xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 55fd7e02)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 
78 	spin_lock_irq(&iot->lock);
79 	r = __iot_idle_for(iot, jifs);
80 	spin_unlock_irq(&iot->lock);
81 
82 	return r;
83 }
84 
85 static void iot_io_begin(struct io_tracker *iot, sector_t len)
86 {
87 	spin_lock_irq(&iot->lock);
88 	iot->in_flight += len;
89 	spin_unlock_irq(&iot->lock);
90 }
91 
92 static void __iot_io_end(struct io_tracker *iot, sector_t len)
93 {
94 	if (!len)
95 		return;
96 
97 	iot->in_flight -= len;
98 	if (!iot->in_flight)
99 		iot->idle_time = jiffies;
100 }
101 
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&iot->lock, flags);
107 	__iot_io_end(iot, len);
108 	spin_unlock_irqrestore(&iot->lock, flags);
109 }
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118 	struct work_struct ws;
119 	blk_status_t input;
120 };
121 
122 static inline void init_continuation(struct continuation *k,
123 				     void (*fn)(struct work_struct *))
124 {
125 	INIT_WORK(&k->ws, fn);
126 	k->input = 0;
127 }
128 
129 static inline void queue_continuation(struct workqueue_struct *wq,
130 				      struct continuation *k)
131 {
132 	queue_work(wq, &k->ws);
133 }
134 
135 /*----------------------------------------------------------------*/
136 
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142 	/*
143 	 * The operation that everyone is waiting for.
144 	 */
145 	blk_status_t (*commit_op)(void *context);
146 	void *commit_context;
147 
148 	/*
149 	 * This is how bios should be issued once the commit op is complete
150 	 * (accounted_request).
151 	 */
152 	void (*issue_op)(struct bio *bio, void *context);
153 	void *issue_context;
154 
155 	/*
156 	 * Queued work gets put on here after commit.
157 	 */
158 	struct workqueue_struct *wq;
159 
160 	spinlock_t lock;
161 	struct list_head work_items;
162 	struct bio_list bios;
163 	struct work_struct commit_work;
164 
165 	bool commit_scheduled;
166 };
167 
168 static void __commit(struct work_struct *_ws)
169 {
170 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
171 	blk_status_t r;
172 	struct list_head work_items;
173 	struct work_struct *ws, *tmp;
174 	struct continuation *k;
175 	struct bio *bio;
176 	struct bio_list bios;
177 
178 	INIT_LIST_HEAD(&work_items);
179 	bio_list_init(&bios);
180 
181 	/*
182 	 * We have to grab these before the commit_op to avoid a race
183 	 * condition.
184 	 */
185 	spin_lock_irq(&b->lock);
186 	list_splice_init(&b->work_items, &work_items);
187 	bio_list_merge(&bios, &b->bios);
188 	bio_list_init(&b->bios);
189 	b->commit_scheduled = false;
190 	spin_unlock_irq(&b->lock);
191 
192 	r = b->commit_op(b->commit_context);
193 
194 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195 		k = container_of(ws, struct continuation, ws);
196 		k->input = r;
197 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198 		queue_work(b->wq, ws);
199 	}
200 
201 	while ((bio = bio_list_pop(&bios))) {
202 		if (r) {
203 			bio->bi_status = r;
204 			bio_endio(bio);
205 		} else
206 			b->issue_op(bio, b->issue_context);
207 	}
208 }
209 
210 static void batcher_init(struct batcher *b,
211 			 blk_status_t (*commit_op)(void *),
212 			 void *commit_context,
213 			 void (*issue_op)(struct bio *bio, void *),
214 			 void *issue_context,
215 			 struct workqueue_struct *wq)
216 {
217 	b->commit_op = commit_op;
218 	b->commit_context = commit_context;
219 	b->issue_op = issue_op;
220 	b->issue_context = issue_context;
221 	b->wq = wq;
222 
223 	spin_lock_init(&b->lock);
224 	INIT_LIST_HEAD(&b->work_items);
225 	bio_list_init(&b->bios);
226 	INIT_WORK(&b->commit_work, __commit);
227 	b->commit_scheduled = false;
228 }
229 
230 static void async_commit(struct batcher *b)
231 {
232 	queue_work(b->wq, &b->commit_work);
233 }
234 
235 static void continue_after_commit(struct batcher *b, struct continuation *k)
236 {
237 	bool commit_scheduled;
238 
239 	spin_lock_irq(&b->lock);
240 	commit_scheduled = b->commit_scheduled;
241 	list_add_tail(&k->ws.entry, &b->work_items);
242 	spin_unlock_irq(&b->lock);
243 
244 	if (commit_scheduled)
245 		async_commit(b);
246 }
247 
248 /*
249  * Bios are errored if commit failed.
250  */
251 static void issue_after_commit(struct batcher *b, struct bio *bio)
252 {
253        bool commit_scheduled;
254 
255        spin_lock_irq(&b->lock);
256        commit_scheduled = b->commit_scheduled;
257        bio_list_add(&b->bios, bio);
258        spin_unlock_irq(&b->lock);
259 
260        if (commit_scheduled)
261 	       async_commit(b);
262 }
263 
264 /*
265  * Call this if some urgent work is waiting for the commit to complete.
266  */
267 static void schedule_commit(struct batcher *b)
268 {
269 	bool immediate;
270 
271 	spin_lock_irq(&b->lock);
272 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273 	b->commit_scheduled = true;
274 	spin_unlock_irq(&b->lock);
275 
276 	if (immediate)
277 		async_commit(b);
278 }
279 
280 /*
281  * There are a couple of places where we let a bio run, but want to do some
282  * work before calling its endio function.  We do this by temporarily
283  * changing the endio fn.
284  */
285 struct dm_hook_info {
286 	bio_end_io_t *bi_end_io;
287 };
288 
289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290 			bio_end_io_t *bi_end_io, void *bi_private)
291 {
292 	h->bi_end_io = bio->bi_end_io;
293 
294 	bio->bi_end_io = bi_end_io;
295 	bio->bi_private = bi_private;
296 }
297 
298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299 {
300 	bio->bi_end_io = h->bi_end_io;
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 #define MIGRATION_POOL_SIZE 128
306 #define COMMIT_PERIOD HZ
307 #define MIGRATION_COUNT_WINDOW 10
308 
309 /*
310  * The block size of the device holding cache data must be
311  * between 32KB and 1GB.
312  */
313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315 
316 enum cache_metadata_mode {
317 	CM_WRITE,		/* metadata may be changed */
318 	CM_READ_ONLY,		/* metadata may not be changed */
319 	CM_FAIL
320 };
321 
322 enum cache_io_mode {
323 	/*
324 	 * Data is written to cached blocks only.  These blocks are marked
325 	 * dirty.  If you lose the cache device you will lose data.
326 	 * Potential performance increase for both reads and writes.
327 	 */
328 	CM_IO_WRITEBACK,
329 
330 	/*
331 	 * Data is written to both cache and origin.  Blocks are never
332 	 * dirty.  Potential performance benfit for reads only.
333 	 */
334 	CM_IO_WRITETHROUGH,
335 
336 	/*
337 	 * A degraded mode useful for various cache coherency situations
338 	 * (eg, rolling back snapshots).  Reads and writes always go to the
339 	 * origin.  If a write goes to a cached oblock, then the cache
340 	 * block is invalidated.
341 	 */
342 	CM_IO_PASSTHROUGH
343 };
344 
345 struct cache_features {
346 	enum cache_metadata_mode mode;
347 	enum cache_io_mode io_mode;
348 	unsigned metadata_version;
349 	bool discard_passdown:1;
350 };
351 
352 struct cache_stats {
353 	atomic_t read_hit;
354 	atomic_t read_miss;
355 	atomic_t write_hit;
356 	atomic_t write_miss;
357 	atomic_t demotion;
358 	atomic_t promotion;
359 	atomic_t writeback;
360 	atomic_t copies_avoided;
361 	atomic_t cache_cell_clash;
362 	atomic_t commit_count;
363 	atomic_t discard_count;
364 };
365 
366 struct cache {
367 	struct dm_target *ti;
368 	spinlock_t lock;
369 
370 	/*
371 	 * Fields for converting from sectors to blocks.
372 	 */
373 	int sectors_per_block_shift;
374 	sector_t sectors_per_block;
375 
376 	struct dm_cache_metadata *cmd;
377 
378 	/*
379 	 * Metadata is written to this device.
380 	 */
381 	struct dm_dev *metadata_dev;
382 
383 	/*
384 	 * The slower of the two data devices.  Typically a spindle.
385 	 */
386 	struct dm_dev *origin_dev;
387 
388 	/*
389 	 * The faster of the two data devices.  Typically an SSD.
390 	 */
391 	struct dm_dev *cache_dev;
392 
393 	/*
394 	 * Size of the origin device in _complete_ blocks and native sectors.
395 	 */
396 	dm_oblock_t origin_blocks;
397 	sector_t origin_sectors;
398 
399 	/*
400 	 * Size of the cache device in blocks.
401 	 */
402 	dm_cblock_t cache_size;
403 
404 	/*
405 	 * Invalidation fields.
406 	 */
407 	spinlock_t invalidation_lock;
408 	struct list_head invalidation_requests;
409 
410 	sector_t migration_threshold;
411 	wait_queue_head_t migration_wait;
412 	atomic_t nr_allocated_migrations;
413 
414 	/*
415 	 * The number of in flight migrations that are performing
416 	 * background io. eg, promotion, writeback.
417 	 */
418 	atomic_t nr_io_migrations;
419 
420 	struct bio_list deferred_bios;
421 
422 	struct rw_semaphore quiesce_lock;
423 
424 	struct dm_target_callbacks callbacks;
425 
426 	/*
427 	 * origin_blocks entries, discarded if set.
428 	 */
429 	dm_dblock_t discard_nr_blocks;
430 	unsigned long *discard_bitset;
431 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
432 
433 	/*
434 	 * Rather than reconstructing the table line for the status we just
435 	 * save it and regurgitate.
436 	 */
437 	unsigned nr_ctr_args;
438 	const char **ctr_args;
439 
440 	struct dm_kcopyd_client *copier;
441 	struct work_struct deferred_bio_worker;
442 	struct work_struct migration_worker;
443 	struct workqueue_struct *wq;
444 	struct delayed_work waker;
445 	struct dm_bio_prison_v2 *prison;
446 
447 	/*
448 	 * cache_size entries, dirty if set
449 	 */
450 	unsigned long *dirty_bitset;
451 	atomic_t nr_dirty;
452 
453 	unsigned policy_nr_args;
454 	struct dm_cache_policy *policy;
455 
456 	/*
457 	 * Cache features such as write-through.
458 	 */
459 	struct cache_features features;
460 
461 	struct cache_stats stats;
462 
463 	bool need_tick_bio:1;
464 	bool sized:1;
465 	bool invalidate:1;
466 	bool commit_requested:1;
467 	bool loaded_mappings:1;
468 	bool loaded_discards:1;
469 
470 	struct rw_semaphore background_work_lock;
471 
472 	struct batcher committer;
473 	struct work_struct commit_ws;
474 
475 	struct io_tracker tracker;
476 
477 	mempool_t migration_pool;
478 
479 	struct bio_set bs;
480 };
481 
482 struct per_bio_data {
483 	bool tick:1;
484 	unsigned req_nr:2;
485 	struct dm_bio_prison_cell_v2 *cell;
486 	struct dm_hook_info hook_info;
487 	sector_t len;
488 };
489 
490 struct dm_cache_migration {
491 	struct continuation k;
492 	struct cache *cache;
493 
494 	struct policy_work *op;
495 	struct bio *overwrite_bio;
496 	struct dm_bio_prison_cell_v2 *cell;
497 
498 	dm_cblock_t invalidate_cblock;
499 	dm_oblock_t invalidate_oblock;
500 };
501 
502 /*----------------------------------------------------------------*/
503 
504 static bool writethrough_mode(struct cache *cache)
505 {
506 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
507 }
508 
509 static bool writeback_mode(struct cache *cache)
510 {
511 	return cache->features.io_mode == CM_IO_WRITEBACK;
512 }
513 
514 static inline bool passthrough_mode(struct cache *cache)
515 {
516 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 static void wake_deferred_bio_worker(struct cache *cache)
522 {
523 	queue_work(cache->wq, &cache->deferred_bio_worker);
524 }
525 
526 static void wake_migration_worker(struct cache *cache)
527 {
528 	if (passthrough_mode(cache))
529 		return;
530 
531 	queue_work(cache->wq, &cache->migration_worker);
532 }
533 
534 /*----------------------------------------------------------------*/
535 
536 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
537 {
538 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
539 }
540 
541 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
542 {
543 	dm_bio_prison_free_cell_v2(cache->prison, cell);
544 }
545 
546 static struct dm_cache_migration *alloc_migration(struct cache *cache)
547 {
548 	struct dm_cache_migration *mg;
549 
550 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
551 
552 	memset(mg, 0, sizeof(*mg));
553 
554 	mg->cache = cache;
555 	atomic_inc(&cache->nr_allocated_migrations);
556 
557 	return mg;
558 }
559 
560 static void free_migration(struct dm_cache_migration *mg)
561 {
562 	struct cache *cache = mg->cache;
563 
564 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
565 		wake_up(&cache->migration_wait);
566 
567 	mempool_free(mg, &cache->migration_pool);
568 }
569 
570 /*----------------------------------------------------------------*/
571 
572 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
573 {
574 	return to_oblock(from_oblock(b) + 1ull);
575 }
576 
577 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
578 {
579 	key->virtual = 0;
580 	key->dev = 0;
581 	key->block_begin = from_oblock(begin);
582 	key->block_end = from_oblock(end);
583 }
584 
585 /*
586  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
587  * level 1 which prevents *both* READs and WRITEs.
