xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 };
122 
123 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
124 			bio_end_io_t *bi_end_io, void *bi_private)
125 {
126 	h->bi_end_io = bio->bi_end_io;
127 
128 	bio->bi_end_io = bi_end_io;
129 	bio->bi_private = bi_private;
130 }
131 
132 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
133 {
134 	bio->bi_end_io = h->bi_end_io;
135 }
136 
137 /*----------------------------------------------------------------*/
138 
139 #define MIGRATION_POOL_SIZE 128
140 #define COMMIT_PERIOD HZ
141 #define MIGRATION_COUNT_WINDOW 10
142 
143 /*
144  * The block size of the device holding cache data must be
145  * between 32KB and 1GB.
146  */
147 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
148 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
149 
150 enum cache_metadata_mode {
151 	CM_WRITE,		/* metadata may be changed */
152 	CM_READ_ONLY,		/* metadata may not be changed */
153 	CM_FAIL
154 };
155 
156 enum cache_io_mode {
157 	/*
158 	 * Data is written to cached blocks only.  These blocks are marked
159 	 * dirty.  If you lose the cache device you will lose data.
160 	 * Potential performance increase for both reads and writes.
161 	 */
162 	CM_IO_WRITEBACK,
163 
164 	/*
165 	 * Data is written to both cache and origin.  Blocks are never
166 	 * dirty.  Potential performance benfit for reads only.
167 	 */
168 	CM_IO_WRITETHROUGH,
169 
170 	/*
171 	 * A degraded mode useful for various cache coherency situations
172 	 * (eg, rolling back snapshots).  Reads and writes always go to the
173 	 * origin.  If a write goes to a cached oblock, then the cache
174 	 * block is invalidated.
175 	 */
176 	CM_IO_PASSTHROUGH
177 };
178 
179 struct cache_features {
180 	enum cache_metadata_mode mode;
181 	enum cache_io_mode io_mode;
182 	unsigned metadata_version;
183 };
184 
185 struct cache_stats {
186 	atomic_t read_hit;
187 	atomic_t read_miss;
188 	atomic_t write_hit;
189 	atomic_t write_miss;
190 	atomic_t demotion;
191 	atomic_t promotion;
192 	atomic_t copies_avoided;
193 	atomic_t cache_cell_clash;
194 	atomic_t commit_count;
195 	atomic_t discard_count;
196 };
197 
198 /*
199  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
200  * the one-past-the-end value.
201  */
202 struct cblock_range {
203 	dm_cblock_t begin;
204 	dm_cblock_t end;
205 };
206 
207 struct invalidation_request {
208 	struct list_head list;
209 	struct cblock_range *cblocks;
210 
211 	atomic_t complete;
212 	int err;
213 
214 	wait_queue_head_t result_wait;
215 };
216 
217 struct cache {
218 	struct dm_target *ti;
219 	struct dm_target_callbacks callbacks;
220 
221 	struct dm_cache_metadata *cmd;
222 
223 	/*
224 	 * Metadata is written to this device.
225 	 */
226 	struct dm_dev *metadata_dev;
227 
228 	/*
229 	 * The slower of the two data devices.  Typically a spindle.
230 	 */
231 	struct dm_dev *origin_dev;
232 
233 	/*
234 	 * The faster of the two data devices.  Typically an SSD.
235 	 */
236 	struct dm_dev *cache_dev;
237 
238 	/*
239 	 * Size of the origin device in _complete_ blocks and native sectors.
240 	 */
241 	dm_oblock_t origin_blocks;
242 	sector_t origin_sectors;
243 
244 	/*
245 	 * Size of the cache device in blocks.
246 	 */
247 	dm_cblock_t cache_size;
248 
249 	/*
250 	 * Fields for converting from sectors to blocks.
251 	 */
252 	sector_t sectors_per_block;
253 	int sectors_per_block_shift;
254 
255 	spinlock_t lock;
256 	struct list_head deferred_cells;
257 	struct bio_list deferred_bios;
258 	struct bio_list deferred_flush_bios;
259 	struct bio_list deferred_writethrough_bios;
260 	struct list_head quiesced_migrations;
261 	struct list_head completed_migrations;
262 	struct list_head need_commit_migrations;
263 	sector_t migration_threshold;
264 	wait_queue_head_t migration_wait;
265 	atomic_t nr_allocated_migrations;
266 
267 	/*
268 	 * The number of in flight migrations that are performing
269 	 * background io. eg, promotion, writeback.
270 	 */
271 	atomic_t nr_io_migrations;
272 
273 	wait_queue_head_t quiescing_wait;
274 	atomic_t quiescing;
275 	atomic_t quiescing_ack;
276 
277 	/*
278 	 * cache_size entries, dirty if set
279 	 */
280 	atomic_t nr_dirty;
281 	unsigned long *dirty_bitset;
282 
283 	/*
284 	 * origin_blocks entries, discarded if set.
285 	 */
286 	dm_dblock_t discard_nr_blocks;
287 	unsigned long *discard_bitset;
288 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
289 
290 	/*
291 	 * Rather than reconstructing the table line for the status we just
292 	 * save it and regurgitate.
293 	 */
294 	unsigned nr_ctr_args;
295 	const char **ctr_args;
296 
297 	struct dm_kcopyd_client *copier;
298 	struct workqueue_struct *wq;
299 	struct work_struct worker;
300 
301 	struct delayed_work waker;
302 	unsigned long last_commit_jiffies;
303 
304 	struct dm_bio_prison *prison;
305 	struct dm_deferred_set *all_io_ds;
306 
307 	mempool_t *migration_pool;
308 
309 	struct dm_cache_policy *policy;
310 	unsigned policy_nr_args;
311 
312 	bool need_tick_bio:1;
313 	bool sized:1;
314 	bool invalidate:1;
315 	bool commit_requested:1;
316 	bool loaded_mappings:1;
317 	bool loaded_discards:1;
318 
319 	/*
320 	 * Cache features such as write-through.
321 	 */
322 	struct cache_features features;
323 
324 	struct cache_stats stats;
325 
326 	/*
327 	 * Invalidation fields.
328 	 */
329 	spinlock_t invalidation_lock;
330 	struct list_head invalidation_requests;
331 
332 	struct io_tracker origin_tracker;
333 };
334 
335 struct per_bio_data {
336 	bool tick:1;
337 	unsigned req_nr:2;
338 	struct dm_deferred_entry *all_io_entry;
339 	struct dm_hook_info hook_info;
340 	sector_t len;
341 
342 	/*
343 	 * writethrough fields.  These MUST remain at the end of this
344 	 * structure and the 'cache' member must be the first as it
345 	 * is used to determine the offset of the writethrough fields.
346 	 */
347 	struct cache *cache;
348 	dm_cblock_t cblock;
349 	struct dm_bio_details bio_details;
350 };
351 
352 struct dm_cache_migration {
353 	struct list_head list;
354 	struct cache *cache;
355 
356 	unsigned long start_jiffies;
357 	dm_oblock_t old_oblock;
358 	dm_oblock_t new_oblock;
359 	dm_cblock_t cblock;
360 
361 	bool err:1;
362 	bool discard:1;
363 	bool writeback:1;
364 	bool demote:1;
365 	bool promote:1;
366 	bool requeue_holder:1;
367 	bool invalidate:1;
368 
369 	struct dm_bio_prison_cell *old_ocell;
370 	struct dm_bio_prison_cell *new_ocell;
371 };
372 
373 /*
374  * Processing a bio in the worker thread may require these memory
375  * allocations.  We prealloc to avoid deadlocks (the same worker thread
376  * frees them back to the mempool).
377  */
378 struct prealloc {
379 	struct dm_cache_migration *mg;
380 	struct dm_bio_prison_cell *cell1;
381 	struct dm_bio_prison_cell *cell2;
382 };
383 
384 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
385 
386 static void wake_worker(struct cache *cache)
387 {
388 	queue_work(cache->wq, &cache->worker);
389 }
390 
391 /*----------------------------------------------------------------*/
392 
393 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
394 {
395 	/* FIXME: change to use a local slab. */
396 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
397 }
398 
399 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
400 {
401 	dm_bio_prison_free_cell(cache->prison, cell);
402 }
403 
404 static struct dm_cache_migration *alloc_migration(struct cache *cache)
405 {
406 	struct dm_cache_migration *mg;
407 
408 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
409 	if (mg) {
410 		mg->cache = cache;
411 		atomic_inc(&mg->cache->nr_allocated_migrations);
412 	}
413 
414 	return mg;
415 }
416 
417 static void free_migration(struct dm_cache_migration *mg)
418 {
419 	struct cache *cache = mg->cache;
420 
421 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
422 		wake_up(&cache->migration_wait);
423 
424 	mempool_free(mg, cache->migration_pool);
425 }
426 
427 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
428 {
429 	if (!p->mg) {
430 		p->mg = alloc_migration(cache);
431 		if (!p->mg)
432 			return -ENOMEM;
433 	}
434 
435 	if (!p->cell1) {
436 		p->cell1 = alloc_prison_cell(cache);
437 		if (!p->cell1)
438 			return -ENOMEM;
439 	}
440 
441 	if (!p->cell2) {
442 		p->cell2 = alloc_prison_cell(cache);
443 		if (!p->cell2)
444 			return -ENOMEM;
445 	}
446 
447 	return 0;
448 }
449 
450 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
451 {
452 	if (p->cell2)
453 		free_prison_cell(cache, p->cell2);
454 
455 	if (p->cell1)
456 		free_prison_cell(cache, p->cell1);
457 
458 	if (p->mg)
459 		free_migration(p->mg);
460 }
461 
462 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
463 {
464 	struct dm_cache_migration *mg = p->mg;
465 
466 	BUG_ON(!mg);
467 	p->mg = NULL;
468 
469 	return mg;
470 }
471 
472 /*
473  * You must have a cell within the prealloc struct to return.  If not this
474  * function will BUG() rather than returning NULL.
475  */
476 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
477 {
478 	struct dm_bio_prison_cell *r = NULL;
479 
480 	if (p->cell1) {
481 		r = p->cell1;
482 		p->cell1 = NULL;
483 
484 	} else if (p->cell2) {
485 		r = p->cell2;
486 		p->cell2 = NULL;
487 	} else
488 		BUG();
489 
490 	return r;
491 }
492 
493 /*
494  * You can't have more than two cells in a prealloc struct.  BUG() will be
495  * called if you try and overfill.
496  */
497 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
498 {
499 	if (!p->cell2)
500 		p->cell2 = cell;
501 
502 	else if (!p->cell1)
503 		p->cell1 = cell;
504 
505 	else
506 		BUG();
507 }
508 
509 /*----------------------------------------------------------------*/
510 
511 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
512 {
513 	key->virtual = 0;
514 	key->dev = 0;
515 	key->block_begin = from_oblock(begin);
516 	key->block_end = from_oblock(end);
517 }
518 
519 /*
520  * The caller hands in a preallocated cell, and a free function for it.
521  * The cell will be freed if there's an error, or if it wasn't used because
522  * a cell with that key already exists.
