xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 4981b8a2d9fafa0d8060c83ffb19cd55c6798046)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
13 
14 #include <linux/dm-io.h>
15 #include <linux/dm-kcopyd.h>
16 #include <linux/jiffies.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/rwsem.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 
24 #define DM_MSG_PREFIX "cache"
25 
26 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
27 	"A percentage of time allocated for copying to and/or from cache");
28 
29 /*----------------------------------------------------------------*/
30 
31 /*
32  * Glossary:
33  *
34  * oblock: index of an origin block
35  * cblock: index of a cache block
36  * promotion: movement of a block from origin to cache
37  * demotion: movement of a block from cache to origin
38  * migration: movement of a block between the origin and cache device,
39  *	      either direction
40  */
41 
42 /*----------------------------------------------------------------*/
43 
44 /*
45  * Represents a chunk of future work.  'input' allows continuations to pass
46  * values between themselves, typically error values.
47  */
48 struct continuation {
49 	struct work_struct ws;
50 	blk_status_t input;
51 };
52 
53 static inline void init_continuation(struct continuation *k,
54 				     void (*fn)(struct work_struct *))
55 {
56 	INIT_WORK(&k->ws, fn);
57 	k->input = 0;
58 }
59 
60 static inline void queue_continuation(struct workqueue_struct *wq,
61 				      struct continuation *k)
62 {
63 	queue_work(wq, &k->ws);
64 }
65 
66 /*----------------------------------------------------------------*/
67 
68 /*
69  * The batcher collects together pieces of work that need a particular
70  * operation to occur before they can proceed (typically a commit).
71  */
72 struct batcher {
73 	/*
74 	 * The operation that everyone is waiting for.
75 	 */
76 	blk_status_t (*commit_op)(void *context);
77 	void *commit_context;
78 
79 	/*
80 	 * This is how bios should be issued once the commit op is complete
81 	 * (accounted_request).
82 	 */
83 	void (*issue_op)(struct bio *bio, void *context);
84 	void *issue_context;
85 
86 	/*
87 	 * Queued work gets put on here after commit.
88 	 */
89 	struct workqueue_struct *wq;
90 
91 	spinlock_t lock;
92 	struct list_head work_items;
93 	struct bio_list bios;
94 	struct work_struct commit_work;
95 
96 	bool commit_scheduled;
97 };
98 
99 static void __commit(struct work_struct *_ws)
100 {
101 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
102 	blk_status_t r;
103 	struct list_head work_items;
104 	struct work_struct *ws, *tmp;
105 	struct continuation *k;
106 	struct bio *bio;
107 	struct bio_list bios;
108 
109 	INIT_LIST_HEAD(&work_items);
110 	bio_list_init(&bios);
111 
112 	/*
113 	 * We have to grab these before the commit_op to avoid a race
114 	 * condition.
115 	 */
116 	spin_lock_irq(&b->lock);
117 	list_splice_init(&b->work_items, &work_items);
118 	bio_list_merge(&bios, &b->bios);
119 	bio_list_init(&b->bios);
120 	b->commit_scheduled = false;
121 	spin_unlock_irq(&b->lock);
122 
123 	r = b->commit_op(b->commit_context);
124 
125 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126 		k = container_of(ws, struct continuation, ws);
127 		k->input = r;
128 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129 		queue_work(b->wq, ws);
130 	}
131 
132 	while ((bio = bio_list_pop(&bios))) {
133 		if (r) {
134 			bio->bi_status = r;
135 			bio_endio(bio);
136 		} else
137 			b->issue_op(bio, b->issue_context);
138 	}
139 }
140 
141 static void batcher_init(struct batcher *b,
142 			 blk_status_t (*commit_op)(void *),
143 			 void *commit_context,
144 			 void (*issue_op)(struct bio *bio, void *),
145 			 void *issue_context,
146 			 struct workqueue_struct *wq)
147 {
148 	b->commit_op = commit_op;
149 	b->commit_context = commit_context;
150 	b->issue_op = issue_op;
151 	b->issue_context = issue_context;
152 	b->wq = wq;
153 
154 	spin_lock_init(&b->lock);
155 	INIT_LIST_HEAD(&b->work_items);
156 	bio_list_init(&b->bios);
157 	INIT_WORK(&b->commit_work, __commit);
158 	b->commit_scheduled = false;
159 }
160 
161 static void async_commit(struct batcher *b)
162 {
163 	queue_work(b->wq, &b->commit_work);
164 }
165 
166 static void continue_after_commit(struct batcher *b, struct continuation *k)
167 {
168 	bool commit_scheduled;
169 
170 	spin_lock_irq(&b->lock);
171 	commit_scheduled = b->commit_scheduled;
172 	list_add_tail(&k->ws.entry, &b->work_items);
173 	spin_unlock_irq(&b->lock);
174 
175 	if (commit_scheduled)
176 		async_commit(b);
177 }
178 
179 /*
180  * Bios are errored if commit failed.
181  */
182 static void issue_after_commit(struct batcher *b, struct bio *bio)
183 {
184 	bool commit_scheduled;
185 
186 	spin_lock_irq(&b->lock);
187 	commit_scheduled = b->commit_scheduled;
188 	bio_list_add(&b->bios, bio);
189 	spin_unlock_irq(&b->lock);
190 
191 	if (commit_scheduled)
192 		async_commit(b);
193 }
194 
195 /*
196  * Call this if some urgent work is waiting for the commit to complete.
197  */
198 static void schedule_commit(struct batcher *b)
199 {
200 	bool immediate;
201 
202 	spin_lock_irq(&b->lock);
203 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204 	b->commit_scheduled = true;
205 	spin_unlock_irq(&b->lock);
206 
207 	if (immediate)
208 		async_commit(b);
209 }
210 
211 /*
212  * There are a couple of places where we let a bio run, but want to do some
213  * work before calling its endio function.  We do this by temporarily
214  * changing the endio fn.
215  */
216 struct dm_hook_info {
217 	bio_end_io_t *bi_end_io;
218 };
219 
220 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221 			bio_end_io_t *bi_end_io, void *bi_private)
222 {
223 	h->bi_end_io = bio->bi_end_io;
224 
225 	bio->bi_end_io = bi_end_io;
226 	bio->bi_private = bi_private;
227 }
228 
229 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230 {
231 	bio->bi_end_io = h->bi_end_io;
232 }
233 
234 /*----------------------------------------------------------------*/
235 
236 #define MIGRATION_POOL_SIZE 128
237 #define COMMIT_PERIOD HZ
238 #define MIGRATION_COUNT_WINDOW 10
239 
240 /*
241  * The block size of the device holding cache data must be
242  * between 32KB and 1GB.
243  */
244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246 
247 enum cache_metadata_mode {
248 	CM_WRITE,		/* metadata may be changed */
249 	CM_READ_ONLY,		/* metadata may not be changed */
250 	CM_FAIL
251 };
252 
253 enum cache_io_mode {
254 	/*
255 	 * Data is written to cached blocks only.  These blocks are marked
256 	 * dirty.  If you lose the cache device you will lose data.
257 	 * Potential performance increase for both reads and writes.
258 	 */
259 	CM_IO_WRITEBACK,
260 
261 	/*
262 	 * Data is written to both cache and origin.  Blocks are never
263 	 * dirty.  Potential performance benfit for reads only.
264 	 */
265 	CM_IO_WRITETHROUGH,
266 
267 	/*
268 	 * A degraded mode useful for various cache coherency situations
269 	 * (eg, rolling back snapshots).  Reads and writes always go to the
270 	 * origin.  If a write goes to a cached oblock, then the cache
271 	 * block is invalidated.
272 	 */
273 	CM_IO_PASSTHROUGH
274 };
275 
276 struct cache_features {
277 	enum cache_metadata_mode mode;
278 	enum cache_io_mode io_mode;
279 	unsigned int metadata_version;
280 	bool discard_passdown:1;
281 };
282 
283 struct cache_stats {
284 	atomic_t read_hit;
285 	atomic_t read_miss;
286 	atomic_t write_hit;
287 	atomic_t write_miss;
288 	atomic_t demotion;
289 	atomic_t promotion;
290 	atomic_t writeback;
291 	atomic_t copies_avoided;
292 	atomic_t cache_cell_clash;
293 	atomic_t commit_count;
294 	atomic_t discard_count;
295 };
296 
297 struct cache {
298 	struct dm_target *ti;
299 	spinlock_t lock;
300 
301 	/*
302 	 * Fields for converting from sectors to blocks.
303 	 */
304 	int sectors_per_block_shift;
305 	sector_t sectors_per_block;
306 
307 	struct dm_cache_metadata *cmd;
308 
309 	/*
310 	 * Metadata is written to this device.
311 	 */
312 	struct dm_dev *metadata_dev;
313 
314 	/*
315 	 * The slower of the two data devices.  Typically a spindle.
316 	 */
317 	struct dm_dev *origin_dev;
318 
319 	/*
320 	 * The faster of the two data devices.  Typically an SSD.
321 	 */
322 	struct dm_dev *cache_dev;
323 
324 	/*
325 	 * Size of the origin device in _complete_ blocks and native sectors.
326 	 */
327 	dm_oblock_t origin_blocks;
328 	sector_t origin_sectors;
329 
330 	/*
331 	 * Size of the cache device in blocks.
332 	 */
333 	dm_cblock_t cache_size;
334 
335 	/*
336 	 * Invalidation fields.
337 	 */
338 	spinlock_t invalidation_lock;
339 	struct list_head invalidation_requests;
340 
341 	sector_t migration_threshold;
342 	wait_queue_head_t migration_wait;
343 	atomic_t nr_allocated_migrations;
344 
345 	/*
346 	 * The number of in flight migrations that are performing
347 	 * background io. eg, promotion, writeback.
348 	 */
349 	atomic_t nr_io_migrations;
350 
351 	struct bio_list deferred_bios;
352 
353 	struct rw_semaphore quiesce_lock;
354 
355 	/*
356 	 * origin_blocks entries, discarded if set.
357 	 */
358 	dm_dblock_t discard_nr_blocks;
359 	unsigned long *discard_bitset;
360 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
361 
362 	/*
363 	 * Rather than reconstructing the table line for the status we just
364 	 * save it and regurgitate.
365 	 */
366 	unsigned int nr_ctr_args;
367 	const char **ctr_args;
368 
369 	struct dm_kcopyd_client *copier;
370 	struct work_struct deferred_bio_worker;
371 	struct work_struct migration_worker;
372 	struct workqueue_struct *wq;
373 	struct delayed_work waker;
374 	struct dm_bio_prison_v2 *prison;
375 
376 	/*
377 	 * cache_size entries, dirty if set
378 	 */
379 	unsigned long *dirty_bitset;
380 	atomic_t nr_dirty;
381 
382 	unsigned int policy_nr_args;
383 	struct dm_cache_policy *policy;
384 
385 	/*
386 	 * Cache features such as write-through.
