xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 4f205687)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 };
122 
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 			bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 	h->bi_end_io = bio->bi_end_io;
127 
128 	bio->bi_end_io = bi_end_io;
129 	bio->bi_private = bi_private;
130 }
131 
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 	bio->bi_end_io = h->bi_end_io;
135 }
136 
137 /*----------------------------------------------------------------*/
138 
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142 
143 /*
144  * The block size of the device holding cache data must be
145  * between 32KB and 1GB.
146  */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149 
150 enum cache_metadata_mode {
151 	CM_WRITE,		/* metadata may be changed */
152 	CM_READ_ONLY,		/* metadata may not be changed */
153 	CM_FAIL
154 };
155 
156 enum cache_io_mode {
157 	/*
158 	 * Data is written to cached blocks only.  These blocks are marked
159 	 * dirty.  If you lose the cache device you will lose data.
160 	 * Potential performance increase for both reads and writes.
161 	 */
162 	CM_IO_WRITEBACK,
163 
164 	/*
165 	 * Data is written to both cache and origin.  Blocks are never
166 	 * dirty.  Potential performance benfit for reads only.
167 	 */
168 	CM_IO_WRITETHROUGH,
169 
170 	/*
171 	 * A degraded mode useful for various cache coherency situations
172 	 * (eg, rolling back snapshots).  Reads and writes always go to the
173 	 * origin.  If a write goes to a cached oblock, then the cache
174 	 * block is invalidated.
175 	 */
176 	CM_IO_PASSTHROUGH
177 };
178 
179 struct cache_features {
180 	enum cache_metadata_mode mode;
181 	enum cache_io_mode io_mode;
182 };
183 
184 struct cache_stats {
185 	atomic_t read_hit;
186 	atomic_t read_miss;
187 	atomic_t write_hit;
188 	atomic_t write_miss;
189 	atomic_t demotion;
190 	atomic_t promotion;
191 	atomic_t copies_avoided;
192 	atomic_t cache_cell_clash;
193 	atomic_t commit_count;
194 	atomic_t discard_count;
195 };
196 
197 /*
198  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
199  * the one-past-the-end value.
200  */
201 struct cblock_range {
202 	dm_cblock_t begin;
203 	dm_cblock_t end;
204 };
205 
206 struct invalidation_request {
207 	struct list_head list;
208 	struct cblock_range *cblocks;
209 
210 	atomic_t complete;
211 	int err;
212 
213 	wait_queue_head_t result_wait;
214 };
215 
216 struct cache {
217 	struct dm_target *ti;
218 	struct dm_target_callbacks callbacks;
219 
220 	struct dm_cache_metadata *cmd;
221 
222 	/*
223 	 * Metadata is written to this device.
224 	 */
225 	struct dm_dev *metadata_dev;
226 
227 	/*
228 	 * The slower of the two data devices.  Typically a spindle.
229 	 */
230 	struct dm_dev *origin_dev;
231 
232 	/*
233 	 * The faster of the two data devices.  Typically an SSD.
234 	 */
235 	struct dm_dev *cache_dev;
236 
237 	/*
238 	 * Size of the origin device in _complete_ blocks and native sectors.
239 	 */
240 	dm_oblock_t origin_blocks;
241 	sector_t origin_sectors;
242 
243 	/*
244 	 * Size of the cache device in blocks.
245 	 */
246 	dm_cblock_t cache_size;
247 
248 	/*
249 	 * Fields for converting from sectors to blocks.
250 	 */
251 	uint32_t sectors_per_block;
252 	int sectors_per_block_shift;
253 
254 	spinlock_t lock;
255 	struct list_head deferred_cells;
256 	struct bio_list deferred_bios;
257 	struct bio_list deferred_flush_bios;
258 	struct bio_list deferred_writethrough_bios;
259 	struct list_head quiesced_migrations;
260 	struct list_head completed_migrations;
261 	struct list_head need_commit_migrations;
262 	sector_t migration_threshold;
263 	wait_queue_head_t migration_wait;
264 	atomic_t nr_allocated_migrations;
265 
266 	/*
267 	 * The number of in flight migrations that are performing
268 	 * background io. eg, promotion, writeback.
269 	 */
270 	atomic_t nr_io_migrations;
271 
272 	wait_queue_head_t quiescing_wait;
273 	atomic_t quiescing;
274 	atomic_t quiescing_ack;
275 
276 	/*
277 	 * cache_size entries, dirty if set
278 	 */
279 	atomic_t nr_dirty;
280 	unsigned long *dirty_bitset;
281 
282 	/*
283 	 * origin_blocks entries, discarded if set.
284 	 */
285 	dm_dblock_t discard_nr_blocks;
286 	unsigned long *discard_bitset;
287 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
288 
289 	/*
290 	 * Rather than reconstructing the table line for the status we just
291 	 * save it and regurgitate.
292 	 */
293 	unsigned nr_ctr_args;
294 	const char **ctr_args;
295 
296 	struct dm_kcopyd_client *copier;
297 	struct workqueue_struct *wq;
298 	struct work_struct worker;
299 
300 	struct delayed_work waker;
301 	unsigned long last_commit_jiffies;
302 
303 	struct dm_bio_prison *prison;
304 	struct dm_deferred_set *all_io_ds;
305 
306 	mempool_t *migration_pool;
307 
308 	struct dm_cache_policy *policy;
309 	unsigned policy_nr_args;
310 
311 	bool need_tick_bio:1;
312 	bool sized:1;
313 	bool invalidate:1;
314 	bool commit_requested:1;
315 	bool loaded_mappings:1;
316 	bool loaded_discards:1;
317 
318 	/*
319 	 * Cache features such as write-through.
320 	 */
321 	struct cache_features features;
322 
323 	struct cache_stats stats;
324 
325 	/*
326 	 * Invalidation fields.
327 	 */
328 	spinlock_t invalidation_lock;
329 	struct list_head invalidation_requests;
330 
331 	struct io_tracker origin_tracker;
332 };
333 
334 struct per_bio_data {
335 	bool tick:1;
336 	unsigned req_nr:2;
337 	struct dm_deferred_entry *all_io_entry;
338 	struct dm_hook_info hook_info;
339 	sector_t len;
340 
341 	/*
342 	 * writethrough fields.  These MUST remain at the end of this
343 	 * structure and the 'cache' member must be the first as it
344 	 * is used to determine the offset of the writethrough fields.
345 	 */
346 	struct cache *cache;
347 	dm_cblock_t cblock;
348 	struct dm_bio_details bio_details;
349 };
350 
351 struct dm_cache_migration {
352 	struct list_head list;
353 	struct cache *cache;
354 
355 	unsigned long start_jiffies;
356 	dm_oblock_t old_oblock;
357 	dm_oblock_t new_oblock;
358 	dm_cblock_t cblock;
359 
360 	bool err:1;
361 	bool discard:1;
362 	bool writeback:1;
363 	bool demote:1;
364 	bool promote:1;
365 	bool requeue_holder:1;
366 	bool invalidate:1;
367 
368 	struct dm_bio_prison_cell *old_ocell;
369 	struct dm_bio_prison_cell *new_ocell;
370 };
371 
372 /*
373  * Processing a bio in the worker thread may require these memory
374  * allocations.  We prealloc to avoid deadlocks (the same worker thread
375  * frees them back to the mempool).
376  */
377 struct prealloc {
378 	struct dm_cache_migration *mg;
379 	struct dm_bio_prison_cell *cell1;
380 	struct dm_bio_prison_cell *cell2;
381 };
382 
383 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
384 
385 static void wake_worker(struct cache *cache)
386 {
387 	queue_work(cache->wq, &cache->worker);
388 }
389 
390 /*----------------------------------------------------------------*/
391 
392 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
393 {
394 	/* FIXME: change to use a local slab. */
395 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
396 }
397 
398 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
399 {
400 	dm_bio_prison_free_cell(cache->prison, cell);
401 }
402 
403 static struct dm_cache_migration *alloc_migration(struct cache *cache)
404 {
405 	struct dm_cache_migration *mg;
406 
407 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
408 	if (mg) {
409 		mg->cache = cache;
410 		atomic_inc(&mg->cache->nr_allocated_migrations);
411 	}
412 
413 	return mg;
414 }
415 
416 static void free_migration(struct dm_cache_migration *mg)
417 {
418 	struct cache *cache = mg->cache;
419 
420 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
421 		wake_up(&cache->migration_wait);
422 
423 	mempool_free(mg, cache->migration_pool);
424 }
425 
426 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
427 {
428 	if (!p->mg) {
429 		p->mg = alloc_migration(cache);
430 		if (!p->mg)
431 			return -ENOMEM;
432 	}
433 
434 	if (!p->cell1) {
435 		p->cell1 = alloc_prison_cell(cache);
436 		if (!p->cell1)
437 			return -ENOMEM;
438 	}
439 
440 	if (!p->cell2) {
441 		p->cell2 = alloc_prison_cell(cache);
442 		if (!p->cell2)
443 			return -ENOMEM;
444 	}
445 
446 	return 0;
447 }
448 
449 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
450 {
451 	if (p->cell2)
452 		free_prison_cell(cache, p->cell2);
453 
454 	if (p->cell1)
455 		free_prison_cell(cache, p->cell1);
456 
457 	if (p->mg)
458 		free_migration(p->mg);
459 }
460 
461 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
462 {
463 	struct dm_cache_migration *mg = p->mg;
464 
465 	BUG_ON(!mg);
466 	p->mg = NULL;
467 
468 	return mg;
469 }
470 
471 /*
472  * You must have a cell within the prealloc struct to return.  If not this
473  * function will BUG() rather than returning NULL.
474  */
475 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
476 {
477 	struct dm_bio_prison_cell *r = NULL;
478 
479 	if (p->cell1) {
480 		r = p->cell1;
481 		p->cell1 = NULL;
482 
483 	} else if (p->cell2) {
484 		r = p->cell2;
485 		p->cell2 = NULL;
486 	} else
487 		BUG();
488 
489 	return r;
490 }
491 
492 /*
493  * You can't have more than two cells in a prealloc struct.  BUG() will be
494  * called if you try and overfill.
495  */
496 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
497 {
498 	if (!p->cell2)
499 		p->cell2 = cell;
500 
501 	else if (!p->cell1)
502 		p->cell1 = cell;
503 
504 	else
505 		BUG();
506 }
507 
508 /*----------------------------------------------------------------*/
509 
510 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
511 {
512 	key->virtual = 0;
513 	key->dev = 0;
514 	key->block_begin = from_oblock(begin);
515 	key->block_end = from_oblock(end);
516 }
517 
518 /*
519  * The caller hands in a preallocated cell, and a free function for it.
520  * The cell will be freed if there's an error, or if it wasn't used because
521  * a cell with that key already exists.
522  */
523 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
524 
525 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
526 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
527 			    cell_free_fn free_fn, void *free_context,
528 			    struct dm_bio_prison_cell **cell_result)
529 {
530 	int r;
531 	struct dm_cell_key key;
532 
533 	build_key(oblock_begin, oblock_end, &key);
534 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
535 	if (r)
536 		free_fn(free_context, cell_prealloc);
537 
538 	return r;
539 }
540 
541 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
542 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
543 		      cell_free_fn free_fn, void *free_context,
544 		      struct dm_bio_prison_cell **cell_result)
545 {
546 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
547 	return bio_detain_range(cache, oblock, end, bio,
548 				cell_prealloc, free_fn, free_context, cell_result);
549 }
550 
551 static int get_cell(struct cache *cache,
552 		    dm_oblock_t oblock,
553 		    struct prealloc *structs,
554 		    struct dm_bio_prison_cell **cell_result)
555 {
556 	int r;
557 	struct dm_cell_key key;
558 	struct dm_bio_prison_cell *cell_prealloc;
559 
560 	cell_prealloc = prealloc_get_cell(structs);
561 
562 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
563 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
564 	if (r)
565 		prealloc_put_cell(structs, cell_prealloc);
566 
567 	return r;
568 }
569 
570 /*----------------------------------------------------------------*/
571 
572 static bool is_dirty(struct cache *cache, dm_cblock_t b)
573 {
574 	return test_bit(from_cblock(b), cache->dirty_bitset);
575 }
576 
577 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
578 {
579 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
580 		atomic_inc(&cache->nr_dirty);
581 		policy_set_dirty(cache->policy, oblock);
582 	}
583 }
584 
585 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
586 {
587 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
588 		policy_clear_dirty(cache->policy, oblock);
589 		if (atomic_dec_return(&cache->nr_dirty) == 0)
590 			dm_table_event(cache->ti->table);
591 	}
592 }
593 
594 /*----------------------------------------------------------------*/
595 
596 static bool block_size_is_power_of_two(struct cache *cache)
597 {
598 	return cache->sectors_per_block_shift >= 0;
599 }
600 
601 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
602 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
603 __always_inline
604 #endif
605 static dm_block_t block_div(dm_block_t b, uint32_t n)
606 {
607 	do_div(b, n);
608 
609 	return b;
610 }
611 
612 static dm_block_t oblocks_per_dblock(struct cache *cache)
613 {
614 	dm_block_t oblocks = cache->discard_block_size;
615 
616 	if (block_size_is_power_of_two(cache))
617 		oblocks >>= cache->sectors_per_block_shift;
618 	else
619 		oblocks = block_div(oblocks, cache->sectors_per_block);
620 
621 	return oblocks;
622 }
623 
624 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
625 {
626 	return to_dblock(block_div(from_oblock(oblock),
627 				   oblocks_per_dblock(cache)));
628 }
629 
630 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
631 {
632 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
633 }
634 
635 static void set_discard(struct cache *cache, dm_dblock_t b)
636 {
637 	unsigned long flags;
638 
639 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
640 	atomic_inc(&cache->stats.discard_count);
641 
642 	spin_lock_irqsave(&cache->lock, flags);
643 	set_bit(from_dblock(b), cache->discard_bitset);
644 	spin_unlock_irqrestore(&cache->lock, flags);
645 }
646 
647 static void clear_discard(struct cache *cache, dm_dblock_t b)
648 {
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&cache->lock, flags);
652 	clear_bit(from_dblock(b), cache->discard_bitset);
653 	spin_unlock_irqrestore(&cache->lock, flags);
654 }
655 
656 static bool is_discarded(struct cache *cache, dm_dblock_t b)
657 {
658 	int r;
659 	unsigned long flags;
660 
661 	spin_lock_irqsave(&cache->lock, flags);
662 	r = test_bit(from_dblock(b), cache->discard_bitset);
663 	spin_unlock_irqrestore(&cache->lock, flags);
664 
665 	return r;
666 }
667 
668 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
669 {
670 	int r;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&cache->lock, flags);
674 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
675 		     cache->discard_bitset);
676 	spin_unlock_irqrestore(&cache->lock, flags);
677 
678 	return r;
679 }
680 
681 /*----------------------------------------------------------------*/
682 
683 static void load_stats(struct cache *cache)
684 {
685 	struct dm_cache_statistics stats;
686 
687 	dm_cache_metadata_get_stats(cache->cmd, &stats);
688 	atomic_set(&cache->stats.read_hit, stats.read_hits);
689 	atomic_set(&cache->stats.read_miss, stats.read_misses);
690 	atomic_set(&cache->stats.write_hit, stats.write_hits);
691 	atomic_set(&cache->stats.write_miss, stats.write_misses);
692 }
693 
694 static void save_stats(struct cache *cache)
695 {
696 	struct dm_cache_statistics stats;
697 
698 	if (get_cache_mode(cache) >= CM_READ_ONLY)
699 		return;
700 
701 	stats.read_hits = atomic_read(&cache->stats.read_hit);
702 	stats.read_misses = atomic_read(&cache->stats.read_miss);
703 	stats.write_hits = atomic_read(&cache->stats.write_hit);
704 	stats.write_misses = atomic_read(&cache->stats.write_miss);
705 
706 	dm_cache_metadata_set_stats(cache->cmd, &stats);
707 }
708 
709 /*----------------------------------------------------------------
710  * Per bio data
711  *--------------------------------------------------------------*/
712 
713 /*
714  * If using writeback, leave out struct per_bio_data's writethrough fields.