523  */
524 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
525 
526 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
527 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
528 			    cell_free_fn free_fn, void *free_context,
529 			    struct dm_bio_prison_cell **cell_result)
530 {
531 	int r;
532 	struct dm_cell_key key;
533 
534 	build_key(oblock_begin, oblock_end, &key);
535 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
536 	if (r)
537 		free_fn(free_context, cell_prealloc);
538 
539 	return r;
540 }
541 
542 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
543 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
544 		      cell_free_fn free_fn, void *free_context,
545 		      struct dm_bio_prison_cell **cell_result)
546 {
547 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
548 	return bio_detain_range(cache, oblock, end, bio,
549 				cell_prealloc, free_fn, free_context, cell_result);
550 }
551 
552 static int get_cell(struct cache *cache,
553 		    dm_oblock_t oblock,
554 		    struct prealloc *structs,
555 		    struct dm_bio_prison_cell **cell_result)
556 {
557 	int r;
558 	struct dm_cell_key key;
559 	struct dm_bio_prison_cell *cell_prealloc;
560 
561 	cell_prealloc = prealloc_get_cell(structs);
562 
563 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
564 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
565 	if (r)
566 		prealloc_put_cell(structs, cell_prealloc);
567 
568 	return r;
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 static bool is_dirty(struct cache *cache, dm_cblock_t b)
574 {
575 	return test_bit(from_cblock(b), cache->dirty_bitset);
576 }
577 
578 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
579 {
580 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
581 		atomic_inc(&cache->nr_dirty);
582 		policy_set_dirty(cache->policy, oblock);
583 	}
584 }
585 
586 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
587 {
588 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
589 		policy_clear_dirty(cache->policy, oblock);
590 		if (atomic_dec_return(&cache->nr_dirty) == 0)
591 			dm_table_event(cache->ti->table);
592 	}
593 }
594 
595 /*----------------------------------------------------------------*/
596 
597 static bool block_size_is_power_of_two(struct cache *cache)
598 {
599 	return cache->sectors_per_block_shift >= 0;
600 }
601 
602 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
603 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
604 __always_inline
605 #endif
606 static dm_block_t block_div(dm_block_t b, uint32_t n)
607 {
608 	do_div(b, n);
609 
610 	return b;
611 }
612 
613 static dm_block_t oblocks_per_dblock(struct cache *cache)
614 {
615 	dm_block_t oblocks = cache->discard_block_size;
616 
617 	if (block_size_is_power_of_two(cache))
618 		oblocks >>= cache->sectors_per_block_shift;
619 	else
620 		oblocks = block_div(oblocks, cache->sectors_per_block);
621 
622 	return oblocks;
623 }
624 
625 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
626 {
627 	return to_dblock(block_div(from_oblock(oblock),
628 				   oblocks_per_dblock(cache)));
629 }
630 
631 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
632 {
633 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
634 }
635 
636 static void set_discard(struct cache *cache, dm_dblock_t b)
637 {
638 	unsigned long flags;
639 
640 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
641 	atomic_inc(&cache->stats.discard_count);
642 
643 	spin_lock_irqsave(&cache->lock, flags);
644 	set_bit(from_dblock(b), cache->discard_bitset);
645 	spin_unlock_irqrestore(&cache->lock, flags);
646 }
647 
648 static void clear_discard(struct cache *cache, dm_dblock_t b)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&cache->lock, flags);
653 	clear_bit(from_dblock(b), cache->discard_bitset);
654 	spin_unlock_irqrestore(&cache->lock, flags);
655 }
656 
657 static bool is_discarded(struct cache *cache, dm_dblock_t b)
658 {
659 	int r;
660 	unsigned long flags;
661 
662 	spin_lock_irqsave(&cache->lock, flags);
663 	r = test_bit(from_dblock(b), cache->discard_bitset);
664 	spin_unlock_irqrestore(&cache->lock, flags);
665 
666 	return r;
667 }
668 
669 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
670 {
671 	int r;
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&cache->lock, flags);
675 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
676 		     cache->discard_bitset);
677 	spin_unlock_irqrestore(&cache->lock, flags);
678 
679 	return r;
680 }
681 
682 /*----------------------------------------------------------------*/
683 
684 static void load_stats(struct cache *cache)
685 {
686 	struct dm_cache_statistics stats;
687 
688 	dm_cache_metadata_get_stats(cache->cmd, &stats);
689 	atomic_set(&cache->stats.read_hit, stats.read_hits);
690 	atomic_set(&cache->stats.read_miss, stats.read_misses);
691 	atomic_set(&cache->stats.write_hit, stats.write_hits);
692 	atomic_set(&cache->stats.write_miss, stats.write_misses);
693 }
694 
695 static void save_stats(struct cache *cache)
696 {
697 	struct dm_cache_statistics stats;
698 
699 	if (get_cache_mode(cache) >= CM_READ_ONLY)
700 		return;
701 
702 	stats.read_hits = atomic_read(&cache->stats.read_hit);
703 	stats.read_misses = atomic_read(&cache->stats.read_miss);
704 	stats.write_hits = atomic_read(&cache->stats.write_hit);
705 	stats.write_misses = atomic_read(&cache->stats.write_miss);
706 
707 	dm_cache_metadata_set_stats(cache->cmd, &stats);
708 }
709 
710 /*----------------------------------------------------------------
711  * Per bio data
712  *--------------------------------------------------------------*/
713 
714 /*
715  * If using writeback, leave out struct per_bio_data's writethrough fields.
716  */
717 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
718 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
719 
720 static bool writethrough_mode(struct cache_features *f)
721 {
722 	return f->io_mode == CM_IO_WRITETHROUGH;
723 }
724 
725 static bool writeback_mode(struct cache_features *f)
726 {
727 	return f->io_mode == CM_IO_WRITEBACK;
728 }
729 
730 static bool passthrough_mode(struct cache_features *f)
731 {
732 	return f->io_mode == CM_IO_PASSTHROUGH;
733 }
734 
735 static size_t get_per_bio_data_size(struct cache *cache)
736 {
737 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
738 }
739 
740 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
741 {
742 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
743 	BUG_ON(!pb);
744 	return pb;
745 }
746 
747 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
748 {
749 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
750 
751 	pb->tick = false;
752 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
753 	pb->all_io_entry = NULL;
754 	pb->len = 0;
755 
756 	return pb;
757 }
758 
759 /*----------------------------------------------------------------
760  * Remapping
761  *--------------------------------------------------------------*/
762 static void remap_to_origin(struct cache *cache, struct bio *bio)
763 {
764 	bio->bi_bdev = cache->origin_dev->bdev;
765 }
766 
767 static void remap_to_cache(struct cache *cache, struct bio *bio,
768 			   dm_cblock_t cblock)
769 {
770 	sector_t bi_sector = bio->bi_iter.bi_sector;
771 	sector_t block = from_cblock(cblock);
772 
773 	bio->bi_bdev = cache->cache_dev->bdev;
774 	if (!block_size_is_power_of_two(cache))
775 		bio->bi_iter.bi_sector =
776 			(block * cache->sectors_per_block) +
777 			sector_div(bi_sector, cache->sectors_per_block);
778 	else
779 		bio->bi_iter.bi_sector =
780 			(block << cache->sectors_per_block_shift) |
781 			(bi_sector & (cache->sectors_per_block - 1));
782 }
783 
784 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
785 {
786 	unsigned long flags;
787 	size_t pb_data_size = get_per_bio_data_size(cache);
788 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
789 
790 	spin_lock_irqsave(&cache->lock, flags);
791 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
792 	    bio_op(bio) != REQ_OP_DISCARD) {
793 		pb->tick = true;
794 		cache->need_tick_bio = false;
795 	}
796 	spin_unlock_irqrestore(&cache->lock, flags);
797 }
798 
799 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
800 				  dm_oblock_t oblock)
801 {
802 	check_if_tick_bio_needed(cache, bio);
803 	remap_to_origin(cache, bio);
804 	if (bio_data_dir(bio) == WRITE)
805 		clear_discard(cache, oblock_to_dblock(cache, oblock));
806 }
807 
808 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
809 				 dm_oblock_t oblock, dm_cblock_t cblock)
810 {
811 	check_if_tick_bio_needed(cache, bio);
812 	remap_to_cache(cache, bio, cblock);
813 	if (bio_data_dir(bio) == WRITE) {
814 		set_dirty(cache, oblock, cblock);
815 		clear_discard(cache, oblock_to_dblock(cache, oblock));
816 	}
817 }
818 
819 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
820 {
821 	sector_t block_nr = bio->bi_iter.bi_sector;
822 
823 	if (!block_size_is_power_of_two(cache))
824 		(void) sector_div(block_nr, cache->sectors_per_block);
825 	else
826 		block_nr >>= cache->sectors_per_block_shift;
827 
828 	return to_oblock(block_nr);
829 }
830 
831 /*
832  * You must increment the deferred set whilst the prison cell is held.  To
833  * encourage this, we ask for 'cell' to be passed in.
834  */
835 static void inc_ds(struct cache *cache, struct bio *bio,
836 		   struct dm_bio_prison_cell *cell)
837 {
838 	size_t pb_data_size = get_per_bio_data_size(cache);
839 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
840 
841 	BUG_ON(!cell);
842 	BUG_ON(pb->all_io_entry);
843 
844 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
845 }
846 
847 static bool accountable_bio(struct cache *cache, struct bio *bio)
848 {
849 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
850 		bio_op(bio) != REQ_OP_DISCARD);
851 }
852 
853 static void accounted_begin(struct cache *cache, struct bio *bio)
854 {
855 	size_t pb_data_size = get_per_bio_data_size(cache);
856 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
857 
858 	if (accountable_bio(cache, bio)) {
859 		pb->len = bio_sectors(bio);
860 		iot_io_begin(&cache->origin_tracker, pb->len);
861 	}
862 }
863 
864 static void accounted_complete(struct cache *cache, struct bio *bio)
865 {
866 	size_t pb_data_size = get_per_bio_data_size(cache);
867 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
868 
869 	iot_io_end(&cache->origin_tracker, pb->len);
870 }
871 
872 static void accounted_request(struct cache *cache, struct bio *bio)
873 {
874 	accounted_begin(cache, bio);
875 	generic_make_request(bio);
876 }
877 
878 static void issue(struct cache *cache, struct bio *bio)
879 {
880 	unsigned long flags;
881 
882 	if (!op_is_flush(bio->bi_opf)) {
883 		accounted_request(cache, bio);
884 		return;
885 	}
886 
887 	/*
888 	 * Batch together any bios that trigger commits and then issue a
889 	 * single commit for them in do_worker().
890 	 */
891 	spin_lock_irqsave(&cache->lock, flags);
892 	cache->commit_requested = true;
893 	bio_list_add(&cache->deferred_flush_bios, bio);
894 	spin_unlock_irqrestore(&cache->lock, flags);
895 }
896 
897 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
898 {
899 	inc_ds(cache, bio, cell);
900 	issue(cache, bio);
901 }
902 
903 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
904 {
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(&cache->lock, flags);
908 	bio_list_add(&cache->deferred_writethrough_bios, bio);
909 	spin_unlock_irqrestore(&cache->lock, flags);
910 
911 	wake_worker(cache);
912 }
913 
914 static void writethrough_endio(struct bio *bio)
915 {
916 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
917 
918 	dm_unhook_bio(&pb->hook_info, bio);
919 
920 	if (bio->bi_error) {
921 		bio_endio(bio);
922 		return;
923 	}
924 
925 	dm_bio_restore(&pb->bio_details, bio);
926 	remap_to_cache(pb->cache, bio, pb->cblock);
927 
928 	/*
929 	 * We can't issue this bio directly, since we're in interrupt
930 	 * context.  So it gets put on a bio list for processing by the
931 	 * worker thread.
932 	 */
933 	defer_writethrough_bio(pb->cache, bio);
934 }
935 
936 /*
937  * When running in writethrough mode we need to send writes to clean blocks
938  * to both the cache and origin devices.  In future we'd like to clone the
939  * bio and send them in parallel, but for now we're doing them in
940  * series as this is easier.
941  */
942 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
943 				       dm_oblock_t oblock, dm_cblock_t cblock)
944 {
945 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
946 
947 	pb->cache = cache;
948 	pb->cblock = cblock;
949 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
950 	dm_bio_record(&pb->bio_details, bio);
951 
952 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
953 }
954 
955 /*----------------------------------------------------------------
956  * Failure modes
957  *--------------------------------------------------------------*/
958 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
959 {
960 	return cache->features.mode;
961 }
962 
963 static const char *cache_device_name(struct cache *cache)
964 {
965 	return dm_device_name(dm_table_get_md(cache->ti->table));
966 }
967 
968 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
969 {
970 	const char *descs[] = {
971 		"write",
972 		"read-only",
973 		"fail"
974 	};
975 
976 	dm_table_event(cache->ti->table);
977 	DMINFO("%s: switching cache to %s mode",
978 	       cache_device_name(cache), descs[(int)mode]);
979 }
980 
981 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
982 {
983 	bool needs_check;
984 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
985 
986 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
987 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
988 		      cache_device_name(cache));
989 		new_mode = CM_FAIL;
990 	}
991 
992 	if (new_mode == CM_WRITE && needs_check) {
993 		DMERR("%s: unable to switch cache to write mode until repaired.",
994 		      cache_device_name(cache));
995 		if (old_mode != new_mode)
996 			new_mode = old_mode;
997 		else
998 			new_mode = CM_READ_ONLY;
999 	}
1000 
1001 	/* Never move out of fail mode */
1002 	if (old_mode == CM_FAIL)
1003 		new_mode = CM_FAIL;
1004 
1005 	switch (new_mode) {
1006 	case CM_FAIL:
1007 	case CM_READ_ONLY:
1008 		dm_cache_metadata_set_read_only(cache->cmd);
1009 		break;
1010 
1011 	case CM_WRITE:
1012 		dm_cache_metadata_set_read_write(cache->cmd);
1013 		break;
1014 	}
1015 
1016 	cache->features.mode = new_mode;
1017 
1018 	if (new_mode != old_mode)
1019 		notify_mode_switch(cache, new_mode);
1020 }
1021 
1022 static void abort_transaction(struct cache *cache)
1023 {
1024 	const char *dev_name = cache_device_name(cache);
1025 
1026 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1027 		return;
1028 
1029 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1030 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1031 		set_cache_mode(cache, CM_FAIL);
1032 	}
1033 
1034 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1035 	if (dm_cache_metadata_abort(cache->cmd)) {
1036 		DMERR("%s: failed to abort metadata transaction", dev_name);
1037 		set_cache_mode(cache, CM_FAIL);
1038 	}
1039 }
1040 
1041 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1042 {
1043 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1044 		    cache_device_name(cache), op, r);
1045 	abort_transaction(cache);
1046 	set_cache_mode(cache, CM_READ_ONLY);
1047 }
1048 
1049 /*----------------------------------------------------------------
1050  * Migration processing
1051  *
1052  * Migration covers moving data from the origin device to the cache, or
1053  * vice versa.
1054  *--------------------------------------------------------------*/
1055 static void inc_io_migrations(struct cache *cache)
1056 {
1057 	atomic_inc(&cache->nr_io_migrations);
1058 }
1059 
1060 static void dec_io_migrations(struct cache *cache)
1061 {
1062 	atomic_dec(&cache->nr_io_migrations);
1063 }
1064 
1065 static bool discard_or_flush(struct bio *bio)
1066 {
1067 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1068 }
1069 
1070 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1071 {
1072 	if (discard_or_flush(cell->holder)) {
1073 		/*
1074 		 * We have to handle these bios individually.
1075 		 */
1076 		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1077 		free_prison_cell(cache, cell);
1078 	} else
1079 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1080 }
1081 
1082 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1083 {
1084 	unsigned long flags;
1085 
1086 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1087 		/*
1088 		 * There was no prisoner to promote to holder, the
1089 		 * cell has been released.