387 	 */
388 	struct cache_features features;
389 
390 	struct cache_stats stats;
391 
392 	bool need_tick_bio:1;
393 	bool sized:1;
394 	bool invalidate:1;
395 	bool commit_requested:1;
396 	bool loaded_mappings:1;
397 	bool loaded_discards:1;
398 
399 	struct rw_semaphore background_work_lock;
400 
401 	struct batcher committer;
402 	struct work_struct commit_ws;
403 
404 	struct dm_io_tracker tracker;
405 
406 	mempool_t migration_pool;
407 
408 	struct bio_set bs;
409 };
410 
411 struct per_bio_data {
412 	bool tick:1;
413 	unsigned int req_nr:2;
414 	struct dm_bio_prison_cell_v2 *cell;
415 	struct dm_hook_info hook_info;
416 	sector_t len;
417 };
418 
419 struct dm_cache_migration {
420 	struct continuation k;
421 	struct cache *cache;
422 
423 	struct policy_work *op;
424 	struct bio *overwrite_bio;
425 	struct dm_bio_prison_cell_v2 *cell;
426 
427 	dm_cblock_t invalidate_cblock;
428 	dm_oblock_t invalidate_oblock;
429 };
430 
431 /*----------------------------------------------------------------*/
432 
433 static bool writethrough_mode(struct cache *cache)
434 {
435 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
436 }
437 
438 static bool writeback_mode(struct cache *cache)
439 {
440 	return cache->features.io_mode == CM_IO_WRITEBACK;
441 }
442 
443 static inline bool passthrough_mode(struct cache *cache)
444 {
445 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
446 }
447 
448 /*----------------------------------------------------------------*/
449 
450 static void wake_deferred_bio_worker(struct cache *cache)
451 {
452 	queue_work(cache->wq, &cache->deferred_bio_worker);
453 }
454 
455 static void wake_migration_worker(struct cache *cache)
456 {
457 	if (passthrough_mode(cache))
458 		return;
459 
460 	queue_work(cache->wq, &cache->migration_worker);
461 }
462 
463 /*----------------------------------------------------------------*/
464 
465 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
466 {
467 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
468 }
469 
470 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
471 {
472 	dm_bio_prison_free_cell_v2(cache->prison, cell);
473 }
474 
475 static struct dm_cache_migration *alloc_migration(struct cache *cache)
476 {
477 	struct dm_cache_migration *mg;
478 
479 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
480 
481 	memset(mg, 0, sizeof(*mg));
482 
483 	mg->cache = cache;
484 	atomic_inc(&cache->nr_allocated_migrations);
485 
486 	return mg;
487 }
488 
489 static void free_migration(struct dm_cache_migration *mg)
490 {
491 	struct cache *cache = mg->cache;
492 
493 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
494 		wake_up(&cache->migration_wait);
495 
496 	mempool_free(mg, &cache->migration_pool);
497 }
498 
499 /*----------------------------------------------------------------*/
500 
501 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
502 {
503 	return to_oblock(from_oblock(b) + 1ull);
504 }
505 
506 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
507 {
508 	key->virtual = 0;
509 	key->dev = 0;
510 	key->block_begin = from_oblock(begin);
511 	key->block_end = from_oblock(end);
512 }
513 
514 /*
515  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
516  * level 1 which prevents *both* READs and WRITEs.
517  */
518 #define WRITE_LOCK_LEVEL 0
519 #define READ_WRITE_LOCK_LEVEL 1
520 
521 static unsigned int lock_level(struct bio *bio)
522 {
523 	return bio_data_dir(bio) == WRITE ?
524 		WRITE_LOCK_LEVEL :
525 		READ_WRITE_LOCK_LEVEL;
526 }
527 
528 /*
529  *--------------------------------------------------------------
530  * Per bio data
531  *--------------------------------------------------------------
532  */
533 
534 static struct per_bio_data *get_per_bio_data(struct bio *bio)
535 {
536 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
537 
538 	BUG_ON(!pb);
539 	return pb;
540 }
541 
542 static struct per_bio_data *init_per_bio_data(struct bio *bio)
543 {
544 	struct per_bio_data *pb = get_per_bio_data(bio);
545 
546 	pb->tick = false;
547 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
548 	pb->cell = NULL;
549 	pb->len = 0;
550 
551 	return pb;
552 }
553 
554 /*----------------------------------------------------------------*/
555 
556 static void defer_bio(struct cache *cache, struct bio *bio)
557 {
558 	spin_lock_irq(&cache->lock);
559 	bio_list_add(&cache->deferred_bios, bio);
560 	spin_unlock_irq(&cache->lock);
561 
562 	wake_deferred_bio_worker(cache);
563 }
564 
565 static void defer_bios(struct cache *cache, struct bio_list *bios)
566 {
567 	spin_lock_irq(&cache->lock);
568 	bio_list_merge(&cache->deferred_bios, bios);
569 	bio_list_init(bios);
570 	spin_unlock_irq(&cache->lock);
571 
572 	wake_deferred_bio_worker(cache);
573 }
574 
575 /*----------------------------------------------------------------*/
576 
577 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
578 {
579 	bool r;
580 	struct per_bio_data *pb;
581 	struct dm_cell_key_v2 key;
582 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
583 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
584 
585 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
586 
587 	build_key(oblock, end, &key);
588 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
589 	if (!r) {
590 		/*
591 		 * Failed to get the lock.
592 		 */
593 		free_prison_cell(cache, cell_prealloc);
594 		return r;
595 	}
596 
597 	if (cell != cell_prealloc)
598 		free_prison_cell(cache, cell_prealloc);
599 
600 	pb = get_per_bio_data(bio);
601 	pb->cell = cell;
602 
603 	return r;
604 }
605 
606 /*----------------------------------------------------------------*/
607 
608 static bool is_dirty(struct cache *cache, dm_cblock_t b)
609 {
610 	return test_bit(from_cblock(b), cache->dirty_bitset);
611 }
612 
613 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
614 {
615 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
616 		atomic_inc(&cache->nr_dirty);
617 		policy_set_dirty(cache->policy, cblock);
618 	}
619 }
620 
621 /*
622  * These two are called when setting after migrations to force the policy
623  * and dirty bitset to be in sync.
624  */
625 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
626 {
627 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
628 		atomic_inc(&cache->nr_dirty);
629 	policy_set_dirty(cache->policy, cblock);
630 }
631 
632 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
633 {
634 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
635 		if (atomic_dec_return(&cache->nr_dirty) == 0)
636 			dm_table_event(cache->ti->table);
637 	}
638 
639 	policy_clear_dirty(cache->policy, cblock);
640 }
641 
642 /*----------------------------------------------------------------*/
643 
644 static bool block_size_is_power_of_two(struct cache *cache)
645 {
646 	return cache->sectors_per_block_shift >= 0;
647 }
648 
649 static dm_block_t block_div(dm_block_t b, uint32_t n)
650 {
651 	do_div(b, n);
652 
653 	return b;
654 }
655 
656 static dm_block_t oblocks_per_dblock(struct cache *cache)
657 {
658 	dm_block_t oblocks = cache->discard_block_size;
659 
660 	if (block_size_is_power_of_two(cache))
661 		oblocks >>= cache->sectors_per_block_shift;
662 	else
663 		oblocks = block_div(oblocks, cache->sectors_per_block);
664 
665 	return oblocks;
666 }
667 
668 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
669 {
670 	return to_dblock(block_div(from_oblock(oblock),
671 				   oblocks_per_dblock(cache)));
672 }
673 
674 static void set_discard(struct cache *cache, dm_dblock_t b)
675 {
676 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
677 	atomic_inc(&cache->stats.discard_count);
678 
679 	spin_lock_irq(&cache->lock);
680 	set_bit(from_dblock(b), cache->discard_bitset);
681 	spin_unlock_irq(&cache->lock);
682 }
683 
684 static void clear_discard(struct cache *cache, dm_dblock_t b)
685 {
686 	spin_lock_irq(&cache->lock);
687 	clear_bit(from_dblock(b), cache->discard_bitset);
688 	spin_unlock_irq(&cache->lock);
689 }
690 
691 static bool is_discarded(struct cache *cache, dm_dblock_t b)
692 {
693 	int r;
694 
695 	spin_lock_irq(&cache->lock);
696 	r = test_bit(from_dblock(b), cache->discard_bitset);
697 	spin_unlock_irq(&cache->lock);
698 
699 	return r;
700 }
701 
702 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
703 {
704 	int r;
705 
706 	spin_lock_irq(&cache->lock);
707 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
708 		     cache->discard_bitset);
709 	spin_unlock_irq(&cache->lock);
710 
711 	return r;
712 }
713 
714 /*
715  * -------------------------------------------------------------
716  * Remapping
717  *--------------------------------------------------------------
718  */
719 static void remap_to_origin(struct cache *cache, struct bio *bio)
720 {
721 	bio_set_dev(bio, cache->origin_dev->bdev);
722 }
723 
724 static void remap_to_cache(struct cache *cache, struct bio *bio,
725 			   dm_cblock_t cblock)
726 {
727 	sector_t bi_sector = bio->bi_iter.bi_sector;
728 	sector_t block = from_cblock(cblock);
729 
730 	bio_set_dev(bio, cache->cache_dev->bdev);
731 	if (!block_size_is_power_of_two(cache))
732 		bio->bi_iter.bi_sector =
733 			(block * cache->sectors_per_block) +
734 			sector_div(bi_sector, cache->sectors_per_block);
735 	else
736 		bio->bi_iter.bi_sector =
737 			(block << cache->sectors_per_block_shift) |
738 			(bi_sector & (cache->sectors_per_block - 1));
739 }
740 
741 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
742 {
743 	struct per_bio_data *pb;
744 
745 	spin_lock_irq(&cache->lock);
746 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
747 	    bio_op(bio) != REQ_OP_DISCARD) {
748 		pb = get_per_bio_data(bio);
749 		pb->tick = true;
750 		cache->need_tick_bio = false;
751 	}
752 	spin_unlock_irq(&cache->lock);
753 }
754 
755 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
756 					  dm_oblock_t oblock)
757 {
758 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
759 	check_if_tick_bio_needed(cache, bio);
760 	remap_to_origin(cache, bio);
761 	if (bio_data_dir(bio) == WRITE)
762 		clear_discard(cache, oblock_to_dblock(cache, oblock));
763 }
764 
765 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
766 				 dm_oblock_t oblock, dm_cblock_t cblock)
767 {
768 	check_if_tick_bio_needed(cache, bio);
769 	remap_to_cache(cache, bio, cblock);
770 	if (bio_data_dir(bio) == WRITE) {
771 		set_dirty(cache, cblock);
772 		clear_discard(cache, oblock_to_dblock(cache, oblock));
773 	}
774 }
775 
776 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
777 {
778 	sector_t block_nr = bio->bi_iter.bi_sector;
779 
780 	if (!block_size_is_power_of_two(cache))
781 		(void) sector_div(block_nr, cache->sectors_per_block);
782 	else
783 		block_nr >>= cache->sectors_per_block_shift;
784 
785 	return to_oblock(block_nr);
786 }
787 
788 static bool accountable_bio(struct cache *cache, struct bio *bio)
789 {
790 	return bio_op(bio) != REQ_OP_DISCARD;
791 }
792 
793 static void accounted_begin(struct cache *cache, struct bio *bio)
794 {
795 	struct per_bio_data *pb;
796 
797 	if (accountable_bio(cache, bio)) {
798 		pb = get_per_bio_data(bio);
799 		pb->len = bio_sectors(bio);
800 		dm_iot_io_begin(&cache->tracker, pb->len);
801 	}
802 }
803 
804 static void accounted_complete(struct cache *cache, struct bio *bio)
805 {
806 	struct per_bio_data *pb = get_per_bio_data(bio);
807 
808 	dm_iot_io_end(&cache->tracker, pb->len);
809 }
810 
811 static void accounted_request(struct cache *cache, struct bio *bio)
812 {
813 	accounted_begin(cache, bio);
814 	dm_submit_bio_remap(bio, NULL);
815 }
816 
817 static void issue_op(struct bio *bio, void *context)
818 {
819 	struct cache *cache = context;
820 
821 	accounted_request(cache, bio);
822 }
823 
824 /*
825  * When running in writethrough mode we need to send writes to clean blocks
826  * to both the cache and origin devices.  Clone the bio and send them in parallel.