715  */
716 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
717 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
718 
719 static bool writethrough_mode(struct cache_features *f)
720 {
721 	return f->io_mode == CM_IO_WRITETHROUGH;
722 }
723 
724 static bool writeback_mode(struct cache_features *f)
725 {
726 	return f->io_mode == CM_IO_WRITEBACK;
727 }
728 
729 static bool passthrough_mode(struct cache_features *f)
730 {
731 	return f->io_mode == CM_IO_PASSTHROUGH;
732 }
733 
734 static size_t get_per_bio_data_size(struct cache *cache)
735 {
736 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
737 }
738 
739 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
740 {
741 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
742 	BUG_ON(!pb);
743 	return pb;
744 }
745 
746 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
747 {
748 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
749 
750 	pb->tick = false;
751 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
752 	pb->all_io_entry = NULL;
753 	pb->len = 0;
754 
755 	return pb;
756 }
757 
758 /*----------------------------------------------------------------
759  * Remapping
760  *--------------------------------------------------------------*/
761 static void remap_to_origin(struct cache *cache, struct bio *bio)
762 {
763 	bio->bi_bdev = cache->origin_dev->bdev;
764 }
765 
766 static void remap_to_cache(struct cache *cache, struct bio *bio,
767 			   dm_cblock_t cblock)
768 {
769 	sector_t bi_sector = bio->bi_iter.bi_sector;
770 	sector_t block = from_cblock(cblock);
771 
772 	bio->bi_bdev = cache->cache_dev->bdev;
773 	if (!block_size_is_power_of_two(cache))
774 		bio->bi_iter.bi_sector =
775 			(block * cache->sectors_per_block) +
776 			sector_div(bi_sector, cache->sectors_per_block);
777 	else
778 		bio->bi_iter.bi_sector =
779 			(block << cache->sectors_per_block_shift) |
780 			(bi_sector & (cache->sectors_per_block - 1));
781 }
782 
783 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
784 {
785 	unsigned long flags;
786 	size_t pb_data_size = get_per_bio_data_size(cache);
787 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
788 
789 	spin_lock_irqsave(&cache->lock, flags);
790 	if (cache->need_tick_bio &&
791 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
792 		pb->tick = true;
793 		cache->need_tick_bio = false;
794 	}
795 	spin_unlock_irqrestore(&cache->lock, flags);
796 }
797 
798 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
799 				  dm_oblock_t oblock)
800 {
801 	check_if_tick_bio_needed(cache, bio);
802 	remap_to_origin(cache, bio);
803 	if (bio_data_dir(bio) == WRITE)
804 		clear_discard(cache, oblock_to_dblock(cache, oblock));
805 }
806 
807 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
808 				 dm_oblock_t oblock, dm_cblock_t cblock)
809 {
810 	check_if_tick_bio_needed(cache, bio);
811 	remap_to_cache(cache, bio, cblock);
812 	if (bio_data_dir(bio) == WRITE) {
813 		set_dirty(cache, oblock, cblock);
814 		clear_discard(cache, oblock_to_dblock(cache, oblock));
815 	}
816 }
817 
818 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
819 {
820 	sector_t block_nr = bio->bi_iter.bi_sector;
821 
822 	if (!block_size_is_power_of_two(cache))
823 		(void) sector_div(block_nr, cache->sectors_per_block);
824 	else
825 		block_nr >>= cache->sectors_per_block_shift;
826 
827 	return to_oblock(block_nr);
828 }
829 
830 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
831 {
832 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
833 }
834 
835 /*
836  * You must increment the deferred set whilst the prison cell is held.  To
837  * encourage this, we ask for 'cell' to be passed in.
838  */
839 static void inc_ds(struct cache *cache, struct bio *bio,
840 		   struct dm_bio_prison_cell *cell)
841 {
842 	size_t pb_data_size = get_per_bio_data_size(cache);
843 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
844 
845 	BUG_ON(!cell);
846 	BUG_ON(pb->all_io_entry);
847 
848 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
849 }
850 
851 static bool accountable_bio(struct cache *cache, struct bio *bio)
852 {
853 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
854 		!(bio->bi_rw & REQ_DISCARD));
855 }
856 
857 static void accounted_begin(struct cache *cache, struct bio *bio)
858 {
859 	size_t pb_data_size = get_per_bio_data_size(cache);
860 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
861 
862 	if (accountable_bio(cache, bio)) {
863 		pb->len = bio_sectors(bio);
864 		iot_io_begin(&cache->origin_tracker, pb->len);
865 	}
866 }
867 
868 static void accounted_complete(struct cache *cache, struct bio *bio)
869 {
870 	size_t pb_data_size = get_per_bio_data_size(cache);
871 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
872 
873 	iot_io_end(&cache->origin_tracker, pb->len);
874 }
875 
876 static void accounted_request(struct cache *cache, struct bio *bio)
877 {
878 	accounted_begin(cache, bio);
879 	generic_make_request(bio);
880 }
881 
882 static void issue(struct cache *cache, struct bio *bio)
883 {
884 	unsigned long flags;
885 
886 	if (!bio_triggers_commit(cache, bio)) {
887 		accounted_request(cache, bio);
888 		return;
889 	}
890 
891 	/*
892 	 * Batch together any bios that trigger commits and then issue a
893 	 * single commit for them in do_worker().
894 	 */
895 	spin_lock_irqsave(&cache->lock, flags);
896 	cache->commit_requested = true;
897 	bio_list_add(&cache->deferred_flush_bios, bio);
898 	spin_unlock_irqrestore(&cache->lock, flags);
899 }
900 
901 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
902 {
903 	inc_ds(cache, bio, cell);
904 	issue(cache, bio);
905 }
906 
907 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
908 {
909 	unsigned long flags;
910 
911 	spin_lock_irqsave(&cache->lock, flags);
912 	bio_list_add(&cache->deferred_writethrough_bios, bio);
913 	spin_unlock_irqrestore(&cache->lock, flags);
914 
915 	wake_worker(cache);
916 }
917 
918 static void writethrough_endio(struct bio *bio)
919 {
920 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
921 
922 	dm_unhook_bio(&pb->hook_info, bio);
923 
924 	if (bio->bi_error) {
925 		bio_endio(bio);
926 		return;
927 	}
928 
929 	dm_bio_restore(&pb->bio_details, bio);
930 	remap_to_cache(pb->cache, bio, pb->cblock);
931 
932 	/*
933 	 * We can't issue this bio directly, since we're in interrupt
934 	 * context.  So it gets put on a bio list for processing by the
935 	 * worker thread.
936 	 */
937 	defer_writethrough_bio(pb->cache, bio);
938 }
939 
940 /*
941  * When running in writethrough mode we need to send writes to clean blocks
942  * to both the cache and origin devices.  In future we'd like to clone the
943  * bio and send them in parallel, but for now we're doing them in
944  * series as this is easier.
945  */
946 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
947 				       dm_oblock_t oblock, dm_cblock_t cblock)
948 {
949 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
950 
951 	pb->cache = cache;
952 	pb->cblock = cblock;
953 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
954 	dm_bio_record(&pb->bio_details, bio);
955 
956 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
957 }
958 
959 /*----------------------------------------------------------------
960  * Failure modes
961  *--------------------------------------------------------------*/
962 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
963 {
964 	return cache->features.mode;
965 }
966 
967 static const char *cache_device_name(struct cache *cache)
968 {
969 	return dm_device_name(dm_table_get_md(cache->ti->table));
970 }
971 
972 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
973 {
974 	const char *descs[] = {
975 		"write",
976 		"read-only",
977 		"fail"
978 	};
979 
980 	dm_table_event(cache->ti->table);
981 	DMINFO("%s: switching cache to %s mode",
982 	       cache_device_name(cache), descs[(int)mode]);
983 }
984 
985 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
986 {
987 	bool needs_check;
988 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
989 
990 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
991 		DMERR("unable to read needs_check flag, setting failure mode");
992 		new_mode = CM_FAIL;
993 	}
994 
995 	if (new_mode == CM_WRITE && needs_check) {
996 		DMERR("%s: unable to switch cache to write mode until repaired.",
997 		      cache_device_name(cache));
998 		if (old_mode != new_mode)
999 			new_mode = old_mode;
1000 		else
1001 			new_mode = CM_READ_ONLY;
1002 	}
1003 
1004 	/* Never move out of fail mode */
1005 	if (old_mode == CM_FAIL)
1006 		new_mode = CM_FAIL;
1007 
1008 	switch (new_mode) {
1009 	case CM_FAIL:
1010 	case CM_READ_ONLY:
1011 		dm_cache_metadata_set_read_only(cache->cmd);
1012 		break;
1013 
1014 	case CM_WRITE:
1015 		dm_cache_metadata_set_read_write(cache->cmd);
1016 		break;
1017 	}
1018 
1019 	cache->features.mode = new_mode;
1020 
1021 	if (new_mode != old_mode)
1022 		notify_mode_switch(cache, new_mode);
1023 }
1024 
1025 static void abort_transaction(struct cache *cache)
1026 {
1027 	const char *dev_name = cache_device_name(cache);
1028 
1029 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030 		return;
1031 
1032 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1033 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1034 		set_cache_mode(cache, CM_FAIL);
1035 	}
1036 
1037 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1038 	if (dm_cache_metadata_abort(cache->cmd)) {
1039 		DMERR("%s: failed to abort metadata transaction", dev_name);
1040 		set_cache_mode(cache, CM_FAIL);
1041 	}
1042 }
1043 
1044 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1045 {
1046 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1047 		    cache_device_name(cache), op, r);
1048 	abort_transaction(cache);
1049 	set_cache_mode(cache, CM_READ_ONLY);
1050 }
1051 
1052 /*----------------------------------------------------------------
1053  * Migration processing
1054  *
1055  * Migration covers moving data from the origin device to the cache, or
1056  * vice versa.
1057  *--------------------------------------------------------------*/
1058 static void inc_io_migrations(struct cache *cache)
1059 {
1060 	atomic_inc(&cache->nr_io_migrations);
1061 }
1062 
1063 static void dec_io_migrations(struct cache *cache)
1064 {
1065 	atomic_dec(&cache->nr_io_migrations);
1066 }
1067 
1068 static bool discard_or_flush(struct bio *bio)
1069 {
1070 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1071 }
1072 
1073 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1074 {
1075 	if (discard_or_flush(cell->holder)) {
1076 		/*
1077 		 * We have to handle these bios individually.
1078 		 */
1079 		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1080 		free_prison_cell(cache, cell);
1081 	} else
1082 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1083 }
1084 
1085 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1086 {
1087 	unsigned long flags;
1088 
1089 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1090 		/*
1091 		 * There was no prisoner to promote to holder, the
1092 		 * cell has been released.
