1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-prison-v2.h" 10 #include "dm-bio-record.h" 11 #include "dm-cache-metadata.h" 12 #include "dm-io-tracker.h" 13 14 #include <linux/dm-io.h> 15 #include <linux/dm-kcopyd.h> 16 #include <linux/jiffies.h> 17 #include <linux/init.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/rwsem.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 24 #define DM_MSG_PREFIX "cache" 25 26 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, 27 "A percentage of time allocated for copying to and/or from cache"); 28 29 /*----------------------------------------------------------------*/ 30 31 /* 32 * Glossary: 33 * 34 * oblock: index of an origin block 35 * cblock: index of a cache block 36 * promotion: movement of a block from origin to cache 37 * demotion: movement of a block from cache to origin 38 * migration: movement of a block between the origin and cache device, 39 * either direction 40 */ 41 42 /*----------------------------------------------------------------*/ 43 44 /* 45 * Represents a chunk of future work. 'input' allows continuations to pass 46 * values between themselves, typically error values. 47 */ 48 struct continuation { 49 struct work_struct ws; 50 blk_status_t input; 51 }; 52 53 static inline void init_continuation(struct continuation *k, 54 void (*fn)(struct work_struct *)) 55 { 56 INIT_WORK(&k->ws, fn); 57 k->input = 0; 58 } 59 60 static inline void queue_continuation(struct workqueue_struct *wq, 61 struct continuation *k) 62 { 63 queue_work(wq, &k->ws); 64 } 65 66 /*----------------------------------------------------------------*/ 67 68 /* 69 * The batcher collects together pieces of work that need a particular 70 * operation to occur before they can proceed (typically a commit). 71 */ 72 struct batcher { 73 /* 74 * The operation that everyone is waiting for. 75 */ 76 blk_status_t (*commit_op)(void *context); 77 void *commit_context; 78 79 /* 80 * This is how bios should be issued once the commit op is complete 81 * (accounted_request). 82 */ 83 void (*issue_op)(struct bio *bio, void *context); 84 void *issue_context; 85 86 /* 87 * Queued work gets put on here after commit. 88 */ 89 struct workqueue_struct *wq; 90 91 spinlock_t lock; 92 struct list_head work_items; 93 struct bio_list bios; 94 struct work_struct commit_work; 95 96 bool commit_scheduled; 97 }; 98 99 static void __commit(struct work_struct *_ws) 100 { 101 struct batcher *b = container_of(_ws, struct batcher, commit_work); 102 blk_status_t r; 103 struct list_head work_items; 104 struct work_struct *ws, *tmp; 105 struct continuation *k; 106 struct bio *bio; 107 struct bio_list bios; 108 109 INIT_LIST_HEAD(&work_items); 110 bio_list_init(&bios); 111 112 /* 113 * We have to grab these before the commit_op to avoid a race 114 * condition. 115 */ 116 spin_lock_irq(&b->lock); 117 list_splice_init(&b->work_items, &work_items); 118 bio_list_merge(&bios, &b->bios); 119 bio_list_init(&b->bios); 120 b->commit_scheduled = false; 121 spin_unlock_irq(&b->lock); 122 123 r = b->commit_op(b->commit_context); 124 125 list_for_each_entry_safe(ws, tmp, &work_items, entry) { 126 k = container_of(ws, struct continuation, ws); 127 k->input = r; 128 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ 129 queue_work(b->wq, ws); 130 } 131 132 while ((bio = bio_list_pop(&bios))) { 133 if (r) { 134 bio->bi_status = r; 135 bio_endio(bio); 136 } else 137 b->issue_op(bio, b->issue_context); 138 } 139 } 140 141 static void batcher_init(struct batcher *b, 142 blk_status_t (*commit_op)(void *), 143 void *commit_context, 144 void (*issue_op)(struct bio *bio, void *), 145 void *issue_context, 146 struct workqueue_struct *wq) 147 { 148 b->commit_op = commit_op; 149 b->commit_context = commit_context; 150 b->issue_op = issue_op; 151 b->issue_context = issue_context; 152 b->wq = wq; 153 154 spin_lock_init(&b->lock); 155 INIT_LIST_HEAD(&b->work_items); 156 bio_list_init(&b->bios); 157 INIT_WORK(&b->commit_work, __commit); 158 b->commit_scheduled = false; 159 } 160 161 static void async_commit(struct batcher *b) 162 { 163 queue_work(b->wq, &b->commit_work); 164 } 165 166 static void continue_after_commit(struct batcher *b, struct continuation *k) 167 { 168 bool commit_scheduled; 169 170 spin_lock_irq(&b->lock); 171 commit_scheduled = b->commit_scheduled; 172 list_add_tail(&k->ws.entry, &b->work_items); 173 spin_unlock_irq(&b->lock); 174 175 if (commit_scheduled) 176 async_commit(b); 177 } 178 179 /* 180 * Bios are errored if commit failed. 181 */ 182 static void issue_after_commit(struct batcher *b, struct bio *bio) 183 { 184 bool commit_scheduled; 185 186 spin_lock_irq(&b->lock); 187 commit_scheduled = b->commit_scheduled; 188 bio_list_add(&b->bios, bio); 189 spin_unlock_irq(&b->lock); 190 191 if (commit_scheduled) 192 async_commit(b); 193 } 194 195 /* 196 * Call this if some urgent work is waiting for the commit to complete. 197 */ 198 static void schedule_commit(struct batcher *b) 199 { 200 bool immediate; 201 202 spin_lock_irq(&b->lock); 203 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); 204 b->commit_scheduled = true; 205 spin_unlock_irq(&b->lock); 206 207 if (immediate) 208 async_commit(b); 209 } 210 211 /* 212 * There are a couple of places where we let a bio run, but want to do some 213 * work before calling its endio function. We do this by temporarily 214 * changing the endio fn. 215 */ 216 struct dm_hook_info { 217 bio_end_io_t *bi_end_io; 218 }; 219 220 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, 221 bio_end_io_t *bi_end_io, void *bi_private) 222 { 223 h->bi_end_io = bio->bi_end_io; 224 225 bio->bi_end_io = bi_end_io; 226 bio->bi_private = bi_private; 227 } 228 229 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) 230 { 231 bio->bi_end_io = h->bi_end_io; 232 } 233 234 /*----------------------------------------------------------------*/ 235 236 #define MIGRATION_POOL_SIZE 128 237 #define COMMIT_PERIOD HZ 238 #define MIGRATION_COUNT_WINDOW 10 239 240 /* 241 * The block size of the device holding cache data must be 242 * between 32KB and 1GB. 243 */ 244 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) 245 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 246 247 enum cache_metadata_mode { 248 CM_WRITE, /* metadata may be changed */ 249 CM_READ_ONLY, /* metadata may not be changed */ 250 CM_FAIL 251 }; 252 253 enum cache_io_mode { 254 /* 255 * Data is written to cached blocks only. These blocks are marked 256 * dirty. If you lose the cache device you will lose data. 257 * Potential performance increase for both reads and writes. 258 */ 259 CM_IO_WRITEBACK, 260 261 /* 262 * Data is written to both cache and origin. Blocks are never 263 * dirty. Potential performance benfit for reads only. 264 */ 265 CM_IO_WRITETHROUGH, 266 267 /* 268 * A degraded mode useful for various cache coherency situations 269 * (eg, rolling back snapshots). Reads and writes always go to the 270 * origin. If a write goes to a cached oblock, then the cache 271 * block is invalidated. 