827  */
828 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
829 				      dm_oblock_t oblock, dm_cblock_t cblock)
830 {
831 	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
832 						 GFP_NOIO, &cache->bs);
833 
834 	BUG_ON(!origin_bio);
835 
836 	bio_chain(origin_bio, bio);
837 
838 	if (bio_data_dir(origin_bio) == WRITE)
839 		clear_discard(cache, oblock_to_dblock(cache, oblock));
840 	submit_bio(origin_bio);
841 
842 	remap_to_cache(cache, bio, cblock);
843 }
844 
845 /*
846  *--------------------------------------------------------------
847  * Failure modes
848  *--------------------------------------------------------------
849  */
850 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
851 {
852 	return cache->features.mode;
853 }
854 
855 static const char *cache_device_name(struct cache *cache)
856 {
857 	return dm_table_device_name(cache->ti->table);
858 }
859 
860 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
861 {
862 	static const char *descs[] = {
863 		"write",
864 		"read-only",
865 		"fail"
866 	};
867 
868 	dm_table_event(cache->ti->table);
869 	DMINFO("%s: switching cache to %s mode",
870 	       cache_device_name(cache), descs[(int)mode]);
871 }
872 
873 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
874 {
875 	bool needs_check;
876 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
877 
878 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
879 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
880 		      cache_device_name(cache));
881 		new_mode = CM_FAIL;
882 	}
883 
884 	if (new_mode == CM_WRITE && needs_check) {
885 		DMERR("%s: unable to switch cache to write mode until repaired.",
886 		      cache_device_name(cache));
887 		if (old_mode != new_mode)
888 			new_mode = old_mode;
889 		else
890 			new_mode = CM_READ_ONLY;
891 	}
892 
893 	/* Never move out of fail mode */
894 	if (old_mode == CM_FAIL)
895 		new_mode = CM_FAIL;
896 
897 	switch (new_mode) {
898 	case CM_FAIL:
899 	case CM_READ_ONLY:
900 		dm_cache_metadata_set_read_only(cache->cmd);
901 		break;
902 
903 	case CM_WRITE:
904 		dm_cache_metadata_set_read_write(cache->cmd);
905 		break;
906 	}
907 
908 	cache->features.mode = new_mode;
909 
910 	if (new_mode != old_mode)
911 		notify_mode_switch(cache, new_mode);
912 }
913 
914 static void abort_transaction(struct cache *cache)
915 {
916 	const char *dev_name = cache_device_name(cache);
917 
918 	if (get_cache_mode(cache) >= CM_READ_ONLY)
919 		return;
920 
921 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
922 	if (dm_cache_metadata_abort(cache->cmd)) {
923 		DMERR("%s: failed to abort metadata transaction", dev_name);
924 		set_cache_mode(cache, CM_FAIL);
925 	}
926 
927 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
928 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
929 		set_cache_mode(cache, CM_FAIL);
930 	}
931 }
932 
933 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
934 {
935 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
936 		    cache_device_name(cache), op, r);
937 	abort_transaction(cache);
938 	set_cache_mode(cache, CM_READ_ONLY);
939 }
940 
941 /*----------------------------------------------------------------*/
942 
943 static void load_stats(struct cache *cache)
944 {
945 	struct dm_cache_statistics stats;
946 
947 	dm_cache_metadata_get_stats(cache->cmd, &stats);
948 	atomic_set(&cache->stats.read_hit, stats.read_hits);
949 	atomic_set(&cache->stats.read_miss, stats.read_misses);
950 	atomic_set(&cache->stats.write_hit, stats.write_hits);
951 	atomic_set(&cache->stats.write_miss, stats.write_misses);
952 }
953 
954 static void save_stats(struct cache *cache)
955 {
956 	struct dm_cache_statistics stats;
957 
958 	if (get_cache_mode(cache) >= CM_READ_ONLY)
959 		return;
960 
961 	stats.read_hits = atomic_read(&cache->stats.read_hit);
962 	stats.read_misses = atomic_read(&cache->stats.read_miss);
963 	stats.write_hits = atomic_read(&cache->stats.write_hit);
964 	stats.write_misses = atomic_read(&cache->stats.write_miss);
965 
966 	dm_cache_metadata_set_stats(cache->cmd, &stats);
967 }
968 
969 static void update_stats(struct cache_stats *stats, enum policy_operation op)
970 {
971 	switch (op) {
972 	case POLICY_PROMOTE:
973 		atomic_inc(&stats->promotion);
974 		break;
975 
976 	case POLICY_DEMOTE:
977 		atomic_inc(&stats->demotion);
978 		break;
979 
980 	case POLICY_WRITEBACK:
981 		atomic_inc(&stats->writeback);
982 		break;
983 	}
984 }
985 
986 /*
987  *---------------------------------------------------------------------
988  * Migration processing
989  *
990  * Migration covers moving data from the origin device to the cache, or
991  * vice versa.
992  *---------------------------------------------------------------------
993  */
994 static void inc_io_migrations(struct cache *cache)
995 {
996 	atomic_inc(&cache->nr_io_migrations);
997 }
998 
999 static void dec_io_migrations(struct cache *cache)
1000 {
1001 	atomic_dec(&cache->nr_io_migrations);
1002 }
1003 
1004 static bool discard_or_flush(struct bio *bio)
1005 {
1006 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1007 }
1008 
1009 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1010 				     dm_dblock_t *b, dm_dblock_t *e)
1011 {
1012 	sector_t sb = bio->bi_iter.bi_sector;
1013 	sector_t se = bio_end_sector(bio);
1014 
1015 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1016 
1017 	if (se - sb < cache->discard_block_size)
1018 		*e = *b;
1019 	else
1020 		*e = to_dblock(block_div(se, cache->discard_block_size));
1021 }
1022 
1023 /*----------------------------------------------------------------*/
1024 
1025 static void prevent_background_work(struct cache *cache)
1026 {
1027 	lockdep_off();
1028 	down_write(&cache->background_work_lock);
1029 	lockdep_on();
1030 }
1031 
1032 static void allow_background_work(struct cache *cache)
1033 {
1034 	lockdep_off();
1035 	up_write(&cache->background_work_lock);
1036 	lockdep_on();
1037 }
1038 
1039 static bool background_work_begin(struct cache *cache)
1040 {
1041 	bool r;
1042 
1043 	lockdep_off();
1044 	r = down_read_trylock(&cache->background_work_lock);
1045 	lockdep_on();
1046 
1047 	return r;
1048 }
1049 
1050 static void background_work_end(struct cache *cache)
1051 {
1052 	lockdep_off();
1053 	up_read(&cache->background_work_lock);
1054 	lockdep_on();
1055 }
1056 
1057 /*----------------------------------------------------------------*/
1058 
1059 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1060 {
1061 	return (bio_data_dir(bio) == WRITE) &&
1062 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1063 }
1064 
1065 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1066 {
1067 	return writeback_mode(cache) &&
1068 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1069 }
1070 
1071 static void quiesce(struct dm_cache_migration *mg,
1072 		    void (*continuation)(struct work_struct *))
1073 {
1074 	init_continuation(&mg->k, continuation);
1075 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1076 }
1077 
1078 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1079 {
1080 	struct continuation *k = container_of(ws, struct continuation, ws);
1081 
1082 	return container_of(k, struct dm_cache_migration, k);
1083 }
1084 
1085 static void copy_complete(int read_err, unsigned long write_err, void *context)
1086 {
1087 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1088 
1089 	if (read_err || write_err)
1090 		mg->k.input = BLK_STS_IOERR;
1091 
1092 	queue_continuation(mg->cache->wq, &mg->k);
1093 }
1094 
1095 static void copy(struct dm_cache_migration *mg, bool promote)
1096 {
1097 	struct dm_io_region o_region, c_region;
1098 	struct cache *cache = mg->cache;
1099 
1100 	o_region.bdev = cache->origin_dev->bdev;
1101 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1102 	o_region.count = cache->sectors_per_block;
1103 
1104 	c_region.bdev = cache->cache_dev->bdev;
1105 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1106 	c_region.count = cache->sectors_per_block;
1107 
1108 	if (promote)
1109 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1110 	else
1111 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1112 }
1113 
1114 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1115 {
1116 	struct per_bio_data *pb = get_per_bio_data(bio);
1117 
1118 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1119 		free_prison_cell(cache, pb->cell);
1120 	pb->cell = NULL;
1121 }
1122 
1123 static void overwrite_endio(struct bio *bio)
1124 {
1125 	struct dm_cache_migration *mg = bio->bi_private;
1126 	struct cache *cache = mg->cache;
1127 	struct per_bio_data *pb = get_per_bio_data(bio);
1128 
1129 	dm_unhook_bio(&pb->hook_info, bio);
1130 
1131 	if (bio->bi_status)
1132 		mg->k.input = bio->bi_status;
1133 
1134 	queue_continuation(cache->wq, &mg->k);
1135 }
1136 
1137 static void overwrite(struct dm_cache_migration *mg,
1138 		      void (*continuation)(struct work_struct *))
1139 {
1140 	struct bio *bio = mg->overwrite_bio;
1141 	struct per_bio_data *pb = get_per_bio_data(bio);
1142 
1143 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1144 
1145 	/*
1146 	 * The overwrite bio is part of the copy operation, as such it does
1147 	 * not set/clear discard or dirty flags.
1148 	 */
1149 	if (mg->op->op == POLICY_PROMOTE)
1150 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1151 	else
1152 		remap_to_origin(mg->cache, bio);
1153 
1154 	init_continuation(&mg->k, continuation);
1155 	accounted_request(mg->cache, bio);
1156 }
1157 
1158 /*
1159  * Migration steps:
1160  *
1161  * 1) exclusive lock preventing WRITEs
1162  * 2) quiesce
1163  * 3) copy or issue overwrite bio
1164  * 4) upgrade to exclusive lock preventing READs and WRITEs
1165  * 5) quiesce
1166  * 6) update metadata and commit
1167  * 7) unlock
1168  */
1169 static void mg_complete(struct dm_cache_migration *mg, bool success)
1170 {
1171 	struct bio_list bios;
1172 	struct cache *cache = mg->cache;
1173 	struct policy_work *op = mg->op;
1174 	dm_cblock_t cblock = op->cblock;
1175 
1176 	if (success)
1177 		update_stats(&cache->stats, op->op);
1178 
1179 	switch (op->op) {
1180 	case POLICY_PROMOTE:
1181 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1182 		policy_complete_background_work(cache->policy, op, success);
1183 
1184 		if (mg->overwrite_bio) {
1185 			if (success)
1186 				force_set_dirty(cache, cblock);
1187 			else if (mg->k.input)
1188 				mg->overwrite_bio->bi_status = mg->k.input;
1189 			else
1190 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1191 			bio_endio(mg->overwrite_bio);
1192 		} else {
1193 			if (success)
1194 				force_clear_dirty(cache, cblock);
1195 			dec_io_migrations(cache);
1196 		}
1197 		break;
1198 
1199 	case POLICY_DEMOTE:
1200 		/*
1201 		 * We clear dirty here to update the nr_dirty counter.
1202 		 */
1203 		if (success)
1204 			force_clear_dirty(cache, cblock);
1205 		policy_complete_background_work(cache->policy, op, success);
1206 		dec_io_migrations(cache);
1207 		break;
1208 
1209 	case POLICY_WRITEBACK:
1210 		if (success)
1211 			force_clear_dirty(cache, cblock);
1212 		policy_complete_background_work(cache->policy, op, success);
1213 		dec_io_migrations(cache);
1214 		break;
1215 	}
1216 
1217 	bio_list_init(&bios);
1218 	if (mg->cell) {
1219 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1220 			free_prison_cell(cache, mg->cell);
1221 	}
1222 
1223 	free_migration(mg);
1224 	defer_bios(cache, &bios);
1225 	wake_migration_worker(cache);
1226 
1227 	background_work_end(cache);
1228 }
1229 
1230 static void mg_success(struct work_struct *ws)
1231 {
1232 	struct dm_cache_migration *mg = ws_to_mg(ws);
1233 
1234 	mg_complete(mg, mg->k.input == 0);
1235 }
1236 
1237 static void mg_update_metadata(struct work_struct *ws)
1238 {
1239 	int r;
1240 	struct dm_cache_migration *mg = ws_to_mg(ws);
1241 	struct cache *cache = mg->cache;
1242 	struct policy_work *op = mg->op;
1243 
1244 	switch (op->op) {
1245 	case POLICY_PROMOTE:
1246 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1247 		if (r) {
1248 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1249 				    cache_device_name(cache));
1250 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1251 
1252 			mg_complete(mg, false);
1253 			return;
1254 		}
1255 		mg_complete(mg, true);
1256 		break;
1257 
1258 	case POLICY_DEMOTE:
1259 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1260 		if (r) {
1261 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1262 				    cache_device_name(cache));
1263 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1264 
1265 			mg_complete(mg, false);
1266 			return;
1267 		}
1268 
1269 		/*
1270 		 * It would be nice if we only had to commit when a REQ_FLUSH
1271 		 * comes through.  But there's one scenario that we have to
1272 		 * look out for:
1273 		 *
1274 		 * - vblock x in a cache block
1275 		 * - domotion occurs
1276 		 * - cache block gets reallocated and over written
1277 		 * - crash
1278 		 *
1279 		 * When we recover, because there was no commit the cache will
1280 		 * rollback to having the data for vblock x in the cache block.
1281 		 * But the cache block has since been overwritten, so it'll end
1282 		 * up pointing to data that was never in 'x' during the history
1283 		 * of the device.
1284 		 *
1285 		 * To avoid this issue we require a commit as part of the
1286 		 * demotion operation.
1287 		 */
1288 		init_continuation(&mg->k, mg_success);
1289 		continue_after_commit(&cache->committer, &mg->k);
1290 		schedule_commit(&cache->committer);
1291 		break;
1292 
1293 	case POLICY_WRITEBACK:
1294 		mg_complete(mg, true);
1295 		break;
1296 	}
1297 }
1298 
1299 static void mg_update_metadata_after_copy(struct work_struct *ws)
1300 {
1301 	struct dm_cache_migration *mg = ws_to_mg(ws);
1302 
1303 	/*
1304 	 * Did the copy succeed?