588  */
589 #define WRITE_LOCK_LEVEL 0
590 #define READ_WRITE_LOCK_LEVEL 1
591 
592 static unsigned lock_level(struct bio *bio)
593 {
594 	return bio_data_dir(bio) == WRITE ?
595 		WRITE_LOCK_LEVEL :
596 		READ_WRITE_LOCK_LEVEL;
597 }
598 
599 /*----------------------------------------------------------------
600  * Per bio data
601  *--------------------------------------------------------------*/
602 
603 static struct per_bio_data *get_per_bio_data(struct bio *bio)
604 {
605 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
606 	BUG_ON(!pb);
607 	return pb;
608 }
609 
610 static struct per_bio_data *init_per_bio_data(struct bio *bio)
611 {
612 	struct per_bio_data *pb = get_per_bio_data(bio);
613 
614 	pb->tick = false;
615 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
616 	pb->cell = NULL;
617 	pb->len = 0;
618 
619 	return pb;
620 }
621 
622 /*----------------------------------------------------------------*/
623 
624 static void defer_bio(struct cache *cache, struct bio *bio)
625 {
626 	spin_lock_irq(&cache->lock);
627 	bio_list_add(&cache->deferred_bios, bio);
628 	spin_unlock_irq(&cache->lock);
629 
630 	wake_deferred_bio_worker(cache);
631 }
632 
633 static void defer_bios(struct cache *cache, struct bio_list *bios)
634 {
635 	spin_lock_irq(&cache->lock);
636 	bio_list_merge(&cache->deferred_bios, bios);
637 	bio_list_init(bios);
638 	spin_unlock_irq(&cache->lock);
639 
640 	wake_deferred_bio_worker(cache);
641 }
642 
643 /*----------------------------------------------------------------*/
644 
645 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
646 {
647 	bool r;
648 	struct per_bio_data *pb;
649 	struct dm_cell_key_v2 key;
650 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
651 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
652 
653 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
654 
655 	build_key(oblock, end, &key);
656 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
657 	if (!r) {
658 		/*
659 		 * Failed to get the lock.
660 		 */
661 		free_prison_cell(cache, cell_prealloc);
662 		return r;
663 	}
664 
665 	if (cell != cell_prealloc)
666 		free_prison_cell(cache, cell_prealloc);
667 
668 	pb = get_per_bio_data(bio);
669 	pb->cell = cell;
670 
671 	return r;
672 }
673 
674 /*----------------------------------------------------------------*/
675 
676 static bool is_dirty(struct cache *cache, dm_cblock_t b)
677 {
678 	return test_bit(from_cblock(b), cache->dirty_bitset);
679 }
680 
681 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
682 {
683 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
684 		atomic_inc(&cache->nr_dirty);
685 		policy_set_dirty(cache->policy, cblock);
686 	}
687 }
688 
689 /*
690  * These two are called when setting after migrations to force the policy
691  * and dirty bitset to be in sync.
692  */
693 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
694 {
695 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
696 		atomic_inc(&cache->nr_dirty);
697 	policy_set_dirty(cache->policy, cblock);
698 }
699 
700 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
701 {
702 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
703 		if (atomic_dec_return(&cache->nr_dirty) == 0)
704 			dm_table_event(cache->ti->table);
705 	}
706 
707 	policy_clear_dirty(cache->policy, cblock);
708 }
709 
710 /*----------------------------------------------------------------*/
711 
712 static bool block_size_is_power_of_two(struct cache *cache)
713 {
714 	return cache->sectors_per_block_shift >= 0;
715 }
716 
717 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
718 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
719 __always_inline
720 #endif
721 static dm_block_t block_div(dm_block_t b, uint32_t n)
722 {
723 	do_div(b, n);
724 
725 	return b;
726 }
727 
728 static dm_block_t oblocks_per_dblock(struct cache *cache)
729 {
730 	dm_block_t oblocks = cache->discard_block_size;
731 
732 	if (block_size_is_power_of_two(cache))
733 		oblocks >>= cache->sectors_per_block_shift;
734 	else
735 		oblocks = block_div(oblocks, cache->sectors_per_block);
736 
737 	return oblocks;
738 }
739 
740 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
741 {
742 	return to_dblock(block_div(from_oblock(oblock),
743 				   oblocks_per_dblock(cache)));
744 }
745 
746 static void set_discard(struct cache *cache, dm_dblock_t b)
747 {
748 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
749 	atomic_inc(&cache->stats.discard_count);
750 
751 	spin_lock_irq(&cache->lock);
752 	set_bit(from_dblock(b), cache->discard_bitset);
753 	spin_unlock_irq(&cache->lock);
754 }
755 
756 static void clear_discard(struct cache *cache, dm_dblock_t b)
757 {
758 	spin_lock_irq(&cache->lock);
759 	clear_bit(from_dblock(b), cache->discard_bitset);
760 	spin_unlock_irq(&cache->lock);
761 }
762 
763 static bool is_discarded(struct cache *cache, dm_dblock_t b)
764 {
765 	int r;
766 	spin_lock_irq(&cache->lock);
767 	r = test_bit(from_dblock(b), cache->discard_bitset);
768 	spin_unlock_irq(&cache->lock);
769 
770 	return r;
771 }
772 
773 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
774 {
775 	int r;
776 	spin_lock_irq(&cache->lock);
777 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
778 		     cache->discard_bitset);
779 	spin_unlock_irq(&cache->lock);
780 
781 	return r;
782 }
783 
784 /*----------------------------------------------------------------
785  * Remapping
786  *--------------------------------------------------------------*/
787 static void remap_to_origin(struct cache *cache, struct bio *bio)
788 {
789 	bio_set_dev(bio, cache->origin_dev->bdev);
790 }
791 
792 static void remap_to_cache(struct cache *cache, struct bio *bio,
793 			   dm_cblock_t cblock)
794 {
795 	sector_t bi_sector = bio->bi_iter.bi_sector;
796 	sector_t block = from_cblock(cblock);
797 
798 	bio_set_dev(bio, cache->cache_dev->bdev);
799 	if (!block_size_is_power_of_two(cache))
800 		bio->bi_iter.bi_sector =
801 			(block * cache->sectors_per_block) +
802 			sector_div(bi_sector, cache->sectors_per_block);
803 	else
804 		bio->bi_iter.bi_sector =
805 			(block << cache->sectors_per_block_shift) |
806 			(bi_sector & (cache->sectors_per_block - 1));
807 }
808 
809 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
810 {
811 	struct per_bio_data *pb;
812 
813 	spin_lock_irq(&cache->lock);
814 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
815 	    bio_op(bio) != REQ_OP_DISCARD) {
816 		pb = get_per_bio_data(bio);
817 		pb->tick = true;
818 		cache->need_tick_bio = false;
819 	}
820 	spin_unlock_irq(&cache->lock);
821 }
822 
823 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
824 					    dm_oblock_t oblock, bool bio_has_pbd)
825 {
826 	if (bio_has_pbd)
827 		check_if_tick_bio_needed(cache, bio);
828 	remap_to_origin(cache, bio);
829 	if (bio_data_dir(bio) == WRITE)
830 		clear_discard(cache, oblock_to_dblock(cache, oblock));
831 }
832 
833 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
834 					  dm_oblock_t oblock)
835 {
836 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
837 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
838 }
839 
840 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
841 				 dm_oblock_t oblock, dm_cblock_t cblock)
842 {
843 	check_if_tick_bio_needed(cache, bio);
844 	remap_to_cache(cache, bio, cblock);
845 	if (bio_data_dir(bio) == WRITE) {
846 		set_dirty(cache, cblock);
847 		clear_discard(cache, oblock_to_dblock(cache, oblock));
848 	}
849 }
850 
851 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
852 {
853 	sector_t block_nr = bio->bi_iter.bi_sector;
854 
855 	if (!block_size_is_power_of_two(cache))
856 		(void) sector_div(block_nr, cache->sectors_per_block);
857 	else
858 		block_nr >>= cache->sectors_per_block_shift;
859 
860 	return to_oblock(block_nr);
861 }
862 
863 static bool accountable_bio(struct cache *cache, struct bio *bio)
864 {
865 	return bio_op(bio) != REQ_OP_DISCARD;
866 }
867 
868 static void accounted_begin(struct cache *cache, struct bio *bio)
869 {
870 	struct per_bio_data *pb;
871 
872 	if (accountable_bio(cache, bio)) {
873 		pb = get_per_bio_data(bio);
874 		pb->len = bio_sectors(bio);
875 		iot_io_begin(&cache->tracker, pb->len);
876 	}
877 }
878 
879 static void accounted_complete(struct cache *cache, struct bio *bio)
880 {
881 	struct per_bio_data *pb = get_per_bio_data(bio);
882 
883 	iot_io_end(&cache->tracker, pb->len);
884 }
885 
886 static void accounted_request(struct cache *cache, struct bio *bio)
887 {
888 	accounted_begin(cache, bio);
889 	generic_make_request(bio);
890 }
891 
892 static void issue_op(struct bio *bio, void *context)
893 {
894 	struct cache *cache = context;
895 	accounted_request(cache, bio);
896 }
897 
898 /*
899  * When running in writethrough mode we need to send writes to clean blocks
900  * to both the cache and origin devices.  Clone the bio and send them in parallel.