1093 		 */
1094 		free_prison_cell(cache, cell);
1095 		return;
1096 	}
1097 
1098 	spin_lock_irqsave(&cache->lock, flags);
1099 	__cell_defer(cache, cell);
1100 	spin_unlock_irqrestore(&cache->lock, flags);
1101 
1102 	wake_worker(cache);
1103 }
1104 
1105 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1106 {
1107 	dm_cell_error(cache->prison, cell, err);
1108 	free_prison_cell(cache, cell);
1109 }
1110 
1111 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1112 {
1113 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1114 }
1115 
1116 static void free_io_migration(struct dm_cache_migration *mg)
1117 {
1118 	struct cache *cache = mg->cache;
1119 
1120 	dec_io_migrations(cache);
1121 	free_migration(mg);
1122 	wake_worker(cache);
1123 }
1124 
1125 static void migration_failure(struct dm_cache_migration *mg)
1126 {
1127 	struct cache *cache = mg->cache;
1128 	const char *dev_name = cache_device_name(cache);
1129 
1130 	if (mg->writeback) {
1131 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1132 		set_dirty(cache, mg->old_oblock, mg->cblock);
1133 		cell_defer(cache, mg->old_ocell, false);
1134 
1135 	} else if (mg->demote) {
1136 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1137 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1138 
1139 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1140 		if (mg->promote)
1141 			cell_defer(cache, mg->new_ocell, true);
1142 	} else {
1143 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1144 		policy_remove_mapping(cache->policy, mg->new_oblock);
1145 		cell_defer(cache, mg->new_ocell, true);
1146 	}
1147 
1148 	free_io_migration(mg);
1149 }
1150 
1151 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1152 {
1153 	int r;
1154 	unsigned long flags;
1155 	struct cache *cache = mg->cache;
1156 
1157 	if (mg->writeback) {
1158 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1159 		cell_defer(cache, mg->old_ocell, false);
1160 		free_io_migration(mg);
1161 		return;
1162 
1163 	} else if (mg->demote) {
1164 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1165 		if (r) {
1166 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1167 				    cache_device_name(cache));
1168 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1169 			policy_force_mapping(cache->policy, mg->new_oblock,
1170 					     mg->old_oblock);
1171 			if (mg->promote)
1172 				cell_defer(cache, mg->new_ocell, true);
1173 			free_io_migration(mg);
1174 			return;
1175 		}
1176 	} else {
1177 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1178 		if (r) {
1179 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1180 				    cache_device_name(cache));
1181 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1182 			policy_remove_mapping(cache->policy, mg->new_oblock);
1183 			free_io_migration(mg);
1184 			return;
1185 		}
1186 	}
1187 
1188 	spin_lock_irqsave(&cache->lock, flags);
1189 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1190 	cache->commit_requested = true;
1191 	spin_unlock_irqrestore(&cache->lock, flags);
1192 }
1193 
1194 static void migration_success_post_commit(struct dm_cache_migration *mg)
1195 {
1196 	unsigned long flags;
1197 	struct cache *cache = mg->cache;
1198 
1199 	if (mg->writeback) {
1200 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1201 			     cache_device_name(cache));
1202 		return;
1203 
1204 	} else if (mg->demote) {
1205 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1206 
1207 		if (mg->promote) {
1208 			mg->demote = false;
1209 
1210 			spin_lock_irqsave(&cache->lock, flags);
1211 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1212 			spin_unlock_irqrestore(&cache->lock, flags);
1213 
1214 		} else {
1215 			if (mg->invalidate)
1216 				policy_remove_mapping(cache->policy, mg->old_oblock);
1217 			free_io_migration(mg);
1218 		}
1219 
1220 	} else {
1221 		if (mg->requeue_holder) {
1222 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1223 			cell_defer(cache, mg->new_ocell, true);
1224 		} else {
1225 			/*
1226 			 * The block was promoted via an overwrite, so it's dirty.
1227 			 */
1228 			set_dirty(cache, mg->new_oblock, mg->cblock);
1229 			bio_endio(mg->new_ocell->holder);
1230 			cell_defer(cache, mg->new_ocell, false);
1231 		}
1232 		free_io_migration(mg);
1233 	}
1234 }
1235 
1236 static void copy_complete(int read_err, unsigned long write_err, void *context)
1237 {
1238 	unsigned long flags;
1239 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1240 	struct cache *cache = mg->cache;
1241 
1242 	if (read_err || write_err)
1243 		mg->err = true;
1244 
1245 	spin_lock_irqsave(&cache->lock, flags);
1246 	list_add_tail(&mg->list, &cache->completed_migrations);
1247 	spin_unlock_irqrestore(&cache->lock, flags);
1248 
1249 	wake_worker(cache);
1250 }
1251 
1252 static void issue_copy(struct dm_cache_migration *mg)
1253 {
1254 	int r;
1255 	struct dm_io_region o_region, c_region;
1256 	struct cache *cache = mg->cache;
1257 	sector_t cblock = from_cblock(mg->cblock);
1258 
1259 	o_region.bdev = cache->origin_dev->bdev;
1260 	o_region.count = cache->sectors_per_block;
1261 
1262 	c_region.bdev = cache->cache_dev->bdev;
1263 	c_region.sector = cblock * cache->sectors_per_block;
1264 	c_region.count = cache->sectors_per_block;
1265 
1266 	if (mg->writeback || mg->demote) {
1267 		/* demote */
1268 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1269 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1270 	} else {
1271 		/* promote */
1272 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1273 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1274 	}
1275 
1276 	if (r < 0) {
1277 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1278 		migration_failure(mg);
1279 	}
1280 }
1281 
1282 static void overwrite_endio(struct bio *bio)
1283 {
1284 	struct dm_cache_migration *mg = bio->bi_private;
1285 	struct cache *cache = mg->cache;
1286 	size_t pb_data_size = get_per_bio_data_size(cache);
1287 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1288 	unsigned long flags;
1289 
1290 	dm_unhook_bio(&pb->hook_info, bio);
1291 
1292 	if (bio->bi_error)
1293 		mg->err = true;
1294 
1295 	mg->requeue_holder = false;
1296 
1297 	spin_lock_irqsave(&cache->lock, flags);
1298 	list_add_tail(&mg->list, &cache->completed_migrations);
1299 	spin_unlock_irqrestore(&cache->lock, flags);
1300 
1301 	wake_worker(cache);
1302 }
1303 
1304 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1305 {
1306 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1307 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1308 
1309 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1310 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1311 
1312 	/*
1313 	 * No need to inc_ds() here, since the cell will be held for the
1314 	 * duration of the io.
1315 	 */
1316 	accounted_request(mg->cache, bio);
1317 }
1318 
1319 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1320 {
1321 	return (bio_data_dir(bio) == WRITE) &&
1322 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1323 }
1324 
1325 static void avoid_copy(struct dm_cache_migration *mg)
1326 {
1327 	atomic_inc(&mg->cache->stats.copies_avoided);
1328 	migration_success_pre_commit(mg);
1329 }
1330 
1331 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1332 				     dm_dblock_t *b, dm_dblock_t *e)
1333 {
1334 	sector_t sb = bio->bi_iter.bi_sector;
1335 	sector_t se = bio_end_sector(bio);
1336 
1337 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1338 
1339 	if (se - sb < cache->discard_block_size)
1340 		*e = *b;
1341 	else
1342 		*e = to_dblock(block_div(se, cache->discard_block_size));
1343 }
1344 
1345 static void issue_discard(struct dm_cache_migration *mg)
1346 {
1347 	dm_dblock_t b, e;
1348 	struct bio *bio = mg->new_ocell->holder;
1349 	struct cache *cache = mg->cache;
1350 
1351 	calc_discard_block_range(cache, bio, &b, &e);
1352 	while (b != e) {
1353 		set_discard(cache, b);
1354 		b = to_dblock(from_dblock(b) + 1);
1355 	}
1356 
1357 	bio_endio(bio);
1358 	cell_defer(cache, mg->new_ocell, false);
1359 	free_migration(mg);
1360 	wake_worker(cache);
1361 }
1362 
1363 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1364 {
1365 	bool avoid;
1366 	struct cache *cache = mg->cache;
1367 
1368 	if (mg->discard) {
1369 		issue_discard(mg);
1370 		return;
1371 	}
1372 
1373 	if (mg->writeback || mg->demote)
1374 		avoid = !is_dirty(cache, mg->cblock) ||
1375 			is_discarded_oblock(cache, mg->old_oblock);
1376 	else {
1377 		struct bio *bio = mg->new_ocell->holder;
1378 
1379 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1380 
1381 		if (writeback_mode(&cache->features) &&
1382 		    !avoid && bio_writes_complete_block(cache, bio)) {
1383 			issue_overwrite(mg, bio);
1384 			return;
1385 		}
1386 	}
1387 
1388 	avoid ? avoid_copy(mg) : issue_copy(mg);
1389 }
1390 
1391 static void complete_migration(struct dm_cache_migration *mg)
1392 {
1393 	if (mg->err)
1394 		migration_failure(mg);
1395 	else
1396 		migration_success_pre_commit(mg);
1397 }
1398 
1399 static void process_migrations(struct cache *cache, struct list_head *head,
1400 			       void (*fn)(struct dm_cache_migration *))
1401 {
1402 	unsigned long flags;
1403 	struct list_head list;
1404 	struct dm_cache_migration *mg, *tmp;
1405 
1406 	INIT_LIST_HEAD(&list);
1407 	spin_lock_irqsave(&cache->lock, flags);
1408 	list_splice_init(head, &list);
1409 	spin_unlock_irqrestore(&cache->lock, flags);
1410 
1411 	list_for_each_entry_safe(mg, tmp, &list, list)
1412 		fn(mg);
1413 }
1414 
1415 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1416 {
1417 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1418 }
1419 
1420 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1421 {
1422 	unsigned long flags;
1423 	struct cache *cache = mg->cache;
1424 
1425 	spin_lock_irqsave(&cache->lock, flags);
1426 	__queue_quiesced_migration(mg);
1427 	spin_unlock_irqrestore(&cache->lock, flags);
1428 
1429 	wake_worker(cache);
1430 }
1431 
1432 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1433 {
1434 	unsigned long flags;
1435 	struct dm_cache_migration *mg, *tmp;
1436 
1437 	spin_lock_irqsave(&cache->lock, flags);
1438 	list_for_each_entry_safe(mg, tmp, work, list)
1439 		__queue_quiesced_migration(mg);
1440 	spin_unlock_irqrestore(&cache->lock, flags);
1441 
1442 	wake_worker(cache);
1443 }
1444 
1445 static void check_for_quiesced_migrations(struct cache *cache,
1446 					  struct per_bio_data *pb)
1447 {
1448 	struct list_head work;
1449 
1450 	if (!pb->all_io_entry)
1451 		return;
1452 
1453 	INIT_LIST_HEAD(&work);
1454 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1455 
1456 	if (!list_empty(&work))
1457 		queue_quiesced_migrations(cache, &work);
1458 }
1459 
1460 static void quiesce_migration(struct dm_cache_migration *mg)
1461 {
1462 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1463 		queue_quiesced_migration(mg);
1464 }
1465 
1466 static void promote(struct cache *cache, struct prealloc *structs,
1467 		    dm_oblock_t oblock, dm_cblock_t cblock,
1468 		    struct dm_bio_prison_cell *cell)
1469 {
1470 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1471 
1472 	mg->err = false;
1473 	mg->discard = false;
1474 	mg->writeback = false;
1475 	mg->demote = false;
1476 	mg->promote = true;
1477 	mg->requeue_holder = true;
1478 	mg->invalidate = false;
1479 	mg->cache = cache;
1480 	mg->new_oblock = oblock;
1481 	mg->cblock = cblock;
1482 	mg->old_ocell = NULL;
1483 	mg->new_ocell = cell;
1484 	mg->start_jiffies = jiffies;
1485 
1486 	inc_io_migrations(cache);
1487 	quiesce_migration(mg);
1488 }
1489 
1490 static void writeback(struct cache *cache, struct prealloc *structs,
1491 		      dm_oblock_t oblock, dm_cblock_t cblock,
1492 		      struct dm_bio_prison_cell *cell)
1493 {
1494 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1495 
1496 	mg->err = false;
1497 	mg->discard = false;
1498 	mg->writeback = true;
1499 	mg->demote = false;
1500 	mg->promote = false;
1501 	mg->requeue_holder = true;
1502 	mg->invalidate = false;
1503 	mg->cache = cache;
1504 	mg->old_oblock = oblock;
1505 	mg->cblock = cblock;
1506 	mg->old_ocell = cell;
1507 	mg->new_ocell = NULL;
1508 	mg->start_jiffies = jiffies;
1509 
1510 	inc_io_migrations(cache);
1511 	quiesce_migration(mg);
1512 }
1513 
1514 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1515 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1516 				dm_cblock_t cblock,
1517 				struct dm_bio_prison_cell *old_ocell,
1518 				struct dm_bio_prison_cell *new_ocell)
1519 {
1520 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1521 
1522 	mg->err = false;
1523 	mg->discard = false;
1524 	mg->writeback = false;
1525 	mg->demote = true;
1526 	mg->promote = true;
1527 	mg->requeue_holder = true;
1528 	mg->invalidate = false;
1529 	mg->cache = cache;
1530 	mg->old_oblock = old_oblock;
1531 	mg->new_oblock = new_oblock;
1532 	mg->cblock = cblock;
1533 	mg->old_ocell = old_ocell;
1534 	mg->new_ocell = new_ocell;
1535 	mg->start_jiffies = jiffies;
1536 
1537 	inc_io_migrations(cache);
1538 	quiesce_migration(mg);
1539 }
1540 
1541 /*
1542  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1543  * block are thrown away.