1090 		 */
1091 		free_prison_cell(cache, cell);
1092 		return;
1093 	}
1094 
1095 	spin_lock_irqsave(&cache->lock, flags);
1096 	__cell_defer(cache, cell);
1097 	spin_unlock_irqrestore(&cache->lock, flags);
1098 
1099 	wake_worker(cache);
1100 }
1101 
1102 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1103 {
1104 	dm_cell_error(cache->prison, cell, err);
1105 	free_prison_cell(cache, cell);
1106 }
1107 
1108 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1109 {
1110 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1111 }
1112 
1113 static void free_io_migration(struct dm_cache_migration *mg)
1114 {
1115 	struct cache *cache = mg->cache;
1116 
1117 	dec_io_migrations(cache);
1118 	free_migration(mg);
1119 	wake_worker(cache);
1120 }
1121 
1122 static void migration_failure(struct dm_cache_migration *mg)
1123 {
1124 	struct cache *cache = mg->cache;
1125 	const char *dev_name = cache_device_name(cache);
1126 
1127 	if (mg->writeback) {
1128 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1129 		set_dirty(cache, mg->old_oblock, mg->cblock);
1130 		cell_defer(cache, mg->old_ocell, false);
1131 
1132 	} else if (mg->demote) {
1133 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1134 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1135 
1136 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1137 		if (mg->promote)
1138 			cell_defer(cache, mg->new_ocell, true);
1139 	} else {
1140 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1141 		policy_remove_mapping(cache->policy, mg->new_oblock);
1142 		cell_defer(cache, mg->new_ocell, true);
1143 	}
1144 
1145 	free_io_migration(mg);
1146 }
1147 
1148 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1149 {
1150 	int r;
1151 	unsigned long flags;
1152 	struct cache *cache = mg->cache;
1153 
1154 	if (mg->writeback) {
1155 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1156 		cell_defer(cache, mg->old_ocell, false);
1157 		free_io_migration(mg);
1158 		return;
1159 
1160 	} else if (mg->demote) {
1161 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1162 		if (r) {
1163 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1164 				    cache_device_name(cache));
1165 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1166 			policy_force_mapping(cache->policy, mg->new_oblock,
1167 					     mg->old_oblock);
1168 			if (mg->promote)
1169 				cell_defer(cache, mg->new_ocell, true);
1170 			free_io_migration(mg);
1171 			return;
1172 		}
1173 	} else {
1174 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1175 		if (r) {
1176 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1177 				    cache_device_name(cache));
1178 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1179 			policy_remove_mapping(cache->policy, mg->new_oblock);
1180 			free_io_migration(mg);
1181 			return;
1182 		}
1183 	}
1184 
1185 	spin_lock_irqsave(&cache->lock, flags);
1186 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1187 	cache->commit_requested = true;
1188 	spin_unlock_irqrestore(&cache->lock, flags);
1189 }
1190 
1191 static void migration_success_post_commit(struct dm_cache_migration *mg)
1192 {
1193 	unsigned long flags;
1194 	struct cache *cache = mg->cache;
1195 
1196 	if (mg->writeback) {
1197 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1198 			     cache_device_name(cache));
1199 		return;
1200 
1201 	} else if (mg->demote) {
1202 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1203 
1204 		if (mg->promote) {
1205 			mg->demote = false;
1206 
1207 			spin_lock_irqsave(&cache->lock, flags);
1208 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1209 			spin_unlock_irqrestore(&cache->lock, flags);
1210 
1211 		} else {
1212 			if (mg->invalidate)
1213 				policy_remove_mapping(cache->policy, mg->old_oblock);
1214 			free_io_migration(mg);
1215 		}
1216 
1217 	} else {
1218 		if (mg->requeue_holder) {
1219 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1220 			cell_defer(cache, mg->new_ocell, true);
1221 		} else {
1222 			/*
1223 			 * The block was promoted via an overwrite, so it's dirty.
1224 			 */
1225 			set_dirty(cache, mg->new_oblock, mg->cblock);
1226 			bio_endio(mg->new_ocell->holder);
1227 			cell_defer(cache, mg->new_ocell, false);
1228 		}
1229 		free_io_migration(mg);
1230 	}
1231 }
1232 
1233 static void copy_complete(int read_err, unsigned long write_err, void *context)
1234 {
1235 	unsigned long flags;
1236 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1237 	struct cache *cache = mg->cache;
1238 
1239 	if (read_err || write_err)
1240 		mg->err = true;
1241 
1242 	spin_lock_irqsave(&cache->lock, flags);
1243 	list_add_tail(&mg->list, &cache->completed_migrations);
1244 	spin_unlock_irqrestore(&cache->lock, flags);
1245 
1246 	wake_worker(cache);
1247 }
1248 
1249 static void issue_copy(struct dm_cache_migration *mg)
1250 {
1251 	int r;
1252 	struct dm_io_region o_region, c_region;
1253 	struct cache *cache = mg->cache;
1254 	sector_t cblock = from_cblock(mg->cblock);
1255 
1256 	o_region.bdev = cache->origin_dev->bdev;
1257 	o_region.count = cache->sectors_per_block;
1258 
1259 	c_region.bdev = cache->cache_dev->bdev;
1260 	c_region.sector = cblock * cache->sectors_per_block;
1261 	c_region.count = cache->sectors_per_block;
1262 
1263 	if (mg->writeback || mg->demote) {
1264 		/* demote */
1265 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1266 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1267 	} else {
1268 		/* promote */
1269 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1270 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1271 	}
1272 
1273 	if (r < 0) {
1274 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1275 		migration_failure(mg);
1276 	}
1277 }
1278 
1279 static void overwrite_endio(struct bio *bio)
1280 {
1281 	struct dm_cache_migration *mg = bio->bi_private;
1282 	struct cache *cache = mg->cache;
1283 	size_t pb_data_size = get_per_bio_data_size(cache);
1284 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1285 	unsigned long flags;
1286 
1287 	dm_unhook_bio(&pb->hook_info, bio);
1288 
1289 	if (bio->bi_error)
1290 		mg->err = true;
1291 
1292 	mg->requeue_holder = false;
1293 
1294 	spin_lock_irqsave(&cache->lock, flags);
1295 	list_add_tail(&mg->list, &cache->completed_migrations);
1296 	spin_unlock_irqrestore(&cache->lock, flags);
1297 
1298 	wake_worker(cache);
1299 }
1300 
1301 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1302 {
1303 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1304 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1305 
1306 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1307 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1308 
1309 	/*
1310 	 * No need to inc_ds() here, since the cell will be held for the
1311 	 * duration of the io.
1312 	 */
1313 	accounted_request(mg->cache, bio);
1314 }
1315 
1316 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1317 {
1318 	return (bio_data_dir(bio) == WRITE) &&
1319 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1320 }
1321 
1322 static void avoid_copy(struct dm_cache_migration *mg)
1323 {
1324 	atomic_inc(&mg->cache->stats.copies_avoided);
1325 	migration_success_pre_commit(mg);
1326 }
1327 
1328 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1329 				     dm_dblock_t *b, dm_dblock_t *e)
1330 {
1331 	sector_t sb = bio->bi_iter.bi_sector;
1332 	sector_t se = bio_end_sector(bio);
1333 
1334 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1335 
1336 	if (se - sb < cache->discard_block_size)
1337 		*e = *b;
1338 	else
1339 		*e = to_dblock(block_div(se, cache->discard_block_size));
1340 }
1341 
1342 static void issue_discard(struct dm_cache_migration *mg)
1343 {
1344 	dm_dblock_t b, e;
1345 	struct bio *bio = mg->new_ocell->holder;
1346 	struct cache *cache = mg->cache;
1347 
1348 	calc_discard_block_range(cache, bio, &b, &e);
1349 	while (b != e) {
1350 		set_discard(cache, b);
1351 		b = to_dblock(from_dblock(b) + 1);
1352 	}
1353 
1354 	bio_endio(bio);
1355 	cell_defer(cache, mg->new_ocell, false);
1356 	free_migration(mg);
1357 	wake_worker(cache);
1358 }
1359 
1360 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1361 {
1362 	bool avoid;
1363 	struct cache *cache = mg->cache;
1364 
1365 	if (mg->discard) {
1366 		issue_discard(mg);
1367 		return;
1368 	}
1369 
1370 	if (mg->writeback || mg->demote)
1371 		avoid = !is_dirty(cache, mg->cblock) ||
1372 			is_discarded_oblock(cache, mg->old_oblock);
1373 	else {
1374 		struct bio *bio = mg->new_ocell->holder;
1375 
1376 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1377 
1378 		if (writeback_mode(&cache->features) &&
1379 		    !avoid && bio_writes_complete_block(cache, bio)) {
1380 			issue_overwrite(mg, bio);
1381 			return;
1382 		}
1383 	}
1384 
1385 	avoid ? avoid_copy(mg) : issue_copy(mg);
1386 }
1387 
1388 static void complete_migration(struct dm_cache_migration *mg)
1389 {
1390 	if (mg->err)
1391 		migration_failure(mg);
1392 	else
1393 		migration_success_pre_commit(mg);
1394 }
1395 
1396 static void process_migrations(struct cache *cache, struct list_head *head,
1397 			       void (*fn)(struct dm_cache_migration *))
1398 {
1399 	unsigned long flags;
1400 	struct list_head list;
1401 	struct dm_cache_migration *mg, *tmp;
1402 
1403 	INIT_LIST_HEAD(&list);
1404 	spin_lock_irqsave(&cache->lock, flags);
1405 	list_splice_init(head, &list);
1406 	spin_unlock_irqrestore(&cache->lock, flags);
1407 
1408 	list_for_each_entry_safe(mg, tmp, &list, list)
1409 		fn(mg);
1410 }
1411 
1412 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1413 {
1414 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1415 }
1416 
1417 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1418 {
1419 	unsigned long flags;
1420 	struct cache *cache = mg->cache;
1421 
1422 	spin_lock_irqsave(&cache->lock, flags);
1423 	__queue_quiesced_migration(mg);
1424 	spin_unlock_irqrestore(&cache->lock, flags);
1425 
1426 	wake_worker(cache);
1427 }
1428 
1429 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1430 {
1431 	unsigned long flags;
1432 	struct dm_cache_migration *mg, *tmp;
1433 
1434 	spin_lock_irqsave(&cache->lock, flags);
1435 	list_for_each_entry_safe(mg, tmp, work, list)
1436 		__queue_quiesced_migration(mg);
1437 	spin_unlock_irqrestore(&cache->lock, flags);
1438 
1439 	wake_worker(cache);
1440 }
1441 
1442 static void check_for_quiesced_migrations(struct cache *cache,
1443 					  struct per_bio_data *pb)
1444 {
1445 	struct list_head work;
1446 
1447 	if (!pb->all_io_entry)
1448 		return;
1449 
1450 	INIT_LIST_HEAD(&work);
1451 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1452 
1453 	if (!list_empty(&work))
1454 		queue_quiesced_migrations(cache, &work);
1455 }
1456 
1457 static void quiesce_migration(struct dm_cache_migration *mg)
1458 {
1459 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1460 		queue_quiesced_migration(mg);
1461 }
1462 
1463 static void promote(struct cache *cache, struct prealloc *structs,
1464 		    dm_oblock_t oblock, dm_cblock_t cblock,
1465 		    struct dm_bio_prison_cell *cell)
1466 {
1467 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1468 
1469 	mg->err = false;
1470 	mg->discard = false;
1471 	mg->writeback = false;
1472 	mg->demote = false;
1473 	mg->promote = true;
1474 	mg->requeue_holder = true;
1475 	mg->invalidate = false;
1476 	mg->cache = cache;
1477 	mg->new_oblock = oblock;
1478 	mg->cblock = cblock;
1479 	mg->old_ocell = NULL;
1480 	mg->new_ocell = cell;
1481 	mg->start_jiffies = jiffies;
1482 
1483 	inc_io_migrations(cache);
1484 	quiesce_migration(mg);
1485 }
1486 
1487 static void writeback(struct cache *cache, struct prealloc *structs,
1488 		      dm_oblock_t oblock, dm_cblock_t cblock,
1489 		      struct dm_bio_prison_cell *cell)
1490 {
1491 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1492 
1493 	mg->err = false;
1494 	mg->discard = false;
1495 	mg->writeback = true;
1496 	mg->demote = false;
1497 	mg->promote = false;
1498 	mg->requeue_holder = true;
1499 	mg->invalidate = false;
1500 	mg->cache = cache;
1501 	mg->old_oblock = oblock;
1502 	mg->cblock = cblock;
1503 	mg->old_ocell = cell;
1504 	mg->new_ocell = NULL;
1505 	mg->start_jiffies = jiffies;
1506 
1507 	inc_io_migrations(cache);
1508 	quiesce_migration(mg);
1509 }
1510 
1511 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1512 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1513 				dm_cblock_t cblock,
1514 				struct dm_bio_prison_cell *old_ocell,
1515 				struct dm_bio_prison_cell *new_ocell)
1516 {
1517 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1518 
1519 	mg->err = false;
1520 	mg->discard = false;
1521 	mg->writeback = false;
1522 	mg->demote = true;
1523 	mg->promote = true;
1524 	mg->requeue_holder = true;
1525 	mg->invalidate = false;
1526 	mg->cache = cache;
1527 	mg->old_oblock = old_oblock;
1528 	mg->new_oblock = new_oblock;
1529 	mg->cblock = cblock;
1530 	mg->old_ocell = old_ocell;
1531 	mg->new_ocell = new_ocell;
1532 	mg->start_jiffies = jiffies;
1533 
1534 	inc_io_migrations(cache);
1535 	quiesce_migration(mg);
1536 }
1537 
1538 /*
1539  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1540  * block are thrown away.