901  */
902 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
903 				      dm_oblock_t oblock, dm_cblock_t cblock)
904 {
905 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
906 
907 	BUG_ON(!origin_bio);
908 
909 	bio_chain(origin_bio, bio);
910 	/*
911 	 * Passing false to __remap_to_origin_clear_discard() skips
912 	 * all code that might use per_bio_data (since clone doesn't have it)
913 	 */
914 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
915 	submit_bio(origin_bio);
916 
917 	remap_to_cache(cache, bio, cblock);
918 }
919 
920 /*----------------------------------------------------------------
921  * Failure modes
922  *--------------------------------------------------------------*/
923 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
924 {
925 	return cache->features.mode;
926 }
927 
928 static const char *cache_device_name(struct cache *cache)
929 {
930 	return dm_device_name(dm_table_get_md(cache->ti->table));
931 }
932 
933 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
934 {
935 	const char *descs[] = {
936 		"write",
937 		"read-only",
938 		"fail"
939 	};
940 
941 	dm_table_event(cache->ti->table);
942 	DMINFO("%s: switching cache to %s mode",
943 	       cache_device_name(cache), descs[(int)mode]);
944 }
945 
946 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
947 {
948 	bool needs_check;
949 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
950 
951 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
952 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
953 		      cache_device_name(cache));
954 		new_mode = CM_FAIL;
955 	}
956 
957 	if (new_mode == CM_WRITE && needs_check) {
958 		DMERR("%s: unable to switch cache to write mode until repaired.",
959 		      cache_device_name(cache));
960 		if (old_mode != new_mode)
961 			new_mode = old_mode;
962 		else
963 			new_mode = CM_READ_ONLY;
964 	}
965 
966 	/* Never move out of fail mode */
967 	if (old_mode == CM_FAIL)
968 		new_mode = CM_FAIL;
969 
970 	switch (new_mode) {
971 	case CM_FAIL:
972 	case CM_READ_ONLY:
973 		dm_cache_metadata_set_read_only(cache->cmd);
974 		break;
975 
976 	case CM_WRITE:
977 		dm_cache_metadata_set_read_write(cache->cmd);
978 		break;
979 	}
980 
981 	cache->features.mode = new_mode;
982 
983 	if (new_mode != old_mode)
984 		notify_mode_switch(cache, new_mode);
985 }
986 
987 static void abort_transaction(struct cache *cache)
988 {
989 	const char *dev_name = cache_device_name(cache);
990 
991 	if (get_cache_mode(cache) >= CM_READ_ONLY)
992 		return;
993 
994 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
995 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
996 		set_cache_mode(cache, CM_FAIL);
997 	}
998 
999 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1000 	if (dm_cache_metadata_abort(cache->cmd)) {
1001 		DMERR("%s: failed to abort metadata transaction", dev_name);
1002 		set_cache_mode(cache, CM_FAIL);
1003 	}
1004 }
1005 
1006 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1007 {
1008 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1009 		    cache_device_name(cache), op, r);
1010 	abort_transaction(cache);
1011 	set_cache_mode(cache, CM_READ_ONLY);
1012 }
1013 
1014 /*----------------------------------------------------------------*/
1015 
1016 static void load_stats(struct cache *cache)
1017 {
1018 	struct dm_cache_statistics stats;
1019 
1020 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1021 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1022 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1023 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1024 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1025 }
1026 
1027 static void save_stats(struct cache *cache)
1028 {
1029 	struct dm_cache_statistics stats;
1030 
1031 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1032 		return;
1033 
1034 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1035 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1036 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1037 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1038 
1039 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1040 }
1041 
1042 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1043 {
1044 	switch (op) {
1045 	case POLICY_PROMOTE:
1046 		atomic_inc(&stats->promotion);
1047 		break;
1048 
1049 	case POLICY_DEMOTE:
1050 		atomic_inc(&stats->demotion);
1051 		break;
1052 
1053 	case POLICY_WRITEBACK:
1054 		atomic_inc(&stats->writeback);
1055 		break;
1056 	}
1057 }
1058 
1059 /*----------------------------------------------------------------
1060  * Migration processing
1061  *
1062  * Migration covers moving data from the origin device to the cache, or
1063  * vice versa.
1064  *--------------------------------------------------------------*/
1065 
1066 static void inc_io_migrations(struct cache *cache)
1067 {
1068 	atomic_inc(&cache->nr_io_migrations);
1069 }
1070 
1071 static void dec_io_migrations(struct cache *cache)
1072 {
1073 	atomic_dec(&cache->nr_io_migrations);
1074 }
1075 
1076 static bool discard_or_flush(struct bio *bio)
1077 {
1078 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1079 }
1080 
1081 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1082 				     dm_dblock_t *b, dm_dblock_t *e)
1083 {
1084 	sector_t sb = bio->bi_iter.bi_sector;
1085 	sector_t se = bio_end_sector(bio);
1086 
1087 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1088 
1089 	if (se - sb < cache->discard_block_size)
1090 		*e = *b;
1091 	else
1092 		*e = to_dblock(block_div(se, cache->discard_block_size));
1093 }
1094 
1095 /*----------------------------------------------------------------*/
1096 
1097 static void prevent_background_work(struct cache *cache)
1098 {
1099 	lockdep_off();
1100 	down_write(&cache->background_work_lock);
1101 	lockdep_on();
1102 }
1103 
1104 static void allow_background_work(struct cache *cache)
1105 {
1106 	lockdep_off();
1107 	up_write(&cache->background_work_lock);
1108 	lockdep_on();
1109 }
1110 
1111 static bool background_work_begin(struct cache *cache)
1112 {
1113 	bool r;
1114 
1115 	lockdep_off();
1116 	r = down_read_trylock(&cache->background_work_lock);
1117 	lockdep_on();
1118 
1119 	return r;
1120 }
1121 
1122 static void background_work_end(struct cache *cache)
1123 {
1124 	lockdep_off();
1125 	up_read(&cache->background_work_lock);
1126 	lockdep_on();
1127 }
1128 
1129 /*----------------------------------------------------------------*/
1130 
1131 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1132 {
1133 	return (bio_data_dir(bio) == WRITE) &&
1134 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1135 }
1136 
1137 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1138 {
1139 	return writeback_mode(cache) &&
1140 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1141 }
1142 
1143 static void quiesce(struct dm_cache_migration *mg,
1144 		    void (*continuation)(struct work_struct *))
1145 {
1146 	init_continuation(&mg->k, continuation);
1147 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1148 }
1149 
1150 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1151 {
1152 	struct continuation *k = container_of(ws, struct continuation, ws);
1153 	return container_of(k, struct dm_cache_migration, k);
1154 }
1155 
1156 static void copy_complete(int read_err, unsigned long write_err, void *context)
1157 {
1158 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1159 
1160 	if (read_err || write_err)
1161 		mg->k.input = BLK_STS_IOERR;
1162 
1163 	queue_continuation(mg->cache->wq, &mg->k);
1164 }
1165 
1166 static void copy(struct dm_cache_migration *mg, bool promote)
1167 {
1168 	struct dm_io_region o_region, c_region;
1169 	struct cache *cache = mg->cache;
1170 
1171 	o_region.bdev = cache->origin_dev->bdev;
1172 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1173 	o_region.count = cache->sectors_per_block;
1174 
1175 	c_region.bdev = cache->cache_dev->bdev;
1176 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1177 	c_region.count = cache->sectors_per_block;
1178 
1179 	if (promote)
1180 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1181 	else
1182 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1183 }
1184 
1185 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1186 {
1187 	struct per_bio_data *pb = get_per_bio_data(bio);
1188 
1189 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1190 		free_prison_cell(cache, pb->cell);
1191 	pb->cell = NULL;
1192 }
1193 
1194 static void overwrite_endio(struct bio *bio)
1195 {
1196 	struct dm_cache_migration *mg = bio->bi_private;
1197 	struct cache *cache = mg->cache;
1198 	struct per_bio_data *pb = get_per_bio_data(bio);
1199 
1200 	dm_unhook_bio(&pb->hook_info, bio);
1201 
1202 	if (bio->bi_status)
1203 		mg->k.input = bio->bi_status;
1204 
1205 	queue_continuation(cache->wq, &mg->k);
1206 }
1207 
1208 static void overwrite(struct dm_cache_migration *mg,
1209 		      void (*continuation)(struct work_struct *))
1210 {
1211 	struct bio *bio = mg->overwrite_bio;
1212 	struct per_bio_data *pb = get_per_bio_data(bio);
1213 
1214 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1215 
1216 	/*
1217 	 * The overwrite bio is part of the copy operation, as such it does
1218 	 * not set/clear discard or dirty flags.
1219 	 */
1220 	if (mg->op->op == POLICY_PROMOTE)
1221 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1222 	else
1223 		remap_to_origin(mg->cache, bio);
1224 
1225 	init_continuation(&mg->k, continuation);
1226 	accounted_request(mg->cache, bio);
1227 }
1228 
1229 /*
1230  * Migration steps:
1231  *
1232  * 1) exclusive lock preventing WRITEs
1233  * 2) quiesce
1234  * 3) copy or issue overwrite bio
1235  * 4) upgrade to exclusive lock preventing READs and WRITEs
1236  * 5) quiesce
1237  * 6) update metadata and commit
1238  * 7) unlock
1239  */
1240 static void mg_complete(struct dm_cache_migration *mg, bool success)
1241 {
1242 	struct bio_list bios;
1243 	struct cache *cache = mg->cache;
1244 	struct policy_work *op = mg->op;
1245 	dm_cblock_t cblock = op->cblock;
1246 
1247 	if (success)
1248 		update_stats(&cache->stats, op->op);
1249 
1250 	switch (op->op) {
1251 	case POLICY_PROMOTE:
1252 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1253 		policy_complete_background_work(cache->policy, op, success);
1254 
1255 		if (mg->overwrite_bio) {
1256 			if (success)
1257 				force_set_dirty(cache, cblock);
1258 			else if (mg->k.input)
1259 				mg->overwrite_bio->bi_status = mg->k.input;
1260 			else
1261 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1262 			bio_endio(mg->overwrite_bio);
1263 		} else {
1264 			if (success)
1265 				force_clear_dirty(cache, cblock);
1266 			dec_io_migrations(cache);
1267 		}
1268 		break;
1269 
1270 	case POLICY_DEMOTE:
1271 		/*
1272 		 * We clear dirty here to update the nr_dirty counter.
1273 		 */
1274 		if (success)
1275 			force_clear_dirty(cache, cblock);
1276 		policy_complete_background_work(cache->policy, op, success);
1277 		dec_io_migrations(cache);
1278 		break;
1279 
1280 	case POLICY_WRITEBACK:
1281 		if (success)
1282 			force_clear_dirty(cache, cblock);
1283 		policy_complete_background_work(cache->policy, op, success);
1284 		dec_io_migrations(cache);
1285 		break;
1286 	}
1287 
1288 	bio_list_init(&bios);
1289 	if (mg->cell) {
1290 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1291 			free_prison_cell(cache, mg->cell);
1292 	}
1293 
1294 	free_migration(mg);
1295 	defer_bios(cache, &bios);
1296 	wake_migration_worker(cache);
1297 
1298 	background_work_end(cache);
1299 }
1300 
1301 static void mg_success(struct work_struct *ws)
1302 {
1303 	struct dm_cache_migration *mg = ws_to_mg(ws);
1304 	mg_complete(mg, mg->k.input == 0);
1305 }
1306 
1307 static void mg_update_metadata(struct work_struct *ws)
1308 {
1309 	int r;
1310 	struct dm_cache_migration *mg = ws_to_mg(ws);
1311 	struct cache *cache = mg->cache;
1312 	struct policy_work *op = mg->op;
1313 
1314 	switch (op->op) {
1315 	case POLICY_PROMOTE:
1316 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1317 		if (r) {
1318 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1319 				    cache_device_name(cache));
1320 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1321 
1322 			mg_complete(mg, false);
1323 			return;
1324 		}
1325 		mg_complete(mg, true);
1326 		break;
1327 
1328 	case POLICY_DEMOTE:
1329 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1330 		if (r) {
1331 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1332 				    cache_device_name(cache));
1333 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1334 
1335 			mg_complete(mg, false);
1336 			return;
1337 		}
1338 
1339 		/*
1340 		 * It would be nice if we only had to commit when a REQ_FLUSH
1341 		 * comes through.  But there's one scenario that we have to
1342 		 * look out for:
1343 		 *
1344 		 * - vblock x in a cache block
1345 		 * - domotion occurs
1346 		 * - cache block gets reallocated and over written
1347 		 * - crash
1348 		 *
1349 		 * When we recover, because there was no commit the cache will
1350 		 * rollback to having the data for vblock x in the cache block.
1351 		 * But the cache block has since been overwritten, so it'll end
1352 		 * up pointing to data that was never in 'x' during the history
1353 		 * of the device.
1354 		 *
1355 		 * To avoid this issue we require a commit as part of the
1356 		 * demotion operation.
1357 		 */
1358 		init_continuation(&mg->k, mg_success);
1359 		continue_after_commit(&cache->committer, &mg->k);
1360 		schedule_commit(&cache->committer);
1361 		break;
1362 
1363 	case POLICY_WRITEBACK:
1364 		mg_complete(mg, true);
1365 		break;
1366 	}
1367 }
1368 
1369 static void mg_update_metadata_after_copy(struct work_struct *ws)
1370 {
1371 	struct dm_cache_migration *mg = ws_to_mg(ws);
1372 
1373 	/*
1374 	 * Did the copy succeed?
1375 	 */
1376 	if (mg->k.input)
1377 		mg_complete(mg, false);
1378 	else
1379 		mg_update_metadata(ws);
1380 }
1381 
1382 static void mg_upgrade_lock(struct work_struct *ws)
1383 {
1384 	int r;
1385 	struct dm_cache_migration *mg = ws_to_mg(ws);
1386 
1387 	/*
1388 	 * Did the copy succeed?