1544  */
1545 static void invalidate(struct cache *cache, struct prealloc *structs,
1546 		       dm_oblock_t oblock, dm_cblock_t cblock,
1547 		       struct dm_bio_prison_cell *cell)
1548 {
1549 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1550 
1551 	mg->err = false;
1552 	mg->discard = false;
1553 	mg->writeback = false;
1554 	mg->demote = true;
1555 	mg->promote = false;
1556 	mg->requeue_holder = true;
1557 	mg->invalidate = true;
1558 	mg->cache = cache;
1559 	mg->old_oblock = oblock;
1560 	mg->cblock = cblock;
1561 	mg->old_ocell = cell;
1562 	mg->new_ocell = NULL;
1563 	mg->start_jiffies = jiffies;
1564 
1565 	inc_io_migrations(cache);
1566 	quiesce_migration(mg);
1567 }
1568 
1569 static void discard(struct cache *cache, struct prealloc *structs,
1570 		    struct dm_bio_prison_cell *cell)
1571 {
1572 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1573 
1574 	mg->err = false;
1575 	mg->discard = true;
1576 	mg->writeback = false;
1577 	mg->demote = false;
1578 	mg->promote = false;
1579 	mg->requeue_holder = false;
1580 	mg->invalidate = false;
1581 	mg->cache = cache;
1582 	mg->old_ocell = NULL;
1583 	mg->new_ocell = cell;
1584 	mg->start_jiffies = jiffies;
1585 
1586 	quiesce_migration(mg);
1587 }
1588 
1589 /*----------------------------------------------------------------
1590  * bio processing
1591  *--------------------------------------------------------------*/
1592 static void defer_bio(struct cache *cache, struct bio *bio)
1593 {
1594 	unsigned long flags;
1595 
1596 	spin_lock_irqsave(&cache->lock, flags);
1597 	bio_list_add(&cache->deferred_bios, bio);
1598 	spin_unlock_irqrestore(&cache->lock, flags);
1599 
1600 	wake_worker(cache);
1601 }
1602 
1603 static void process_flush_bio(struct cache *cache, struct bio *bio)
1604 {
1605 	size_t pb_data_size = get_per_bio_data_size(cache);
1606 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1607 
1608 	BUG_ON(bio->bi_iter.bi_size);
1609 	if (!pb->req_nr)
1610 		remap_to_origin(cache, bio);
1611 	else
1612 		remap_to_cache(cache, bio, 0);
1613 
1614 	/*
1615 	 * REQ_FLUSH is not directed at any particular block so we don't
1616 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1617 	 * by dm-core.
1618 	 */
1619 	issue(cache, bio);
1620 }
1621 
1622 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1623 				struct bio *bio)
1624 {
1625 	int r;
1626 	dm_dblock_t b, e;
1627 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1628 
1629 	calc_discard_block_range(cache, bio, &b, &e);
1630 	if (b == e) {
1631 		bio_endio(bio);
1632 		return;
1633 	}
1634 
1635 	cell_prealloc = prealloc_get_cell(structs);
1636 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1637 			     (cell_free_fn) prealloc_put_cell,
1638 			     structs, &new_ocell);
1639 	if (r > 0)
1640 		return;
1641 
1642 	discard(cache, structs, new_ocell);
1643 }
1644 
1645 static bool spare_migration_bandwidth(struct cache *cache)
1646 {
1647 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1648 		cache->sectors_per_block;
1649 	return current_volume < cache->migration_threshold;
1650 }
1651 
1652 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1653 {
1654 	atomic_inc(bio_data_dir(bio) == READ ?
1655 		   &cache->stats.read_hit : &cache->stats.write_hit);
1656 }
1657 
1658 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1659 {
1660 	atomic_inc(bio_data_dir(bio) == READ ?
1661 		   &cache->stats.read_miss : &cache->stats.write_miss);
1662 }
1663 
1664 /*----------------------------------------------------------------*/
1665 
1666 struct inc_detail {
1667 	struct cache *cache;
1668 	struct bio_list bios_for_issue;
1669 	struct bio_list unhandled_bios;
1670 	bool any_writes;
1671 };
1672 
1673 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1674 {
1675 	struct bio *bio;
1676 	struct inc_detail *detail = context;
1677 	struct cache *cache = detail->cache;
1678 
1679 	inc_ds(cache, cell->holder, cell);
1680 	if (bio_data_dir(cell->holder) == WRITE)
1681 		detail->any_writes = true;
1682 
1683 	while ((bio = bio_list_pop(&cell->bios))) {
1684 		if (discard_or_flush(bio)) {
1685 			bio_list_add(&detail->unhandled_bios, bio);
1686 			continue;
1687 		}
1688 
1689 		if (bio_data_dir(bio) == WRITE)
1690 			detail->any_writes = true;
1691 
1692 		bio_list_add(&detail->bios_for_issue, bio);
1693 		inc_ds(cache, bio, cell);
1694 	}
1695 }
1696 
1697 // FIXME: refactor these two
1698 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1699 					       struct dm_bio_prison_cell *cell,
1700 					       dm_oblock_t oblock, bool issue_holder)
1701 {
1702 	struct bio *bio;
1703 	unsigned long flags;
1704 	struct inc_detail detail;
1705 
1706 	detail.cache = cache;
1707 	bio_list_init(&detail.bios_for_issue);
1708 	bio_list_init(&detail.unhandled_bios);
1709 	detail.any_writes = false;
1710 
1711 	spin_lock_irqsave(&cache->lock, flags);
1712 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1713 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1714 	spin_unlock_irqrestore(&cache->lock, flags);
1715 
1716 	remap_to_origin(cache, cell->holder);
1717 	if (issue_holder)
1718 		issue(cache, cell->holder);
1719 	else
1720 		accounted_begin(cache, cell->holder);
1721 
1722 	if (detail.any_writes)
1723 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1724 
1725 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1726 		remap_to_origin(cache, bio);
1727 		issue(cache, bio);
1728 	}
1729 
1730 	free_prison_cell(cache, cell);
1731 }
1732 
1733 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1734 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1735 {
1736 	struct bio *bio;
1737 	unsigned long flags;
1738 	struct inc_detail detail;
1739 
1740 	detail.cache = cache;
1741 	bio_list_init(&detail.bios_for_issue);
1742 	bio_list_init(&detail.unhandled_bios);
1743 	detail.any_writes = false;
1744 
1745 	spin_lock_irqsave(&cache->lock, flags);
1746 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1747 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1748 	spin_unlock_irqrestore(&cache->lock, flags);
1749 
1750 	remap_to_cache(cache, cell->holder, cblock);
1751 	if (issue_holder)
1752 		issue(cache, cell->holder);
1753 	else
1754 		accounted_begin(cache, cell->holder);
1755 
1756 	if (detail.any_writes) {
1757 		set_dirty(cache, oblock, cblock);
1758 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1759 	}
1760 
1761 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1762 		remap_to_cache(cache, bio, cblock);
1763 		issue(cache, bio);
1764 	}
1765 
1766 	free_prison_cell(cache, cell);
1767 }
1768 
1769 /*----------------------------------------------------------------*/
1770 
1771 struct old_oblock_lock {
1772 	struct policy_locker locker;
1773 	struct cache *cache;
1774 	struct prealloc *structs;
1775 	struct dm_bio_prison_cell *cell;
1776 };
1777 
1778 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1779 {
1780 	/* This should never be called */
1781 	BUG();
1782 	return 0;
1783 }
1784 
1785 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1786 {
1787 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1788 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1789 
1790 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1791 			  (cell_free_fn) prealloc_put_cell,
1792 			  l->structs, &l->cell);
1793 }
1794 
1795 static void process_cell(struct cache *cache, struct prealloc *structs,
1796 			 struct dm_bio_prison_cell *new_ocell)
1797 {
1798 	int r;
1799 	bool release_cell = true;
1800 	struct bio *bio = new_ocell->holder;
1801 	dm_oblock_t block = get_bio_block(cache, bio);
1802 	struct policy_result lookup_result;
1803 	bool passthrough = passthrough_mode(&cache->features);
1804 	bool fast_promotion, can_migrate;
1805 	struct old_oblock_lock ool;
1806 
1807 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1808 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1809 
1810 	ool.locker.fn = cell_locker;
1811 	ool.cache = cache;
1812 	ool.structs = structs;
1813 	ool.cell = NULL;
1814 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1815 		       bio, &ool.locker, &lookup_result);
1816 
1817 	if (r == -EWOULDBLOCK)
1818 		/* migration has been denied */
1819 		lookup_result.op = POLICY_MISS;
1820 
1821 	switch (lookup_result.op) {
1822 	case POLICY_HIT:
1823 		if (passthrough) {
1824 			inc_miss_counter(cache, bio);
1825 
1826 			/*
1827 			 * Passthrough always maps to the origin,
1828 			 * invalidating any cache blocks that are written
1829 			 * to.
1830 			 */
1831 
1832 			if (bio_data_dir(bio) == WRITE) {
1833 				atomic_inc(&cache->stats.demotion);
1834 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1835 				release_cell = false;
1836 
1837 			} else {
1838 				/* FIXME: factor out issue_origin() */
1839 				remap_to_origin_clear_discard(cache, bio, block);
1840 				inc_and_issue(cache, bio, new_ocell);
1841 			}
1842 		} else {
1843 			inc_hit_counter(cache, bio);
1844 
1845 			if (bio_data_dir(bio) == WRITE &&
1846 			    writethrough_mode(&cache->features) &&
1847 			    !is_dirty(cache, lookup_result.cblock)) {
1848 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1849 				inc_and_issue(cache, bio, new_ocell);
1850 
1851 			} else {
1852 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1853 				release_cell = false;
1854 			}
1855 		}
1856 
1857 		break;
1858 
1859 	case POLICY_MISS:
1860 		inc_miss_counter(cache, bio);
1861 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1862 		release_cell = false;
1863 		break;
1864 
1865 	case POLICY_NEW:
1866 		atomic_inc(&cache->stats.promotion);
1867 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1868 		release_cell = false;
1869 		break;
1870 
1871 	case POLICY_REPLACE:
1872 		atomic_inc(&cache->stats.demotion);
1873 		atomic_inc(&cache->stats.promotion);
1874 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1875 				    block, lookup_result.cblock,
1876 				    ool.cell, new_ocell);
1877 		release_cell = false;
1878 		break;
1879 
1880 	default:
1881 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1882 			    cache_device_name(cache), __func__,
1883 			    (unsigned) lookup_result.op);
1884 		bio_io_error(bio);
1885 	}
1886 
1887 	if (release_cell)
1888 		cell_defer(cache, new_ocell, false);
1889 }
1890 
1891 static void process_bio(struct cache *cache, struct prealloc *structs,
1892 			struct bio *bio)
1893 {
1894 	int r;
1895 	dm_oblock_t block = get_bio_block(cache, bio);
1896 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1897 
1898 	/*
1899 	 * Check to see if that block is currently migrating.
1900 	 */
1901 	cell_prealloc = prealloc_get_cell(structs);
1902 	r = bio_detain(cache, block, bio, cell_prealloc,
1903 		       (cell_free_fn) prealloc_put_cell,
1904 		       structs, &new_ocell);
1905 	if (r > 0)
1906 		return;
1907 
1908 	process_cell(cache, structs, new_ocell);
1909 }
1910 
1911 static int need_commit_due_to_time(struct cache *cache)
1912 {
1913 	return jiffies < cache->last_commit_jiffies ||
1914 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1915 }
1916 
1917 /*
1918  * A non-zero return indicates read_only or fail_io mode.
1919  */
1920 static int commit(struct cache *cache, bool clean_shutdown)
1921 {
1922 	int r;
1923 
1924 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1925 		return -EINVAL;
1926 
1927 	atomic_inc(&cache->stats.commit_count);
1928 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1929 	if (r)
1930 		metadata_operation_failed(cache, "dm_cache_commit", r);
1931 
1932 	return r;
1933 }
1934 
1935 static int commit_if_needed(struct cache *cache)
1936 {
1937 	int r = 0;
1938 
1939 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1940 	    dm_cache_changed_this_transaction(cache->cmd)) {
1941 		r = commit(cache, false);
1942 		cache->commit_requested = false;
1943 		cache->last_commit_jiffies = jiffies;
1944 	}
1945 
1946 	return r;
1947 }
1948 
1949 static void process_deferred_bios(struct cache *cache)
1950 {
1951 	bool prealloc_used = false;
1952 	unsigned long flags;
1953 	struct bio_list bios;
1954 	struct bio *bio;
1955 	struct prealloc structs;
1956 
1957 	memset(&structs, 0, sizeof(structs));
1958 	bio_list_init(&bios);
1959 
1960 	spin_lock_irqsave(&cache->lock, flags);
1961 	bio_list_merge(&bios, &cache->deferred_bios);
1962 	bio_list_init(&cache->deferred_bios);
1963 	spin_unlock_irqrestore(&cache->lock, flags);
1964 
1965 	while (!bio_list_empty(&bios)) {
1966 		/*
1967 		 * If we've got no free migration structs, and processing
1968 		 * this bio might require one, we pause until there are some
1969 		 * prepared mappings to process.
1970 		 */
1971 		prealloc_used = true;
1972 		if (prealloc_data_structs(cache, &structs)) {
1973 			spin_lock_irqsave(&cache->lock, flags);
1974 			bio_list_merge(&cache->deferred_bios, &bios);
1975 			spin_unlock_irqrestore(&cache->lock, flags);
1976 			break;
1977 		}
1978 
1979 		bio = bio_list_pop(&bios);
1980 
1981 		if (bio->bi_rw & REQ_FLUSH)
1982 			process_flush_bio(cache, bio);
1983 		else if (bio->bi_rw & REQ_DISCARD)
1984 			process_discard_bio(cache, &structs, bio);
1985 		else
1986 			process_bio(cache, &structs, bio);
1987 	}
1988 
1989 	if (prealloc_used)
1990 		prealloc_free_structs(cache, &structs);
1991 }
1992 
1993 static void process_deferred_cells(struct cache *cache)
1994 {
1995 	bool prealloc_used = false;
1996 	unsigned long flags;
1997 	struct dm_bio_prison_cell *cell, *tmp;
1998 	struct list_head cells;
1999 	struct prealloc structs;
2000 
2001 	memset(&structs, 0, sizeof(structs));
2002 
2003 	INIT_LIST_HEAD(&cells);
2004 
2005 	spin_lock_irqsave(&cache->lock, flags);
2006 	list_splice_init(&cache->deferred_cells, &cells);
2007 	spin_unlock_irqrestore(&cache->lock, flags);
2008 
2009 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2010 		/*
2011 		 * If we've got no free migration structs, and processing
2012 		 * this bio might require one, we pause until there are some
2013 		 * prepared mappings to process.