1541  */
1542 static void invalidate(struct cache *cache, struct prealloc *structs,
1543 		       dm_oblock_t oblock, dm_cblock_t cblock,
1544 		       struct dm_bio_prison_cell *cell)
1545 {
1546 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1547 
1548 	mg->err = false;
1549 	mg->discard = false;
1550 	mg->writeback = false;
1551 	mg->demote = true;
1552 	mg->promote = false;
1553 	mg->requeue_holder = true;
1554 	mg->invalidate = true;
1555 	mg->cache = cache;
1556 	mg->old_oblock = oblock;
1557 	mg->cblock = cblock;
1558 	mg->old_ocell = cell;
1559 	mg->new_ocell = NULL;
1560 	mg->start_jiffies = jiffies;
1561 
1562 	inc_io_migrations(cache);
1563 	quiesce_migration(mg);
1564 }
1565 
1566 static void discard(struct cache *cache, struct prealloc *structs,
1567 		    struct dm_bio_prison_cell *cell)
1568 {
1569 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1570 
1571 	mg->err = false;
1572 	mg->discard = true;
1573 	mg->writeback = false;
1574 	mg->demote = false;
1575 	mg->promote = false;
1576 	mg->requeue_holder = false;
1577 	mg->invalidate = false;
1578 	mg->cache = cache;
1579 	mg->old_ocell = NULL;
1580 	mg->new_ocell = cell;
1581 	mg->start_jiffies = jiffies;
1582 
1583 	quiesce_migration(mg);
1584 }
1585 
1586 /*----------------------------------------------------------------
1587  * bio processing
1588  *--------------------------------------------------------------*/
1589 static void defer_bio(struct cache *cache, struct bio *bio)
1590 {
1591 	unsigned long flags;
1592 
1593 	spin_lock_irqsave(&cache->lock, flags);
1594 	bio_list_add(&cache->deferred_bios, bio);
1595 	spin_unlock_irqrestore(&cache->lock, flags);
1596 
1597 	wake_worker(cache);
1598 }
1599 
1600 static void process_flush_bio(struct cache *cache, struct bio *bio)
1601 {
1602 	size_t pb_data_size = get_per_bio_data_size(cache);
1603 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1604 
1605 	BUG_ON(bio->bi_iter.bi_size);
1606 	if (!pb->req_nr)
1607 		remap_to_origin(cache, bio);
1608 	else
1609 		remap_to_cache(cache, bio, 0);
1610 
1611 	/*
1612 	 * REQ_PREFLUSH is not directed at any particular block so we don't
1613 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_PREFLUSH
1614 	 * by dm-core.
1615 	 */
1616 	issue(cache, bio);
1617 }
1618 
1619 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1620 				struct bio *bio)
1621 {
1622 	int r;
1623 	dm_dblock_t b, e;
1624 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1625 
1626 	calc_discard_block_range(cache, bio, &b, &e);
1627 	if (b == e) {
1628 		bio_endio(bio);
1629 		return;
1630 	}
1631 
1632 	cell_prealloc = prealloc_get_cell(structs);
1633 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1634 			     (cell_free_fn) prealloc_put_cell,
1635 			     structs, &new_ocell);
1636 	if (r > 0)
1637 		return;
1638 
1639 	discard(cache, structs, new_ocell);
1640 }
1641 
1642 static bool spare_migration_bandwidth(struct cache *cache)
1643 {
1644 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1645 		cache->sectors_per_block;
1646 	return current_volume < cache->migration_threshold;
1647 }
1648 
1649 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1650 {
1651 	atomic_inc(bio_data_dir(bio) == READ ?
1652 		   &cache->stats.read_hit : &cache->stats.write_hit);
1653 }
1654 
1655 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1656 {
1657 	atomic_inc(bio_data_dir(bio) == READ ?
1658 		   &cache->stats.read_miss : &cache->stats.write_miss);
1659 }
1660 
1661 /*----------------------------------------------------------------*/
1662 
1663 struct inc_detail {
1664 	struct cache *cache;
1665 	struct bio_list bios_for_issue;
1666 	struct bio_list unhandled_bios;
1667 	bool any_writes;
1668 };
1669 
1670 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1671 {
1672 	struct bio *bio;
1673 	struct inc_detail *detail = context;
1674 	struct cache *cache = detail->cache;
1675 
1676 	inc_ds(cache, cell->holder, cell);
1677 	if (bio_data_dir(cell->holder) == WRITE)
1678 		detail->any_writes = true;
1679 
1680 	while ((bio = bio_list_pop(&cell->bios))) {
1681 		if (discard_or_flush(bio)) {
1682 			bio_list_add(&detail->unhandled_bios, bio);
1683 			continue;
1684 		}
1685 
1686 		if (bio_data_dir(bio) == WRITE)
1687 			detail->any_writes = true;
1688 
1689 		bio_list_add(&detail->bios_for_issue, bio);
1690 		inc_ds(cache, bio, cell);
1691 	}
1692 }
1693 
1694 // FIXME: refactor these two
1695 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1696 					       struct dm_bio_prison_cell *cell,
1697 					       dm_oblock_t oblock, bool issue_holder)
1698 {
1699 	struct bio *bio;
1700 	unsigned long flags;
1701 	struct inc_detail detail;
1702 
1703 	detail.cache = cache;
1704 	bio_list_init(&detail.bios_for_issue);
1705 	bio_list_init(&detail.unhandled_bios);
1706 	detail.any_writes = false;
1707 
1708 	spin_lock_irqsave(&cache->lock, flags);
1709 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1710 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1711 	spin_unlock_irqrestore(&cache->lock, flags);
1712 
1713 	remap_to_origin(cache, cell->holder);
1714 	if (issue_holder)
1715 		issue(cache, cell->holder);
1716 	else
1717 		accounted_begin(cache, cell->holder);
1718 
1719 	if (detail.any_writes)
1720 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1721 
1722 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1723 		remap_to_origin(cache, bio);
1724 		issue(cache, bio);
1725 	}
1726 
1727 	free_prison_cell(cache, cell);
1728 }
1729 
1730 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1731 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1732 {
1733 	struct bio *bio;
1734 	unsigned long flags;
1735 	struct inc_detail detail;
1736 
1737 	detail.cache = cache;
1738 	bio_list_init(&detail.bios_for_issue);
1739 	bio_list_init(&detail.unhandled_bios);
1740 	detail.any_writes = false;
1741 
1742 	spin_lock_irqsave(&cache->lock, flags);
1743 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1744 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1745 	spin_unlock_irqrestore(&cache->lock, flags);
1746 
1747 	remap_to_cache(cache, cell->holder, cblock);
1748 	if (issue_holder)
1749 		issue(cache, cell->holder);
1750 	else
1751 		accounted_begin(cache, cell->holder);
1752 
1753 	if (detail.any_writes) {
1754 		set_dirty(cache, oblock, cblock);
1755 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1756 	}
1757 
1758 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1759 		remap_to_cache(cache, bio, cblock);
1760 		issue(cache, bio);
1761 	}
1762 
1763 	free_prison_cell(cache, cell);
1764 }
1765 
1766 /*----------------------------------------------------------------*/
1767 
1768 struct old_oblock_lock {
1769 	struct policy_locker locker;
1770 	struct cache *cache;
1771 	struct prealloc *structs;
1772 	struct dm_bio_prison_cell *cell;
1773 };
1774 
1775 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1776 {
1777 	/* This should never be called */
1778 	BUG();
1779 	return 0;
1780 }
1781 
1782 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1783 {
1784 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1785 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1786 
1787 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1788 			  (cell_free_fn) prealloc_put_cell,
1789 			  l->structs, &l->cell);
1790 }
1791 
1792 static void process_cell(struct cache *cache, struct prealloc *structs,
1793 			 struct dm_bio_prison_cell *new_ocell)
1794 {
1795 	int r;
1796 	bool release_cell = true;
1797 	struct bio *bio = new_ocell->holder;
1798 	dm_oblock_t block = get_bio_block(cache, bio);
1799 	struct policy_result lookup_result;
1800 	bool passthrough = passthrough_mode(&cache->features);
1801 	bool fast_promotion, can_migrate;
1802 	struct old_oblock_lock ool;
1803 
1804 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1805 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1806 
1807 	ool.locker.fn = cell_locker;
1808 	ool.cache = cache;
1809 	ool.structs = structs;
1810 	ool.cell = NULL;
1811 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1812 		       bio, &ool.locker, &lookup_result);
1813 
1814 	if (r == -EWOULDBLOCK)
1815 		/* migration has been denied */
1816 		lookup_result.op = POLICY_MISS;
1817 
1818 	switch (lookup_result.op) {
1819 	case POLICY_HIT:
1820 		if (passthrough) {
1821 			inc_miss_counter(cache, bio);
1822 
1823 			/*
1824 			 * Passthrough always maps to the origin,
1825 			 * invalidating any cache blocks that are written
1826 			 * to.
1827 			 */
1828 
1829 			if (bio_data_dir(bio) == WRITE) {
1830 				atomic_inc(&cache->stats.demotion);
1831 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1832 				release_cell = false;
1833 
1834 			} else {
1835 				/* FIXME: factor out issue_origin() */
1836 				remap_to_origin_clear_discard(cache, bio, block);
1837 				inc_and_issue(cache, bio, new_ocell);
1838 			}
1839 		} else {
1840 			inc_hit_counter(cache, bio);
1841 
1842 			if (bio_data_dir(bio) == WRITE &&
1843 			    writethrough_mode(&cache->features) &&
1844 			    !is_dirty(cache, lookup_result.cblock)) {
1845 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1846 				inc_and_issue(cache, bio, new_ocell);
1847 
1848 			} else {
1849 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1850 				release_cell = false;
1851 			}
1852 		}
1853 
1854 		break;
1855 
1856 	case POLICY_MISS:
1857 		inc_miss_counter(cache, bio);
1858 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1859 		release_cell = false;
1860 		break;
1861 
1862 	case POLICY_NEW:
1863 		atomic_inc(&cache->stats.promotion);
1864 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1865 		release_cell = false;
1866 		break;
1867 
1868 	case POLICY_REPLACE:
1869 		atomic_inc(&cache->stats.demotion);
1870 		atomic_inc(&cache->stats.promotion);
1871 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1872 				    block, lookup_result.cblock,
1873 				    ool.cell, new_ocell);
1874 		release_cell = false;
1875 		break;
1876 
1877 	default:
1878 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1879 			    cache_device_name(cache), __func__,
1880 			    (unsigned) lookup_result.op);
1881 		bio_io_error(bio);
1882 	}
1883 
1884 	if (release_cell)
1885 		cell_defer(cache, new_ocell, false);
1886 }
1887 
1888 static void process_bio(struct cache *cache, struct prealloc *structs,
1889 			struct bio *bio)
1890 {
1891 	int r;
1892 	dm_oblock_t block = get_bio_block(cache, bio);
1893 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1894 
1895 	/*
1896 	 * Check to see if that block is currently migrating.
1897 	 */
1898 	cell_prealloc = prealloc_get_cell(structs);
1899 	r = bio_detain(cache, block, bio, cell_prealloc,
1900 		       (cell_free_fn) prealloc_put_cell,
1901 		       structs, &new_ocell);
1902 	if (r > 0)
1903 		return;
1904 
1905 	process_cell(cache, structs, new_ocell);
1906 }
1907 
1908 static int need_commit_due_to_time(struct cache *cache)
1909 {
1910 	return jiffies < cache->last_commit_jiffies ||
1911 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1912 }
1913 
1914 /*
1915  * A non-zero return indicates read_only or fail_io mode.
1916  */
1917 static int commit(struct cache *cache, bool clean_shutdown)
1918 {
1919 	int r;
1920 
1921 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1922 		return -EINVAL;
1923 
1924 	atomic_inc(&cache->stats.commit_count);
1925 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1926 	if (r)
1927 		metadata_operation_failed(cache, "dm_cache_commit", r);
1928 
1929 	return r;
1930 }
1931 
1932 static int commit_if_needed(struct cache *cache)
1933 {
1934 	int r = 0;
1935 
1936 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1937 	    dm_cache_changed_this_transaction(cache->cmd)) {
1938 		r = commit(cache, false);
1939 		cache->commit_requested = false;
1940 		cache->last_commit_jiffies = jiffies;
1941 	}
1942 
1943 	return r;
1944 }
1945 
1946 static void process_deferred_bios(struct cache *cache)
1947 {
1948 	bool prealloc_used = false;
1949 	unsigned long flags;
1950 	struct bio_list bios;
1951 	struct bio *bio;
1952 	struct prealloc structs;
1953 
1954 	memset(&structs, 0, sizeof(structs));
1955 	bio_list_init(&bios);
1956 
1957 	spin_lock_irqsave(&cache->lock, flags);
1958 	bio_list_merge(&bios, &cache->deferred_bios);
1959 	bio_list_init(&cache->deferred_bios);
1960 	spin_unlock_irqrestore(&cache->lock, flags);
1961 
1962 	while (!bio_list_empty(&bios)) {
1963 		/*
1964 		 * If we've got no free migration structs, and processing
1965 		 * this bio might require one, we pause until there are some
1966 		 * prepared mappings to process.
1967 		 */
1968 		prealloc_used = true;
1969 		if (prealloc_data_structs(cache, &structs)) {
1970 			spin_lock_irqsave(&cache->lock, flags);
1971 			bio_list_merge(&cache->deferred_bios, &bios);
1972 			spin_unlock_irqrestore(&cache->lock, flags);
1973 			break;
1974 		}
1975 
1976 		bio = bio_list_pop(&bios);
1977 
1978 		if (bio->bi_opf & REQ_PREFLUSH)
1979 			process_flush_bio(cache, bio);
1980 		else if (bio_op(bio) == REQ_OP_DISCARD)
1981 			process_discard_bio(cache, &structs, bio);
1982 		else
1983 			process_bio(cache, &structs, bio);
1984 	}
1985 
1986 	if (prealloc_used)
1987 		prealloc_free_structs(cache, &structs);
1988 }
1989 
1990 static void process_deferred_cells(struct cache *cache)
1991 {
1992 	bool prealloc_used = false;
1993 	unsigned long flags;
1994 	struct dm_bio_prison_cell *cell, *tmp;
1995 	struct list_head cells;
1996 	struct prealloc structs;
1997 
1998 	memset(&structs, 0, sizeof(structs));
1999 
2000 	INIT_LIST_HEAD(&cells);
2001 
2002 	spin_lock_irqsave(&cache->lock, flags);
2003 	list_splice_init(&cache->deferred_cells, &cells);
2004 	spin_unlock_irqrestore(&cache->lock, flags);
2005 
2006 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2007 		/*
2008 		 * If we've got no free migration structs, and processing
2009 		 * this bio might require one, we pause until there are some
2010 		 * prepared mappings to process.