1389 	 */
1390 	if (mg->k.input)
1391 		mg_complete(mg, false);
1392 
1393 	else {
1394 		/*
1395 		 * Now we want the lock to prevent both reads and writes.
1396 		 */
1397 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1398 					    READ_WRITE_LOCK_LEVEL);
1399 		if (r < 0)
1400 			mg_complete(mg, false);
1401 
1402 		else if (r)
1403 			quiesce(mg, mg_update_metadata);
1404 
1405 		else
1406 			mg_update_metadata(ws);
1407 	}
1408 }
1409 
1410 static void mg_full_copy(struct work_struct *ws)
1411 {
1412 	struct dm_cache_migration *mg = ws_to_mg(ws);
1413 	struct cache *cache = mg->cache;
1414 	struct policy_work *op = mg->op;
1415 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1416 
1417 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1418 	    is_discarded_oblock(cache, op->oblock)) {
1419 		mg_upgrade_lock(ws);
1420 		return;
1421 	}
1422 
1423 	init_continuation(&mg->k, mg_upgrade_lock);
1424 	copy(mg, is_policy_promote);
1425 }
1426 
1427 static void mg_copy(struct work_struct *ws)
1428 {
1429 	struct dm_cache_migration *mg = ws_to_mg(ws);
1430 
1431 	if (mg->overwrite_bio) {
1432 		/*
1433 		 * No exclusive lock was held when we last checked if the bio
1434 		 * was optimisable.  So we have to check again in case things
1435 		 * have changed (eg, the block may no longer be discarded).
1436 		 */
1437 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1438 			/*
1439 			 * Fallback to a real full copy after doing some tidying up.
1440 			 */
1441 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1442 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1443 			mg->overwrite_bio = NULL;
1444 			inc_io_migrations(mg->cache);
1445 			mg_full_copy(ws);
1446 			return;
1447 		}
1448 
1449 		/*
1450 		 * It's safe to do this here, even though it's new data
1451 		 * because all IO has been locked out of the block.
1452 		 *
1453 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1454 		 * so _not_ using mg_upgrade_lock() as continutation.
1455 		 */
1456 		overwrite(mg, mg_update_metadata_after_copy);
1457 
1458 	} else
1459 		mg_full_copy(ws);
1460 }
1461 
1462 static int mg_lock_writes(struct dm_cache_migration *mg)
1463 {
1464 	int r;
1465 	struct dm_cell_key_v2 key;
1466 	struct cache *cache = mg->cache;
1467 	struct dm_bio_prison_cell_v2 *prealloc;
1468 
1469 	prealloc = alloc_prison_cell(cache);
1470 
1471 	/*
1472 	 * Prevent writes to the block, but allow reads to continue.
1473 	 * Unless we're using an overwrite bio, in which case we lock
1474 	 * everything.
1475 	 */
1476 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1477 	r = dm_cell_lock_v2(cache->prison, &key,
1478 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1479 			    prealloc, &mg->cell);
1480 	if (r < 0) {
1481 		free_prison_cell(cache, prealloc);
1482 		mg_complete(mg, false);
1483 		return r;
1484 	}
1485 
1486 	if (mg->cell != prealloc)
1487 		free_prison_cell(cache, prealloc);
1488 
1489 	if (r == 0)
1490 		mg_copy(&mg->k.ws);
1491 	else
1492 		quiesce(mg, mg_copy);
1493 
1494 	return 0;
1495 }
1496 
1497 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1498 {
1499 	struct dm_cache_migration *mg;
1500 
1501 	if (!background_work_begin(cache)) {
1502 		policy_complete_background_work(cache->policy, op, false);
1503 		return -EPERM;
1504 	}
1505 
1506 	mg = alloc_migration(cache);
1507 
1508 	mg->op = op;
1509 	mg->overwrite_bio = bio;
1510 
1511 	if (!bio)
1512 		inc_io_migrations(cache);
1513 
1514 	return mg_lock_writes(mg);
1515 }
1516 
1517 /*----------------------------------------------------------------
1518  * invalidation processing
1519  *--------------------------------------------------------------*/
1520 
1521 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1522 {
1523 	struct bio_list bios;
1524 	struct cache *cache = mg->cache;
1525 
1526 	bio_list_init(&bios);
1527 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1528 		free_prison_cell(cache, mg->cell);
1529 
1530 	if (!success && mg->overwrite_bio)
1531 		bio_io_error(mg->overwrite_bio);
1532 
1533 	free_migration(mg);
1534 	defer_bios(cache, &bios);
1535 
1536 	background_work_end(cache);
1537 }
1538 
1539 static void invalidate_completed(struct work_struct *ws)
1540 {
1541 	struct dm_cache_migration *mg = ws_to_mg(ws);
1542 	invalidate_complete(mg, !mg->k.input);
1543 }
1544 
1545 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1546 {
1547 	int r = policy_invalidate_mapping(cache->policy, cblock);
1548 	if (!r) {
1549 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1550 		if (r) {
1551 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1552 				    cache_device_name(cache));
1553 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1554 		}
1555 
1556 	} else if (r == -ENODATA) {
1557 		/*
1558 		 * Harmless, already unmapped.
1559 		 */
1560 		r = 0;
1561 
1562 	} else
1563 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1564 
1565 	return r;
1566 }
1567 
1568 static void invalidate_remove(struct work_struct *ws)
1569 {
1570 	int r;
1571 	struct dm_cache_migration *mg = ws_to_mg(ws);
1572 	struct cache *cache = mg->cache;
1573 
1574 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1575 	if (r) {
1576 		invalidate_complete(mg, false);
1577 		return;
1578 	}
1579 
1580 	init_continuation(&mg->k, invalidate_completed);
1581 	continue_after_commit(&cache->committer, &mg->k);
1582 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1583 	mg->overwrite_bio = NULL;
1584 	schedule_commit(&cache->committer);
1585 }
1586 
1587 static int invalidate_lock(struct dm_cache_migration *mg)
1588 {
1589 	int r;
1590 	struct dm_cell_key_v2 key;
1591 	struct cache *cache = mg->cache;
1592 	struct dm_bio_prison_cell_v2 *prealloc;
1593 
1594 	prealloc = alloc_prison_cell(cache);
1595 
1596 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1597 	r = dm_cell_lock_v2(cache->prison, &key,
1598 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1599 	if (r < 0) {
1600 		free_prison_cell(cache, prealloc);
1601 		invalidate_complete(mg, false);
1602 		return r;
1603 	}
1604 
1605 	if (mg->cell != prealloc)
1606 		free_prison_cell(cache, prealloc);
1607 
1608 	if (r)
1609 		quiesce(mg, invalidate_remove);
1610 
1611 	else {
1612 		/*
1613 		 * We can't call invalidate_remove() directly here because we
1614 		 * might still be in request context.
1615 		 */
1616 		init_continuation(&mg->k, invalidate_remove);
1617 		queue_work(cache->wq, &mg->k.ws);
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1624 			    dm_oblock_t oblock, struct bio *bio)
1625 {
1626 	struct dm_cache_migration *mg;
1627 
1628 	if (!background_work_begin(cache))
1629 		return -EPERM;
1630 
1631 	mg = alloc_migration(cache);
1632 
1633 	mg->overwrite_bio = bio;
1634 	mg->invalidate_cblock = cblock;
1635 	mg->invalidate_oblock = oblock;
1636 
1637 	return invalidate_lock(mg);
1638 }
1639 
1640 /*----------------------------------------------------------------
1641  * bio processing
1642  *--------------------------------------------------------------*/
1643 
1644 enum busy {
1645 	IDLE,
1646 	BUSY
1647 };
1648 
1649 static enum busy spare_migration_bandwidth(struct cache *cache)
1650 {
1651 	bool idle = iot_idle_for(&cache->tracker, HZ);
1652 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1653 		cache->sectors_per_block;
1654 
1655 	if (idle && current_volume <= cache->migration_threshold)
1656 		return IDLE;
1657 	else
1658 		return BUSY;
1659 }
1660 
1661 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1662 {
1663 	atomic_inc(bio_data_dir(bio) == READ ?
1664 		   &cache->stats.read_hit : &cache->stats.write_hit);
1665 }
1666 
1667 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1668 {
1669 	atomic_inc(bio_data_dir(bio) == READ ?
1670 		   &cache->stats.read_miss : &cache->stats.write_miss);
1671 }
1672 
1673 /*----------------------------------------------------------------*/
1674 
1675 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1676 		   bool *commit_needed)
1677 {
1678 	int r, data_dir;
1679 	bool rb, background_queued;
1680 	dm_cblock_t cblock;
1681 
1682 	*commit_needed = false;
1683 
1684 	rb = bio_detain_shared(cache, block, bio);
1685 	if (!rb) {
1686 		/*
1687 		 * An exclusive lock is held for this block, so we have to
1688 		 * wait.  We set the commit_needed flag so the current
1689 		 * transaction will be committed asap, allowing this lock
1690 		 * to be dropped.
1691 		 */
1692 		*commit_needed = true;
1693 		return DM_MAPIO_SUBMITTED;
1694 	}
1695 
1696 	data_dir = bio_data_dir(bio);
1697 
1698 	if (optimisable_bio(cache, bio, block)) {
1699 		struct policy_work *op = NULL;
1700 
1701 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1702 		if (unlikely(r && r != -ENOENT)) {
1703 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1704 				    cache_device_name(cache), r);
1705 			bio_io_error(bio);
1706 			return DM_MAPIO_SUBMITTED;
1707 		}
1708 
1709 		if (r == -ENOENT && op) {
1710 			bio_drop_shared_lock(cache, bio);
1711 			BUG_ON(op->op != POLICY_PROMOTE);
1712 			mg_start(cache, op, bio);
1713 			return DM_MAPIO_SUBMITTED;
1714 		}
1715 	} else {
1716 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1717 		if (unlikely(r && r != -ENOENT)) {
1718 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1719 				    cache_device_name(cache), r);
1720 			bio_io_error(bio);
1721 			return DM_MAPIO_SUBMITTED;
1722 		}
1723 
1724 		if (background_queued)
1725 			wake_migration_worker(cache);
1726 	}
1727 
1728 	if (r == -ENOENT) {
1729 		struct per_bio_data *pb = get_per_bio_data(bio);
1730 
1731 		/*
1732 		 * Miss.
1733 		 */
1734 		inc_miss_counter(cache, bio);
1735 		if (pb->req_nr == 0) {
1736 			accounted_begin(cache, bio);
1737 			remap_to_origin_clear_discard(cache, bio, block);
1738 		} else {
1739 			/*
1740 			 * This is a duplicate writethrough io that is no
1741 			 * longer needed because the block has been demoted.
1742 			 */
1743 			bio_endio(bio);
1744 			return DM_MAPIO_SUBMITTED;
1745 		}
1746 	} else {
1747 		/*
1748 		 * Hit.
1749 		 */
1750 		inc_hit_counter(cache, bio);
1751 
1752 		/*
1753 		 * Passthrough always maps to the origin, invalidating any
1754 		 * cache blocks that are written to.
1755 		 */
1756 		if (passthrough_mode(cache)) {
1757 			if (bio_data_dir(bio) == WRITE) {
1758 				bio_drop_shared_lock(cache, bio);
1759 				atomic_inc(&cache->stats.demotion);
1760 				invalidate_start(cache, cblock, block, bio);
1761 			} else
1762 				remap_to_origin_clear_discard(cache, bio, block);
1763 		} else {
1764 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1765 			    !is_dirty(cache, cblock)) {
1766 				remap_to_origin_and_cache(cache, bio, block, cblock);
1767 				accounted_begin(cache, bio);
1768 			} else
1769 				remap_to_cache_dirty(cache, bio, block, cblock);
1770 		}
1771 	}
1772 
1773 	/*
1774 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1775 	 */
1776 	if (bio->bi_opf & REQ_FUA) {
1777 		/*
1778 		 * issue_after_commit will call accounted_begin a second time.  So
1779 		 * we call accounted_complete() to avoid double accounting.
1780 		 */
1781 		accounted_complete(cache, bio);
1782 		issue_after_commit(&cache->committer, bio);
1783 		*commit_needed = true;
1784 		return DM_MAPIO_SUBMITTED;
1785 	}
1786 
1787 	return DM_MAPIO_REMAPPED;
1788 }
1789 
1790 static bool process_bio(struct cache *cache, struct bio *bio)
1791 {
1792 	bool commit_needed;
1793 
1794 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1795 		generic_make_request(bio);
1796 
1797 	return commit_needed;
1798 }
1799 
1800 /*
1801  * A non-zero return indicates read_only or fail_io mode.