1305 	 */
1306 	if (mg->k.input)
1307 		mg_complete(mg, false);
1308 	else
1309 		mg_update_metadata(ws);
1310 }
1311 
1312 static void mg_upgrade_lock(struct work_struct *ws)
1313 {
1314 	int r;
1315 	struct dm_cache_migration *mg = ws_to_mg(ws);
1316 
1317 	/*
1318 	 * Did the copy succeed?
1319 	 */
1320 	if (mg->k.input)
1321 		mg_complete(mg, false);
1322 
1323 	else {
1324 		/*
1325 		 * Now we want the lock to prevent both reads and writes.
1326 		 */
1327 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1328 					    READ_WRITE_LOCK_LEVEL);
1329 		if (r < 0)
1330 			mg_complete(mg, false);
1331 
1332 		else if (r)
1333 			quiesce(mg, mg_update_metadata);
1334 
1335 		else
1336 			mg_update_metadata(ws);
1337 	}
1338 }
1339 
1340 static void mg_full_copy(struct work_struct *ws)
1341 {
1342 	struct dm_cache_migration *mg = ws_to_mg(ws);
1343 	struct cache *cache = mg->cache;
1344 	struct policy_work *op = mg->op;
1345 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1346 
1347 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1348 	    is_discarded_oblock(cache, op->oblock)) {
1349 		mg_upgrade_lock(ws);
1350 		return;
1351 	}
1352 
1353 	init_continuation(&mg->k, mg_upgrade_lock);
1354 	copy(mg, is_policy_promote);
1355 }
1356 
1357 static void mg_copy(struct work_struct *ws)
1358 {
1359 	struct dm_cache_migration *mg = ws_to_mg(ws);
1360 
1361 	if (mg->overwrite_bio) {
1362 		/*
1363 		 * No exclusive lock was held when we last checked if the bio
1364 		 * was optimisable.  So we have to check again in case things
1365 		 * have changed (eg, the block may no longer be discarded).
1366 		 */
1367 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1368 			/*
1369 			 * Fallback to a real full copy after doing some tidying up.
1370 			 */
1371 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1372 
1373 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1374 			mg->overwrite_bio = NULL;
1375 			inc_io_migrations(mg->cache);
1376 			mg_full_copy(ws);
1377 			return;
1378 		}
1379 
1380 		/*
1381 		 * It's safe to do this here, even though it's new data
1382 		 * because all IO has been locked out of the block.
1383 		 *
1384 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1385 		 * so _not_ using mg_upgrade_lock() as continutation.
1386 		 */
1387 		overwrite(mg, mg_update_metadata_after_copy);
1388 
1389 	} else
1390 		mg_full_copy(ws);
1391 }
1392 
1393 static int mg_lock_writes(struct dm_cache_migration *mg)
1394 {
1395 	int r;
1396 	struct dm_cell_key_v2 key;
1397 	struct cache *cache = mg->cache;
1398 	struct dm_bio_prison_cell_v2 *prealloc;
1399 
1400 	prealloc = alloc_prison_cell(cache);
1401 
1402 	/*
1403 	 * Prevent writes to the block, but allow reads to continue.
1404 	 * Unless we're using an overwrite bio, in which case we lock
1405 	 * everything.
1406 	 */
1407 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1408 	r = dm_cell_lock_v2(cache->prison, &key,
1409 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1410 			    prealloc, &mg->cell);
1411 	if (r < 0) {
1412 		free_prison_cell(cache, prealloc);
1413 		mg_complete(mg, false);
1414 		return r;
1415 	}
1416 
1417 	if (mg->cell != prealloc)
1418 		free_prison_cell(cache, prealloc);
1419 
1420 	if (r == 0)
1421 		mg_copy(&mg->k.ws);
1422 	else
1423 		quiesce(mg, mg_copy);
1424 
1425 	return 0;
1426 }
1427 
1428 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1429 {
1430 	struct dm_cache_migration *mg;
1431 
1432 	if (!background_work_begin(cache)) {
1433 		policy_complete_background_work(cache->policy, op, false);
1434 		return -EPERM;
1435 	}
1436 
1437 	mg = alloc_migration(cache);
1438 
1439 	mg->op = op;
1440 	mg->overwrite_bio = bio;
1441 
1442 	if (!bio)
1443 		inc_io_migrations(cache);
1444 
1445 	return mg_lock_writes(mg);
1446 }
1447 
1448 /*
1449  *--------------------------------------------------------------
1450  * invalidation processing
1451  *--------------------------------------------------------------
1452  */
1453 
1454 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1455 {
1456 	struct bio_list bios;
1457 	struct cache *cache = mg->cache;
1458 
1459 	bio_list_init(&bios);
1460 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1461 		free_prison_cell(cache, mg->cell);
1462 
1463 	if (!success && mg->overwrite_bio)
1464 		bio_io_error(mg->overwrite_bio);
1465 
1466 	free_migration(mg);
1467 	defer_bios(cache, &bios);
1468 
1469 	background_work_end(cache);
1470 }
1471 
1472 static void invalidate_completed(struct work_struct *ws)
1473 {
1474 	struct dm_cache_migration *mg = ws_to_mg(ws);
1475 
1476 	invalidate_complete(mg, !mg->k.input);
1477 }
1478 
1479 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1480 {
1481 	int r;
1482 
1483 	r = policy_invalidate_mapping(cache->policy, cblock);
1484 	if (!r) {
1485 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1486 		if (r) {
1487 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1488 				    cache_device_name(cache));
1489 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1490 		}
1491 
1492 	} else if (r == -ENODATA) {
1493 		/*
1494 		 * Harmless, already unmapped.
1495 		 */
1496 		r = 0;
1497 
1498 	} else
1499 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1500 
1501 	return r;
1502 }
1503 
1504 static void invalidate_remove(struct work_struct *ws)
1505 {
1506 	int r;
1507 	struct dm_cache_migration *mg = ws_to_mg(ws);
1508 	struct cache *cache = mg->cache;
1509 
1510 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1511 	if (r) {
1512 		invalidate_complete(mg, false);
1513 		return;
1514 	}
1515 
1516 	init_continuation(&mg->k, invalidate_completed);
1517 	continue_after_commit(&cache->committer, &mg->k);
1518 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1519 	mg->overwrite_bio = NULL;
1520 	schedule_commit(&cache->committer);
1521 }
1522 
1523 static int invalidate_lock(struct dm_cache_migration *mg)
1524 {
1525 	int r;
1526 	struct dm_cell_key_v2 key;
1527 	struct cache *cache = mg->cache;
1528 	struct dm_bio_prison_cell_v2 *prealloc;
1529 
1530 	prealloc = alloc_prison_cell(cache);
1531 
1532 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1533 	r = dm_cell_lock_v2(cache->prison, &key,
1534 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1535 	if (r < 0) {
1536 		free_prison_cell(cache, prealloc);
1537 		invalidate_complete(mg, false);
1538 		return r;
1539 	}
1540 
1541 	if (mg->cell != prealloc)
1542 		free_prison_cell(cache, prealloc);
1543 
1544 	if (r)
1545 		quiesce(mg, invalidate_remove);
1546 
1547 	else {
1548 		/*
1549 		 * We can't call invalidate_remove() directly here because we
1550 		 * might still be in request context.
1551 		 */
1552 		init_continuation(&mg->k, invalidate_remove);
1553 		queue_work(cache->wq, &mg->k.ws);
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1560 			    dm_oblock_t oblock, struct bio *bio)
1561 {
1562 	struct dm_cache_migration *mg;
1563 
1564 	if (!background_work_begin(cache))
1565 		return -EPERM;
1566 
1567 	mg = alloc_migration(cache);
1568 
1569 	mg->overwrite_bio = bio;
1570 	mg->invalidate_cblock = cblock;
1571 	mg->invalidate_oblock = oblock;
1572 
1573 	return invalidate_lock(mg);
1574 }
1575 
1576 /*
1577  *--------------------------------------------------------------
1578  * bio processing
1579  *--------------------------------------------------------------
1580  */
1581 
1582 enum busy {
1583 	IDLE,
1584 	BUSY
1585 };
1586 
1587 static enum busy spare_migration_bandwidth(struct cache *cache)
1588 {
1589 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1590 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1591 		cache->sectors_per_block;
1592 
1593 	if (idle && current_volume <= cache->migration_threshold)
1594 		return IDLE;
1595 	else
1596 		return BUSY;
1597 }
1598 
1599 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1600 {
1601 	atomic_inc(bio_data_dir(bio) == READ ?
1602 		   &cache->stats.read_hit : &cache->stats.write_hit);
1603 }
1604 
1605 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1606 {
1607 	atomic_inc(bio_data_dir(bio) == READ ?
1608 		   &cache->stats.read_miss : &cache->stats.write_miss);
1609 }
1610 
1611 /*----------------------------------------------------------------*/
1612 
1613 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1614 		   bool *commit_needed)
1615 {
1616 	int r, data_dir;
1617 	bool rb, background_queued;
1618 	dm_cblock_t cblock;
1619 
1620 	*commit_needed = false;
1621 
1622 	rb = bio_detain_shared(cache, block, bio);
1623 	if (!rb) {
1624 		/*
1625 		 * An exclusive lock is held for this block, so we have to
1626 		 * wait.  We set the commit_needed flag so the current
1627 		 * transaction will be committed asap, allowing this lock
1628 		 * to be dropped.
1629 		 */
1630 		*commit_needed = true;
1631 		return DM_MAPIO_SUBMITTED;
1632 	}
1633 
1634 	data_dir = bio_data_dir(bio);
1635 
1636 	if (optimisable_bio(cache, bio, block)) {
1637 		struct policy_work *op = NULL;
1638 
1639 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1640 		if (unlikely(r && r != -ENOENT)) {
1641 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1642 				    cache_device_name(cache), r);
1643 			bio_io_error(bio);
1644 			return DM_MAPIO_SUBMITTED;
1645 		}
1646 
1647 		if (r == -ENOENT && op) {
1648 			bio_drop_shared_lock(cache, bio);
1649 			BUG_ON(op->op != POLICY_PROMOTE);
1650 			mg_start(cache, op, bio);
1651 			return DM_MAPIO_SUBMITTED;
1652 		}
1653 	} else {
1654 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1655 		if (unlikely(r && r != -ENOENT)) {
1656 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1657 				    cache_device_name(cache), r);
1658 			bio_io_error(bio);
1659 			return DM_MAPIO_SUBMITTED;
1660 		}
1661 
1662 		if (background_queued)
1663 			wake_migration_worker(cache);
1664 	}
1665 
1666 	if (r == -ENOENT) {
1667 		struct per_bio_data *pb = get_per_bio_data(bio);
1668 
1669 		/*
1670 		 * Miss.
1671 		 */
1672 		inc_miss_counter(cache, bio);
1673 		if (pb->req_nr == 0) {
1674 			accounted_begin(cache, bio);
1675 			remap_to_origin_clear_discard(cache, bio, block);
1676 		} else {
1677 			/*
1678 			 * This is a duplicate writethrough io that is no
1679 			 * longer needed because the block has been demoted.
1680 			 */
1681 			bio_endio(bio);
1682 			return DM_MAPIO_SUBMITTED;
1683 		}
1684 	} else {
1685 		/*
1686 		 * Hit.
1687 		 */
1688 		inc_hit_counter(cache, bio);
1689 
1690 		/*
1691 		 * Passthrough always maps to the origin, invalidating any
1692 		 * cache blocks that are written to.
1693 		 */
1694 		if (passthrough_mode(cache)) {
1695 			if (bio_data_dir(bio) == WRITE) {
1696 				bio_drop_shared_lock(cache, bio);
1697 				atomic_inc(&cache->stats.demotion);
1698 				invalidate_start(cache, cblock, block, bio);
1699 			} else
1700 				remap_to_origin_clear_discard(cache, bio, block);
1701 		} else {
1702 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1703 			    !is_dirty(cache, cblock)) {
1704 				remap_to_origin_and_cache(cache, bio, block, cblock);
1705 				accounted_begin(cache, bio);
1706 			} else
1707 				remap_to_cache_dirty(cache, bio, block, cblock);
1708 		}
1709 	}
1710 
1711 	/*
1712 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1713 	 */
1714 	if (bio->bi_opf & REQ_FUA) {
1715 		/*
1716 		 * issue_after_commit will call accounted_begin a second time.  So
1717 		 * we call accounted_complete() to avoid double accounting.
