_not_supported(struct cache *cache) 3337 { 3338 struct block_device *origin_bdev = cache->origin_dev->bdev; 3339 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3340 const char *reason = NULL; 3341 3342 if (!cache->features.discard_passdown) 3343 return; 3344 3345 if (!bdev_max_discard_sectors(origin_bdev)) 3346 reason = "discard unsupported"; 3347 3348 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3349 reason = "max discard sectors smaller than a block"; 3350 3351 if (reason) { 3352 DMWARN("Origin device (%pg) %s: Disabling discard passdown.", 3353 origin_bdev, reason); 3354 cache->features.discard_passdown = false; 3355 } 3356 } 3357 3358 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3359 { 3360 struct block_device *origin_bdev = cache->origin_dev->bdev; 3361 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3362 3363 if (!cache->features.discard_passdown) { 3364 /* No passdown is done so setting own virtual limits */ 3365 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3366 cache->origin_sectors); 3367 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3368 return; 3369 } 3370 3371 /* 3372 * cache_iterate_devices() is stacking both origin and fast device limits 3373 * but discards aren't passed to fast device, so inherit origin's limits. 3374 */ 3375 limits->max_discard_sectors = origin_limits->max_discard_sectors; 3376 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3377 limits->discard_granularity = origin_limits->discard_granularity; 3378 limits->discard_alignment = origin_limits->discard_alignment; 3379 limits->discard_misaligned = origin_limits->discard_misaligned; 3380 } 3381 3382 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3383 { 3384 struct cache *cache = ti->private; 3385 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3386 3387 /* 3388 * If the system-determined stacked limits are compatible with the 3389 * cache's blocksize (io_opt is a factor) do not override them. 3390 */ 3391 if (io_opt_sectors < cache->sectors_per_block || 3392 do_div(io_opt_sectors, cache->sectors_per_block)) { 3393 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3394 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3395 } 3396 3397 disable_passdown_if_not_supported(cache); 3398 set_discard_limits(cache, limits); 3399 } 3400 3401 /*----------------------------------------------------------------*/ 3402 3403 static struct target_type cache_target = { 3404 .name = "cache", 3405 .version = {2, 2, 0}, 3406 .module = THIS_MODULE, 3407 .ctr = cache_ctr, 3408 .dtr = cache_dtr, 3409 .map = cache_map, 3410 .end_io = cache_end_io, 3411 .postsuspend = cache_postsuspend, 3412 .preresume = cache_preresume, 3413 .resume = cache_resume, 3414 .status = cache_status, 3415 .message = cache_message, 3416 .iterate_devices = cache_iterate_devices, 3417 .io_hints = cache_io_hints, 3418 }; 3419 3420 static int __init dm_cache_init(void) 3421 { 3422 int r; 3423 3424 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3425 if (!migration_cache) 3426 return -ENOMEM; 3427 3428 r = dm_register_target(&cache_target); 3429 if (r) { 3430 DMERR("cache target registration failed: %d", r); 3431 kmem_cache_destroy(migration_cache); 3432 return r; 3433 } 3434 3435 return 0; 3436 } 3437 3438 static void __exit dm_cache_exit(void) 3439 { 3440 dm_unregister_target(&cache_target); 3441 kmem_cache_destroy(migration_cache); 3442 } 3443 3444 module_init(dm_cache_init); 3445 module_exit(dm_cache_exit); 3446 3447 MODULE_DESCRIPTION(DM_NAME " cache target"); 3448 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3449 MODULE_LICENSE("GPL"); 3450