1802  */
1803 static int commit(struct cache *cache, bool clean_shutdown)
1804 {
1805 	int r;
1806 
1807 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1808 		return -EINVAL;
1809 
1810 	atomic_inc(&cache->stats.commit_count);
1811 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1812 	if (r)
1813 		metadata_operation_failed(cache, "dm_cache_commit", r);
1814 
1815 	return r;
1816 }
1817 
1818 /*
1819  * Used by the batcher.
1820  */
1821 static blk_status_t commit_op(void *context)
1822 {
1823 	struct cache *cache = context;
1824 
1825 	if (dm_cache_changed_this_transaction(cache->cmd))
1826 		return errno_to_blk_status(commit(cache, false));
1827 
1828 	return 0;
1829 }
1830 
1831 /*----------------------------------------------------------------*/
1832 
1833 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1834 {
1835 	struct per_bio_data *pb = get_per_bio_data(bio);
1836 
1837 	if (!pb->req_nr)
1838 		remap_to_origin(cache, bio);
1839 	else
1840 		remap_to_cache(cache, bio, 0);
1841 
1842 	issue_after_commit(&cache->committer, bio);
1843 	return true;
1844 }
1845 
1846 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1847 {
1848 	dm_dblock_t b, e;
1849 
1850 	// FIXME: do we need to lock the region?  Or can we just assume the
1851 	// user wont be so foolish as to issue discard concurrently with
1852 	// other IO?
1853 	calc_discard_block_range(cache, bio, &b, &e);
1854 	while (b != e) {
1855 		set_discard(cache, b);
1856 		b = to_dblock(from_dblock(b) + 1);
1857 	}
1858 
1859 	if (cache->features.discard_passdown) {
1860 		remap_to_origin(cache, bio);
1861 		generic_make_request(bio);
1862 	} else
1863 		bio_endio(bio);
1864 
1865 	return false;
1866 }
1867 
1868 static void process_deferred_bios(struct work_struct *ws)
1869 {
1870 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1871 
1872 	bool commit_needed = false;
1873 	struct bio_list bios;
1874 	struct bio *bio;
1875 
1876 	bio_list_init(&bios);
1877 
1878 	spin_lock_irq(&cache->lock);
1879 	bio_list_merge(&bios, &cache->deferred_bios);
1880 	bio_list_init(&cache->deferred_bios);
1881 	spin_unlock_irq(&cache->lock);
1882 
1883 	while ((bio = bio_list_pop(&bios))) {
1884 		if (bio->bi_opf & REQ_PREFLUSH)
1885 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1886 
1887 		else if (bio_op(bio) == REQ_OP_DISCARD)
1888 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1889 
1890 		else
1891 			commit_needed = process_bio(cache, bio) || commit_needed;
1892 	}
1893 
1894 	if (commit_needed)
1895 		schedule_commit(&cache->committer);
1896 }
1897 
1898 /*----------------------------------------------------------------
1899  * Main worker loop
1900  *--------------------------------------------------------------*/
1901 
1902 static void requeue_deferred_bios(struct cache *cache)
1903 {
1904 	struct bio *bio;
1905 	struct bio_list bios;
1906 
1907 	bio_list_init(&bios);
1908 	bio_list_merge(&bios, &cache->deferred_bios);
1909 	bio_list_init(&cache->deferred_bios);
1910 
1911 	while ((bio = bio_list_pop(&bios))) {
1912 		bio->bi_status = BLK_STS_DM_REQUEUE;
1913 		bio_endio(bio);
1914 	}
1915 }
1916 
1917 /*
1918  * We want to commit periodically so that not too much
1919  * unwritten metadata builds up.
1920  */
1921 static void do_waker(struct work_struct *ws)
1922 {
1923 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1924 
1925 	policy_tick(cache->policy, true);
1926 	wake_migration_worker(cache);
1927 	schedule_commit(&cache->committer);
1928 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1929 }
1930 
1931 static void check_migrations(struct work_struct *ws)
1932 {
1933 	int r;
1934 	struct policy_work *op;
1935 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1936 	enum busy b;
1937 
1938 	for (;;) {
1939 		b = spare_migration_bandwidth(cache);
1940 
1941 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1942 		if (r == -ENODATA)
1943 			break;
1944 
1945 		if (r) {
1946 			DMERR_LIMIT("%s: policy_background_work failed",
1947 				    cache_device_name(cache));
1948 			break;
1949 		}
1950 
1951 		r = mg_start(cache, op, NULL);
1952 		if (r)
1953 			break;
1954 	}
1955 }
1956 
1957 /*----------------------------------------------------------------
1958  * Target methods
1959  *--------------------------------------------------------------*/
1960 
1961 /*
1962  * This function gets called on the error paths of the constructor, so we
1963  * have to cope with a partially initialised struct.
1964  */
1965 static void destroy(struct cache *cache)
1966 {
1967 	unsigned i;
1968 
1969 	mempool_exit(&cache->migration_pool);
1970 
1971 	if (cache->prison)
1972 		dm_bio_prison_destroy_v2(cache->prison);
1973 
1974 	if (cache->wq)
1975 		destroy_workqueue(cache->wq);
1976 
1977 	if (cache->dirty_bitset)
1978 		free_bitset(cache->dirty_bitset);
1979 
1980 	if (cache->discard_bitset)
1981 		free_bitset(cache->discard_bitset);
1982 
1983 	if (cache->copier)
1984 		dm_kcopyd_client_destroy(cache->copier);
1985 
1986 	if (cache->cmd)
1987 		dm_cache_metadata_close(cache->cmd);
1988 
1989 	if (cache->metadata_dev)
1990 		dm_put_device(cache->ti, cache->metadata_dev);
1991 
1992 	if (cache->origin_dev)
1993 		dm_put_device(cache->ti, cache->origin_dev);
1994 
1995 	if (cache->cache_dev)
1996 		dm_put_device(cache->ti, cache->cache_dev);
1997 
1998 	if (cache->policy)
1999 		dm_cache_policy_destroy(cache->policy);
2000 
2001 	for (i = 0; i < cache->nr_ctr_args ; i++)
2002 		kfree(cache->ctr_args[i]);
2003 	kfree(cache->ctr_args);
2004 
2005 	bioset_exit(&cache->bs);
2006 
2007 	kfree(cache);
2008 }
2009 
2010 static void cache_dtr(struct dm_target *ti)
2011 {
2012 	struct cache *cache = ti->private;
2013 
2014 	destroy(cache);
2015 }
2016 
2017 static sector_t get_dev_size(struct dm_dev *dev)
2018 {
2019 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2020 }
2021 
2022 /*----------------------------------------------------------------*/
2023 
2024 /*
2025  * Construct a cache device mapping.
2026  *
2027  * cache <metadata dev> <cache dev> <origin dev> <block size>
2028  *       <#feature args> [<feature arg>]*
2029  *       <policy> <#policy args> [<policy arg>]*
2030  *
2031  * metadata dev    : fast device holding the persistent metadata
2032  * cache dev	   : fast device holding cached data blocks
2033  * origin dev	   : slow device holding original data blocks
2034  * block size	   : cache unit size in sectors
2035  *
2036  * #feature args   : number of feature arguments passed
2037  * feature args    : writethrough.  (The default is writeback.)
2038  *
2039  * policy	   : the replacement policy to use
2040  * #policy args    : an even number of policy arguments corresponding
2041  *		     to key/value pairs passed to the policy
2042  * policy args	   : key/value pairs passed to the policy
2043  *		     E.g. 'sequential_threshold 1024'
2044  *		     See cache-policies.txt for details.
2045  *
2046  * Optional feature arguments are:
2047  *   writethrough  : write through caching that prohibits cache block
2048  *		     content from being different from origin block content.
2049  *		     Without this argument, the default behaviour is to write
2050  *		     back cache block contents later for performance reasons,
2051  *		     so they may differ from the corresponding origin blocks.
2052  */
2053 struct cache_args {
2054 	struct dm_target *ti;
2055 
2056 	struct dm_dev *metadata_dev;
2057 
2058 	struct dm_dev *cache_dev;
2059 	sector_t cache_sectors;
2060 
2061 	struct dm_dev *origin_dev;
2062 	sector_t origin_sectors;
2063 
2064 	uint32_t block_size;
2065 
2066 	const char *policy_name;
2067 	int policy_argc;
2068 	const char **policy_argv;
2069 
2070 	struct cache_features features;
2071 };
2072 
2073 static void destroy_cache_args(struct cache_args *ca)
2074 {
2075 	if (ca->metadata_dev)
2076 		dm_put_device(ca->ti, ca->metadata_dev);
2077 
2078 	if (ca->cache_dev)
2079 		dm_put_device(ca->ti, ca->cache_dev);
2080 
2081 	if (ca->origin_dev)
2082 		dm_put_device(ca->ti, ca->origin_dev);
2083 
2084 	kfree(ca);
2085 }
2086 
2087 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2088 {
2089 	if (!as->argc) {
2090 		*error = "Insufficient args";
2091 		return false;
2092 	}
2093 
2094 	return true;
2095 }
2096 
2097 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2098 			      char **error)
2099 {
2100 	int r;
2101 	sector_t metadata_dev_size;
2102 	char b[BDEVNAME_SIZE];
2103 
2104 	if (!at_least_one_arg(as, error))
2105 		return -EINVAL;
2106 
2107 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2108 			  &ca->metadata_dev);
2109 	if (r) {
2110 		*error = "Error opening metadata device";
2111 		return r;
2112 	}
2113 
2114 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2115 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2116 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2117 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2118 
2119 	return 0;
2120 }
2121 
2122 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2123 			   char **error)
2124 {
2125 	int r;
2126 
2127 	if (!at_least_one_arg(as, error))
2128 		return -EINVAL;
2129 
2130 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2131 			  &ca->cache_dev);
2132 	if (r) {
2133 		*error = "Error opening cache device";
2134 		return r;
2135 	}
2136 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2137 
2138 	return 0;
2139 }
2140 
2141 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2142 			    char **error)
2143 {
2144 	int r;
2145 
2146 	if (!at_least_one_arg(as, error))
2147 		return -EINVAL;
2148 
2149 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2150 			  &ca->origin_dev);
2151 	if (r) {
2152 		*error = "Error opening origin device";
2153 		return r;
2154 	}
2155 
2156 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2157 	if (ca->ti->len > ca->origin_sectors) {
2158 		*error = "Device size larger than cached device";
2159 		return -EINVAL;
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2166 			    char **error)
2167 {
2168 	unsigned long block_size;
2169 
2170 	if (!at_least_one_arg(as, error))
2171 		return -EINVAL;
2172 
2173 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2174 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2175 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2176 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2177 		*error = "Invalid data block size";
2178 		return -EINVAL;
2179 	}
2180 
2181 	if (block_size > ca->cache_sectors) {
2182 		*error = "Data block size is larger than the cache device";
2183 		return -EINVAL;
2184 	}
2185 
2186 	ca->block_size = block_size;
2187 
2188 	return 0;
2189 }
2190 
2191 static void init_features(struct cache_features *cf)
2192 {
2193 	cf->mode = CM_WRITE;
2194 	cf->io_mode = CM_IO_WRITEBACK;
2195 	cf->metadata_version = 1;
2196 	cf->discard_passdown = true;
2197 }
2198 
2199 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2200 			  char **error)
2201 {
2202 	static const struct dm_arg _args[] = {
2203 		{0, 3, "Invalid number of cache feature arguments"},
2204 	};
2205 
2206 	int r, mode_ctr = 0;
2207 	unsigned argc;
2208 	const char *arg;
2209 	struct cache_features *cf = &ca->features;
2210 
2211 	init_features(cf);
2212 
2213 	r = dm_read_arg_group(_args, as, &argc, error);
2214 	if (r)
2215 		return -EINVAL;
2216 
2217 	while (argc--) {
2218 		arg = dm_shift_arg(as);
2219 
2220 		if (!strcasecmp(arg, "writeback")) {
2221 			cf->io_mode = CM_IO_WRITEBACK;
2222 			mode_ctr++;
2223 		}
2224 
2225 		else if (!strcasecmp(arg, "writethrough")) {
2226 			cf->io_mode = CM_IO_WRITETHROUGH;
2227 			mode_ctr++;
2228 		}
2229 
2230 		else if (!strcasecmp(arg, "passthrough")) {
2231 			cf->io_mode = CM_IO_PASSTHROUGH;
2232 			mode_ctr++;
2233 		}
2234 
2235 		else if (!strcasecmp(arg, "metadata2"))
2236 			cf->metadata_version = 2;
2237 
2238 		else if (!strcasecmp(arg, "no_discard_passdown"))
2239 			cf->discard_passdown = false;
2240 
2241 		else {
2242 			*error = "Unrecognised cache feature requested";
2243 			return -EINVAL;
2244 		}
2245 	}
2246 
2247 	if (mode_ctr > 1) {
2248 		*error = "Duplicate cache io_mode features requested";
2249 		return -EINVAL;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2256 			char **error)
2257 {
2258 	static const struct dm_arg _args[] = {
2259 		{0, 1024, "Invalid number of policy arguments"},
2260 	};
2261 
2262 	int r;
2263 
2264 	if (!at_least_one_arg(as, error))
2265 		return -EINVAL;
2266 
2267 	ca->policy_name = dm_shift_arg(as);
2268 