1718 		 */
1719 		accounted_complete(cache, bio);
1720 		issue_after_commit(&cache->committer, bio);
1721 		*commit_needed = true;
1722 		return DM_MAPIO_SUBMITTED;
1723 	}
1724 
1725 	return DM_MAPIO_REMAPPED;
1726 }
1727 
1728 static bool process_bio(struct cache *cache, struct bio *bio)
1729 {
1730 	bool commit_needed;
1731 
1732 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1733 		dm_submit_bio_remap(bio, NULL);
1734 
1735 	return commit_needed;
1736 }
1737 
1738 /*
1739  * A non-zero return indicates read_only or fail_io mode.
1740  */
1741 static int commit(struct cache *cache, bool clean_shutdown)
1742 {
1743 	int r;
1744 
1745 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1746 		return -EINVAL;
1747 
1748 	atomic_inc(&cache->stats.commit_count);
1749 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1750 	if (r)
1751 		metadata_operation_failed(cache, "dm_cache_commit", r);
1752 
1753 	return r;
1754 }
1755 
1756 /*
1757  * Used by the batcher.
1758  */
1759 static blk_status_t commit_op(void *context)
1760 {
1761 	struct cache *cache = context;
1762 
1763 	if (dm_cache_changed_this_transaction(cache->cmd))
1764 		return errno_to_blk_status(commit(cache, false));
1765 
1766 	return 0;
1767 }
1768 
1769 /*----------------------------------------------------------------*/
1770 
1771 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1772 {
1773 	struct per_bio_data *pb = get_per_bio_data(bio);
1774 
1775 	if (!pb->req_nr)
1776 		remap_to_origin(cache, bio);
1777 	else
1778 		remap_to_cache(cache, bio, 0);
1779 
1780 	issue_after_commit(&cache->committer, bio);
1781 	return true;
1782 }
1783 
1784 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1785 {
1786 	dm_dblock_t b, e;
1787 
1788 	/*
1789 	 * FIXME: do we need to lock the region?  Or can we just assume the
1790 	 * user wont be so foolish as to issue discard concurrently with
1791 	 * other IO?
1792 	 */
1793 	calc_discard_block_range(cache, bio, &b, &e);
1794 	while (b != e) {
1795 		set_discard(cache, b);
1796 		b = to_dblock(from_dblock(b) + 1);
1797 	}
1798 
1799 	if (cache->features.discard_passdown) {
1800 		remap_to_origin(cache, bio);
1801 		dm_submit_bio_remap(bio, NULL);
1802 	} else
1803 		bio_endio(bio);
1804 
1805 	return false;
1806 }
1807 
1808 static void process_deferred_bios(struct work_struct *ws)
1809 {
1810 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1811 
1812 	bool commit_needed = false;
1813 	struct bio_list bios;
1814 	struct bio *bio;
1815 
1816 	bio_list_init(&bios);
1817 
1818 	spin_lock_irq(&cache->lock);
1819 	bio_list_merge(&bios, &cache->deferred_bios);
1820 	bio_list_init(&cache->deferred_bios);
1821 	spin_unlock_irq(&cache->lock);
1822 
1823 	while ((bio = bio_list_pop(&bios))) {
1824 		if (bio->bi_opf & REQ_PREFLUSH)
1825 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1826 
1827 		else if (bio_op(bio) == REQ_OP_DISCARD)
1828 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1829 
1830 		else
1831 			commit_needed = process_bio(cache, bio) || commit_needed;
1832 		cond_resched();
1833 	}
1834 
1835 	if (commit_needed)
1836 		schedule_commit(&cache->committer);
1837 }
1838 
1839 /*
1840  *--------------------------------------------------------------
1841  * Main worker loop
1842  *--------------------------------------------------------------
1843  */
1844 static void requeue_deferred_bios(struct cache *cache)
1845 {
1846 	struct bio *bio;
1847 	struct bio_list bios;
1848 
1849 	bio_list_init(&bios);
1850 	bio_list_merge(&bios, &cache->deferred_bios);
1851 	bio_list_init(&cache->deferred_bios);
1852 
1853 	while ((bio = bio_list_pop(&bios))) {
1854 		bio->bi_status = BLK_STS_DM_REQUEUE;
1855 		bio_endio(bio);
1856 		cond_resched();
1857 	}
1858 }
1859 
1860 /*
1861  * We want to commit periodically so that not too much
1862  * unwritten metadata builds up.
1863  */
1864 static void do_waker(struct work_struct *ws)
1865 {
1866 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1867 
1868 	policy_tick(cache->policy, true);
1869 	wake_migration_worker(cache);
1870 	schedule_commit(&cache->committer);
1871 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1872 }
1873 
1874 static void check_migrations(struct work_struct *ws)
1875 {
1876 	int r;
1877 	struct policy_work *op;
1878 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1879 	enum busy b;
1880 
1881 	for (;;) {
1882 		b = spare_migration_bandwidth(cache);
1883 
1884 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1885 		if (r == -ENODATA)
1886 			break;
1887 
1888 		if (r) {
1889 			DMERR_LIMIT("%s: policy_background_work failed",
1890 				    cache_device_name(cache));
1891 			break;
1892 		}
1893 
1894 		r = mg_start(cache, op, NULL);
1895 		if (r)
1896 			break;
1897 
1898 		cond_resched();
1899 	}
1900 }
1901 
1902 /*
1903  *--------------------------------------------------------------
1904  * Target methods
1905  *--------------------------------------------------------------
1906  */
1907 
1908 /*
1909  * This function gets called on the error paths of the constructor, so we
1910  * have to cope with a partially initialised struct.
1911  */
1912 static void __destroy(struct cache *cache)
1913 {
1914 	mempool_exit(&cache->migration_pool);
1915 
1916 	if (cache->prison)
1917 		dm_bio_prison_destroy_v2(cache->prison);
1918 
1919 	if (cache->wq)
1920 		destroy_workqueue(cache->wq);
1921 
1922 	if (cache->dirty_bitset)
1923 		free_bitset(cache->dirty_bitset);
1924 
1925 	if (cache->discard_bitset)
1926 		free_bitset(cache->discard_bitset);
1927 
1928 	if (cache->copier)
1929 		dm_kcopyd_client_destroy(cache->copier);
1930 
1931 	if (cache->cmd)
1932 		dm_cache_metadata_close(cache->cmd);
1933 
1934 	if (cache->metadata_dev)
1935 		dm_put_device(cache->ti, cache->metadata_dev);
1936 
1937 	if (cache->origin_dev)
1938 		dm_put_device(cache->ti, cache->origin_dev);
1939 
1940 	if (cache->cache_dev)
1941 		dm_put_device(cache->ti, cache->cache_dev);
1942 
1943 	if (cache->policy)
1944 		dm_cache_policy_destroy(cache->policy);
1945 
1946 	bioset_exit(&cache->bs);
1947 
1948 	kfree(cache);
1949 }
1950 
1951 static void destroy(struct cache *cache)
1952 {
1953 	unsigned int i;
1954 
1955 	cancel_delayed_work_sync(&cache->waker);
1956 
1957 	for (i = 0; i < cache->nr_ctr_args ; i++)
1958 		kfree(cache->ctr_args[i]);
1959 	kfree(cache->ctr_args);
1960 
1961 	__destroy(cache);
1962 }
1963 
1964 static void cache_dtr(struct dm_target *ti)
1965 {
1966 	struct cache *cache = ti->private;
1967 
1968 	destroy(cache);
1969 }
1970 
1971 static sector_t get_dev_size(struct dm_dev *dev)
1972 {
1973 	return bdev_nr_sectors(dev->bdev);
1974 }
1975 
1976 /*----------------------------------------------------------------*/
1977 
1978 /*
1979  * Construct a cache device mapping.
1980  *
1981  * cache <metadata dev> <cache dev> <origin dev> <block size>
1982  *       <#feature args> [<feature arg>]*
1983  *       <policy> <#policy args> [<policy arg>]*
1984  *
1985  * metadata dev    : fast device holding the persistent metadata
1986  * cache dev	   : fast device holding cached data blocks
1987  * origin dev	   : slow device holding original data blocks
1988  * block size	   : cache unit size in sectors
1989  *
1990  * #feature args   : number of feature arguments passed
1991  * feature args    : writethrough.  (The default is writeback.)
1992  *
1993  * policy	   : the replacement policy to use
1994  * #policy args    : an even number of policy arguments corresponding
1995  *		     to key/value pairs passed to the policy
1996  * policy args	   : key/value pairs passed to the policy
1997  *		     E.g. 'sequential_threshold 1024'
1998  *		     See cache-policies.txt for details.
1999  *
2000  * Optional feature arguments are:
2001  *   writethrough  : write through caching that prohibits cache block
2002  *		     content from being different from origin block content.
2003  *		     Without this argument, the default behaviour is to write
2004  *		     back cache block contents later for performance reasons,
2005  *		     so they may differ from the corresponding origin blocks.