2014 		 */
2015 		prealloc_used = true;
2016 		if (prealloc_data_structs(cache, &structs)) {
2017 			spin_lock_irqsave(&cache->lock, flags);
2018 			list_splice(&cells, &cache->deferred_cells);
2019 			spin_unlock_irqrestore(&cache->lock, flags);
2020 			break;
2021 		}
2022 
2023 		process_cell(cache, &structs, cell);
2024 	}
2025 
2026 	if (prealloc_used)
2027 		prealloc_free_structs(cache, &structs);
2028 }
2029 
2030 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2031 {
2032 	unsigned long flags;
2033 	struct bio_list bios;
2034 	struct bio *bio;
2035 
2036 	bio_list_init(&bios);
2037 
2038 	spin_lock_irqsave(&cache->lock, flags);
2039 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2040 	bio_list_init(&cache->deferred_flush_bios);
2041 	spin_unlock_irqrestore(&cache->lock, flags);
2042 
2043 	/*
2044 	 * These bios have already been through inc_ds()
2045 	 */
2046 	while ((bio = bio_list_pop(&bios)))
2047 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2048 }
2049 
2050 static void process_deferred_writethrough_bios(struct cache *cache)
2051 {
2052 	unsigned long flags;
2053 	struct bio_list bios;
2054 	struct bio *bio;
2055 
2056 	bio_list_init(&bios);
2057 
2058 	spin_lock_irqsave(&cache->lock, flags);
2059 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2060 	bio_list_init(&cache->deferred_writethrough_bios);
2061 	spin_unlock_irqrestore(&cache->lock, flags);
2062 
2063 	/*
2064 	 * These bios have already been through inc_ds()
2065 	 */
2066 	while ((bio = bio_list_pop(&bios)))
2067 		accounted_request(cache, bio);
2068 }
2069 
2070 static void writeback_some_dirty_blocks(struct cache *cache)
2071 {
2072 	bool prealloc_used = false;
2073 	dm_oblock_t oblock;
2074 	dm_cblock_t cblock;
2075 	struct prealloc structs;
2076 	struct dm_bio_prison_cell *old_ocell;
2077 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2078 
2079 	memset(&structs, 0, sizeof(structs));
2080 
2081 	while (spare_migration_bandwidth(cache)) {
2082 		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2083 			break; /* no work to do */
2084 
2085 		prealloc_used = true;
2086 		if (prealloc_data_structs(cache, &structs) ||
2087 		    get_cell(cache, oblock, &structs, &old_ocell)) {
2088 			policy_set_dirty(cache->policy, oblock);
2089 			break;
2090 		}
2091 
2092 		writeback(cache, &structs, oblock, cblock, old_ocell);
2093 	}
2094 
2095 	if (prealloc_used)
2096 		prealloc_free_structs(cache, &structs);
2097 }
2098 
2099 /*----------------------------------------------------------------
2100  * Invalidations.
2101  * Dropping something from the cache *without* writing back.
2102  *--------------------------------------------------------------*/
2103 
2104 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2105 {
2106 	int r = 0;
2107 	uint64_t begin = from_cblock(req->cblocks->begin);
2108 	uint64_t end = from_cblock(req->cblocks->end);
2109 
2110 	while (begin != end) {
2111 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2112 		if (!r) {
2113 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2114 			if (r) {
2115 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2116 				break;
2117 			}
2118 
2119 		} else if (r == -ENODATA) {
2120 			/* harmless, already unmapped */
2121 			r = 0;
2122 
2123 		} else {
2124 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2125 			break;
2126 		}
2127 
2128 		begin++;
2129         }
2130 
2131 	cache->commit_requested = true;
2132 
2133 	req->err = r;
2134 	atomic_set(&req->complete, 1);
2135 
2136 	wake_up(&req->result_wait);
2137 }
2138 
2139 static void process_invalidation_requests(struct cache *cache)
2140 {
2141 	struct list_head list;
2142 	struct invalidation_request *req, *tmp;
2143 
2144 	INIT_LIST_HEAD(&list);
2145 	spin_lock(&cache->invalidation_lock);
2146 	list_splice_init(&cache->invalidation_requests, &list);
2147 	spin_unlock(&cache->invalidation_lock);
2148 
2149 	list_for_each_entry_safe (req, tmp, &list, list)
2150 		process_invalidation_request(cache, req);
2151 }
2152 
2153 /*----------------------------------------------------------------
2154  * Main worker loop
2155  *--------------------------------------------------------------*/
2156 static bool is_quiescing(struct cache *cache)
2157 {
2158 	return atomic_read(&cache->quiescing);
2159 }
2160 
2161 static void ack_quiescing(struct cache *cache)
2162 {
2163 	if (is_quiescing(cache)) {
2164 		atomic_inc(&cache->quiescing_ack);
2165 		wake_up(&cache->quiescing_wait);
2166 	}
2167 }
2168 
2169 static void wait_for_quiescing_ack(struct cache *cache)
2170 {
2171 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2172 }
2173 
2174 static void start_quiescing(struct cache *cache)
2175 {
2176 	atomic_inc(&cache->quiescing);
2177 	wait_for_quiescing_ack(cache);
2178 }
2179 
2180 static void stop_quiescing(struct cache *cache)
2181 {
2182 	atomic_set(&cache->quiescing, 0);
2183 	atomic_set(&cache->quiescing_ack, 0);
2184 }
2185 
2186 static void wait_for_migrations(struct cache *cache)
2187 {
2188 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2189 }
2190 
2191 static void stop_worker(struct cache *cache)
2192 {
2193 	cancel_delayed_work(&cache->waker);
2194 	flush_workqueue(cache->wq);
2195 }
2196 
2197 static void requeue_deferred_cells(struct cache *cache)
2198 {
2199 	unsigned long flags;
2200 	struct list_head cells;
2201 	struct dm_bio_prison_cell *cell, *tmp;
2202 
2203 	INIT_LIST_HEAD(&cells);
2204 	spin_lock_irqsave(&cache->lock, flags);
2205 	list_splice_init(&cache->deferred_cells, &cells);
2206 	spin_unlock_irqrestore(&cache->lock, flags);
2207 
2208 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2209 		cell_requeue(cache, cell);
2210 }
2211 
2212 static void requeue_deferred_bios(struct cache *cache)
2213 {
2214 	struct bio *bio;
2215 	struct bio_list bios;
2216 
2217 	bio_list_init(&bios);
2218 	bio_list_merge(&bios, &cache->deferred_bios);
2219 	bio_list_init(&cache->deferred_bios);
2220 
2221 	while ((bio = bio_list_pop(&bios))) {
2222 		bio->bi_error = DM_ENDIO_REQUEUE;
2223 		bio_endio(bio);
2224 	}
2225 }
2226 
2227 static int more_work(struct cache *cache)
2228 {
2229 	if (is_quiescing(cache))
2230 		return !list_empty(&cache->quiesced_migrations) ||
2231 			!list_empty(&cache->completed_migrations) ||
2232 			!list_empty(&cache->need_commit_migrations);
2233 	else
2234 		return !bio_list_empty(&cache->deferred_bios) ||
2235 			!list_empty(&cache->deferred_cells) ||
2236 			!bio_list_empty(&cache->deferred_flush_bios) ||
2237 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2238 			!list_empty(&cache->quiesced_migrations) ||
2239 			!list_empty(&cache->completed_migrations) ||
2240 			!list_empty(&cache->need_commit_migrations) ||
2241 			cache->invalidate;
2242 }
2243 
2244 static void do_worker(struct work_struct *ws)
2245 {
2246 	struct cache *cache = container_of(ws, struct cache, worker);
2247 
2248 	do {
2249 		if (!is_quiescing(cache)) {
2250 			writeback_some_dirty_blocks(cache);
2251 			process_deferred_writethrough_bios(cache);
2252 			process_deferred_bios(cache);
2253 			process_deferred_cells(cache);
2254 			process_invalidation_requests(cache);
2255 		}
2256 
2257 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2258 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2259 
2260 		if (commit_if_needed(cache)) {
2261 			process_deferred_flush_bios(cache, false);
2262 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2263 		} else {
2264 			process_deferred_flush_bios(cache, true);
2265 			process_migrations(cache, &cache->need_commit_migrations,
2266 					   migration_success_post_commit);
2267 		}
2268 
2269 		ack_quiescing(cache);
2270 
2271 	} while (more_work(cache));
2272 }
2273 
2274 /*
2275  * We want to commit periodically so that not too much
2276  * unwritten metadata builds up.
2277  */
2278 static void do_waker(struct work_struct *ws)
2279 {
2280 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2281 	policy_tick(cache->policy, true);
2282 	wake_worker(cache);
2283 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2284 }
2285 
2286 /*----------------------------------------------------------------*/
2287 
2288 static int is_congested(struct dm_dev *dev, int bdi_bits)
2289 {
2290 	struct request_queue *q = bdev_get_queue(dev->bdev);
2291 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2292 }
2293 
2294 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2295 {
2296 	struct cache *cache = container_of(cb, struct cache, callbacks);
2297 
2298 	return is_congested(cache->origin_dev, bdi_bits) ||
2299 		is_congested(cache->cache_dev, bdi_bits);
2300 }
2301 
2302 /*----------------------------------------------------------------
2303  * Target methods
2304  *--------------------------------------------------------------*/
2305 
2306 /*
2307  * This function gets called on the error paths of the constructor, so we
2308  * have to cope with a partially initialised struct.
2309  */
2310 static void destroy(struct cache *cache)
2311 {
2312 	unsigned i;
2313 
2314 	mempool_destroy(cache->migration_pool);
2315 
2316 	if (cache->all_io_ds)
2317 		dm_deferred_set_destroy(cache->all_io_ds);
2318 
2319 	if (cache->prison)
2320 		dm_bio_prison_destroy(cache->prison);
2321 
2322 	if (cache->wq)
2323 		destroy_workqueue(cache->wq);
2324 
2325 	if (cache->dirty_bitset)
2326 		free_bitset(cache->dirty_bitset);
2327 
2328 	if (cache->discard_bitset)
2329 		free_bitset(cache->discard_bitset);
2330 
2331 	if (cache->copier)
2332 		dm_kcopyd_client_destroy(cache->copier);
2333 
2334 	if (cache->cmd)
2335 		dm_cache_metadata_close(cache->cmd);
2336 
2337 	if (cache->metadata_dev)
2338 		dm_put_device(cache->ti, cache->metadata_dev);
2339 
2340 	if (cache->origin_dev)
2341 		dm_put_device(cache->ti, cache->origin_dev);
2342 
2343 	if (cache->cache_dev)
2344 		dm_put_device(cache->ti, cache->cache_dev);
2345 
2346 	if (cache->policy)
2347 		dm_cache_policy_destroy(cache->policy);
2348 
2349 	for (i = 0; i < cache->nr_ctr_args ; i++)
2350 		kfree(cache->ctr_args[i]);
2351 	kfree(cache->ctr_args);
2352 
2353 	kfree(cache);
2354 }
2355 
2356 static void cache_dtr(struct dm_target *ti)
2357 {
2358 	struct cache *cache = ti->private;
2359 
2360 	destroy(cache);
2361 }
2362 
2363 static sector_t get_dev_size(struct dm_dev *dev)
2364 {
2365 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2366 }
2367 
2368 /*----------------------------------------------------------------*/
2369 
2370 /*
2371  * Construct a cache device mapping.
2372  *
2373  * cache <metadata dev> <cache dev> <origin dev> <block size>
2374  *       <#feature args> [<feature arg>]*
2375  *       <policy> <#policy args> [<policy arg>]*
2376  *
2377  * metadata dev    : fast device holding the persistent metadata
2378  * cache dev	   : fast device holding cached data blocks
2379  * origin dev	   : slow device holding original data blocks
2380  * block size	   : cache unit size in sectors
2381  *
2382  * #feature args   : number of feature arguments passed
2383  * feature args    : writethrough.  (The default is writeback.)
2384  *
2385  * policy	   : the replacement policy to use
2386  * #policy args    : an even number of policy arguments corresponding
2387  *		     to key/value pairs passed to the policy
2388  * policy args	   : key/value pairs passed to the policy
2389  *		     E.g. 'sequential_threshold 1024'
2390  *		     See cache-policies.txt for details.
2391  *
2392  * Optional feature arguments are:
2393  *   writethrough  : write through caching that prohibits cache block
2394  *		     content from being different from origin block content.
2395  *		     Without this argument, the default behaviour is to write
2396  *		     back cache block contents later for performance reasons,
2397  *		     so they may differ from the corresponding origin blocks.