2269 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2270 	if (r)
2271 		return -EINVAL;
2272 
2273 	ca->policy_argv = (const char **)as->argv;
2274 	dm_consume_args(as, ca->policy_argc);
2275 
2276 	return 0;
2277 }
2278 
2279 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2280 			    char **error)
2281 {
2282 	int r;
2283 	struct dm_arg_set as;
2284 
2285 	as.argc = argc;
2286 	as.argv = argv;
2287 
2288 	r = parse_metadata_dev(ca, &as, error);
2289 	if (r)
2290 		return r;
2291 
2292 	r = parse_cache_dev(ca, &as, error);
2293 	if (r)
2294 		return r;
2295 
2296 	r = parse_origin_dev(ca, &as, error);
2297 	if (r)
2298 		return r;
2299 
2300 	r = parse_block_size(ca, &as, error);
2301 	if (r)
2302 		return r;
2303 
2304 	r = parse_features(ca, &as, error);
2305 	if (r)
2306 		return r;
2307 
2308 	r = parse_policy(ca, &as, error);
2309 	if (r)
2310 		return r;
2311 
2312 	return 0;
2313 }
2314 
2315 /*----------------------------------------------------------------*/
2316 
2317 static struct kmem_cache *migration_cache;
2318 
2319 #define NOT_CORE_OPTION 1
2320 
2321 static int process_config_option(struct cache *cache, const char *key, const char *value)
2322 {
2323 	unsigned long tmp;
2324 
2325 	if (!strcasecmp(key, "migration_threshold")) {
2326 		if (kstrtoul(value, 10, &tmp))
2327 			return -EINVAL;
2328 
2329 		cache->migration_threshold = tmp;
2330 		return 0;
2331 	}
2332 
2333 	return NOT_CORE_OPTION;
2334 }
2335 
2336 static int set_config_value(struct cache *cache, const char *key, const char *value)
2337 {
2338 	int r = process_config_option(cache, key, value);
2339 
2340 	if (r == NOT_CORE_OPTION)
2341 		r = policy_set_config_value(cache->policy, key, value);
2342 
2343 	if (r)
2344 		DMWARN("bad config value for %s: %s", key, value);
2345 
2346 	return r;
2347 }
2348 
2349 static int set_config_values(struct cache *cache, int argc, const char **argv)
2350 {
2351 	int r = 0;
2352 
2353 	if (argc & 1) {
2354 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2355 		return -EINVAL;
2356 	}
2357 
2358 	while (argc) {
2359 		r = set_config_value(cache, argv[0], argv[1]);
2360 		if (r)
2361 			break;
2362 
2363 		argc -= 2;
2364 		argv += 2;
2365 	}
2366 
2367 	return r;
2368 }
2369 
2370 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2371 			       char **error)
2372 {
2373 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2374 							   cache->cache_size,
2375 							   cache->origin_sectors,
2376 							   cache->sectors_per_block);
2377 	if (IS_ERR(p)) {
2378 		*error = "Error creating cache's policy";
2379 		return PTR_ERR(p);
2380 	}
2381 	cache->policy = p;
2382 	BUG_ON(!cache->policy);
2383 
2384 	return 0;
2385 }
2386 
2387 /*
2388  * We want the discard block size to be at least the size of the cache
2389  * block size and have no more than 2^14 discard blocks across the origin.
2390  */
2391 #define MAX_DISCARD_BLOCKS (1 << 14)
2392 
2393 static bool too_many_discard_blocks(sector_t discard_block_size,
2394 				    sector_t origin_size)
2395 {
2396 	(void) sector_div(origin_size, discard_block_size);
2397 
2398 	return origin_size > MAX_DISCARD_BLOCKS;
2399 }
2400 
2401 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2402 					     sector_t origin_size)
2403 {
2404 	sector_t discard_block_size = cache_block_size;
2405 
2406 	if (origin_size)
2407 		while (too_many_discard_blocks(discard_block_size, origin_size))
2408 			discard_block_size *= 2;
2409 
2410 	return discard_block_size;
2411 }
2412 
2413 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2414 {
2415 	dm_block_t nr_blocks = from_cblock(size);
2416 
2417 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2418 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2419 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2420 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2421 			     (unsigned long long) nr_blocks);
2422 
2423 	cache->cache_size = size;
2424 }
2425 
2426 static int is_congested(struct dm_dev *dev, int bdi_bits)
2427 {
2428 	struct request_queue *q = bdev_get_queue(dev->bdev);
2429 	return bdi_congested(q->backing_dev_info, bdi_bits);
2430 }
2431 
2432 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2433 {
2434 	struct cache *cache = container_of(cb, struct cache, callbacks);
2435 
2436 	return is_congested(cache->origin_dev, bdi_bits) ||
2437 		is_congested(cache->cache_dev, bdi_bits);
2438 }
2439 
2440 #define DEFAULT_MIGRATION_THRESHOLD 2048
2441 
2442 static int cache_create(struct cache_args *ca, struct cache **result)
2443 {
2444 	int r = 0;
2445 	char **error = &ca->ti->error;
2446 	struct cache *cache;
2447 	struct dm_target *ti = ca->ti;
2448 	dm_block_t origin_blocks;
2449 	struct dm_cache_metadata *cmd;
2450 	bool may_format = ca->features.mode == CM_WRITE;
2451 
2452 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2453 	if (!cache)
2454 		return -ENOMEM;
2455 
2456 	cache->ti = ca->ti;
2457 	ti->private = cache;
2458 	ti->num_flush_bios = 2;
2459 	ti->flush_supported = true;
2460 
2461 	ti->num_discard_bios = 1;
2462 	ti->discards_supported = true;
2463 
2464 	ti->per_io_data_size = sizeof(struct per_bio_data);
2465 
2466 	cache->features = ca->features;
2467 	if (writethrough_mode(cache)) {
2468 		/* Create bioset for writethrough bios issued to origin */
2469 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2470 		if (r)
2471 			goto bad;
2472 	}
2473 
2474 	cache->callbacks.congested_fn = cache_is_congested;
2475 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2476 
2477 	cache->metadata_dev = ca->metadata_dev;
2478 	cache->origin_dev = ca->origin_dev;
2479 	cache->cache_dev = ca->cache_dev;
2480 
2481 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2482 
2483 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2484 	origin_blocks = block_div(origin_blocks, ca->block_size);
2485 	cache->origin_blocks = to_oblock(origin_blocks);
2486 
2487 	cache->sectors_per_block = ca->block_size;
2488 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2489 		r = -EINVAL;
2490 		goto bad;
2491 	}
2492 
2493 	if (ca->block_size & (ca->block_size - 1)) {
2494 		dm_block_t cache_size = ca->cache_sectors;
2495 
2496 		cache->sectors_per_block_shift = -1;
2497 		cache_size = block_div(cache_size, ca->block_size);
2498 		set_cache_size(cache, to_cblock(cache_size));
2499 	} else {
2500 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2501 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2502 	}
2503 
2504 	r = create_cache_policy(cache, ca, error);
2505 	if (r)
2506 		goto bad;
2507 
2508 	cache->policy_nr_args = ca->policy_argc;
2509 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2510 
2511 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2512 	if (r) {
2513 		*error = "Error setting cache policy's config values";
2514 		goto bad;
2515 	}
2516 
2517 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2518 				     ca->block_size, may_format,
2519 				     dm_cache_policy_get_hint_size(cache->policy),
2520 				     ca->features.metadata_version);
2521 	if (IS_ERR(cmd)) {
2522 		*error = "Error creating metadata object";
2523 		r = PTR_ERR(cmd);
2524 		goto bad;
2525 	}
2526 	cache->cmd = cmd;
2527 	set_cache_mode(cache, CM_WRITE);
2528 	if (get_cache_mode(cache) != CM_WRITE) {
2529 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2530 		r = -EINVAL;
2531 		goto bad;
2532 	}
2533 
2534 	if (passthrough_mode(cache)) {
2535 		bool all_clean;
2536 
2537 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2538 		if (r) {
2539 			*error = "dm_cache_metadata_all_clean() failed";
2540 			goto bad;
2541 		}
2542 
2543 		if (!all_clean) {
2544 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2545 			r = -EINVAL;
2546 			goto bad;
2547 		}
2548 
2549 		policy_allow_migrations(cache->policy, false);
2550 	}
2551 
2552 	spin_lock_init(&cache->lock);
2553 	bio_list_init(&cache->deferred_bios);
2554 	atomic_set(&cache->nr_allocated_migrations, 0);
2555 	atomic_set(&cache->nr_io_migrations, 0);
2556 	init_waitqueue_head(&cache->migration_wait);
2557 
2558 	r = -ENOMEM;
2559 	atomic_set(&cache->nr_dirty, 0);
2560 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2561 	if (!cache->dirty_bitset) {
2562 		*error = "could not allocate dirty bitset";
2563 		goto bad;
2564 	}
2565 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2566 
2567 	cache->discard_block_size =
2568 		calculate_discard_block_size(cache->sectors_per_block,
2569 					     cache->origin_sectors);
2570 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2571 							      cache->discard_block_size));
2572 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2573 	if (!cache->discard_bitset) {
2574 		*error = "could not allocate discard bitset";
2575 		goto bad;
2576 	}
2577 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2578 
2579 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2580 	if (IS_ERR(cache->copier)) {
2581 		*error = "could not create kcopyd client";
2582 		r = PTR_ERR(cache->copier);
2583 		goto bad;
2584 	}
2585 
2586 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2587 	if (!cache->wq) {
2588 		*error = "could not create workqueue for metadata object";
2589 		goto bad;
2590 	}
2591 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2592 	INIT_WORK(&cache->migration_worker, check_migrations);
2593 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2594 
2595 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2596 	if (!cache->prison) {
2597 		*error = "could not create bio prison";
2598 		goto bad;
2599 	}
2600 
2601 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2602 				   migration_cache);
2603 	if (r) {
2604 		*error = "Error creating cache's migration mempool";
2605 		goto bad;
2606 	}
2607 
2608 	cache->need_tick_bio = true;
2609 	cache->sized = false;
2610 	cache->invalidate = false;
2611 	cache->commit_requested = false;
2612 	cache->loaded_mappings = false;
2613 	cache->loaded_discards = false;
2614 
2615 	load_stats(cache);
2616 
2617 	atomic_set(&cache->stats.demotion, 0);
2618 	atomic_set(&cache->stats.promotion, 0);
2619 	atomic_set(&cache->stats.copies_avoided, 0);
2620 	atomic_set(&cache->stats.cache_cell_clash, 0);
2621 	atomic_set(&cache->stats.commit_count, 0);
2622 	atomic_set(&cache->stats.discard_count, 0);
2623 
2624 	spin_lock_init(&cache->invalidation_lock);
2625 	INIT_LIST_HEAD(&cache->invalidation_requests);
2626 
2627 	batcher_init(&cache->committer, commit_op, cache,
2628 		     issue_op, cache, cache->wq);
2629 	iot_init(&cache->tracker);
2630 
2631 	init_rwsem(&cache->background_work_lock);
2632 	prevent_background_work(cache);
2633 
2634 	*result = cache;
2635 	return 0;
2636 bad:
2637 	destroy(cache);
2638 	return r;
2639 }
2640 
2641 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2642 {
2643 	unsigned i;
2644 	const char **copy;
2645 
2646 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2647 	if (!copy)
2648 		return -ENOMEM;
2649 	for (i = 0; i < argc; i++) {
2650 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2651 		if (!copy[i]) {
2652 			while (i--)
2653 				kfree(copy[i]);
2654 			kfree(copy);
2655 			return -ENOMEM;
2656 		}
2657 	}
2658 
2659 	cache->nr_ctr_args = argc;
2660 	cache->ctr_args = copy;
2661 
2662 	return 0;
2663 }
2664 
2665 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2666 {
2667 	int r = -EINVAL;
2668 	struct cache_args *ca;
2669 	struct cache *cache = NULL;
2670 
2671 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2672 	if (!ca) {
2673 		ti->error = "Error allocating memory for cache";
2674 		return -ENOMEM;
2675 	}
2676 	ca->ti = ti;
2677 
2678 	r = parse_cache_args(ca, argc, argv, &ti->error);
2679 	if (r)
2680 		goto out;
2681 
2682 	r = cache_create(ca, &cache);
2683 	if (r)
2684 		goto out;
2685 
2686 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2687 	if (r) {
2688 		destroy(cache);
2689 		goto out;
2690 	}
2691 
2692 	ti->private = cache;
2693 out:
2694 	destroy_cache_args(ca);
2695 	return r;
2696 }
2697 
2698 /*----------------------------------------------------------------*/
2699 
2700 static int cache_map(struct dm_target *ti, struct bio *bio)
2701 {
2702 	struct cache *cache = ti->private;
2703 
2704 	int r;
2705 	bool commit_needed;
2706 	dm_oblock_t block = get_bio_block(cache, bio);
2707 
2708 	init_per_bio_data(bio);
2709 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2710 		/*
2711 		 * This can only occur if the io goes to a partial block at
2712 		 * the end of the origin device.  We don't cache these.