2006  */
2007 struct cache_args {
2008 	struct dm_target *ti;
2009 
2010 	struct dm_dev *metadata_dev;
2011 
2012 	struct dm_dev *cache_dev;
2013 	sector_t cache_sectors;
2014 
2015 	struct dm_dev *origin_dev;
2016 
2017 	uint32_t block_size;
2018 
2019 	const char *policy_name;
2020 	int policy_argc;
2021 	const char **policy_argv;
2022 
2023 	struct cache_features features;
2024 };
2025 
2026 static void destroy_cache_args(struct cache_args *ca)
2027 {
2028 	if (ca->metadata_dev)
2029 		dm_put_device(ca->ti, ca->metadata_dev);
2030 
2031 	if (ca->cache_dev)
2032 		dm_put_device(ca->ti, ca->cache_dev);
2033 
2034 	if (ca->origin_dev)
2035 		dm_put_device(ca->ti, ca->origin_dev);
2036 
2037 	kfree(ca);
2038 }
2039 
2040 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2041 {
2042 	if (!as->argc) {
2043 		*error = "Insufficient args";
2044 		return false;
2045 	}
2046 
2047 	return true;
2048 }
2049 
2050 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2051 			      char **error)
2052 {
2053 	int r;
2054 	sector_t metadata_dev_size;
2055 
2056 	if (!at_least_one_arg(as, error))
2057 		return -EINVAL;
2058 
2059 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2060 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2061 	if (r) {
2062 		*error = "Error opening metadata device";
2063 		return r;
2064 	}
2065 
2066 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2067 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2068 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2069 		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2070 
2071 	return 0;
2072 }
2073 
2074 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2075 			   char **error)
2076 {
2077 	int r;
2078 
2079 	if (!at_least_one_arg(as, error))
2080 		return -EINVAL;
2081 
2082 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2083 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2084 	if (r) {
2085 		*error = "Error opening cache device";
2086 		return r;
2087 	}
2088 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2089 
2090 	return 0;
2091 }
2092 
2093 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2094 			    char **error)
2095 {
2096 	sector_t origin_sectors;
2097 	int r;
2098 
2099 	if (!at_least_one_arg(as, error))
2100 		return -EINVAL;
2101 
2102 	r = dm_get_device(ca->ti, dm_shift_arg(as),
2103 			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2104 	if (r) {
2105 		*error = "Error opening origin device";
2106 		return r;
2107 	}
2108 
2109 	origin_sectors = get_dev_size(ca->origin_dev);
2110 	if (ca->ti->len > origin_sectors) {
2111 		*error = "Device size larger than cached device";
2112 		return -EINVAL;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2119 			    char **error)
2120 {
2121 	unsigned long block_size;
2122 
2123 	if (!at_least_one_arg(as, error))
2124 		return -EINVAL;
2125 
2126 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2127 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2128 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2129 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2130 		*error = "Invalid data block size";
2131 		return -EINVAL;
2132 	}
2133 
2134 	if (block_size > ca->cache_sectors) {
2135 		*error = "Data block size is larger than the cache device";
2136 		return -EINVAL;
2137 	}
2138 
2139 	ca->block_size = block_size;
2140 
2141 	return 0;
2142 }
2143 
2144 static void init_features(struct cache_features *cf)
2145 {
2146 	cf->mode = CM_WRITE;
2147 	cf->io_mode = CM_IO_WRITEBACK;
2148 	cf->metadata_version = 1;
2149 	cf->discard_passdown = true;
2150 }
2151 
2152 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2153 			  char **error)
2154 {
2155 	static const struct dm_arg _args[] = {
2156 		{0, 3, "Invalid number of cache feature arguments"},
2157 	};
2158 
2159 	int r, mode_ctr = 0;
2160 	unsigned int argc;
2161 	const char *arg;
2162 	struct cache_features *cf = &ca->features;
2163 
2164 	init_features(cf);
2165 
2166 	r = dm_read_arg_group(_args, as, &argc, error);
2167 	if (r)
2168 		return -EINVAL;
2169 
2170 	while (argc--) {
2171 		arg = dm_shift_arg(as);
2172 
2173 		if (!strcasecmp(arg, "writeback")) {
2174 			cf->io_mode = CM_IO_WRITEBACK;
2175 			mode_ctr++;
2176 		}
2177 
2178 		else if (!strcasecmp(arg, "writethrough")) {
2179 			cf->io_mode = CM_IO_WRITETHROUGH;
2180 			mode_ctr++;
2181 		}
2182 
2183 		else if (!strcasecmp(arg, "passthrough")) {
2184 			cf->io_mode = CM_IO_PASSTHROUGH;
2185 			mode_ctr++;
2186 		}
2187 
2188 		else if (!strcasecmp(arg, "metadata2"))
2189 			cf->metadata_version = 2;
2190 
2191 		else if (!strcasecmp(arg, "no_discard_passdown"))
2192 			cf->discard_passdown = false;
2193 
2194 		else {
2195 			*error = "Unrecognised cache feature requested";
2196 			return -EINVAL;
2197 		}
2198 	}
2199 
2200 	if (mode_ctr > 1) {
2201 		*error = "Duplicate cache io_mode features requested";
2202 		return -EINVAL;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2209 			char **error)
2210 {
2211 	static const struct dm_arg _args[] = {
2212 		{0, 1024, "Invalid number of policy arguments"},
2213 	};
2214 
2215 	int r;
2216 
2217 	if (!at_least_one_arg(as, error))
2218 		return -EINVAL;
2219 
2220 	ca->policy_name = dm_shift_arg(as);
2221 
2222 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2223 	if (r)
2224 		return -EINVAL;
2225 
2226 	ca->policy_argv = (const char **)as->argv;
2227 	dm_consume_args(as, ca->policy_argc);
2228 
2229 	return 0;
2230 }
2231 
2232 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2233 			    char **error)
2234 {
2235 	int r;
2236 	struct dm_arg_set as;
2237 
2238 	as.argc = argc;
2239 	as.argv = argv;
2240 
2241 	r = parse_metadata_dev(ca, &as, error);
2242 	if (r)
2243 		return r;
2244 
2245 	r = parse_cache_dev(ca, &as, error);
2246 	if (r)
2247 		return r;
2248 
2249 	r = parse_origin_dev(ca, &as, error);
2250 	if (r)
2251 		return r;
2252 
2253 	r = parse_block_size(ca, &as, error);
2254 	if (r)
2255 		return r;
2256 
2257 	r = parse_features(ca, &as, error);
2258 	if (r)
2259 		return r;
2260 
2261 	r = parse_policy(ca, &as, error);
2262 	if (r)
2263 		return r;
2264 
2265 	return 0;
2266 }
2267 
2268 /*----------------------------------------------------------------*/
2269 
2270 static struct kmem_cache *migration_cache;
2271 
2272 #define NOT_CORE_OPTION 1
2273 
2274 static int process_config_option(struct cache *cache, const char *key, const char *value)
2275 {
2276 	unsigned long tmp;
2277 
2278 	if (!strcasecmp(key, "migration_threshold")) {
2279 		if (kstrtoul(value, 10, &tmp))
2280 			return -EINVAL;
2281 
2282 		cache->migration_threshold = tmp;
2283 		return 0;
2284 	}
2285 
2286 	return NOT_CORE_OPTION;
2287 }
2288 
2289 static int set_config_value(struct cache *cache, const char *key, const char *value)
2290 {
2291 	int r = process_config_option(cache, key, value);
2292 
2293 	if (r == NOT_CORE_OPTION)
2294 		r = policy_set_config_value(cache->policy, key, value);
2295 
2296 	if (r)
2297 		DMWARN("bad config value for %s: %s", key, value);
2298 
2299 	return r;
2300 }
2301 
2302 static int set_config_values(struct cache *cache, int argc, const char **argv)
2303 {
2304 	int r = 0;
2305 
2306 	if (argc & 1) {
2307 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2308 		return -EINVAL;
2309 	}
2310 
2311 	while (argc) {
2312 		r = set_config_value(cache, argv[0], argv[1]);
2313 		if (r)
2314 			break;
2315 
2316 		argc -= 2;
2317 		argv += 2;
2318 	}
2319 
2320 	return r;
2321 }
2322 
2323 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2324 			       char **error)
2325 {
2326 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2327 							   cache->cache_size,
2328 							   cache->origin_sectors,
2329 							   cache->sectors_per_block);
2330 	if (IS_ERR(p)) {
2331 		*error = "Error creating cache's policy";
2332 		return PTR_ERR(p);
2333 	}
2334 	cache->policy = p;
2335 	BUG_ON(!cache->policy);
2336 
2337 	return 0;
2338 }
2339 
2340 /*
2341  * We want the discard block size to be at least the size of the cache
2342  * block size and have no more than 2^14 discard blocks across the origin.
2343  */
2344 #define MAX_DISCARD_BLOCKS (1 << 14)
2345 
2346 static bool too_many_discard_blocks(sector_t discard_block_size,
2347 				    sector_t origin_size)
2348 {
2349 	(void) sector_div(origin_size, discard_block_size);
2350 
2351 	return origin_size > MAX_DISCARD_BLOCKS;
2352 }
2353 
2354 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2355 					     sector_t origin_size)
2356 {
2357 	sector_t discard_block_size = cache_block_size;
2358 
2359 	if (origin_size)
2360 		while (too_many_discard_blocks(discard_block_size, origin_size))
2361 			discard_block_size *= 2;
2362 
2363 	return discard_block_size;
2364 }
2365 
2366 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2367 {
2368 	dm_block_t nr_blocks = from_cblock(size);
2369 
2370 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2371 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2372 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2373 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2374 			     (unsigned long long) nr_blocks);
2375 
2376 	cache->cache_size = size;
2377 }
2378 
2379 #define DEFAULT_MIGRATION_THRESHOLD 2048
2380 
2381 static int cache_create(struct cache_args *ca, struct cache **result)
2382 {
2383 	int r = 0;
2384 	char **error = &ca->ti->error;
2385 	struct cache *cache;
2386 	struct dm_target *ti = ca->ti;
2387 	dm_block_t origin_blocks;
2388 	struct dm_cache_metadata *cmd;
2389 	bool may_format = ca->features.mode == CM_WRITE;
2390 
2391 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2392 	if (!cache)
2393 		return -ENOMEM;
2394 
2395 	cache->ti = ca->ti;
2396 	ti->private = cache;
2397 	ti->accounts_remapped_io = true;
2398 	ti->num_flush_bios = 2;
2399 	ti->flush_supported = true;
2400 
2401 	ti->num_discard_bios = 1;
2402 	ti->discards_supported = true;
2403 
2404 	ti->per_io_data_size = sizeof(struct per_bio_data);
2405 
2406 	cache->features = ca->features;
2407 	if (writethrough_mode(cache)) {
2408 		/* Create bioset for writethrough bios issued to origin */
2409 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2410 		if (r)
2411 			goto bad;
2412 	}
2413 
2414 	cache->metadata_dev = ca->metadata_dev;
2415 	cache->origin_dev = ca->origin_dev;
2416 	cache->cache_dev = ca->cache_dev;
2417 
2418 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2419 
2420 	origin_blocks = cache->origin_sectors = ti->len;
2421 	origin_blocks = block_div(origin_blocks, ca->block_size);
2422 	cache->origin_blocks = to_oblock(origin_blocks);
2423 
2424 	cache->sectors_per_block = ca->block_size;
2425 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2426 		r = -EINVAL;
2427 		goto bad;
2428 	}
2429 
2430 	if (ca->block_size & (ca->block_size - 1)) {
2431 		dm_block_t cache_size = ca->cache_sectors;
2432 
2433 		cache->sectors_per_block_shift = -1;
2434 		cache_size = block_div(cache_size, ca->block_size);
2435 		set_cache_size(cache, to_cblock(cache_size));
2436 	} else {
2437 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2438 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2439 	}
2440 
2441 	r = create_cache_policy(cache, ca, error);
2442 	if (r)
2443 		goto bad;
2444 
2445 	cache->policy_nr_args = ca->policy_argc;
2446 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2447 
2448 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2449 	if (r) {
2450 		*error = "Error setting cache policy's config values";
2451 		goto bad;
2452 	}
2453 
2454 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2455 				     ca->block_size, may_format,
2456 				     dm_cache_policy_get_hint_size(cache->policy),
2457 				     ca->features.metadata_version);
2458 	if (IS_ERR(cmd)) {
2459 		*error = "Error creating metadata object";
2460 		r = PTR_ERR(cmd);
2461 		goto bad;
2462 	}
2463 	cache->cmd = cmd;
2464 	set_cache_mode(cache, CM_WRITE);
2465 	if (get_cache_mode(cache) != CM_WRITE) {
2466 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2467 		r = -EINVAL;
2468 		goto bad;
2469 	}
2470 
2471 	if (passthrough_mode(cache)) {
2472 		bool all_clean;
2473 
2474 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2475 		if (r) {
2476 			*error = "dm_cache_metadata_all_clean() failed";
2477 			goto bad;
2478 		}
2479 
2480 		if (!all_clean) {
2481 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2482 			r = -EINVAL;
2483 			goto bad;
2484 		}
2485 
2486 		policy_allow_migrations(cache->policy, false);
2487 	}
2488 
2489 	spin_lock_init(&cache->lock);
2490 	bio_list_init(&cache->deferred_bios);
2491 	atomic_set(&cache->nr_allocated_migrations, 0);
2492 	atomic_set(&cache->nr_io_migrations, 0);
2493 	init_waitqueue_head(&cache->migration_wait);
2494 
2495 	r = -ENOMEM;
2496 	atomic_set(&cache->nr_dirty, 0);
2497 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2498 	if (!cache->dirty_bitset) {
2499 		*error = "could not allocate dirty bitset";
2500 		goto bad;
2501 	}
2502 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2503 
2504 	cache->discard_block_size =
2505 		calculate_discard_block_size(cache->sectors_per_block,
2506 					     cache->origin_sectors);
2507 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2508 							      cache->discard_block_size));
2509 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2510 	if (!cache->discard_bitset) {
2511 		*error = "could not allocate discard bitset";
2512 		goto bad;
2513 	}
2514 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2515 
2516 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2517 	if (IS_ERR(cache->copier)) {
2518 		*error = "could not create kcopyd client";
2519 		r = PTR_ERR(cache->copier);
2520 		goto bad;
2521 	}
2522 
2523 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2524 	if (!cache->wq) {
2525 		*error = "could not create workqueue for metadata object";
2526 		goto bad;
2527 	}
2528 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2529 	INIT_WORK(&cache->migration_worker, check_migrations);
2530 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2531 
2532 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2533 	if (!cache->prison) {
2534 		*error = "could not create bio prison";
2535 		goto bad;
2536 	}
2537 
2538 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2539 				   migration_cache);
2540 	if (r) {
2541 		*error = "Error creating cache's migration mempool";
2542 		goto bad;
2543 	}
2544 
2545 	cache->need_tick_bio = true;
2546 	cache->sized = false;
2547 	cache->invalidate = false;
2548 	cache->commit_requested = false;
2549 	cache->loaded_mappings = false;
2550 	cache->loaded_discards = false;
2551 
2552 	load_stats(cache);
2553 
2554 	atomic_set(&cache->stats.demotion, 0);
2555 	atomic_set(&cache->stats.promotion, 0);
2556 	atomic_set(&cache->stats.copies_avoided, 0);
2557 	atomic_set(&cache->stats.cache_cell_clash, 0);
2558 	atomic_set(&cache->stats.commit_count, 0);
2559 	atomic_set(&cache->stats.discard_count, 0);
2560 
2561 	spin_lock_init(&cache->invalidation_lock);
2562 	INIT_LIST_HEAD(&cache->invalidation_requests);
2563 
2564 	batcher_init(&cache->committer, commit_op, cache,
2565 		     issue_op, cache, cache->wq);
2566 	dm_iot_init(&cache->tracker);
2567 
2568 	init_rwsem(&cache->background_work_lock);
2569 	prevent_background_work(cache);
2570 
2571 	*result = cache;
2572 	return 0;
2573 bad:
2574 	__destroy(cache);
2575 	return r;
2576 }
2577 
2578 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2579 {
2580 	unsigned int i;
2581 	const char **copy;
2582 
2583 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2584 	if (!copy)
2585 		return -ENOMEM;
2586 	for (i = 0; i < argc; i++) {
2587 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2588 		if (!copy[i]) {
2589 			while (i--)
2590 				kfree(copy[i]);
2591 			kfree(copy);
2592 			return -ENOMEM;
2593 		}
2594 	}
2595 
2596 	cache->nr_ctr_args = argc;
2597 	cache->ctr_args = copy;
2598 
2599 	return 0;
2600 }
2601 
2602 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2603 {
2604 	int r = -EINVAL;
2605 	struct cache_args *ca;
2606 	struct cache *cache = NULL;
2607 
2608 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2609 	if (!ca) {
2610 		ti->error = "Error allocating memory for cache";
2611 		return -ENOMEM;
2612 	}
2613 	ca->ti = ti;
2614 
2615 	r = parse_cache_args(ca, argc, argv, &ti->error);
2616 	if (r)
2617 		goto out;
2618 
2619 	r = cache_create(ca, &cache);
2620 	if (r)
2621 		goto out;
2622 
2623 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2624 	if (r) {
2625 		__destroy(cache);
2626 		goto out;
2627 	}
2628 
2629 	ti->private = cache;
2630 out:
2631 	destroy_cache_args(ca);
2632 	return r;
2633 }
2634 
2635 /*----------------------------------------------------------------*/
2636 
2637 static int cache_map(struct dm_target *ti, struct bio *bio)
2638 {
2639 	struct cache *cache = ti->private;
2640 
2641 	int r;
2642 	bool commit_needed;
2643 	dm_oblock_t block = get_bio_block(cache, bio);
2644 
2645 	init_per_bio_data(bio);
2646 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2647 		/*
2648 		 * This can only occur if the io goes to a partial block at
2649 		 * the end of the origin device.  We don't cache these.