2398  */
2399 struct cache_args {
2400 	struct dm_target *ti;
2401 
2402 	struct dm_dev *metadata_dev;
2403 
2404 	struct dm_dev *cache_dev;
2405 	sector_t cache_sectors;
2406 
2407 	struct dm_dev *origin_dev;
2408 	sector_t origin_sectors;
2409 
2410 	uint32_t block_size;
2411 
2412 	const char *policy_name;
2413 	int policy_argc;
2414 	const char **policy_argv;
2415 
2416 	struct cache_features features;
2417 };
2418 
2419 static void destroy_cache_args(struct cache_args *ca)
2420 {
2421 	if (ca->metadata_dev)
2422 		dm_put_device(ca->ti, ca->metadata_dev);
2423 
2424 	if (ca->cache_dev)
2425 		dm_put_device(ca->ti, ca->cache_dev);
2426 
2427 	if (ca->origin_dev)
2428 		dm_put_device(ca->ti, ca->origin_dev);
2429 
2430 	kfree(ca);
2431 }
2432 
2433 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2434 {
2435 	if (!as->argc) {
2436 		*error = "Insufficient args";
2437 		return false;
2438 	}
2439 
2440 	return true;
2441 }
2442 
2443 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2444 			      char **error)
2445 {
2446 	int r;
2447 	sector_t metadata_dev_size;
2448 	char b[BDEVNAME_SIZE];
2449 
2450 	if (!at_least_one_arg(as, error))
2451 		return -EINVAL;
2452 
2453 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2454 			  &ca->metadata_dev);
2455 	if (r) {
2456 		*error = "Error opening metadata device";
2457 		return r;
2458 	}
2459 
2460 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2461 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2462 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2463 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2464 
2465 	return 0;
2466 }
2467 
2468 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2469 			   char **error)
2470 {
2471 	int r;
2472 
2473 	if (!at_least_one_arg(as, error))
2474 		return -EINVAL;
2475 
2476 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2477 			  &ca->cache_dev);
2478 	if (r) {
2479 		*error = "Error opening cache device";
2480 		return r;
2481 	}
2482 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2483 
2484 	return 0;
2485 }
2486 
2487 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2488 			    char **error)
2489 {
2490 	int r;
2491 
2492 	if (!at_least_one_arg(as, error))
2493 		return -EINVAL;
2494 
2495 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2496 			  &ca->origin_dev);
2497 	if (r) {
2498 		*error = "Error opening origin device";
2499 		return r;
2500 	}
2501 
2502 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2503 	if (ca->ti->len > ca->origin_sectors) {
2504 		*error = "Device size larger than cached device";
2505 		return -EINVAL;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2512 			    char **error)
2513 {
2514 	unsigned long block_size;
2515 
2516 	if (!at_least_one_arg(as, error))
2517 		return -EINVAL;
2518 
2519 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2520 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2521 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2522 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2523 		*error = "Invalid data block size";
2524 		return -EINVAL;
2525 	}
2526 
2527 	if (block_size > ca->cache_sectors) {
2528 		*error = "Data block size is larger than the cache device";
2529 		return -EINVAL;
2530 	}
2531 
2532 	ca->block_size = block_size;
2533 
2534 	return 0;
2535 }
2536 
2537 static void init_features(struct cache_features *cf)
2538 {
2539 	cf->mode = CM_WRITE;
2540 	cf->io_mode = CM_IO_WRITEBACK;
2541 }
2542 
2543 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2544 			  char **error)
2545 {
2546 	static struct dm_arg _args[] = {
2547 		{0, 1, "Invalid number of cache feature arguments"},
2548 	};
2549 
2550 	int r;
2551 	unsigned argc;
2552 	const char *arg;
2553 	struct cache_features *cf = &ca->features;
2554 
2555 	init_features(cf);
2556 
2557 	r = dm_read_arg_group(_args, as, &argc, error);
2558 	if (r)
2559 		return -EINVAL;
2560 
2561 	while (argc--) {
2562 		arg = dm_shift_arg(as);
2563 
2564 		if (!strcasecmp(arg, "writeback"))
2565 			cf->io_mode = CM_IO_WRITEBACK;
2566 
2567 		else if (!strcasecmp(arg, "writethrough"))
2568 			cf->io_mode = CM_IO_WRITETHROUGH;
2569 
2570 		else if (!strcasecmp(arg, "passthrough"))
2571 			cf->io_mode = CM_IO_PASSTHROUGH;
2572 
2573 		else {
2574 			*error = "Unrecognised cache feature requested";
2575 			return -EINVAL;
2576 		}
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2583 			char **error)
2584 {
2585 	static struct dm_arg _args[] = {
2586 		{0, 1024, "Invalid number of policy arguments"},
2587 	};
2588 
2589 	int r;
2590 
2591 	if (!at_least_one_arg(as, error))
2592 		return -EINVAL;
2593 
2594 	ca->policy_name = dm_shift_arg(as);
2595 
2596 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2597 	if (r)
2598 		return -EINVAL;
2599 
2600 	ca->policy_argv = (const char **)as->argv;
2601 	dm_consume_args(as, ca->policy_argc);
2602 
2603 	return 0;
2604 }
2605 
2606 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2607 			    char **error)
2608 {
2609 	int r;
2610 	struct dm_arg_set as;
2611 
2612 	as.argc = argc;
2613 	as.argv = argv;
2614 
2615 	r = parse_metadata_dev(ca, &as, error);
2616 	if (r)
2617 		return r;
2618 
2619 	r = parse_cache_dev(ca, &as, error);
2620 	if (r)
2621 		return r;
2622 
2623 	r = parse_origin_dev(ca, &as, error);
2624 	if (r)
2625 		return r;
2626 
2627 	r = parse_block_size(ca, &as, error);
2628 	if (r)
2629 		return r;
2630 
2631 	r = parse_features(ca, &as, error);
2632 	if (r)
2633 		return r;
2634 
2635 	r = parse_policy(ca, &as, error);
2636 	if (r)
2637 		return r;
2638 
2639 	return 0;
2640 }
2641 
2642 /*----------------------------------------------------------------*/
2643 
2644 static struct kmem_cache *migration_cache;
2645 
2646 #define NOT_CORE_OPTION 1
2647 
2648 static int process_config_option(struct cache *cache, const char *key, const char *value)
2649 {
2650 	unsigned long tmp;
2651 
2652 	if (!strcasecmp(key, "migration_threshold")) {
2653 		if (kstrtoul(value, 10, &tmp))
2654 			return -EINVAL;
2655 
2656 		cache->migration_threshold = tmp;
2657 		return 0;
2658 	}
2659 
2660 	return NOT_CORE_OPTION;
2661 }
2662 
2663 static int set_config_value(struct cache *cache, const char *key, const char *value)
2664 {
2665 	int r = process_config_option(cache, key, value);
2666 
2667 	if (r == NOT_CORE_OPTION)
2668 		r = policy_set_config_value(cache->policy, key, value);
2669 
2670 	if (r)
2671 		DMWARN("bad config value for %s: %s", key, value);
2672 
2673 	return r;
2674 }
2675 
2676 static int set_config_values(struct cache *cache, int argc, const char **argv)
2677 {
2678 	int r = 0;
2679 
2680 	if (argc & 1) {
2681 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2682 		return -EINVAL;
2683 	}
2684 
2685 	while (argc) {
2686 		r = set_config_value(cache, argv[0], argv[1]);
2687 		if (r)
2688 			break;
2689 
2690 		argc -= 2;
2691 		argv += 2;
2692 	}
2693 
2694 	return r;
2695 }
2696 
2697 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2698 			       char **error)
2699 {
2700 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2701 							   cache->cache_size,
2702 							   cache->origin_sectors,
2703 							   cache->sectors_per_block);
2704 	if (IS_ERR(p)) {
2705 		*error = "Error creating cache's policy";
2706 		return PTR_ERR(p);
2707 	}
2708 	cache->policy = p;
2709 
2710 	return 0;
2711 }
2712 
2713 /*
2714  * We want the discard block size to be at least the size of the cache
2715  * block size and have no more than 2^14 discard blocks across the origin.
2716  */
2717 #define MAX_DISCARD_BLOCKS (1 << 14)
2718 
2719 static bool too_many_discard_blocks(sector_t discard_block_size,
2720 				    sector_t origin_size)
2721 {
2722 	(void) sector_div(origin_size, discard_block_size);
2723 
2724 	return origin_size > MAX_DISCARD_BLOCKS;
2725 }
2726 
2727 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2728 					     sector_t origin_size)
2729 {
2730 	sector_t discard_block_size = cache_block_size;
2731 
2732 	if (origin_size)
2733 		while (too_many_discard_blocks(discard_block_size, origin_size))
2734 			discard_block_size *= 2;
2735 
2736 	return discard_block_size;
2737 }
2738 
2739 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2740 {
2741 	dm_block_t nr_blocks = from_cblock(size);
2742 
2743 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2744 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2745 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2746 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2747 			     (unsigned long long) nr_blocks);
2748 
2749 	cache->cache_size = size;
2750 }
2751 
2752 #define DEFAULT_MIGRATION_THRESHOLD 2048
2753 
2754 static int cache_create(struct cache_args *ca, struct cache **result)
2755 {
2756 	int r = 0;
2757 	char **error = &ca->ti->error;
2758 	struct cache *cache;
2759 	struct dm_target *ti = ca->ti;
2760 	dm_block_t origin_blocks;
2761 	struct dm_cache_metadata *cmd;
2762 	bool may_format = ca->features.mode == CM_WRITE;
2763 
2764 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2765 	if (!cache)
2766 		return -ENOMEM;
2767 
2768 	cache->ti = ca->ti;
2769 	ti->private = cache;
2770 	ti->num_flush_bios = 2;
2771 	ti->flush_supported = true;
2772 
2773 	ti->num_discard_bios = 1;
2774 	ti->discards_supported = true;
2775 	ti->discard_zeroes_data_unsupported = true;
2776 	ti->split_discard_bios = false;
2777 
2778 	cache->features = ca->features;
2779 	ti->per_io_data_size = get_per_bio_data_size(cache);
2780 
2781 	cache->callbacks.congested_fn = cache_is_congested;
2782 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2783 
2784 	cache->metadata_dev = ca->metadata_dev;
2785 	cache->origin_dev = ca->origin_dev;
2786 	cache->cache_dev = ca->cache_dev;
2787 
2788 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2789 
2790 	/* FIXME: factor out this whole section */
2791 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2792 	origin_blocks = block_div(origin_blocks, ca->block_size);
2793 	cache->origin_blocks = to_oblock(origin_blocks);
2794 
2795 	cache->sectors_per_block = ca->block_size;
2796 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2797 		r = -EINVAL;
2798 		goto bad;
2799 	}
2800 
2801 	if (ca->block_size & (ca->block_size - 1)) {
2802 		dm_block_t cache_size = ca->cache_sectors;
2803 
2804 		cache->sectors_per_block_shift = -1;
2805 		cache_size = block_div(cache_size, ca->block_size);
2806 		set_cache_size(cache, to_cblock(cache_size));
2807 	} else {
2808 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2809 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2810 	}
2811 
2812 	r = create_cache_policy(cache, ca, error);
2813 	if (r)
2814 		goto bad;
2815 
2816 	cache->policy_nr_args = ca->policy_argc;
2817 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2818 
2819 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2820 	if (r) {
2821 		*error = "Error setting cache policy's config values";
2822 		goto bad;
2823 	}
2824 
2825 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2826 				     ca->block_size, may_format,
2827 				     dm_cache_policy_get_hint_size(cache->policy));
2828 	if (IS_ERR(cmd)) {
2829 		*error = "Error creating metadata object";
2830 		r = PTR_ERR(cmd);
2831 		goto bad;
2832 	}
2833 	cache->cmd = cmd;
2834 	set_cache_mode(cache, CM_WRITE);
2835 	if (get_cache_mode(cache) != CM_WRITE) {
2836 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2837 		r = -EINVAL;
2838 		goto bad;
2839 	}
2840 
2841 	if (passthrough_mode(&cache->features)) {
2842 		bool all_clean;
2843 
2844 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2845 		if (r) {
2846 			*error = "dm_cache_metadata_all_clean() failed";
2847 			goto bad;
2848 		}
2849 
2850 		if (!all_clean) {
2851 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2852 			r = -EINVAL;
2853 			goto bad;
2854 		}
2855 	}
2856 
2857 	spin_lock_init(&cache->lock);
2858 	INIT_LIST_HEAD(&cache->deferred_cells);
2859 	bio_list_init(&cache->deferred_bios);
2860 	bio_list_init(&cache->deferred_flush_bios);
2861 	bio_list_init(&cache->deferred_writethrough_bios);
2862 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2863 	INIT_LIST_HEAD(&cache->completed_migrations);
2864 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2865 	atomic_set(&cache->nr_allocated_migrations, 0);
2866 	atomic_set(&cache->nr_io_migrations, 0);
2867 	init_waitqueue_head(&cache->migration_wait);
2868 
2869 	init_waitqueue_head(&cache->quiescing_wait);
2870 	atomic_set(&cache->quiescing, 0);
2871 	atomic_set(&cache->quiescing_ack, 0);
2872 
2873 	r = -ENOMEM;
2874 	atomic_set(&cache->nr_dirty, 0);
2875 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2876 	if (!cache->dirty_bitset) {
2877 		*error = "could not allocate dirty bitset";
2878 		goto bad;
2879 	}
2880 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2881 
2882 	cache->discard_block_size =
2883 		calculate_discard_block_size(cache->sectors_per_block,
2884 					     cache->origin_sectors);
2885 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2886 							      cache->discard_block_size));
2887 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2888 	if (!cache->discard_bitset) {
2889 		*error = "could not allocate discard bitset";