2713 		 * Just remap to the origin and carry on.
2714 		 */
2715 		remap_to_origin(cache, bio);
2716 		accounted_begin(cache, bio);
2717 		return DM_MAPIO_REMAPPED;
2718 	}
2719 
2720 	if (discard_or_flush(bio)) {
2721 		defer_bio(cache, bio);
2722 		return DM_MAPIO_SUBMITTED;
2723 	}
2724 
2725 	r = map_bio(cache, bio, block, &commit_needed);
2726 	if (commit_needed)
2727 		schedule_commit(&cache->committer);
2728 
2729 	return r;
2730 }
2731 
2732 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2733 {
2734 	struct cache *cache = ti->private;
2735 	unsigned long flags;
2736 	struct per_bio_data *pb = get_per_bio_data(bio);
2737 
2738 	if (pb->tick) {
2739 		policy_tick(cache->policy, false);
2740 
2741 		spin_lock_irqsave(&cache->lock, flags);
2742 		cache->need_tick_bio = true;
2743 		spin_unlock_irqrestore(&cache->lock, flags);
2744 	}
2745 
2746 	bio_drop_shared_lock(cache, bio);
2747 	accounted_complete(cache, bio);
2748 
2749 	return DM_ENDIO_DONE;
2750 }
2751 
2752 static int write_dirty_bitset(struct cache *cache)
2753 {
2754 	int r;
2755 
2756 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2757 		return -EINVAL;
2758 
2759 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2760 	if (r)
2761 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2762 
2763 	return r;
2764 }
2765 
2766 static int write_discard_bitset(struct cache *cache)
2767 {
2768 	unsigned i, r;
2769 
2770 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2771 		return -EINVAL;
2772 
2773 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2774 					   cache->discard_nr_blocks);
2775 	if (r) {
2776 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2777 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2778 		return r;
2779 	}
2780 
2781 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2782 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2783 					 is_discarded(cache, to_dblock(i)));
2784 		if (r) {
2785 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2786 			return r;
2787 		}
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 static int write_hints(struct cache *cache)
2794 {
2795 	int r;
2796 
2797 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2798 		return -EINVAL;
2799 
2800 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2801 	if (r) {
2802 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2803 		return r;
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 /*
2810  * returns true on success
2811  */
2812 static bool sync_metadata(struct cache *cache)
2813 {
2814 	int r1, r2, r3, r4;
2815 
2816 	r1 = write_dirty_bitset(cache);
2817 	if (r1)
2818 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2819 
2820 	r2 = write_discard_bitset(cache);
2821 	if (r2)
2822 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2823 
2824 	save_stats(cache);
2825 
2826 	r3 = write_hints(cache);
2827 	if (r3)
2828 		DMERR("%s: could not write hints", cache_device_name(cache));
2829 
2830 	/*
2831 	 * If writing the above metadata failed, we still commit, but don't
2832 	 * set the clean shutdown flag.  This will effectively force every
2833 	 * dirty bit to be set on reload.
2834 	 */
2835 	r4 = commit(cache, !r1 && !r2 && !r3);
2836 	if (r4)
2837 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2838 
2839 	return !r1 && !r2 && !r3 && !r4;
2840 }
2841 
2842 static void cache_postsuspend(struct dm_target *ti)
2843 {
2844 	struct cache *cache = ti->private;
2845 
2846 	prevent_background_work(cache);
2847 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2848 
2849 	cancel_delayed_work_sync(&cache->waker);
2850 	drain_workqueue(cache->wq);
2851 	WARN_ON(cache->tracker.in_flight);
2852 
2853 	/*
2854 	 * If it's a flush suspend there won't be any deferred bios, so this
2855 	 * call is harmless.
2856 	 */
2857 	requeue_deferred_bios(cache);
2858 
2859 	if (get_cache_mode(cache) == CM_WRITE)
2860 		(void) sync_metadata(cache);
2861 }
2862 
2863 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2864 			bool dirty, uint32_t hint, bool hint_valid)
2865 {
2866 	int r;
2867 	struct cache *cache = context;
2868 
2869 	if (dirty) {
2870 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2871 		atomic_inc(&cache->nr_dirty);
2872 	} else
2873 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2874 
2875 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2876 	if (r)
2877 		return r;
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * The discard block size in the on disk metadata is not
2884  * neccessarily the same as we're currently using.  So we have to
2885  * be careful to only set the discarded attribute if we know it
2886  * covers a complete block of the new size.
2887  */
2888 struct discard_load_info {
2889 	struct cache *cache;
2890 
2891 	/*
2892 	 * These blocks are sized using the on disk dblock size, rather
2893 	 * than the current one.
2894 	 */
2895 	dm_block_t block_size;
2896 	dm_block_t discard_begin, discard_end;
2897 };
2898 
2899 static void discard_load_info_init(struct cache *cache,
2900 				   struct discard_load_info *li)
2901 {
2902 	li->cache = cache;
2903 	li->discard_begin = li->discard_end = 0;
2904 }
2905 
2906 static void set_discard_range(struct discard_load_info *li)
2907 {
2908 	sector_t b, e;
2909 
2910 	if (li->discard_begin == li->discard_end)
2911 		return;
2912 
2913 	/*
2914 	 * Convert to sectors.
2915 	 */
2916 	b = li->discard_begin * li->block_size;
2917 	e = li->discard_end * li->block_size;
2918 
2919 	/*
2920 	 * Then convert back to the current dblock size.
2921 	 */
2922 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2923 	sector_div(e, li->cache->discard_block_size);
2924 
2925 	/*
2926 	 * The origin may have shrunk, so we need to check we're still in
2927 	 * bounds.
2928 	 */
2929 	if (e > from_dblock(li->cache->discard_nr_blocks))
2930 		e = from_dblock(li->cache->discard_nr_blocks);
2931 
2932 	for (; b < e; b++)
2933 		set_discard(li->cache, to_dblock(b));
2934 }
2935 
2936 static int load_discard(void *context, sector_t discard_block_size,
2937 			dm_dblock_t dblock, bool discard)
2938 {
2939 	struct discard_load_info *li = context;
2940 
2941 	li->block_size = discard_block_size;
2942 
2943 	if (discard) {
2944 		if (from_dblock(dblock) == li->discard_end)
2945 			/*
2946 			 * We're already in a discard range, just extend it.
2947 			 */
2948 			li->discard_end = li->discard_end + 1ULL;
2949 
2950 		else {
2951 			/*
2952 			 * Emit the old range and start a new one.
2953 			 */
2954 			set_discard_range(li);
2955 			li->discard_begin = from_dblock(dblock);
2956 			li->discard_end = li->discard_begin + 1ULL;
2957 		}
2958 	} else {
2959 		set_discard_range(li);
2960 		li->discard_begin = li->discard_end = 0;
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2967 {
2968 	sector_t size = get_dev_size(cache->cache_dev);
2969 	(void) sector_div(size, cache->sectors_per_block);
2970 	return to_cblock(size);
2971 }
2972 
2973 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2974 {
2975 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2976 		if (cache->sized) {
2977 			DMERR("%s: unable to extend cache due to missing cache table reload",
2978 			      cache_device_name(cache));
2979 			return false;
2980 		}
2981 	}
2982 
2983 	/*
2984 	 * We can't drop a dirty block when shrinking the cache.
2985 	 */
2986 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2987 		new_size = to_cblock(from_cblock(new_size) + 1);
2988 		if (is_dirty(cache, new_size)) {
2989 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2990 			      cache_device_name(cache),
2991 			      (unsigned long long) from_cblock(new_size));
2992 			return false;
2993 		}
2994 	}
2995 
2996 	return true;
2997 }
2998 
2999 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3000 {
3001 	int r;
3002 
3003 	r = dm_cache_resize(cache->cmd, new_size);
3004 	if (r) {
3005 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3006 		metadata_operation_failed(cache, "dm_cache_resize", r);
3007 		return r;
3008 	}
3009 
3010 	set_cache_size(cache, new_size);
3011 
3012 	return 0;
3013 }
3014 
3015 static int cache_preresume(struct dm_target *ti)
3016 {
3017 	int r = 0;
3018 	struct cache *cache = ti->private;
3019 	dm_cblock_t csize = get_cache_dev_size(cache);
3020 
3021 	/*
3022 	 * Check to see if the cache has resized.
3023 	 */
3024 	if (!cache->sized) {
3025 		r = resize_cache_dev(cache, csize);
3026 		if (r)
3027 			return r;
3028 
3029 		cache->sized = true;
3030 
3031 	} else if (csize != cache->cache_size) {
3032 		if (!can_resize(cache, csize))
3033 			return -EINVAL;
3034 
3035 		r = resize_cache_dev(cache, csize);
3036 		if (r)
3037 			return r;
3038 	}
3039 
3040 	if (!cache->loaded_mappings) {
3041 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3042 					   load_mapping, cache);
3043 		if (r) {
3044 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3045 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3046 			return r;
3047 		}
3048 
3049 		cache->loaded_mappings = true;
3050 	}
3051 
3052 	if (!cache->loaded_discards) {
3053 		struct discard_load_info li;
3054 
3055 		/*
3056 		 * The discard bitset could have been resized, or the
3057 		 * discard block size changed.  To be safe we start by
3058 		 * setting every dblock to not discarded.