2650 		 * Just remap to the origin and carry on.
2651 		 */
2652 		remap_to_origin(cache, bio);
2653 		accounted_begin(cache, bio);
2654 		return DM_MAPIO_REMAPPED;
2655 	}
2656 
2657 	if (discard_or_flush(bio)) {
2658 		defer_bio(cache, bio);
2659 		return DM_MAPIO_SUBMITTED;
2660 	}
2661 
2662 	r = map_bio(cache, bio, block, &commit_needed);
2663 	if (commit_needed)
2664 		schedule_commit(&cache->committer);
2665 
2666 	return r;
2667 }
2668 
2669 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2670 {
2671 	struct cache *cache = ti->private;
2672 	unsigned long flags;
2673 	struct per_bio_data *pb = get_per_bio_data(bio);
2674 
2675 	if (pb->tick) {
2676 		policy_tick(cache->policy, false);
2677 
2678 		spin_lock_irqsave(&cache->lock, flags);
2679 		cache->need_tick_bio = true;
2680 		spin_unlock_irqrestore(&cache->lock, flags);
2681 	}
2682 
2683 	bio_drop_shared_lock(cache, bio);
2684 	accounted_complete(cache, bio);
2685 
2686 	return DM_ENDIO_DONE;
2687 }
2688 
2689 static int write_dirty_bitset(struct cache *cache)
2690 {
2691 	int r;
2692 
2693 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2694 		return -EINVAL;
2695 
2696 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2697 	if (r)
2698 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2699 
2700 	return r;
2701 }
2702 
2703 static int write_discard_bitset(struct cache *cache)
2704 {
2705 	unsigned int i, r;
2706 
2707 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2708 		return -EINVAL;
2709 
2710 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2711 					   cache->discard_nr_blocks);
2712 	if (r) {
2713 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2714 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2715 		return r;
2716 	}
2717 
2718 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2719 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2720 					 is_discarded(cache, to_dblock(i)));
2721 		if (r) {
2722 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2723 			return r;
2724 		}
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static int write_hints(struct cache *cache)
2731 {
2732 	int r;
2733 
2734 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2735 		return -EINVAL;
2736 
2737 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2738 	if (r) {
2739 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2740 		return r;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /*
2747  * returns true on success
2748  */
2749 static bool sync_metadata(struct cache *cache)
2750 {
2751 	int r1, r2, r3, r4;
2752 
2753 	r1 = write_dirty_bitset(cache);
2754 	if (r1)
2755 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2756 
2757 	r2 = write_discard_bitset(cache);
2758 	if (r2)
2759 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2760 
2761 	save_stats(cache);
2762 
2763 	r3 = write_hints(cache);
2764 	if (r3)
2765 		DMERR("%s: could not write hints", cache_device_name(cache));
2766 
2767 	/*
2768 	 * If writing the above metadata failed, we still commit, but don't
2769 	 * set the clean shutdown flag.  This will effectively force every
2770 	 * dirty bit to be set on reload.
2771 	 */
2772 	r4 = commit(cache, !r1 && !r2 && !r3);
2773 	if (r4)
2774 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2775 
2776 	return !r1 && !r2 && !r3 && !r4;
2777 }
2778 
2779 static void cache_postsuspend(struct dm_target *ti)
2780 {
2781 	struct cache *cache = ti->private;
2782 
2783 	prevent_background_work(cache);
2784 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2785 
2786 	cancel_delayed_work_sync(&cache->waker);
2787 	drain_workqueue(cache->wq);
2788 	WARN_ON(cache->tracker.in_flight);
2789 
2790 	/*
2791 	 * If it's a flush suspend there won't be any deferred bios, so this
2792 	 * call is harmless.
2793 	 */
2794 	requeue_deferred_bios(cache);
2795 
2796 	if (get_cache_mode(cache) == CM_WRITE)
2797 		(void) sync_metadata(cache);
2798 }
2799 
2800 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2801 			bool dirty, uint32_t hint, bool hint_valid)
2802 {
2803 	struct cache *cache = context;
2804 
2805 	if (dirty) {
2806 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2807 		atomic_inc(&cache->nr_dirty);
2808 	} else
2809 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2810 
2811 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2812 }
2813 
2814 /*
2815  * The discard block size in the on disk metadata is not
2816  * necessarily the same as we're currently using.  So we have to
2817  * be careful to only set the discarded attribute if we know it
2818  * covers a complete block of the new size.
2819  */
2820 struct discard_load_info {
2821 	struct cache *cache;
2822 
2823 	/*
2824 	 * These blocks are sized using the on disk dblock size, rather
2825 	 * than the current one.
2826 	 */
2827 	dm_block_t block_size;
2828 	dm_block_t discard_begin, discard_end;
2829 };
2830 
2831 static void discard_load_info_init(struct cache *cache,
2832 				   struct discard_load_info *li)
2833 {
2834 	li->cache = cache;
2835 	li->discard_begin = li->discard_end = 0;
2836 }
2837 
2838 static void set_discard_range(struct discard_load_info *li)
2839 {
2840 	sector_t b, e;
2841 
2842 	if (li->discard_begin == li->discard_end)
2843 		return;
2844 
2845 	/*
2846 	 * Convert to sectors.
2847 	 */
2848 	b = li->discard_begin * li->block_size;
2849 	e = li->discard_end * li->block_size;
2850 
2851 	/*
2852 	 * Then convert back to the current dblock size.
2853 	 */
2854 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2855 	sector_div(e, li->cache->discard_block_size);
2856 
2857 	/*
2858 	 * The origin may have shrunk, so we need to check we're still in
2859 	 * bounds.
2860 	 */
2861 	if (e > from_dblock(li->cache->discard_nr_blocks))
2862 		e = from_dblock(li->cache->discard_nr_blocks);
2863 
2864 	for (; b < e; b++)
2865 		set_discard(li->cache, to_dblock(b));
2866 }
2867 
2868 static int load_discard(void *context, sector_t discard_block_size,
2869 			dm_dblock_t dblock, bool discard)
2870 {
2871 	struct discard_load_info *li = context;
2872 
2873 	li->block_size = discard_block_size;
2874 
2875 	if (discard) {
2876 		if (from_dblock(dblock) == li->discard_end)
2877 			/*
2878 			 * We're already in a discard range, just extend it.
2879 			 */
2880 			li->discard_end = li->discard_end + 1ULL;
2881 
2882 		else {
2883 			/*
2884 			 * Emit the old range and start a new one.
2885 			 */
2886 			set_discard_range(li);
2887 			li->discard_begin = from_dblock(dblock);
2888 			li->discard_end = li->discard_begin + 1ULL;
2889 		}
2890 	} else {
2891 		set_discard_range(li);
2892 		li->discard_begin = li->discard_end = 0;
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2899 {
2900 	sector_t size = get_dev_size(cache->cache_dev);
2901 	(void) sector_div(size, cache->sectors_per_block);
2902 	return to_cblock(size);
2903 }
2904 
2905 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2906 {
2907 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2908 		DMERR("%s: unable to extend cache due to missing cache table reload",
2909 		      cache_device_name(cache));
2910 		return false;
2911 	}
2912 
2913 	/*
2914 	 * We can't drop a dirty block when shrinking the cache.
2915 	 */
2916 	if (cache->loaded_mappings) {
2917 		new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2918 						   from_cblock(cache->cache_size),
2919 						   from_cblock(new_size)));
2920 		if (new_size != cache->cache_size) {
2921 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2922 			      cache_device_name(cache),
2923 			      (unsigned long long) from_cblock(new_size));
2924 			return false;
2925 		}
2926 	}
2927 
2928 	return true;
2929 }
2930 
2931 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2932 {
2933 	int r;
2934 
2935 	r = dm_cache_resize(cache->cmd, new_size);
2936 	if (r) {
2937 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2938 		metadata_operation_failed(cache, "dm_cache_resize", r);
2939 		return r;
2940 	}
2941 
2942 	set_cache_size(cache, new_size);
2943 
2944 	return 0;
2945 }
2946 
2947 static int cache_preresume(struct dm_target *ti)
2948 {
2949 	int r = 0;
2950 	struct cache *cache = ti->private;
2951 	dm_cblock_t csize = get_cache_dev_size(cache);
2952 
2953 	/*
2954 	 * Check to see if the cache has resized.
2955 	 */
2956 	if (!cache->sized || csize != cache->cache_size) {
2957 		if (!can_resize(cache, csize))
2958 			return -EINVAL;
2959 
2960 		r = resize_cache_dev(cache, csize);
2961 		if (r)
2962 			return r;
2963 
2964 		cache->sized = true;
2965 	}
2966 
2967 	if (!cache->loaded_mappings) {
2968 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2969 					   load_mapping, cache);
2970 		if (r) {
2971 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2972 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2973 			return r;
2974 		}
2975 
2976 		cache->loaded_mappings = true;
2977 	}
2978 
2979 	if (!cache->loaded_discards) {
2980 		struct discard_load_info li;
2981 
2982 		/*
2983 		 * The discard bitset could have been resized, or the
2984 		 * discard block size changed.  To be safe we start by
2985 		 * setting every dblock to not discarded.