2890 		goto bad;
2891 	}
2892 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2893 
2894 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895 	if (IS_ERR(cache->copier)) {
2896 		*error = "could not create kcopyd client";
2897 		r = PTR_ERR(cache->copier);
2898 		goto bad;
2899 	}
2900 
2901 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2902 	if (!cache->wq) {
2903 		*error = "could not create workqueue for metadata object";
2904 		goto bad;
2905 	}
2906 	INIT_WORK(&cache->worker, do_worker);
2907 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2908 	cache->last_commit_jiffies = jiffies;
2909 
2910 	cache->prison = dm_bio_prison_create();
2911 	if (!cache->prison) {
2912 		*error = "could not create bio prison";
2913 		goto bad;
2914 	}
2915 
2916 	cache->all_io_ds = dm_deferred_set_create();
2917 	if (!cache->all_io_ds) {
2918 		*error = "could not create all_io deferred set";
2919 		goto bad;
2920 	}
2921 
2922 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2923 							 migration_cache);
2924 	if (!cache->migration_pool) {
2925 		*error = "Error creating cache's migration mempool";
2926 		goto bad;
2927 	}
2928 
2929 	cache->need_tick_bio = true;
2930 	cache->sized = false;
2931 	cache->invalidate = false;
2932 	cache->commit_requested = false;
2933 	cache->loaded_mappings = false;
2934 	cache->loaded_discards = false;
2935 
2936 	load_stats(cache);
2937 
2938 	atomic_set(&cache->stats.demotion, 0);
2939 	atomic_set(&cache->stats.promotion, 0);
2940 	atomic_set(&cache->stats.copies_avoided, 0);
2941 	atomic_set(&cache->stats.cache_cell_clash, 0);
2942 	atomic_set(&cache->stats.commit_count, 0);
2943 	atomic_set(&cache->stats.discard_count, 0);
2944 
2945 	spin_lock_init(&cache->invalidation_lock);
2946 	INIT_LIST_HEAD(&cache->invalidation_requests);
2947 
2948 	iot_init(&cache->origin_tracker);
2949 
2950 	*result = cache;
2951 	return 0;
2952 
2953 bad:
2954 	destroy(cache);
2955 	return r;
2956 }
2957 
2958 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2959 {
2960 	unsigned i;
2961 	const char **copy;
2962 
2963 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2964 	if (!copy)
2965 		return -ENOMEM;
2966 	for (i = 0; i < argc; i++) {
2967 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2968 		if (!copy[i]) {
2969 			while (i--)
2970 				kfree(copy[i]);
2971 			kfree(copy);
2972 			return -ENOMEM;
2973 		}
2974 	}
2975 
2976 	cache->nr_ctr_args = argc;
2977 	cache->ctr_args = copy;
2978 
2979 	return 0;
2980 }
2981 
2982 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2983 {
2984 	int r = -EINVAL;
2985 	struct cache_args *ca;
2986 	struct cache *cache = NULL;
2987 
2988 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2989 	if (!ca) {
2990 		ti->error = "Error allocating memory for cache";
2991 		return -ENOMEM;
2992 	}
2993 	ca->ti = ti;
2994 
2995 	r = parse_cache_args(ca, argc, argv, &ti->error);
2996 	if (r)
2997 		goto out;
2998 
2999 	r = cache_create(ca, &cache);
3000 	if (r)
3001 		goto out;
3002 
3003 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3004 	if (r) {
3005 		destroy(cache);
3006 		goto out;
3007 	}
3008 
3009 	ti->private = cache;
3010 
3011 out:
3012 	destroy_cache_args(ca);
3013 	return r;
3014 }
3015 
3016 /*----------------------------------------------------------------*/
3017 
3018 static int cache_map(struct dm_target *ti, struct bio *bio)
3019 {
3020 	struct cache *cache = ti->private;
3021 
3022 	int r;
3023 	struct dm_bio_prison_cell *cell = NULL;
3024 	dm_oblock_t block = get_bio_block(cache, bio);
3025 	size_t pb_data_size = get_per_bio_data_size(cache);
3026 	bool can_migrate = false;
3027 	bool fast_promotion;
3028 	struct policy_result lookup_result;
3029 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3030 	struct old_oblock_lock ool;
3031 
3032 	ool.locker.fn = null_locker;
3033 
3034 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3035 		/*
3036 		 * This can only occur if the io goes to a partial block at
3037 		 * the end of the origin device.  We don't cache these.
3038 		 * Just remap to the origin and carry on.
3039 		 */
3040 		remap_to_origin(cache, bio);
3041 		accounted_begin(cache, bio);
3042 		return DM_MAPIO_REMAPPED;
3043 	}
3044 
3045 	if (discard_or_flush(bio)) {
3046 		defer_bio(cache, bio);
3047 		return DM_MAPIO_SUBMITTED;
3048 	}
3049 
3050 	/*
3051 	 * Check to see if that block is currently migrating.
3052 	 */
3053 	cell = alloc_prison_cell(cache);
3054 	if (!cell) {
3055 		defer_bio(cache, bio);
3056 		return DM_MAPIO_SUBMITTED;
3057 	}
3058 
3059 	r = bio_detain(cache, block, bio, cell,
3060 		       (cell_free_fn) free_prison_cell,
3061 		       cache, &cell);
3062 	if (r) {
3063 		if (r < 0)
3064 			defer_bio(cache, bio);
3065 
3066 		return DM_MAPIO_SUBMITTED;
3067 	}
3068 
3069 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3070 
3071 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3072 		       bio, &ool.locker, &lookup_result);
3073 	if (r == -EWOULDBLOCK) {
3074 		cell_defer(cache, cell, true);
3075 		return DM_MAPIO_SUBMITTED;
3076 
3077 	} else if (r) {
3078 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3079 			    cache_device_name(cache), r);
3080 		cell_defer(cache, cell, false);
3081 		bio_io_error(bio);
3082 		return DM_MAPIO_SUBMITTED;
3083 	}
3084 
3085 	r = DM_MAPIO_REMAPPED;
3086 	switch (lookup_result.op) {
3087 	case POLICY_HIT:
3088 		if (passthrough_mode(&cache->features)) {
3089 			if (bio_data_dir(bio) == WRITE) {
3090 				/*
3091 				 * We need to invalidate this block, so
3092 				 * defer for the worker thread.
3093 				 */
3094 				cell_defer(cache, cell, true);
3095 				r = DM_MAPIO_SUBMITTED;
3096 
3097 			} else {
3098 				inc_miss_counter(cache, bio);
3099 				remap_to_origin_clear_discard(cache, bio, block);
3100 				accounted_begin(cache, bio);
3101 				inc_ds(cache, bio, cell);
3102 				// FIXME: we want to remap hits or misses straight
3103 				// away rather than passing over to the worker.
3104 				cell_defer(cache, cell, false);
3105 			}
3106 
3107 		} else {
3108 			inc_hit_counter(cache, bio);
3109 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3110 			    !is_dirty(cache, lookup_result.cblock)) {
3111 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3112 				accounted_begin(cache, bio);
3113 				inc_ds(cache, bio, cell);
3114 				cell_defer(cache, cell, false);
3115 
3116 			} else
3117 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3118 		}
3119 		break;
3120 
3121 	case POLICY_MISS:
3122 		inc_miss_counter(cache, bio);
3123 		if (pb->req_nr != 0) {
3124 			/*
3125 			 * This is a duplicate writethrough io that is no
3126 			 * longer needed because the block has been demoted.
3127 			 */
3128 			bio_endio(bio);
3129 			// FIXME: remap everything as a miss
3130 			cell_defer(cache, cell, false);
3131 			r = DM_MAPIO_SUBMITTED;
3132 
3133 		} else
3134 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3135 		break;
3136 
3137 	default:
3138 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3139 			    cache_device_name(cache), __func__,
3140 			    (unsigned) lookup_result.op);
3141 		cell_defer(cache, cell, false);
3142 		bio_io_error(bio);
3143 		r = DM_MAPIO_SUBMITTED;
3144 	}
3145 
3146 	return r;
3147 }
3148 
3149 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3150 {
3151 	struct cache *cache = ti->private;
3152 	unsigned long flags;
3153 	size_t pb_data_size = get_per_bio_data_size(cache);
3154 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3155 
3156 	if (pb->tick) {
3157 		policy_tick(cache->policy, false);
3158 
3159 		spin_lock_irqsave(&cache->lock, flags);
3160 		cache->need_tick_bio = true;
3161 		spin_unlock_irqrestore(&cache->lock, flags);
3162 	}
3163 
3164 	check_for_quiesced_migrations(cache, pb);
3165 	accounted_complete(cache, bio);
3166 
3167 	return 0;
3168 }
3169 
3170 static int write_dirty_bitset(struct cache *cache)
3171 {
3172 	unsigned i, r;
3173 
3174 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3175 		return -EINVAL;
3176 
3177 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3178 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3179 				       is_dirty(cache, to_cblock(i)));
3180 		if (r) {
3181 			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3182 			return r;
3183 		}
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 static int write_discard_bitset(struct cache *cache)
3190 {
3191 	unsigned i, r;
3192 
3193 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3194 		return -EINVAL;
3195 
3196 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3197 					   cache->discard_nr_blocks);
3198 	if (r) {
3199 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3200 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3201 		return r;
3202 	}
3203 
3204 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3205 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3206 					 is_discarded(cache, to_dblock(i)));
3207 		if (r) {
3208 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3209 			return r;
3210 		}
3211 	}
3212 
3213 	return 0;
3214 }
3215 
3216 static int write_hints(struct cache *cache)
3217 {
3218 	int r;
3219 
3220 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3221 		return -EINVAL;
3222 
3223 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3224 	if (r) {
3225 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3226 		return r;
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 /*
3233  * returns true on success
3234  */
3235 static bool sync_metadata(struct cache *cache)
3236 {
3237 	int r1, r2, r3, r4;
3238 
3239 	r1 = write_dirty_bitset(cache);
3240 	if (r1)
3241 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3242 
3243 	r2 = write_discard_bitset(cache);
3244 	if (r2)
3245 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3246 
3247 	save_stats(cache);
3248 
3249 	r3 = write_hints(cache);
3250 	if (r3)
3251 		DMERR("%s: could not write hints", cache_device_name(cache));
3252 
3253 	/*
3254 	 * If writing the above metadata failed, we still commit, but don't
3255 	 * set the clean shutdown flag.  This will effectively force every
3256 	 * dirty bit to be set on reload.
3257 	 */
3258 	r4 = commit(cache, !r1 && !r2 && !r3);
3259 	if (r4)
3260 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3261 
3262 	return !r1 && !r2 && !r3 && !r4;
3263 }
3264 
3265 static void cache_postsuspend(struct dm_target *ti)
3266 {
3267 	struct cache *cache = ti->private;
3268 
3269 	start_quiescing(cache);
3270 	wait_for_migrations(cache);
3271 	stop_worker(cache);
3272 	requeue_deferred_bios(cache);
3273 	requeue_deferred_cells(cache);
3274 	stop_quiescing(cache);
3275 
3276 	if (get_cache_mode(cache) == CM_WRITE)
3277 		(void) sync_metadata(cache);
3278 }
3279 
3280 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3281 			bool dirty, uint32_t hint, bool hint_valid)
3282 {
3283 	int r;
3284 	struct cache *cache = context;
3285 
3286 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3287 	if (r)
3288 		return r;
3289 
3290 	if (dirty)
3291 		set_dirty(cache, oblock, cblock);
3292 	else
3293 		clear_dirty(cache, oblock, cblock);
3294 
3295 	return 0;
3296 }
3297 
3298 /*
3299  * The discard block size in the on disk metadata is not
3300  * neccessarily the same as we're currently using.  So we have to
3301  * be careful to only set the discarded attribute if we know it
3302  * covers a complete block of the new size.
3303  */
3304 struct discard_load_info {
3305 	struct cache *cache;
3306 
3307 	/*
3308 	 * These blocks are sized using the on disk dblock size, rather
3309 	 * than the current one.
3310 	 */
3311 	dm_block_t block_size;
3312 	dm_block_t discard_begin, discard_end;
3313 };
3314 
3315 static void discard_load_info_init(struct cache *cache,
3316 				   struct discard_load_info *li)
3317 {
3318 	li->cache = cache;
3319 	li->discard_begin = li->discard_end = 0;
3320 }
3321 
3322 static void set_discard_range(struct discard_load_info *li)
3323 {
3324 	sector_t b, e;
3325 
3326 	if (li->discard_begin == li->discard_end)
3327 		return;
3328 
3329 	/*
3330 	 * Convert to sectors.
3331 	 */
3332 	b = li->discard_begin * li->block_size;
3333 	e = li->discard_end * li->block_size;
3334 
3335 	/*
3336 	 * Then convert back to the current dblock size.
3337 	 */
3338 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3339 	sector_div(e, li->cache->discard_block_size);
3340 
3341 	/*
3342 	 * The origin may have shrunk, so we need to check we're still in
3343 	 * bounds.
3344 	 */
3345 	if (e > from_dblock(li->cache->discard_nr_blocks))
3346 		e = from_dblock(li->cache->discard_nr_blocks);
3347 
3348 	for (; b < e; b++)
3349 		set_discard(li->cache, to_dblock(b));
3350 }
3351 
3352 static int load_discard(void *context, sector_t discard_block_size,
3353 			dm_dblock_t dblock, bool discard)
3354 {
3355 	struct discard_load_info *li = context;
3356 
3357 	li->block_size = discard_block_size;
3358 
3359 	if (discard) {
3360 		if (from_dblock(dblock) == li->discard_end)
3361 			/*
3362 			 * We're already in a discard range, just extend it.
3363 			 */
3364 			li->discard_end = li->discard_end + 1ULL;
3365 
3366 		else {
3367 			/*
3368 			 * Emit the old range and start a new one.