3059 		 */
3060 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3061 
3062 		discard_load_info_init(cache, &li);
3063 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3064 		if (r) {
3065 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3066 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3067 			return r;
3068 		}
3069 		set_discard_range(&li);
3070 
3071 		cache->loaded_discards = true;
3072 	}
3073 
3074 	return r;
3075 }
3076 
3077 static void cache_resume(struct dm_target *ti)
3078 {
3079 	struct cache *cache = ti->private;
3080 
3081 	cache->need_tick_bio = true;
3082 	allow_background_work(cache);
3083 	do_waker(&cache->waker.work);
3084 }
3085 
3086 static void emit_flags(struct cache *cache, char *result,
3087 		       unsigned maxlen, ssize_t *sz_ptr)
3088 {
3089 	ssize_t sz = *sz_ptr;
3090 	struct cache_features *cf = &cache->features;
3091 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3092 
3093 	DMEMIT("%u ", count);
3094 
3095 	if (cf->metadata_version == 2)
3096 		DMEMIT("metadata2 ");
3097 
3098 	if (writethrough_mode(cache))
3099 		DMEMIT("writethrough ");
3100 
3101 	else if (passthrough_mode(cache))
3102 		DMEMIT("passthrough ");
3103 
3104 	else if (writeback_mode(cache))
3105 		DMEMIT("writeback ");
3106 
3107 	else {
3108 		DMEMIT("unknown ");
3109 		DMERR("%s: internal error: unknown io mode: %d",
3110 		      cache_device_name(cache), (int) cf->io_mode);
3111 	}
3112 
3113 	if (!cf->discard_passdown)
3114 		DMEMIT("no_discard_passdown ");
3115 
3116 	*sz_ptr = sz;
3117 }
3118 
3119 /*
3120  * Status format:
3121  *
3122  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3123  * <cache block size> <#used cache blocks>/<#total cache blocks>
3124  * <#read hits> <#read misses> <#write hits> <#write misses>
3125  * <#demotions> <#promotions> <#dirty>
3126  * <#features> <features>*
3127  * <#core args> <core args>
3128  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3129  */
3130 static void cache_status(struct dm_target *ti, status_type_t type,
3131 			 unsigned status_flags, char *result, unsigned maxlen)
3132 {
3133 	int r = 0;
3134 	unsigned i;
3135 	ssize_t sz = 0;
3136 	dm_block_t nr_free_blocks_metadata = 0;
3137 	dm_block_t nr_blocks_metadata = 0;
3138 	char buf[BDEVNAME_SIZE];
3139 	struct cache *cache = ti->private;
3140 	dm_cblock_t residency;
3141 	bool needs_check;
3142 
3143 	switch (type) {
3144 	case STATUSTYPE_INFO:
3145 		if (get_cache_mode(cache) == CM_FAIL) {
3146 			DMEMIT("Fail");
3147 			break;
3148 		}
3149 
3150 		/* Commit to ensure statistics aren't out-of-date */
3151 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3152 			(void) commit(cache, false);
3153 
3154 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3155 		if (r) {
3156 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3157 			      cache_device_name(cache), r);
3158 			goto err;
3159 		}
3160 
3161 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3162 		if (r) {
3163 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3164 			      cache_device_name(cache), r);
3165 			goto err;
3166 		}
3167 
3168 		residency = policy_residency(cache->policy);
3169 
3170 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3171 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3172 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3173 		       (unsigned long long)nr_blocks_metadata,
3174 		       (unsigned long long)cache->sectors_per_block,
3175 		       (unsigned long long) from_cblock(residency),
3176 		       (unsigned long long) from_cblock(cache->cache_size),
3177 		       (unsigned) atomic_read(&cache->stats.read_hit),
3178 		       (unsigned) atomic_read(&cache->stats.read_miss),
3179 		       (unsigned) atomic_read(&cache->stats.write_hit),
3180 		       (unsigned) atomic_read(&cache->stats.write_miss),
3181 		       (unsigned) atomic_read(&cache->stats.demotion),
3182 		       (unsigned) atomic_read(&cache->stats.promotion),
3183 		       (unsigned long) atomic_read(&cache->nr_dirty));
3184 
3185 		emit_flags(cache, result, maxlen, &sz);
3186 
3187 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3188 
3189 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3190 		if (sz < maxlen) {
3191 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3192 			if (r)
3193 				DMERR("%s: policy_emit_config_values returned %d",
3194 				      cache_device_name(cache), r);
3195 		}
3196 
3197 		if (get_cache_mode(cache) == CM_READ_ONLY)
3198 			DMEMIT("ro ");
3199 		else
3200 			DMEMIT("rw ");
3201 
3202 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3203 
3204 		if (r || needs_check)
3205 			DMEMIT("needs_check ");
3206 		else
3207 			DMEMIT("- ");
3208 
3209 		break;
3210 
3211 	case STATUSTYPE_TABLE:
3212 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3213 		DMEMIT("%s ", buf);
3214 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3215 		DMEMIT("%s ", buf);
3216 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3217 		DMEMIT("%s", buf);
3218 
3219 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3220 			DMEMIT(" %s", cache->ctr_args[i]);
3221 		if (cache->nr_ctr_args)
3222 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3223 	}
3224 
3225 	return;
3226 
3227 err:
3228 	DMEMIT("Error");
3229 }
3230 
3231 /*
3232  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3233  * the one-past-the-end value.
3234  */
3235 struct cblock_range {
3236 	dm_cblock_t begin;
3237 	dm_cblock_t end;
3238 };
3239 
3240 /*
3241  * A cache block range can take two forms:
3242  *
3243  * i) A single cblock, eg. '3456'
3244  * ii) A begin and end cblock with a dash between, eg. 123-234
3245  */
3246 static int parse_cblock_range(struct cache *cache, const char *str,
3247 			      struct cblock_range *result)
3248 {
3249 	char dummy;
3250 	uint64_t b, e;
3251 	int r;
3252 
3253 	/*
3254 	 * Try and parse form (ii) first.
3255 	 */
3256 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3257 	if (r < 0)
3258 		return r;
3259 
3260 	if (r == 2) {
3261 		result->begin = to_cblock(b);
3262 		result->end = to_cblock(e);
3263 		return 0;
3264 	}
3265 
3266 	/*
3267 	 * That didn't work, try form (i).
3268 	 */
3269 	r = sscanf(str, "%llu%c", &b, &dummy);
3270 	if (r < 0)
3271 		return r;
3272 
3273 	if (r == 1) {
3274 		result->begin = to_cblock(b);
3275 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3276 		return 0;
3277 	}
3278 
3279 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3280 	return -EINVAL;
3281 }
3282 
3283 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3284 {
3285 	uint64_t b = from_cblock(range->begin);
3286 	uint64_t e = from_cblock(range->end);
3287 	uint64_t n = from_cblock(cache->cache_size);
3288 
3289 	if (b >= n) {
3290 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3291 		      cache_device_name(cache), b, n);
3292 		return -EINVAL;
3293 	}
3294 
3295 	if (e > n) {
3296 		DMERR("%s: end cblock out of range: %llu > %llu",
3297 		      cache_device_name(cache), e, n);
3298 		return -EINVAL;
3299 	}
3300 
3301 	if (b >= e) {
3302 		DMERR("%s: invalid cblock range: %llu >= %llu",
3303 		      cache_device_name(cache), b, e);
3304 		return -EINVAL;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3311 {
3312 	return to_cblock(from_cblock(b) + 1);
3313 }
3314 
3315 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3316 {
3317 	int r = 0;
3318 
3319 	/*
3320 	 * We don't need to do any locking here because we know we're in
3321 	 * passthrough mode.  There's is potential for a race between an
3322 	 * invalidation triggered by an io and an invalidation message.  This
3323 	 * is harmless, we must not worry if the policy call fails.
3324 	 */
3325 	while (range->begin != range->end) {
3326 		r = invalidate_cblock(cache, range->begin);
3327 		if (r)
3328 			return r;
3329 
3330 		range->begin = cblock_succ(range->begin);
3331 	}
3332 
3333 	cache->commit_requested = true;
3334 	return r;
3335 }
3336 
3337 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3338 					      const char **cblock_ranges)
3339 {
3340 	int r = 0;
3341 	unsigned i;
3342 	struct cblock_range range;
3343 
3344 	if (!passthrough_mode(cache)) {
3345 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3346 		      cache_device_name(cache));
3347 		return -EPERM;
3348 	}
3349 
3350 	for (i = 0; i < count; i++) {
3351 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3352 		if (r)
3353 			break;
3354 
3355 		r = validate_cblock_range(cache, &range);
3356 		if (r)
3357 			break;
3358 
3359 		/*
3360 		 * Pass begin and end origin blocks to the worker and wake it.
3361 		 */
3362 		r = request_invalidation(cache, &range);
3363 		if (r)
3364 			break;
3365 	}
3366 
3367 	return r;
3368 }
3369 
3370 /*
3371  * Supports
3372  *	"<key> <value>"
3373  * and
3374  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3375  *
3376  * The key migration_threshold is supported by the cache target core.
3377  */
3378 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3379 			 char *result, unsigned maxlen)
3380 {
3381 	struct cache *cache = ti->private;
3382 
3383 	if (!argc)
3384 		return -EINVAL;
3385 
3386 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3387 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3388 		      cache_device_name(cache));
3389 		return -EOPNOTSUPP;
3390 	}
3391 
3392 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3393 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3394 
3395 	if (argc != 2)
3396 		return -EINVAL;
3397 
3398 	return set_config_value(cache, argv[0], argv[1]);
3399 }
3400 
3401 static int cache_iterate_devices(struct dm_target *ti,
3402 				 iterate_devices_callout_fn fn, void *data)
3403 {
3404 	int r = 0;
3405 	struct cache *cache = ti->private;
3406 
3407 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3408 	if (!r)
3409 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3410 
3411 	return r;
3412 }
3413 
3414 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3415 {
3416 	struct request_queue *q = bdev_get_queue(origin_bdev);
3417 
3418 	return q && blk_queue_discard(q);
3419 }
3420 
3421 /*
3422  * If discard_passdown was enabled verify that the origin device
3423  * supports discards.  Disable discard_passdown if not.
3424  */
3425 static void disable_passdown_if_not_supported(struct cache *cache)
3426 {
3427 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3428 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3429 	const char *reason = NULL;
3430 	char buf[BDEVNAME_SIZE];
3431 
3432 	if (!cache->features.discard_passdown)
3433 		return;
3434 
3435 	if (!origin_dev_supports_discard(origin_bdev))
3436 		reason = "discard unsupported";
3437 
3438 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3439 		reason = "max discard sectors smaller than a block";
3440 
3441 	if (reason) {
3442 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3443 		       bdevname(origin_bdev, buf), reason);
3444 		cache->features.discard_passdown = false;
3445 	}
3446 }
3447 
3448 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3449 {
3450 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3451 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3452 
3453 	if (!cache->features.discard_passdown) {
3454 		/* No passdown is done so setting own virtual limits */
3455 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3456 						    cache->origin_sectors);
3457 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3458 		return;
3459 	}
3460 
3461 	/*
3462 	 * cache_iterate_devices() is stacking both origin and fast device limits
3463 	 * but discards aren't passed to fast device, so inherit origin's limits.
3464 	 */
3465 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3466 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3467 	limits->discard_granularity = origin_limits->discard_granularity;
3468 	limits->discard_alignment = origin_limits->discard_alignment;
3469 	limits->discard_misaligned = origin_limits->discard_misaligned;
3470 }
3471 
3472 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3473 {
3474 	struct cache *cache = ti->private;
3475 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3476 
3477 	/*
3478 	 * If the system-determined stacked limits are compatible with the
3479 	 * cache's blocksize (io_opt is a factor) do not override them.
3480 	 */
3481 	if (io_opt_sectors < cache->sectors_per_block ||
3482 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3483 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3484 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3485 	}
3486 
3487 	disable_passdown_if_not_supported(cache);
3488 	set_discard_limits(cache, limits);
3489 }
3490 
3491 /*----------------------------------------------------------------*/
3492 
3493 static struct target_type cache_target = {
3494 	.name = "cache",
3495 	.version = {2, 2, 0},
3496 	.module = THIS_MODULE,
3497 	.ctr = cache_ctr,
3498 	.dtr = cache_dtr,
3499 	.map = cache_map,
3500 	.end_io = cache_end_io,
3501 	.postsuspend = cache_postsuspend,
3502 	.preresume = cache_preresume,
3503 	.resume = cache_resume,
3504 	.status = cache_status,
3505 	.message = cache_message,
3506 	.iterate_devices = cache_iterate_devices,
3507 	.io_hints = cache_io_hints,
3508 };
3509 
3510 static int __init dm_cache_init(void)
3511 {
3512 	int r;
3513 
3514 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3515 	if (!migration_cache)
3516 		return -ENOMEM;
3517 
3518 	r = dm_register_target(&cache_target);
3519 	if (r) {
3520 		DMERR("cache target registration failed: %d", r);
3521 		kmem_cache_destroy(migration_cache);
3522 		return r;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 static void __exit dm_cache_exit(void)
3529 {
3530 	dm_unregister_target(&cache_target);
3531 	kmem_cache_destroy(migration_cache);
3532 }
3533 
3534 module_init(dm_cache_init);
3535 module_exit(dm_cache_exit);
3536 
3537 MODULE_DESCRIPTION(DM_NAME " cache target");
3538 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3539 MODULE_LICENSE("GPL");
3540