2011 		 */
2012 		prealloc_used = true;
2013 		if (prealloc_data_structs(cache, &structs)) {
2014 			spin_lock_irqsave(&cache->lock, flags);
2015 			list_splice(&cells, &cache->deferred_cells);
2016 			spin_unlock_irqrestore(&cache->lock, flags);
2017 			break;
2018 		}
2019 
2020 		process_cell(cache, &structs, cell);
2021 	}
2022 
2023 	if (prealloc_used)
2024 		prealloc_free_structs(cache, &structs);
2025 }
2026 
2027 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2028 {
2029 	unsigned long flags;
2030 	struct bio_list bios;
2031 	struct bio *bio;
2032 
2033 	bio_list_init(&bios);
2034 
2035 	spin_lock_irqsave(&cache->lock, flags);
2036 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2037 	bio_list_init(&cache->deferred_flush_bios);
2038 	spin_unlock_irqrestore(&cache->lock, flags);
2039 
2040 	/*
2041 	 * These bios have already been through inc_ds()
2042 	 */
2043 	while ((bio = bio_list_pop(&bios)))
2044 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2045 }
2046 
2047 static void process_deferred_writethrough_bios(struct cache *cache)
2048 {
2049 	unsigned long flags;
2050 	struct bio_list bios;
2051 	struct bio *bio;
2052 
2053 	bio_list_init(&bios);
2054 
2055 	spin_lock_irqsave(&cache->lock, flags);
2056 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2057 	bio_list_init(&cache->deferred_writethrough_bios);
2058 	spin_unlock_irqrestore(&cache->lock, flags);
2059 
2060 	/*
2061 	 * These bios have already been through inc_ds()
2062 	 */
2063 	while ((bio = bio_list_pop(&bios)))
2064 		accounted_request(cache, bio);
2065 }
2066 
2067 static void writeback_some_dirty_blocks(struct cache *cache)
2068 {
2069 	bool prealloc_used = false;
2070 	dm_oblock_t oblock;
2071 	dm_cblock_t cblock;
2072 	struct prealloc structs;
2073 	struct dm_bio_prison_cell *old_ocell;
2074 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2075 
2076 	memset(&structs, 0, sizeof(structs));
2077 
2078 	while (spare_migration_bandwidth(cache)) {
2079 		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2080 			break; /* no work to do */
2081 
2082 		prealloc_used = true;
2083 		if (prealloc_data_structs(cache, &structs) ||
2084 		    get_cell(cache, oblock, &structs, &old_ocell)) {
2085 			policy_set_dirty(cache->policy, oblock);
2086 			break;
2087 		}
2088 
2089 		writeback(cache, &structs, oblock, cblock, old_ocell);
2090 	}
2091 
2092 	if (prealloc_used)
2093 		prealloc_free_structs(cache, &structs);
2094 }
2095 
2096 /*----------------------------------------------------------------
2097  * Invalidations.
2098  * Dropping something from the cache *without* writing back.
2099  *--------------------------------------------------------------*/
2100 
2101 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2102 {
2103 	int r = 0;
2104 	uint64_t begin = from_cblock(req->cblocks->begin);
2105 	uint64_t end = from_cblock(req->cblocks->end);
2106 
2107 	while (begin != end) {
2108 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2109 		if (!r) {
2110 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2111 			if (r) {
2112 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2113 				break;
2114 			}
2115 
2116 		} else if (r == -ENODATA) {
2117 			/* harmless, already unmapped */
2118 			r = 0;
2119 
2120 		} else {
2121 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2122 			break;
2123 		}
2124 
2125 		begin++;
2126         }
2127 
2128 	cache->commit_requested = true;
2129 
2130 	req->err = r;
2131 	atomic_set(&req->complete, 1);
2132 
2133 	wake_up(&req->result_wait);
2134 }
2135 
2136 static void process_invalidation_requests(struct cache *cache)
2137 {
2138 	struct list_head list;
2139 	struct invalidation_request *req, *tmp;
2140 
2141 	INIT_LIST_HEAD(&list);
2142 	spin_lock(&cache->invalidation_lock);
2143 	list_splice_init(&cache->invalidation_requests, &list);
2144 	spin_unlock(&cache->invalidation_lock);
2145 
2146 	list_for_each_entry_safe (req, tmp, &list, list)
2147 		process_invalidation_request(cache, req);
2148 }
2149 
2150 /*----------------------------------------------------------------
2151  * Main worker loop
2152  *--------------------------------------------------------------*/
2153 static bool is_quiescing(struct cache *cache)
2154 {
2155 	return atomic_read(&cache->quiescing);
2156 }
2157 
2158 static void ack_quiescing(struct cache *cache)
2159 {
2160 	if (is_quiescing(cache)) {
2161 		atomic_inc(&cache->quiescing_ack);
2162 		wake_up(&cache->quiescing_wait);
2163 	}
2164 }
2165 
2166 static void wait_for_quiescing_ack(struct cache *cache)
2167 {
2168 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2169 }
2170 
2171 static void start_quiescing(struct cache *cache)
2172 {
2173 	atomic_inc(&cache->quiescing);
2174 	wait_for_quiescing_ack(cache);
2175 }
2176 
2177 static void stop_quiescing(struct cache *cache)
2178 {
2179 	atomic_set(&cache->quiescing, 0);
2180 	atomic_set(&cache->quiescing_ack, 0);
2181 }
2182 
2183 static void wait_for_migrations(struct cache *cache)
2184 {
2185 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2186 }
2187 
2188 static void stop_worker(struct cache *cache)
2189 {
2190 	cancel_delayed_work(&cache->waker);
2191 	flush_workqueue(cache->wq);
2192 }
2193 
2194 static void requeue_deferred_cells(struct cache *cache)
2195 {
2196 	unsigned long flags;
2197 	struct list_head cells;
2198 	struct dm_bio_prison_cell *cell, *tmp;
2199 
2200 	INIT_LIST_HEAD(&cells);
2201 	spin_lock_irqsave(&cache->lock, flags);
2202 	list_splice_init(&cache->deferred_cells, &cells);
2203 	spin_unlock_irqrestore(&cache->lock, flags);
2204 
2205 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2206 		cell_requeue(cache, cell);
2207 }
2208 
2209 static void requeue_deferred_bios(struct cache *cache)
2210 {
2211 	struct bio *bio;
2212 	struct bio_list bios;
2213 
2214 	bio_list_init(&bios);
2215 	bio_list_merge(&bios, &cache->deferred_bios);
2216 	bio_list_init(&cache->deferred_bios);
2217 
2218 	while ((bio = bio_list_pop(&bios))) {
2219 		bio->bi_error = DM_ENDIO_REQUEUE;
2220 		bio_endio(bio);
2221 	}
2222 }
2223 
2224 static int more_work(struct cache *cache)
2225 {
2226 	if (is_quiescing(cache))
2227 		return !list_empty(&cache->quiesced_migrations) ||
2228 			!list_empty(&cache->completed_migrations) ||
2229 			!list_empty(&cache->need_commit_migrations);
2230 	else
2231 		return !bio_list_empty(&cache->deferred_bios) ||
2232 			!list_empty(&cache->deferred_cells) ||
2233 			!bio_list_empty(&cache->deferred_flush_bios) ||
2234 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2235 			!list_empty(&cache->quiesced_migrations) ||
2236 			!list_empty(&cache->completed_migrations) ||
2237 			!list_empty(&cache->need_commit_migrations) ||
2238 			cache->invalidate;
2239 }
2240 
2241 static void do_worker(struct work_struct *ws)
2242 {
2243 	struct cache *cache = container_of(ws, struct cache, worker);
2244 
2245 	do {
2246 		if (!is_quiescing(cache)) {
2247 			writeback_some_dirty_blocks(cache);
2248 			process_deferred_writethrough_bios(cache);
2249 			process_deferred_bios(cache);
2250 			process_deferred_cells(cache);
2251 			process_invalidation_requests(cache);
2252 		}
2253 
2254 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2255 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2256 
2257 		if (commit_if_needed(cache)) {
2258 			process_deferred_flush_bios(cache, false);
2259 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2260 		} else {
2261 			process_deferred_flush_bios(cache, true);
2262 			process_migrations(cache, &cache->need_commit_migrations,
2263 					   migration_success_post_commit);
2264 		}
2265 
2266 		ack_quiescing(cache);
2267 
2268 	} while (more_work(cache));
2269 }
2270 
2271 /*
2272  * We want to commit periodically so that not too much
2273  * unwritten metadata builds up.
2274  */
2275 static void do_waker(struct work_struct *ws)
2276 {
2277 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2278 	policy_tick(cache->policy, true);
2279 	wake_worker(cache);
2280 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2281 }
2282 
2283 /*----------------------------------------------------------------*/
2284 
2285 static int is_congested(struct dm_dev *dev, int bdi_bits)
2286 {
2287 	struct request_queue *q = bdev_get_queue(dev->bdev);
2288 	return bdi_congested(q->backing_dev_info, bdi_bits);
2289 }
2290 
2291 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2292 {
2293 	struct cache *cache = container_of(cb, struct cache, callbacks);
2294 
2295 	return is_congested(cache->origin_dev, bdi_bits) ||
2296 		is_congested(cache->cache_dev, bdi_bits);
2297 }
2298 
2299 /*----------------------------------------------------------------
2300  * Target methods
2301  *--------------------------------------------------------------*/
2302 
2303 /*
2304  * This function gets called on the error paths of the constructor, so we
2305  * have to cope with a partially initialised struct.
2306  */
2307 static void destroy(struct cache *cache)
2308 {
2309 	unsigned i;
2310 
2311 	mempool_destroy(cache->migration_pool);
2312 
2313 	if (cache->all_io_ds)
2314 		dm_deferred_set_destroy(cache->all_io_ds);
2315 
2316 	if (cache->prison)
2317 		dm_bio_prison_destroy(cache->prison);
2318 
2319 	if (cache->wq)
2320 		destroy_workqueue(cache->wq);
2321 
2322 	if (cache->dirty_bitset)
2323 		free_bitset(cache->dirty_bitset);
2324 
2325 	if (cache->discard_bitset)
2326 		free_bitset(cache->discard_bitset);
2327 
2328 	if (cache->copier)
2329 		dm_kcopyd_client_destroy(cache->copier);
2330 
2331 	if (cache->cmd)
2332 		dm_cache_metadata_close(cache->cmd);
2333 
2334 	if (cache->metadata_dev)
2335 		dm_put_device(cache->ti, cache->metadata_dev);
2336 
2337 	if (cache->origin_dev)
2338 		dm_put_device(cache->ti, cache->origin_dev);
2339 
2340 	if (cache->cache_dev)
2341 		dm_put_device(cache->ti, cache->cache_dev);
2342 
2343 	if (cache->policy)
2344 		dm_cache_policy_destroy(cache->policy);
2345 
2346 	for (i = 0; i < cache->nr_ctr_args ; i++)
2347 		kfree(cache->ctr_args[i]);
2348 	kfree(cache->ctr_args);
2349 
2350 	kfree(cache);
2351 }
2352 
2353 static void cache_dtr(struct dm_target *ti)
2354 {
2355 	struct cache *cache = ti->private;
2356 
2357 	destroy(cache);
2358 }
2359 
2360 static sector_t get_dev_size(struct dm_dev *dev)
2361 {
2362 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2363 }
2364 
2365 /*----------------------------------------------------------------*/
2366 
2367 /*
2368  * Construct a cache device mapping.
2369  *
2370  * cache <metadata dev> <cache dev> <origin dev> <block size>
2371  *       <#feature args> [<feature arg>]*
2372  *       <policy> <#policy args> [<policy arg>]*
2373  *
2374  * metadata dev    : fast device holding the persistent metadata
2375  * cache dev	   : fast device holding cached data blocks
2376  * origin dev	   : slow device holding original data blocks
2377  * block size	   : cache unit size in sectors
2378  *
2379  * #feature args   : number of feature arguments passed
2380  * feature args    : writethrough.  (The default is writeback.)
2381  *
2382  * policy	   : the replacement policy to use
2383  * #policy args    : an even number of policy arguments corresponding
2384  *		     to key/value pairs passed to the policy
2385  * policy args	   : key/value pairs passed to the policy
2386  *		     E.g. 'sequential_threshold 1024'
2387  *		     See cache-policies.txt for details.
2388  *
2389  * Optional feature arguments are:
2390  *   writethrough  : write through caching that prohibits cache block
2391  *		     content from being different from origin block content.
2392  *		     Without this argument, the default behaviour is to write
2393  *		     back cache block contents later for performance reasons,
2394  *		     so they may differ from the corresponding origin blocks.