3369 			 */
3370 			set_discard_range(li);
3371 			li->discard_begin = from_dblock(dblock);
3372 			li->discard_end = li->discard_begin + 1ULL;
3373 		}
3374 	} else {
3375 		set_discard_range(li);
3376 		li->discard_begin = li->discard_end = 0;
3377 	}
3378 
3379 	return 0;
3380 }
3381 
3382 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3383 {
3384 	sector_t size = get_dev_size(cache->cache_dev);
3385 	(void) sector_div(size, cache->sectors_per_block);
3386 	return to_cblock(size);
3387 }
3388 
3389 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3390 {
3391 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3392 		return true;
3393 
3394 	/*
3395 	 * We can't drop a dirty block when shrinking the cache.
3396 	 */
3397 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3398 		new_size = to_cblock(from_cblock(new_size) + 1);
3399 		if (is_dirty(cache, new_size)) {
3400 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3401 			      cache_device_name(cache),
3402 			      (unsigned long long) from_cblock(new_size));
3403 			return false;
3404 		}
3405 	}
3406 
3407 	return true;
3408 }
3409 
3410 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3411 {
3412 	int r;
3413 
3414 	r = dm_cache_resize(cache->cmd, new_size);
3415 	if (r) {
3416 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3417 		metadata_operation_failed(cache, "dm_cache_resize", r);
3418 		return r;
3419 	}
3420 
3421 	set_cache_size(cache, new_size);
3422 
3423 	return 0;
3424 }
3425 
3426 static int cache_preresume(struct dm_target *ti)
3427 {
3428 	int r = 0;
3429 	struct cache *cache = ti->private;
3430 	dm_cblock_t csize = get_cache_dev_size(cache);
3431 
3432 	/*
3433 	 * Check to see if the cache has resized.
3434 	 */
3435 	if (!cache->sized) {
3436 		r = resize_cache_dev(cache, csize);
3437 		if (r)
3438 			return r;
3439 
3440 		cache->sized = true;
3441 
3442 	} else if (csize != cache->cache_size) {
3443 		if (!can_resize(cache, csize))
3444 			return -EINVAL;
3445 
3446 		r = resize_cache_dev(cache, csize);
3447 		if (r)
3448 			return r;
3449 	}
3450 
3451 	if (!cache->loaded_mappings) {
3452 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3453 					   load_mapping, cache);
3454 		if (r) {
3455 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3456 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3457 			return r;
3458 		}
3459 
3460 		cache->loaded_mappings = true;
3461 	}
3462 
3463 	if (!cache->loaded_discards) {
3464 		struct discard_load_info li;
3465 
3466 		/*
3467 		 * The discard bitset could have been resized, or the
3468 		 * discard block size changed.  To be safe we start by
3469 		 * setting every dblock to not discarded.
3470 		 */
3471 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3472 
3473 		discard_load_info_init(cache, &li);
3474 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3475 		if (r) {
3476 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3477 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3478 			return r;
3479 		}
3480 		set_discard_range(&li);
3481 
3482 		cache->loaded_discards = true;
3483 	}
3484 
3485 	return r;
3486 }
3487 
3488 static void cache_resume(struct dm_target *ti)
3489 {
3490 	struct cache *cache = ti->private;
3491 
3492 	cache->need_tick_bio = true;
3493 	do_waker(&cache->waker.work);
3494 }
3495 
3496 /*
3497  * Status format:
3498  *
3499  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3500  * <cache block size> <#used cache blocks>/<#total cache blocks>
3501  * <#read hits> <#read misses> <#write hits> <#write misses>
3502  * <#demotions> <#promotions> <#dirty>
3503  * <#features> <features>*
3504  * <#core args> <core args>
3505  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3506  */
3507 static void cache_status(struct dm_target *ti, status_type_t type,
3508 			 unsigned status_flags, char *result, unsigned maxlen)
3509 {
3510 	int r = 0;
3511 	unsigned i;
3512 	ssize_t sz = 0;
3513 	dm_block_t nr_free_blocks_metadata = 0;
3514 	dm_block_t nr_blocks_metadata = 0;
3515 	char buf[BDEVNAME_SIZE];
3516 	struct cache *cache = ti->private;
3517 	dm_cblock_t residency;
3518 	bool needs_check;
3519 
3520 	switch (type) {
3521 	case STATUSTYPE_INFO:
3522 		if (get_cache_mode(cache) == CM_FAIL) {
3523 			DMEMIT("Fail");
3524 			break;
3525 		}
3526 
3527 		/* Commit to ensure statistics aren't out-of-date */
3528 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3529 			(void) commit(cache, false);
3530 
3531 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3532 		if (r) {
3533 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3534 			      cache_device_name(cache), r);
3535 			goto err;
3536 		}
3537 
3538 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3539 		if (r) {
3540 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3541 			      cache_device_name(cache), r);
3542 			goto err;
3543 		}
3544 
3545 		residency = policy_residency(cache->policy);
3546 
3547 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3548 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3549 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3550 		       (unsigned long long)nr_blocks_metadata,
3551 		       cache->sectors_per_block,
3552 		       (unsigned long long) from_cblock(residency),
3553 		       (unsigned long long) from_cblock(cache->cache_size),
3554 		       (unsigned) atomic_read(&cache->stats.read_hit),
3555 		       (unsigned) atomic_read(&cache->stats.read_miss),
3556 		       (unsigned) atomic_read(&cache->stats.write_hit),
3557 		       (unsigned) atomic_read(&cache->stats.write_miss),
3558 		       (unsigned) atomic_read(&cache->stats.demotion),
3559 		       (unsigned) atomic_read(&cache->stats.promotion),
3560 		       (unsigned long) atomic_read(&cache->nr_dirty));
3561 
3562 		if (writethrough_mode(&cache->features))
3563 			DMEMIT("1 writethrough ");
3564 
3565 		else if (passthrough_mode(&cache->features))
3566 			DMEMIT("1 passthrough ");
3567 
3568 		else if (writeback_mode(&cache->features))
3569 			DMEMIT("1 writeback ");
3570 
3571 		else {
3572 			DMERR("%s: internal error: unknown io mode: %d",
3573 			      cache_device_name(cache), (int) cache->features.io_mode);
3574 			goto err;
3575 		}
3576 
3577 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3578 
3579 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3580 		if (sz < maxlen) {
3581 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3582 			if (r)
3583 				DMERR("%s: policy_emit_config_values returned %d",
3584 				      cache_device_name(cache), r);
3585 		}
3586 
3587 		if (get_cache_mode(cache) == CM_READ_ONLY)
3588 			DMEMIT("ro ");
3589 		else
3590 			DMEMIT("rw ");
3591 
3592 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3593 
3594 		if (r || needs_check)
3595 			DMEMIT("needs_check ");
3596 		else
3597 			DMEMIT("- ");
3598 
3599 		break;
3600 
3601 	case STATUSTYPE_TABLE:
3602 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3603 		DMEMIT("%s ", buf);
3604 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3605 		DMEMIT("%s ", buf);
3606 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3607 		DMEMIT("%s", buf);
3608 
3609 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3610 			DMEMIT(" %s", cache->ctr_args[i]);
3611 		if (cache->nr_ctr_args)
3612 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3613 	}
3614 
3615 	return;
3616 
3617 err:
3618 	DMEMIT("Error");
3619 }
3620 
3621 /*
3622  * A cache block range can take two forms:
3623  *
3624  * i) A single cblock, eg. '3456'
3625  * ii) A begin and end cblock with dots between, eg. 123-234
3626  */
3627 static int parse_cblock_range(struct cache *cache, const char *str,
3628 			      struct cblock_range *result)
3629 {
3630 	char dummy;
3631 	uint64_t b, e;
3632 	int r;
3633 
3634 	/*
3635 	 * Try and parse form (ii) first.
3636 	 */
3637 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3638 	if (r < 0)
3639 		return r;
3640 
3641 	if (r == 2) {
3642 		result->begin = to_cblock(b);
3643 		result->end = to_cblock(e);
3644 		return 0;
3645 	}
3646 
3647 	/*
3648 	 * That didn't work, try form (i).
3649 	 */
3650 	r = sscanf(str, "%llu%c", &b, &dummy);
3651 	if (r < 0)
3652 		return r;
3653 
3654 	if (r == 1) {
3655 		result->begin = to_cblock(b);
3656 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3657 		return 0;
3658 	}
3659 
3660 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3661 	return -EINVAL;
3662 }
3663 
3664 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3665 {
3666 	uint64_t b = from_cblock(range->begin);
3667 	uint64_t e = from_cblock(range->end);
3668 	uint64_t n = from_cblock(cache->cache_size);
3669 
3670 	if (b >= n) {
3671 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3672 		      cache_device_name(cache), b, n);
3673 		return -EINVAL;
3674 	}
3675 
3676 	if (e > n) {
3677 		DMERR("%s: end cblock out of range: %llu > %llu",
3678 		      cache_device_name(cache), e, n);
3679 		return -EINVAL;
3680 	}
3681 
3682 	if (b >= e) {
3683 		DMERR("%s: invalid cblock range: %llu >= %llu",
3684 		      cache_device_name(cache), b, e);
3685 		return -EINVAL;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3692 {
3693 	struct invalidation_request req;
3694 
3695 	INIT_LIST_HEAD(&req.list);
3696 	req.cblocks = range;
3697 	atomic_set(&req.complete, 0);
3698 	req.err = 0;
3699 	init_waitqueue_head(&req.result_wait);
3700 
3701 	spin_lock(&cache->invalidation_lock);
3702 	list_add(&req.list, &cache->invalidation_requests);
3703 	spin_unlock(&cache->invalidation_lock);
3704 	wake_worker(cache);
3705 
3706 	wait_event(req.result_wait, atomic_read(&req.complete));
3707 	return req.err;
3708 }
3709 
3710 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3711 					      const char **cblock_ranges)
3712 {
3713 	int r = 0;
3714 	unsigned i;
3715 	struct cblock_range range;
3716 
3717 	if (!passthrough_mode(&cache->features)) {
3718 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3719 		      cache_device_name(cache));
3720 		return -EPERM;
3721 	}
3722 
3723 	for (i = 0; i < count; i++) {
3724 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3725 		if (r)
3726 			break;
3727 
3728 		r = validate_cblock_range(cache, &range);
3729 		if (r)
3730 			break;
3731 
3732 		/*
3733 		 * Pass begin and end origin blocks to the worker and wake it.
3734 		 */
3735 		r = request_invalidation(cache, &range);
3736 		if (r)
3737 			break;
3738 	}
3739 
3740 	return r;
3741 }
3742 
3743 /*
3744  * Supports
3745  *	"<key> <value>"
3746  * and
3747  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3748  *
3749  * The key migration_threshold is supported by the cache target core.
3750  */
3751 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3752 {
3753 	struct cache *cache = ti->private;
3754 
3755 	if (!argc)
3756 		return -EINVAL;
3757 
3758 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3759 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3760 		      cache_device_name(cache));
3761 		return -EOPNOTSUPP;
3762 	}
3763 
3764 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3765 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3766 
3767 	if (argc != 2)
3768 		return -EINVAL;
3769 
3770 	return set_config_value(cache, argv[0], argv[1]);
3771 }
3772 
3773 static int cache_iterate_devices(struct dm_target *ti,
3774 				 iterate_devices_callout_fn fn, void *data)
3775 {
3776 	int r = 0;
3777 	struct cache *cache = ti->private;
3778 
3779 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3780 	if (!r)
3781 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3782 
3783 	return r;
3784 }
3785 
3786 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3787 {
3788 	/*
3789 	 * FIXME: these limits may be incompatible with the cache device
3790 	 */
3791 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3792 					    cache->origin_sectors);
3793 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3794 }
3795 
3796 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3797 {
3798 	struct cache *cache = ti->private;
3799 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3800 
3801 	/*
3802 	 * If the system-determined stacked limits are compatible with the
3803 	 * cache's blocksize (io_opt is a factor) do not override them.
3804 	 */
3805 	if (io_opt_sectors < cache->sectors_per_block ||
3806 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3807 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3808 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3809 	}
3810 	set_discard_limits(cache, limits);
3811 }
3812 
3813 /*----------------------------------------------------------------*/
3814 
3815 static struct target_type cache_target = {
3816 	.name = "cache",
3817 	.version = {1, 9, 0},
3818 	.module = THIS_MODULE,
3819 	.ctr = cache_ctr,
3820 	.dtr = cache_dtr,
3821 	.map = cache_map,
3822 	.end_io = cache_end_io,
3823 	.postsuspend = cache_postsuspend,
3824 	.preresume = cache_preresume,
3825 	.resume = cache_resume,
3826 	.status = cache_status,
3827 	.message = cache_message,
3828 	.iterate_devices = cache_iterate_devices,
3829 	.io_hints = cache_io_hints,
3830 };
3831 
3832 static int __init dm_cache_init(void)
3833 {
3834 	int r;
3835 
3836 	r = dm_register_target(&cache_target);
3837 	if (r) {
3838 		DMERR("cache target registration failed: %d", r);
3839 		return r;
3840 	}
3841 
3842 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3843 	if (!migration_cache) {
3844 		dm_unregister_target(&cache_target);
3845 		return -ENOMEM;
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 static void __exit dm_cache_exit(void)
3852 {
3853 	dm_unregister_target(&cache_target);
3854 	kmem_cache_destroy(migration_cache);
3855 }
3856 
3857 module_init(dm_cache_init);
3858 module_exit(dm_cache_exit);
3859 
3860 MODULE_DESCRIPTION(DM_NAME " cache target");
3861 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3862 MODULE_LICENSE("GPL");
3863