2986 		 */
2987 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2988 
2989 		discard_load_info_init(cache, &li);
2990 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2991 		if (r) {
2992 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2993 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2994 			return r;
2995 		}
2996 		set_discard_range(&li);
2997 
2998 		cache->loaded_discards = true;
2999 	}
3000 
3001 	return r;
3002 }
3003 
3004 static void cache_resume(struct dm_target *ti)
3005 {
3006 	struct cache *cache = ti->private;
3007 
3008 	cache->need_tick_bio = true;
3009 	allow_background_work(cache);
3010 	do_waker(&cache->waker.work);
3011 }
3012 
3013 static void emit_flags(struct cache *cache, char *result,
3014 		       unsigned int maxlen, ssize_t *sz_ptr)
3015 {
3016 	ssize_t sz = *sz_ptr;
3017 	struct cache_features *cf = &cache->features;
3018 	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3019 
3020 	DMEMIT("%u ", count);
3021 
3022 	if (cf->metadata_version == 2)
3023 		DMEMIT("metadata2 ");
3024 
3025 	if (writethrough_mode(cache))
3026 		DMEMIT("writethrough ");
3027 
3028 	else if (passthrough_mode(cache))
3029 		DMEMIT("passthrough ");
3030 
3031 	else if (writeback_mode(cache))
3032 		DMEMIT("writeback ");
3033 
3034 	else {
3035 		DMEMIT("unknown ");
3036 		DMERR("%s: internal error: unknown io mode: %d",
3037 		      cache_device_name(cache), (int) cf->io_mode);
3038 	}
3039 
3040 	if (!cf->discard_passdown)
3041 		DMEMIT("no_discard_passdown ");
3042 
3043 	*sz_ptr = sz;
3044 }
3045 
3046 /*
3047  * Status format:
3048  *
3049  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3050  * <cache block size> <#used cache blocks>/<#total cache blocks>
3051  * <#read hits> <#read misses> <#write hits> <#write misses>
3052  * <#demotions> <#promotions> <#dirty>
3053  * <#features> <features>*
3054  * <#core args> <core args>
3055  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3056  */
3057 static void cache_status(struct dm_target *ti, status_type_t type,
3058 			 unsigned int status_flags, char *result, unsigned int maxlen)
3059 {
3060 	int r = 0;
3061 	unsigned int i;
3062 	ssize_t sz = 0;
3063 	dm_block_t nr_free_blocks_metadata = 0;
3064 	dm_block_t nr_blocks_metadata = 0;
3065 	char buf[BDEVNAME_SIZE];
3066 	struct cache *cache = ti->private;
3067 	dm_cblock_t residency;
3068 	bool needs_check;
3069 
3070 	switch (type) {
3071 	case STATUSTYPE_INFO:
3072 		if (get_cache_mode(cache) == CM_FAIL) {
3073 			DMEMIT("Fail");
3074 			break;
3075 		}
3076 
3077 		/* Commit to ensure statistics aren't out-of-date */
3078 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3079 			(void) commit(cache, false);
3080 
3081 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3082 		if (r) {
3083 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3084 			      cache_device_name(cache), r);
3085 			goto err;
3086 		}
3087 
3088 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3089 		if (r) {
3090 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3091 			      cache_device_name(cache), r);
3092 			goto err;
3093 		}
3094 
3095 		residency = policy_residency(cache->policy);
3096 
3097 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3098 		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3099 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3100 		       (unsigned long long)nr_blocks_metadata,
3101 		       (unsigned long long)cache->sectors_per_block,
3102 		       (unsigned long long) from_cblock(residency),
3103 		       (unsigned long long) from_cblock(cache->cache_size),
3104 		       (unsigned int) atomic_read(&cache->stats.read_hit),
3105 		       (unsigned int) atomic_read(&cache->stats.read_miss),
3106 		       (unsigned int) atomic_read(&cache->stats.write_hit),
3107 		       (unsigned int) atomic_read(&cache->stats.write_miss),
3108 		       (unsigned int) atomic_read(&cache->stats.demotion),
3109 		       (unsigned int) atomic_read(&cache->stats.promotion),
3110 		       (unsigned long) atomic_read(&cache->nr_dirty));
3111 
3112 		emit_flags(cache, result, maxlen, &sz);
3113 
3114 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3115 
3116 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3117 		if (sz < maxlen) {
3118 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3119 			if (r)
3120 				DMERR("%s: policy_emit_config_values returned %d",
3121 				      cache_device_name(cache), r);
3122 		}
3123 
3124 		if (get_cache_mode(cache) == CM_READ_ONLY)
3125 			DMEMIT("ro ");
3126 		else
3127 			DMEMIT("rw ");
3128 
3129 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3130 
3131 		if (r || needs_check)
3132 			DMEMIT("needs_check ");
3133 		else
3134 			DMEMIT("- ");
3135 
3136 		break;
3137 
3138 	case STATUSTYPE_TABLE:
3139 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3140 		DMEMIT("%s ", buf);
3141 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3142 		DMEMIT("%s ", buf);
3143 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3144 		DMEMIT("%s", buf);
3145 
3146 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3147 			DMEMIT(" %s", cache->ctr_args[i]);
3148 		if (cache->nr_ctr_args)
3149 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3150 		break;
3151 
3152 	case STATUSTYPE_IMA:
3153 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3154 		if (get_cache_mode(cache) == CM_FAIL)
3155 			DMEMIT(",metadata_mode=fail");
3156 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3157 			DMEMIT(",metadata_mode=ro");
3158 		else
3159 			DMEMIT(",metadata_mode=rw");
3160 
3161 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3162 		DMEMIT(",cache_metadata_device=%s", buf);
3163 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3164 		DMEMIT(",cache_device=%s", buf);
3165 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3166 		DMEMIT(",cache_origin_device=%s", buf);
3167 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3168 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3169 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3170 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3171 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3172 		DMEMIT(";");
3173 		break;
3174 	}
3175 
3176 	return;
3177 
3178 err:
3179 	DMEMIT("Error");
3180 }
3181 
3182 /*
3183  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3184  * the one-past-the-end value.
3185  */
3186 struct cblock_range {
3187 	dm_cblock_t begin;
3188 	dm_cblock_t end;
3189 };
3190 
3191 /*
3192  * A cache block range can take two forms:
3193  *
3194  * i) A single cblock, eg. '3456'
3195  * ii) A begin and end cblock with a dash between, eg. 123-234
3196  */
3197 static int parse_cblock_range(struct cache *cache, const char *str,
3198 			      struct cblock_range *result)
3199 {
3200 	char dummy;
3201 	uint64_t b, e;
3202 	int r;
3203 
3204 	/*
3205 	 * Try and parse form (ii) first.
3206 	 */
3207 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3208 	if (r < 0)
3209 		return r;
3210 
3211 	if (r == 2) {
3212 		result->begin = to_cblock(b);
3213 		result->end = to_cblock(e);
3214 		return 0;
3215 	}
3216 
3217 	/*
3218 	 * That didn't work, try form (i).
3219 	 */
3220 	r = sscanf(str, "%llu%c", &b, &dummy);
3221 	if (r < 0)
3222 		return r;
3223 
3224 	if (r == 1) {
3225 		result->begin = to_cblock(b);
3226 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3227 		return 0;
3228 	}
3229 
3230 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3231 	return -EINVAL;
3232 }
3233 
3234 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3235 {
3236 	uint64_t b = from_cblock(range->begin);
3237 	uint64_t e = from_cblock(range->end);
3238 	uint64_t n = from_cblock(cache->cache_size);
3239 
3240 	if (b >= n) {
3241 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3242 		      cache_device_name(cache), b, n);
3243 		return -EINVAL;
3244 	}
3245 
3246 	if (e > n) {
3247 		DMERR("%s: end cblock out of range: %llu > %llu",
3248 		      cache_device_name(cache), e, n);
3249 		return -EINVAL;
3250 	}
3251 
3252 	if (b >= e) {
3253 		DMERR("%s: invalid cblock range: %llu >= %llu",
3254 		      cache_device_name(cache), b, e);
3255 		return -EINVAL;
3256 	}
3257 
3258 	return 0;
3259 }
3260 
3261 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3262 {
3263 	return to_cblock(from_cblock(b) + 1);
3264 }
3265 
3266 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3267 {
3268 	int r = 0;
3269 
3270 	/*
3271 	 * We don't need to do any locking here because we know we're in
3272 	 * passthrough mode.  There's is potential for a race between an
3273 	 * invalidation triggered by an io and an invalidation message.  This
3274 	 * is harmless, we must not worry if the policy call fails.
3275 	 */
3276 	while (range->begin != range->end) {
3277 		r = invalidate_cblock(cache, range->begin);
3278 		if (r)
3279 			return r;
3280 
3281 		range->begin = cblock_succ(range->begin);
3282 	}
3283 
3284 	cache->commit_requested = true;
3285 	return r;
3286 }
3287 
3288 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3289 					      const char **cblock_ranges)
3290 {
3291 	int r = 0;
3292 	unsigned int i;
3293 	struct cblock_range range;
3294 
3295 	if (!passthrough_mode(cache)) {
3296 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3297 		      cache_device_name(cache));
3298 		return -EPERM;
3299 	}
3300 
3301 	for (i = 0; i < count; i++) {
3302 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3303 		if (r)
3304 			break;
3305 
3306 		r = validate_cblock_range(cache, &range);
3307 		if (r)
3308 			break;
3309 
3310 		/*
3311 		 * Pass begin and end origin blocks to the worker and wake it.
3312 		 */
3313 		r = request_invalidation(cache, &range);
3314 		if (r)
3315 			break;
3316 	}
3317 
3318 	return r;
3319 }
3320 
3321 /*
3322  * Supports
3323  *	"<key> <value>"
3324  * and
3325  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3326  *
3327  * The key migration_threshold is supported by the cache target core.
3328  */
3329 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3330 			 char *result, unsigned int maxlen)
3331 {
3332 	struct cache *cache = ti->private;
3333 
3334 	if (!argc)
3335 		return -EINVAL;
3336 
3337 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3338 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3339 		      cache_device_name(cache));
3340 		return -EOPNOTSUPP;
3341 	}
3342 
3343 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3344 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3345 
3346 	if (argc != 2)
3347 		return -EINVAL;
3348 
3349 	return set_config_value(cache, argv[0], argv[1]);
3350 }
3351 
3352 static int cache_iterate_devices(struct dm_target *ti,
3353 				 iterate_devices_callout_fn fn, void *data)
3354 {
3355 	int r = 0;
3356 	struct cache *cache = ti->private;
3357 
3358 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3359 	if (!r)
3360 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3361 
3362 	return r;
3363 }
3364 
3365 /*
3366  * If discard_passdown was enabled verify that the origin device
3367  * supports discards.  Disable discard_passdown if not.
3368  */
3369 static void disable_passdown_if_not_supported(struct cache *cache)
3370 {
3371 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3372 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3373 	const char *reason = NULL;
3374 
3375 	if (!cache->features.discard_passdown)
3376 		return;
3377 
3378 	if (!bdev_max_discard_sectors(origin_bdev))
3379 		reason = "discard unsupported";
3380 
3381 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3382 		reason = "max discard sectors smaller than a block";
3383 
3384 	if (reason) {
3385 		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3386 		       origin_bdev, reason);
3387 		cache->features.discard_passdown = false;
3388 	}
3389 }
3390 
3391 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3392 {
3393 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3394 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3395 
3396 	if (!cache->features.discard_passdown) {
3397 		/* No passdown is done so setting own virtual limits */
3398 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3399 						    cache->origin_sectors);
3400 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3401 		return;
3402 	}
3403 
3404 	/*
3405 	 * cache_iterate_devices() is stacking both origin and fast device limits
3406 	 * but discards aren't passed to fast device, so inherit origin's limits.
3407 	 */
3408 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3409 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3410 	limits->discard_granularity = origin_limits->discard_granularity;
3411 	limits->discard_alignment = origin_limits->discard_alignment;
3412 	limits->discard_misaligned = origin_limits->discard_misaligned;
3413 }
3414 
3415 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3416 {
3417 	struct cache *cache = ti->private;
3418 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3419 
3420 	/*
3421 	 * If the system-determined stacked limits are compatible with the
3422 	 * cache's blocksize (io_opt is a factor) do not override them.
3423 	 */
3424 	if (io_opt_sectors < cache->sectors_per_block ||
3425 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3426 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3427 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3428 	}
3429 
3430 	disable_passdown_if_not_supported(cache);
3431 	set_discard_limits(cache, limits);
3432 }
3433 
3434 /*----------------------------------------------------------------*/
3435 
3436 static struct target_type cache_target = {
3437 	.name = "cache",
3438 	.version = {2, 2, 0},
3439 	.module = THIS_MODULE,
3440 	.ctr = cache_ctr,
3441 	.dtr = cache_dtr,
3442 	.map = cache_map,
3443 	.end_io = cache_end_io,
3444 	.postsuspend = cache_postsuspend,
3445 	.preresume = cache_preresume,
3446 	.resume = cache_resume,
3447 	.status = cache_status,
3448 	.message = cache_message,
3449 	.iterate_devices = cache_iterate_devices,
3450 	.io_hints = cache_io_hints,
3451 };
3452 
3453 static int __init dm_cache_init(void)
3454 {
3455 	int r;
3456 
3457 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3458 	if (!migration_cache)
3459 		return -ENOMEM;
3460 
3461 	r = dm_register_target(&cache_target);
3462 	if (r) {
3463 		kmem_cache_destroy(migration_cache);
3464 		return r;
3465 	}
3466 
3467 	return 0;
3468 }
3469 
3470 static void __exit dm_cache_exit(void)
3471 {
3472 	dm_unregister_target(&cache_target);
3473 	kmem_cache_destroy(migration_cache);
3474 }
3475 
3476 module_init(dm_cache_init);
3477 module_exit(dm_cache_exit);
3478 
3479 MODULE_DESCRIPTION(DM_NAME " cache target");
3480 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3481 MODULE_LICENSE("GPL");
3482