2395  */
2396 struct cache_args {
2397 	struct dm_target *ti;
2398 
2399 	struct dm_dev *metadata_dev;
2400 
2401 	struct dm_dev *cache_dev;
2402 	sector_t cache_sectors;
2403 
2404 	struct dm_dev *origin_dev;
2405 	sector_t origin_sectors;
2406 
2407 	uint32_t block_size;
2408 
2409 	const char *policy_name;
2410 	int policy_argc;
2411 	const char **policy_argv;
2412 
2413 	struct cache_features features;
2414 };
2415 
2416 static void destroy_cache_args(struct cache_args *ca)
2417 {
2418 	if (ca->metadata_dev)
2419 		dm_put_device(ca->ti, ca->metadata_dev);
2420 
2421 	if (ca->cache_dev)
2422 		dm_put_device(ca->ti, ca->cache_dev);
2423 
2424 	if (ca->origin_dev)
2425 		dm_put_device(ca->ti, ca->origin_dev);
2426 
2427 	kfree(ca);
2428 }
2429 
2430 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2431 {
2432 	if (!as->argc) {
2433 		*error = "Insufficient args";
2434 		return false;
2435 	}
2436 
2437 	return true;
2438 }
2439 
2440 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2441 			      char **error)
2442 {
2443 	int r;
2444 	sector_t metadata_dev_size;
2445 	char b[BDEVNAME_SIZE];
2446 
2447 	if (!at_least_one_arg(as, error))
2448 		return -EINVAL;
2449 
2450 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2451 			  &ca->metadata_dev);
2452 	if (r) {
2453 		*error = "Error opening metadata device";
2454 		return r;
2455 	}
2456 
2457 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2458 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2459 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2460 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2461 
2462 	return 0;
2463 }
2464 
2465 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2466 			   char **error)
2467 {
2468 	int r;
2469 
2470 	if (!at_least_one_arg(as, error))
2471 		return -EINVAL;
2472 
2473 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2474 			  &ca->cache_dev);
2475 	if (r) {
2476 		*error = "Error opening cache device";
2477 		return r;
2478 	}
2479 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2480 
2481 	return 0;
2482 }
2483 
2484 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2485 			    char **error)
2486 {
2487 	int r;
2488 
2489 	if (!at_least_one_arg(as, error))
2490 		return -EINVAL;
2491 
2492 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2493 			  &ca->origin_dev);
2494 	if (r) {
2495 		*error = "Error opening origin device";
2496 		return r;
2497 	}
2498 
2499 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2500 	if (ca->ti->len > ca->origin_sectors) {
2501 		*error = "Device size larger than cached device";
2502 		return -EINVAL;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2509 			    char **error)
2510 {
2511 	unsigned long block_size;
2512 
2513 	if (!at_least_one_arg(as, error))
2514 		return -EINVAL;
2515 
2516 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2517 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2518 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2519 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2520 		*error = "Invalid data block size";
2521 		return -EINVAL;
2522 	}
2523 
2524 	if (block_size > ca->cache_sectors) {
2525 		*error = "Data block size is larger than the cache device";
2526 		return -EINVAL;
2527 	}
2528 
2529 	ca->block_size = block_size;
2530 
2531 	return 0;
2532 }
2533 
2534 static void init_features(struct cache_features *cf)
2535 {
2536 	cf->mode = CM_WRITE;
2537 	cf->io_mode = CM_IO_WRITEBACK;
2538 	cf->metadata_version = 1;
2539 }
2540 
2541 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2542 			  char **error)
2543 {
2544 	static struct dm_arg _args[] = {
2545 		{0, 2, "Invalid number of cache feature arguments"},
2546 	};
2547 
2548 	int r;
2549 	unsigned argc;
2550 	const char *arg;
2551 	struct cache_features *cf = &ca->features;
2552 
2553 	init_features(cf);
2554 
2555 	r = dm_read_arg_group(_args, as, &argc, error);
2556 	if (r)
2557 		return -EINVAL;
2558 
2559 	while (argc--) {
2560 		arg = dm_shift_arg(as);
2561 
2562 		if (!strcasecmp(arg, "writeback"))
2563 			cf->io_mode = CM_IO_WRITEBACK;
2564 
2565 		else if (!strcasecmp(arg, "writethrough"))
2566 			cf->io_mode = CM_IO_WRITETHROUGH;
2567 
2568 		else if (!strcasecmp(arg, "passthrough"))
2569 			cf->io_mode = CM_IO_PASSTHROUGH;
2570 
2571 		else if (!strcasecmp(arg, "metadata2"))
2572 			cf->metadata_version = 2;
2573 
2574 		else {
2575 			*error = "Unrecognised cache feature requested";
2576 			return -EINVAL;
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2584 			char **error)
2585 {
2586 	static struct dm_arg _args[] = {
2587 		{0, 1024, "Invalid number of policy arguments"},
2588 	};
2589 
2590 	int r;
2591 
2592 	if (!at_least_one_arg(as, error))
2593 		return -EINVAL;
2594 
2595 	ca->policy_name = dm_shift_arg(as);
2596 
2597 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2598 	if (r)
2599 		return -EINVAL;
2600 
2601 	ca->policy_argv = (const char **)as->argv;
2602 	dm_consume_args(as, ca->policy_argc);
2603 
2604 	return 0;
2605 }
2606 
2607 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2608 			    char **error)
2609 {
2610 	int r;
2611 	struct dm_arg_set as;
2612 
2613 	as.argc = argc;
2614 	as.argv = argv;
2615 
2616 	r = parse_metadata_dev(ca, &as, error);
2617 	if (r)
2618 		return r;
2619 
2620 	r = parse_cache_dev(ca, &as, error);
2621 	if (r)
2622 		return r;
2623 
2624 	r = parse_origin_dev(ca, &as, error);
2625 	if (r)
2626 		return r;
2627 
2628 	r = parse_block_size(ca, &as, error);
2629 	if (r)
2630 		return r;
2631 
2632 	r = parse_features(ca, &as, error);
2633 	if (r)
2634 		return r;
2635 
2636 	r = parse_policy(ca, &as, error);
2637 	if (r)
2638 		return r;
2639 
2640 	return 0;
2641 }
2642 
2643 /*----------------------------------------------------------------*/
2644 
2645 static struct kmem_cache *migration_cache;
2646 
2647 #define NOT_CORE_OPTION 1
2648 
2649 static int process_config_option(struct cache *cache, const char *key, const char *value)
2650 {
2651 	unsigned long tmp;
2652 
2653 	if (!strcasecmp(key, "migration_threshold")) {
2654 		if (kstrtoul(value, 10, &tmp))
2655 			return -EINVAL;
2656 
2657 		cache->migration_threshold = tmp;
2658 		return 0;
2659 	}
2660 
2661 	return NOT_CORE_OPTION;
2662 }
2663 
2664 static int set_config_value(struct cache *cache, const char *key, const char *value)
2665 {
2666 	int r = process_config_option(cache, key, value);
2667 
2668 	if (r == NOT_CORE_OPTION)
2669 		r = policy_set_config_value(cache->policy, key, value);
2670 
2671 	if (r)
2672 		DMWARN("bad config value for %s: %s", key, value);
2673 
2674 	return r;
2675 }
2676 
2677 static int set_config_values(struct cache *cache, int argc, const char **argv)
2678 {
2679 	int r = 0;
2680 
2681 	if (argc & 1) {
2682 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2683 		return -EINVAL;
2684 	}
2685 
2686 	while (argc) {
2687 		r = set_config_value(cache, argv[0], argv[1]);
2688 		if (r)
2689 			break;
2690 
2691 		argc -= 2;
2692 		argv += 2;
2693 	}
2694 
2695 	return r;
2696 }
2697 
2698 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2699 			       char **error)
2700 {
2701 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2702 							   cache->cache_size,
2703 							   cache->origin_sectors,
2704 							   cache->sectors_per_block);
2705 	if (IS_ERR(p)) {
2706 		*error = "Error creating cache's policy";
2707 		return PTR_ERR(p);
2708 	}
2709 	cache->policy = p;
2710 
2711 	return 0;
2712 }
2713 
2714 /*
2715  * We want the discard block size to be at least the size of the cache
2716  * block size and have no more than 2^14 discard blocks across the origin.
2717  */
2718 #define MAX_DISCARD_BLOCKS (1 << 14)
2719 
2720 static bool too_many_discard_blocks(sector_t discard_block_size,
2721 				    sector_t origin_size)
2722 {
2723 	(void) sector_div(origin_size, discard_block_size);
2724 
2725 	return origin_size > MAX_DISCARD_BLOCKS;
2726 }
2727 
2728 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2729 					     sector_t origin_size)
2730 {
2731 	sector_t discard_block_size = cache_block_size;
2732 
2733 	if (origin_size)
2734 		while (too_many_discard_blocks(discard_block_size, origin_size))
2735 			discard_block_size *= 2;
2736 
2737 	return discard_block_size;
2738 }
2739 
2740 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2741 {
2742 	dm_block_t nr_blocks = from_cblock(size);
2743 
2744 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2745 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2746 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2747 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2748 			     (unsigned long long) nr_blocks);
2749 
2750 	cache->cache_size = size;
2751 }
2752 
2753 #define DEFAULT_MIGRATION_THRESHOLD 2048
2754 
2755 static int cache_create(struct cache_args *ca, struct cache **result)
2756 {
2757 	int r = 0;
2758 	char **error = &ca->ti->error;
2759 	struct cache *cache;
2760 	struct dm_target *ti = ca->ti;
2761 	dm_block_t origin_blocks;
2762 	struct dm_cache_metadata *cmd;
2763 	bool may_format = ca->features.mode == CM_WRITE;
2764 
2765 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2766 	if (!cache)
2767 		return -ENOMEM;
2768 
2769 	cache->ti = ca->ti;
2770 	ti->private = cache;
2771 	ti->num_flush_bios = 2;
2772 	ti->flush_supported = true;
2773 
2774 	ti->num_discard_bios = 1;
2775 	ti->discards_supported = true;
2776 	ti->discard_zeroes_data_unsupported = true;
2777 	ti->split_discard_bios = false;
2778 
2779 	cache->features = ca->features;
2780 	ti->per_io_data_size = get_per_bio_data_size(cache);
2781 
2782 	cache->callbacks.congested_fn = cache_is_congested;
2783 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2784 
2785 	cache->metadata_dev = ca->metadata_dev;
2786 	cache->origin_dev = ca->origin_dev;
2787 	cache->cache_dev = ca->cache_dev;
2788 
2789 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2790 
2791 	/* FIXME: factor out this whole section */
2792 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2793 	origin_blocks = block_div(origin_blocks, ca->block_size);
2794 	cache->origin_blocks = to_oblock(origin_blocks);
2795 
2796 	cache->sectors_per_block = ca->block_size;
2797 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2798 		r = -EINVAL;
2799 		goto bad;
2800 	}
2801 
2802 	if (ca->block_size & (ca->block_size - 1)) {
2803 		dm_block_t cache_size = ca->cache_sectors;
2804 
2805 		cache->sectors_per_block_shift = -1;
2806 		cache_size = block_div(cache_size, ca->block_size);
2807 		set_cache_size(cache, to_cblock(cache_size));
2808 	} else {
2809 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2810 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2811 	}
2812 
2813 	r = create_cache_policy(cache, ca, error);
2814 	if (r)
2815 		goto bad;
2816 
2817 	cache->policy_nr_args = ca->policy_argc;
2818 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2819 
2820 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2821 	if (r) {
2822 		*error = "Error setting cache policy's config values";
2823 		goto bad;
2824 	}
2825 
2826 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2827 				     ca->block_size, may_format,
2828 				     dm_cache_policy_get_hint_size(cache->policy),
2829 				     ca->features.metadata_version);
2830 	if (IS_ERR(cmd)) {
2831 		*error = "Error creating metadata object";
2832 		r = PTR_ERR(cmd);
2833 		goto bad;
2834 	}
2835 	cache->cmd = cmd;
2836 	set_cache_mode(cache, CM_WRITE);
2837 	if (get_cache_mode(cache) != CM_WRITE) {
2838 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2839 		r = -EINVAL;
2840 		goto bad;
2841 	}
2842 
2843 	if (passthrough_mode(&cache->features)) {
2844 		bool all_clean;
2845 
2846 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2847 		if (r) {
2848 			*error = "dm_cache_metadata_all_clean() failed";
2849 			goto bad;
2850 		}
2851 
2852 		if (!all_clean) {
2853 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2854 			r = -EINVAL;
2855 			goto bad;
2856 		}
2857 	}
2858 
2859 	spin_lock_init(&cache->lock);
2860 	INIT_LIST_HEAD(&cache->deferred_cells);
2861 	bio_list_init(&cache->deferred_bios);
2862 	bio_list_init(&cache->deferred_flush_bios);
2863 	bio_list_init(&cache->deferred_writethrough_bios);
2864 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2865 	INIT_LIST_HEAD(&cache->completed_migrations);
2866 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2867 	atomic_set(&cache->nr_allocated_migrations, 0);
2868 	atomic_set(&cache->nr_io_migrations, 0);
2869 	init_waitqueue_head(&cache->migration_wait);
2870 
2871 	init_waitqueue_head(&cache->quiescing_wait);
2872 	atomic_set(&cache->quiescing, 0);
2873 	atomic_set(&cache->quiescing_ack, 0);
2874 
2875 	r = -ENOMEM;
2876 	atomic_set(&cache->nr_dirty, 0);
2877 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2878 	if (!cache->dirty_bitset) {
2879 		*error = "could not allocate dirty bitset";
2880 		goto bad;
2881 	}
2882 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2883 
2884 	cache->discard_block_size =
2885 		calculate_discard_block_size(cache->sectors_per_block,
2886 					     cache->origin_sectors);
2887 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2888 							      cache->discard_block_size));
2889 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2890 	if (!cache->discard_bitset) {
2891 		*error = "could not allocate discard bitset";
2892 		goto bad;
2893 	}
2894 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2895 
2896 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2897 	if (IS_ERR(cache->copier)) {
2898 		*error = "could not create kcopyd client";
2899 		r = PTR_ERR(cache->copier);
2900 		goto bad;
2901 	}
2902 
2903 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2904 	if (!cache->wq) {
2905 		*error = "could not create workqueue for metadata object";
2906 		goto bad;
2907 	}
2908 	INIT_WORK(&cache->worker, do_worker);
2909 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2910 	cache->last_commit_jiffies = jiffies;
2911 
2912 	cache->prison = dm_bio_prison_create();
2913 	if (!cache->prison) {
2914 		*error = "could not create bio prison";
2915 		goto bad;
2916 	}
2917 
2918 	cache->all_io_ds = dm_deferred_set_create();
2919 	if (!cache->all_io_ds) {
2920 		*error = "could not create all_io deferred set";
2921 		goto bad;
2922 	}
2923 
2924 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2925 							 migration_cache);
2926 	if (!cache->migration_pool) {
2927 		*error = "Error creating cache's migration mempool";
2928 		goto bad;
2929 	}
2930 
2931 	cache->need_tick_bio = true;
2932 	cache->sized = false;
2933 	cache->invalidate = false;
2934 	cache->commit_requested = false;
2935 	cache->loaded_mappings = false;
2936 	cache->loaded_discards = false;
2937 
2938 	load_stats(cache);
2939 
2940 	atomic_set(&cache->stats.demotion, 0);
2941 	atomic_set(&cache->stats.promotion, 0);
2942 	atomic_set(&cache->stats.copies_avoided, 0);
2943 	atomic_set(&cache->stats.cache_cell_clash, 0);
2944 	atomic_set(&cache->stats.commit_count, 0);
2945 	atomic_set(&cache->stats.discard_count, 0);
2946 
2947 	spin_lock_init(&cache->invalidation_lock);
2948 	INIT_LIST_HEAD(&cache->invalidation_requests);
2949 
2950 	iot_init(&cache->origin_tracker);
2951 
2952 	*result = cache;
2953 	return 0;
2954 
2955 bad:
2956 	destroy(cache);
2957 	return r;
2958 }
2959 
2960 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2961 {
2962 	unsigned i;
2963 	const char **copy;
2964 
2965 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2966 	if (!copy)
2967 		return -ENOMEM;
2968 	for (i = 0; i < argc; i++) {
2969 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2970 		if (!copy[i]) {
2971 			while (i--)
2972 				kfree(copy[i]);
2973 			kfree(copy);
2974 			return -ENOMEM;
2975 		}
2976 	}
2977 
2978 	cache->nr_ctr_args = argc;
2979 	cache->ctr_args = copy;
2980 
2981 	return 0;
2982 }
2983 
2984 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2985 {
2986 	int r = -EINVAL;
2987 	struct cache_args *ca;
2988 	struct cache *cache = NULL;
2989 
2990 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2991 	if (!ca) {
2992 		ti->error = "Error allocating memory for cache";
2993 		return -ENOMEM;
2994 	}
2995 	ca->ti = ti;
2996 
2997 	r = parse_cache_args(ca, argc, argv, &ti->error);
2998 	if (r)
2999 		goto out;
3000 
3001 	r = cache_create(ca, &cache);
3002 	if (r)
3003 		goto out;
3004 
3005 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3006 	if (r) {
3007 		destroy(cache);
3008 		goto out;
3009 	}
3010 
3011 	ti->private = cache;
3012 
3013 out:
3014 	destroy_cache_args(ca);
3015 	return r;
3016 }
3017 
3018 /*----------------------------------------------------------------*/
3019 
3020 static int cache_map(struct dm_target *ti, struct bio *bio)
3021 {
3022 	struct cache *cache = ti->private;
3023 
3024 	int r;
3025 	struct dm_bio_prison_cell *cell = NULL;
3026 	dm_oblock_t block = get_bio_block(cache, bio);
3027 	size_t pb_data_size = get_per_bio_data_size(cache);
3028 	bool can_migrate = false;
3029 	bool fast_promotion;
3030 	struct policy_result lookup_result;
3031 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3032 	struct old_oblock_lock ool;
3033 
3034 	ool.locker.fn = null_locker;
3035 
3036 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3037 		/*
3038 		 * This can only occur if the io goes to a partial block at
3039 		 * the end of the origin device.  We don't cache these.
3040 		 * Just remap to the origin and carry on.
3041 		 */
3042 		remap_to_origin(cache, bio);
3043 		accounted_begin(cache, bio);
3044 		return DM_MAPIO_REMAPPED;
3045 	}
3046 
3047 	if (discard_or_flush(bio)) {
3048 		defer_bio(cache, bio);
3049 		return DM_MAPIO_SUBMITTED;
3050 	}
3051 
3052 	/*
3053 	 * Check to see if that block is currently migrating.
3054 	 */
3055 	cell = alloc_prison_cell(cache);
3056 	if (!cell) {
3057 		defer_bio(cache, bio);
3058 		return DM_MAPIO_SUBMITTED;
3059 	}
3060 
3061 	r = bio_detain(cache, block, bio, cell,
3062 		       (cell_free_fn) free_prison_cell,
3063 		       cache, &cell);
3064 	if (r) {
3065 		if (r < 0)
3066 			defer_bio(cache, bio);
3067 
3068 		return DM_MAPIO_SUBMITTED;
3069 	}
3070 
3071 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3072 
3073 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3074 		       bio, &ool.locker, &lookup_result);
3075 	if (r == -EWOULDBLOCK) {
3076 		cell_defer(cache, cell, true);
3077 		return DM_MAPIO_SUBMITTED;
3078 
3079 	} else if (r) {
3080 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3081 			    cache_device_name(cache), r);
3082 		cell_defer(cache, cell, false);
3083 		bio_io_error(bio);
3084 		return DM_MAPIO_SUBMITTED;
3085 	}
3086 
3087 	r = DM_MAPIO_REMAPPED;
3088 	switch (lookup_result.op) {
3089 	case POLICY_HIT:
3090 		if (passthrough_mode(&cache->features)) {
3091 			if (bio_data_dir(bio) == WRITE) {
3092 				/*
3093 				 * We need to invalidate this block, so
3094 				 * defer for the worker thread.
3095 				 */
3096 				cell_defer(cache, cell, true);
3097 				r = DM_MAPIO_SUBMITTED;
3098 
3099 			} else {
3100 				inc_miss_counter(cache, bio);
3101 				remap_to_origin_clear_discard(cache, bio, block);
3102 				accounted_begin(cache, bio);
3103 				inc_ds(cache, bio, cell);
3104 				// FIXME: we want to remap hits or misses straight
3105 				// away rather than passing over to the worker.
3106 				cell_defer(cache, cell, false);
3107 			}
3108 
3109 		} else {
3110 			inc_hit_counter(cache, bio);
3111 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3112 			    !is_dirty(cache, lookup_result.cblock)) {
3113 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3114 				accounted_begin(cache, bio);
3115 				inc_ds(cache, bio, cell);
3116 				cell_defer(cache, cell, false);
3117 
3118 			} else
3119 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3120 		}
3121 		break;
3122 
3123 	case POLICY_MISS:
3124 		inc_miss_counter(cache, bio);
3125 		if (pb->req_nr != 0) {
3126 			/*
3127 			 * This is a duplicate writethrough io that is no
3128 			 * longer needed because the block has been demoted.
3129 			 */
3130 			bio_endio(bio);
3131 			// FIXME: remap everything as a miss
3132 			cell_defer(cache, cell, false);
3133 			r = DM_MAPIO_SUBMITTED;
3134 
3135 		} else
3136 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3137 		break;
3138 
3139 	default:
3140 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3141 			    cache_device_name(cache), __func__,
3142 			    (unsigned) lookup_result.op);
3143 		cell_defer(cache, cell, false);
3144 		bio_io_error(bio);
3145 		r = DM_MAPIO_SUBMITTED;
3146 	}
3147 
3148 	return r;
3149 }
3150 
3151 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3152 {
3153 	struct cache *cache = ti->private;
3154 	unsigned long flags;
3155 	size_t pb_data_size = get_per_bio_data_size(cache);
3156 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3157 
3158 	if (pb->tick) {
3159 		policy_tick(cache->policy, false);
3160 
3161 		spin_lock_irqsave(&cache->lock, flags);
3162 		cache->need_tick_bio = true;
3163 		spin_unlock_irqrestore(&cache->lock, flags);
3164 	}
3165 
3166 	check_for_quiesced_migrations(cache, pb);
3167 	accounted_complete(cache, bio);
3168 
3169 	return 0;
3170 }
3171 
3172 static int write_dirty_bitset(struct cache *cache)
3173 {
3174 	int r;
3175 
3176 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3177 		return -EINVAL;
3178 
3179 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
3180 	if (r)
3181 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
3182 
3183 	return r;
3184 }
3185 
3186 static int write_discard_bitset(struct cache *cache)
3187 {
3188 	unsigned i, r;
3189 
3190 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3191 		return -EINVAL;
3192 
3193 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3194 					   cache->discard_nr_blocks);
3195 	if (r) {
3196 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3197 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3198 		return r;
3199 	}
3200 
3201 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3202 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3203 					 is_discarded(cache, to_dblock(i)));
3204 		if (r) {
3205 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3206 			return r;
3207 		}
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 static int write_hints(struct cache *cache)
3214 {
3215 	int r;
3216 
3217 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3218 		return -EINVAL;
3219 
3220 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3221 	if (r) {
3222 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3223 		return r;
3224 	}
3225 
3226 	return 0;
3227 }
3228 
3229 /*
3230  * returns true on success
3231  */
3232 static bool sync_metadata(struct cache *cache)
3233 {
3234 	int r1, r2, r3, r4;
3235 
3236 	r1 = write_dirty_bitset(cache);
3237 	if (r1)
3238 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3239 
3240 	r2 = write_discard_bitset(cache);
3241 	if (r2)
3242 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3243 
3244 	save_stats(cache);
3245 
3246 	r3 = write_hints(cache);
3247 	if (r3)
3248 		DMERR("%s: could not write hints", cache_device_name(cache));
3249 
3250 	/*
3251 	 * If writing the above metadata failed, we still commit, but don't
3252 	 * set the clean shutdown flag.  This will effectively force every
3253 	 * dirty bit to be set on reload.
3254 	 */
3255 	r4 = commit(cache, !r1 && !r2 && !r3);
3256 	if (r4)
3257 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3258 
3259 	return !r1 && !r2 && !r3 && !r4;
3260 }
3261 
3262 static void cache_postsuspend(struct dm_target *ti)
3263 {
3264 	struct cache *cache = ti->private;
3265 
3266 	start_quiescing(cache);
3267 	wait_for_migrations(cache);
3268 	stop_worker(cache);
3269 	requeue_deferred_bios(cache);
3270 	requeue_deferred_cells(cache);
3271 	stop_quiescing(cache);
3272 
3273 	if (get_cache_mode(cache) == CM_WRITE)
3274 		(void) sync_metadata(cache);
3275 }
3276 
3277 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3278 			bool dirty, uint32_t hint, bool hint_valid)
3279 {
3280 	int r;
3281 	struct cache *cache = context;
3282 
3283 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3284 	if (r)
3285 		return r;
3286 
3287 	if (dirty)
3288 		set_dirty(cache, oblock, cblock);
3289 	else
3290 		clear_dirty(cache, oblock, cblock);
3291 
3292 	return 0;
3293 }
3294 
3295 /*
3296  * The discard block size in the on disk metadata is not
3297  * neccessarily the same as we're currently using.  So we have to
3298  * be careful to only set the discarded attribute if we know it
3299  * covers a complete block of the new size.
3300  */
3301 struct discard_load_info {
3302 	struct cache *cache;
3303 
3304 	/*
3305 	 * These blocks are sized using the on disk dblock size, rather
3306 	 * than the current one.
3307 	 */
3308 	dm_block_t block_size;
3309 	dm_block_t discard_begin, discard_end;
3310 };
3311 
3312 static void discard_load_info_init(struct cache *cache,
3313 				   struct discard_load_info *li)
3314 {
3315 	li->cache = cache;
3316 	li->discard_begin = li->discard_end = 0;
3317 }
3318 
3319 static void set_discard_range(struct discard_load_info *li)
3320 {
3321 	sector_t b, e;
3322 
3323 	if (li->discard_begin == li->discard_end)
3324 		return;
3325 
3326 	/*
3327 	 * Convert to sectors.
3328 	 */
3329 	b = li->discard_begin * li->block_size;
3330 	e = li->discard_end * li->block_size;
3331 
3332 	/*
3333 	 * Then convert back to the current dblock size.
3334 	 */
3335 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3336 	sector_div(e, li->cache->discard_block_size);
3337 
3338 	/*
3339 	 * The origin may have shrunk, so we need to check we're still in
3340 	 * bounds.
3341 	 */
3342 	if (e > from_dblock(li->cache->discard_nr_blocks))
3343 		e = from_dblock(li->cache->discard_nr_blocks);
3344 
3345 	for (; b < e; b++)
3346 		set_discard(li->cache, to_dblock(b));
3347 }
3348 
3349 static int load_discard(void *context, sector_t discard_block_size,
3350 			dm_dblock_t dblock, bool discard)
3351 {
3352 	struct discard_load_info *li = context;
3353 
3354 	li->block_size = discard_block_size;
3355 
3356 	if (discard) {
3357 		if (from_dblock(dblock) == li->discard_end)
3358 			/*
3359 			 * We're already in a discard range, just extend it.
3360 			 */
3361 			li->discard_end = li->discard_end + 1ULL;
3362 
3363 		else {
3364 			/*
3365 			 * Emit the old range and start a new one.
3366 			 */
3367 			set_discard_range(li);
3368 			li->discard_begin = from_dblock(dblock);
3369 			li->discard_end = li->discard_begin + 1ULL;
3370 		}
3371 	} else {
3372 		set_discard_range(li);
3373 		li->discard_begin = li->discard_end = 0;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3380 {
3381 	sector_t size = get_dev_size(cache->cache_dev);
3382 	(void) sector_div(size, cache->sectors_per_block);
3383 	return to_cblock(size);
3384 }
3385 
3386 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3387 {
3388 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3389 		return true;
3390 
3391 	/*
3392 	 * We can't drop a dirty block when shrinking the cache.
3393 	 */
3394 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3395 		new_size = to_cblock(from_cblock(new_size) + 1);
3396 		if (is_dirty(cache, new_size)) {
3397 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3398 			      cache_device_name(cache),
3399 			      (unsigned long long) from_cblock(new_size));
3400 			return false;
3401 		}
3402 	}
3403 
3404 	return true;
3405 }
3406 
3407 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3408 {
3409 	int r;
3410 
3411 	r = dm_cache_resize(cache->cmd, new_size);
3412 	if (r) {
3413 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3414 		metadata_operation_failed(cache, "dm_cache_resize", r);
3415 		return r;
3416 	}
3417 
3418 	set_cache_size(cache, new_size);
3419 
3420 	return 0;
3421 }
3422 
3423 static int cache_preresume(struct dm_target *ti)
3424 {
3425 	int r = 0;
3426 	struct cache *cache = ti->private;
3427 	dm_cblock_t csize = get_cache_dev_size(cache);
3428 
3429 	/*
3430 	 * Check to see if the cache has resized.
3431 	 */
3432 	if (!cache->sized) {
3433 		r = resize_cache_dev(cache, csize);
3434 		if (r)
3435 			return r;
3436 
3437 		cache->sized = true;
3438 
3439 	} else if (csize != cache->cache_size) {
3440 		if (!can_resize(cache, csize))
3441 			return -EINVAL;
3442 
3443 		r = resize_cache_dev(cache, csize);
3444 		if (r)
3445 			return r;
3446 	}
3447 
3448 	if (!cache->loaded_mappings) {
3449 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3450 					   load_mapping, cache);
3451 		if (r) {
3452 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3453 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3454 			return r;
3455 		}
3456 
3457 		cache->loaded_mappings = true;
3458 	}
3459 
3460 	if (!cache->loaded_discards) {
3461 		struct discard_load_info li;
3462 
3463 		/*
3464 		 * The discard bitset could have been resized, or the
3465 		 * discard block size changed.  To be safe we start by
3466 		 * setting every dblock to not discarded.
3467 		 */
3468 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3469 
3470 		discard_load_info_init(cache, &li);
3471 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3472 		if (r) {
3473 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3474 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3475 			return r;
3476 		}
3477 		set_discard_range(&li);
3478 
3479 		cache->loaded_discards = true;
3480 	}
3481 
3482 	return r;
3483 }
3484 
3485 static void cache_resume(struct dm_target *ti)
3486 {
3487 	struct cache *cache = ti->private;
3488 
3489 	cache->need_tick_bio = true;
3490 	do_waker(&cache->waker.work);
3491 }
3492 
3493 /*
3494  * Status format:
3495  *
3496  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3497  * <cache block size> <#used cache blocks>/<#total cache blocks>
3498  * <#read hits> <#read misses> <#write hits> <#write misses>
3499  * <#demotions> <#promotions> <#dirty>
3500  * <#features> <features>*
3501  * <#core args> <core args>
3502  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3503  */
3504 static void cache_status(struct dm_target *ti, status_type_t type,
3505 			 unsigned status_flags, char *result, unsigned maxlen)
3506 {
3507 	int r = 0;
3508 	unsigned i;
3509 	ssize_t sz = 0;
3510 	dm_block_t nr_free_blocks_metadata = 0;
3511 	dm_block_t nr_blocks_metadata = 0;
3512 	char buf[BDEVNAME_SIZE];
3513 	struct cache *cache = ti->private;
3514 	dm_cblock_t residency;
3515 	bool needs_check;
3516 
3517 	switch (type) {
3518 	case STATUSTYPE_INFO:
3519 		if (get_cache_mode(cache) == CM_FAIL) {
3520 			DMEMIT("Fail");
3521 			break;
3522 		}
3523 
3524 		/* Commit to ensure statistics aren't out-of-date */
3525 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3526 			(void) commit(cache, false);
3527 
3528 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3529 		if (r) {
3530 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3531 			      cache_device_name(cache), r);
3532 			goto err;
3533 		}
3534 
3535 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3536 		if (r) {
3537 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3538 			      cache_device_name(cache), r);
3539 			goto err;
3540 		}
3541 
3542 		residency = policy_residency(cache->policy);
3543 
3544 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3545 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3546 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3547 		       (unsigned long long)nr_blocks_metadata,
3548 		       (unsigned long long)cache->sectors_per_block,
3549 		       (unsigned long long) from_cblock(residency),
3550 		       (unsigned long long) from_cblock(cache->cache_size),
3551 		       (unsigned) atomic_read(&cache->stats.read_hit),
3552 		       (unsigned) atomic_read(&cache->stats.read_miss),
3553 		       (unsigned) atomic_read(&cache->stats.write_hit),
3554 		       (unsigned) atomic_read(&cache->stats.write_miss),
3555 		       (unsigned) atomic_read(&cache->stats.demotion),
3556 		       (unsigned) atomic_read(&cache->stats.promotion),
3557 		       (unsigned long) atomic_read(&cache->nr_dirty));
3558 
3559 		if (cache->features.metadata_version == 2)
3560 			DMEMIT("2 metadata2 ");
3561 		else
3562 			DMEMIT("1 ");
3563 
3564 		if (writethrough_mode(&cache->features))
3565 			DMEMIT("writethrough ");
3566 
3567 		else if (passthrough_mode(&cache->features))
3568 			DMEMIT("passthrough ");
3569 
3570 		else if (writeback_mode(&cache->features))
3571 			DMEMIT("writeback ");
3572 
3573 		else {
3574 			DMERR("%s: internal error: unknown io mode: %d",
3575 			      cache_device_name(cache), (int) cache->features.io_mode);
3576 			goto err;
3577 		}
3578 
3579 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3580 
3581 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3582 		if (sz < maxlen) {
3583 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3584 			if (r)
3585 				DMERR("%s: policy_emit_config_values returned %d",
3586 				      cache_device_name(cache), r);
3587 		}
3588 
3589 		if (get_cache_mode(cache) == CM_READ_ONLY)
3590 			DMEMIT("ro ");
3591 		else
3592 			DMEMIT("rw ");
3593 
3594 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3595 
3596 		if (r || needs_check)
3597 			DMEMIT("needs_check ");
3598 		else
3599 			DMEMIT("- ");
3600 
3601 		break;
3602 
3603 	case STATUSTYPE_TABLE:
3604 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3605 		DMEMIT("%s ", buf);
3606 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3607 		DMEMIT("%s ", buf);
3608 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3609 		DMEMIT("%s", buf);
3610 
3611 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3612 			DMEMIT(" %s", cache->ctr_args[i]);
3613 		if (cache->nr_ctr_args)
3614 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3615 	}
3616 
3617 	return;
3618 
3619 err:
3620 	DMEMIT("Error");
3621 }
3622 
3623 /*
3624  * A cache block range can take two forms:
3625  *
3626  * i) A single cblock, eg. '3456'
3627  * ii) A begin and end cblock with dots between, eg. 123-234
3628  */
3629 static int parse_cblock_range(struct cache *cache, const char *str,
3630 			      struct cblock_range *result)
3631 {
3632 	char dummy;
3633 	uint64_t b, e;
3634 	int r;
3635 
3636 	/*
3637 	 * Try and parse form (ii) first.
3638 	 */
3639 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3640 	if (r < 0)
3641 		return r;
3642 
3643 	if (r == 2) {
3644 		result->begin = to_cblock(b);
3645 		result->end = to_cblock(e);
3646 		return 0;
3647 	}
3648 
3649 	/*
3650 	 * That didn't work, try form (i).
3651 	 */
3652 	r = sscanf(str, "%llu%c", &b, &dummy);
3653 	if (r < 0)
3654 		return r;
3655 
3656 	if (r == 1) {
3657 		result->begin = to_cblock(b);
3658 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3659 		return 0;
3660 	}
3661 
3662 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3663 	return -EINVAL;
3664 }
3665 
3666 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3667 {
3668 	uint64_t b = from_cblock(range->begin);
3669 	uint64_t e = from_cblock(range->end);
3670 	uint64_t n = from_cblock(cache->cache_size);
3671 
3672 	if (b >= n) {
3673 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3674 		      cache_device_name(cache), b, n);
3675 		return -EINVAL;
3676 	}
3677 
3678 	if (e > n) {
3679 		DMERR("%s: end cblock out of range: %llu > %llu",
3680 		      cache_device_name(cache), e, n);
3681 		return -EINVAL;
3682 	}
3683 
3684 	if (b >= e) {
3685 		DMERR("%s: invalid cblock range: %llu >= %llu",
3686 		      cache_device_name(cache), b, e);
3687 		return -EINVAL;
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3694 {
3695 	struct invalidation_request req;
3696 
3697 	INIT_LIST_HEAD(&req.list);
3698 	req.cblocks = range;
3699 	atomic_set(&req.complete, 0);
3700 	req.err = 0;
3701 	init_waitqueue_head(&req.result_wait);
3702 
3703 	spin_lock(&cache->invalidation_lock);
3704 	list_add(&req.list, &cache->invalidation_requests);
3705 	spin_unlock(&cache->invalidation_lock);
3706 	wake_worker(cache);
3707 
3708 	wait_event(req.result_wait, atomic_read(&req.complete));
3709 	return req.err;
3710 }
3711 
3712 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3713 					      const char **cblock_ranges)
3714 {
3715 	int r = 0;
3716 	unsigned i;
3717 	struct cblock_range range;
3718 
3719 	if (!passthrough_mode(&cache->features)) {
3720 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3721 		      cache_device_name(cache));
3722 		return -EPERM;
3723 	}
3724 
3725 	for (i = 0; i < count; i++) {
3726 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3727 		if (r)
3728 			break;
3729 
3730 		r = validate_cblock_range(cache, &range);
3731 		if (r)
3732 			break;
3733 
3734 		/*
3735 		 * Pass begin and end origin blocks to the worker and wake it.
3736 		 */
3737 		r = request_invalidation(cache, &range);
3738 		if (r)
3739 			break;
3740 	}
3741 
3742 	return r;
3743 }
3744 
3745 /*
3746  * Supports
3747  *	"<key> <value>"
3748  * and
3749  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3750  *
3751  * The key migration_threshold is supported by the cache target core.
3752  */
3753 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3754 {
3755 	struct cache *cache = ti->private;
3756 
3757 	if (!argc)
3758 		return -EINVAL;
3759 
3760 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3761 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3762 		      cache_device_name(cache));
3763 		return -EOPNOTSUPP;
3764 	}
3765 
3766 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3767 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3768 
3769 	if (argc != 2)
3770 		return -EINVAL;
3771 
3772 	return set_config_value(cache, argv[0], argv[1]);
3773 }
3774 
3775 static int cache_iterate_devices(struct dm_target *ti,
3776 				 iterate_devices_callout_fn fn, void *data)
3777 {
3778 	int r = 0;
3779 	struct cache *cache = ti->private;
3780 
3781 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3782 	if (!r)
3783 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3784 
3785 	return r;
3786 }
3787 
3788 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3789 {
3790 	/*
3791 	 * FIXME: these limits may be incompatible with the cache device
3792 	 */
3793 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3794 					    cache->origin_sectors);
3795 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3796 }
3797 
3798 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3799 {
3800 	struct cache *cache = ti->private;
3801 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3802 
3803 	/*
3804 	 * If the system-determined stacked limits are compatible with the
3805 	 * cache's blocksize (io_opt is a factor) do not override them.
3806 	 */
3807 	if (io_opt_sectors < cache->sectors_per_block ||
3808 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3809 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3810 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3811 	}
3812 	set_discard_limits(cache, limits);
3813 }
3814 
3815 /*----------------------------------------------------------------*/
3816 
3817 static struct target_type cache_target = {
3818 	.name = "cache",
3819 	.version = {1, 10, 0},
3820 	.module = THIS_MODULE,
3821 	.ctr = cache_ctr,
3822 	.dtr = cache_dtr,
3823 	.map = cache_map,
3824 	.end_io = cache_end_io,
3825 	.postsuspend = cache_postsuspend,
3826 	.preresume = cache_preresume,
3827 	.resume = cache_resume,
3828 	.status = cache_status,
3829 	.message = cache_message,
3830 	.iterate_devices = cache_iterate_devices,
3831 	.io_hints = cache_io_hints,
3832 };
3833 
3834 static int __init dm_cache_init(void)
3835 {
3836 	int r;
3837 
3838 	r = dm_register_target(&cache_target);
3839 	if (r) {
3840 		DMERR("cache target registration failed: %d", r);
3841 		return r;
3842 	}
3843 
3844 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3845 	if (!migration_cache) {
3846 		dm_unregister_target(&cache_target);
3847 		return -ENOMEM;
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static void __exit dm_cache_exit(void)
3854 {
3855 	dm_unregister_target(&cache_target);
3856 	kmem_cache_destroy(migration_cache);
3857 }
3858 
3859 module_init(dm_cache_init);
3860 module_exit(dm_cache_exit);
3861 
3862 MODULE_DESCRIPTION(DM_NAME " cache target");
3863 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3864 MODULE_LICENSE("GPL");
3865