272 */ 273 CM_IO_PASSTHROUGH 274 }; 275 276 struct cache_features { 277 enum cache_metadata_mode mode; 278 enum cache_io_mode io_mode; 279 unsigned int metadata_version; 280 bool discard_passdown:1; 281 }; 282 283 struct cache_stats { 284 atomic_t read_hit; 285 atomic_t read_miss; 286 atomic_t write_hit; 287 atomic_t write_miss; 288 atomic_t demotion; 289 atomic_t promotion; 290 atomic_t writeback; 291 atomic_t copies_avoided; 292 atomic_t cache_cell_clash; 293 atomic_t commit_count; 294 atomic_t discard_count; 295 }; 296 297 struct cache { 298 struct dm_target *ti; 299 spinlock_t lock; 300 301 /* 302 * Fields for converting from sectors to blocks. 303 */ 304 int sectors_per_block_shift; 305 sector_t sectors_per_block; 306 307 struct dm_cache_metadata *cmd; 308 309 /* 310 * Metadata is written to this device. 311 */ 312 struct dm_dev *metadata_dev; 313 314 /* 315 * The slower of the two data devices. Typically a spindle. 316 */ 317 struct dm_dev *origin_dev; 318 319 /* 320 * The faster of the two data devices. Typically an SSD. 321 */ 322 struct dm_dev *cache_dev; 323 324 /* 325 * Size of the origin device in _complete_ blocks and native sectors. 326 */ 327 dm_oblock_t origin_blocks; 328 sector_t origin_sectors; 329 330 /* 331 * Size of the cache device in blocks. 332 */ 333 dm_cblock_t cache_size; 334 335 /* 336 * Invalidation fields. 337 */ 338 spinlock_t invalidation_lock; 339 struct list_head invalidation_requests; 340 341 sector_t migration_threshold; 342 wait_queue_head_t migration_wait; 343 atomic_t nr_allocated_migrations; 344 345 /* 346 * The number of in flight migrations that are performing 347 * background io. eg, promotion, writeback. 348 */ 349 atomic_t nr_io_migrations; 350 351 struct bio_list deferred_bios; 352 353 struct rw_semaphore quiesce_lock; 354 355 /* 356 * origin_blocks entries, discarded if set. 357 */ 358 dm_dblock_t discard_nr_blocks; 359 unsigned long *discard_bitset; 360 uint32_t discard_block_size; /* a power of 2 times sectors per block */ 361 362 /* 363 * Rather than reconstructing the table line for the status we just 364 * save it and regurgitate. 365 */ 366 unsigned int nr_ctr_args; 367 const char **ctr_args; 368 369 struct dm_kcopyd_client *copier; 370 struct work_struct deferred_bio_worker; 371 struct work_struct migration_worker; 372 struct workqueue_struct *wq; 373 struct delayed_work waker; 374 struct dm_bio_prison_v2 *prison; 375 376 /* 377 * cache_size entries, dirty if set 378 */ 379 unsigned long *dirty_bitset; 380 atomic_t nr_dirty; 381 382 unsigned int policy_nr_args; 383 struct dm_cache_policy *policy; 384 385 /* 386 * Cache features such as write-through. 387 */ 388 struct cache_features features; 389 390 struct cache_stats stats; 391 392 bool need_tick_bio:1; 393 bool sized:1; 394 bool invalidate:1; 395 bool commit_requested:1; 396 bool loaded_mappings:1; 397 bool loaded_discards:1; 398 399 struct rw_semaphore background_work_lock; 400 401 struct batcher committer; 402 struct work_struct commit_ws; 403 404 struct dm_io_tracker tracker; 405 406 mempool_t migration_pool; 407 408 struct bio_set bs; 409 }; 410 411 struct per_bio_data { 412 bool tick:1; 413 unsigned int req_nr:2; 414 struct dm_bio_prison_cell_v2 *cell; 415 struct dm_hook_info hook_info; 416 sector_t len; 417 }; 418 419 struct dm_cache_migration { 420 struct continuation k; 421 struct cache *cache; 422 423 struct policy_work *op; 424 struct bio *overwrite_bio; 425 struct dm_bio_prison_cell_v2 *cell; 426 427 dm_cblock_t invalidate_cblock; 428 dm_oblock_t invalidate_oblock; 429 }; 430 431 /*----------------------------------------------------------------*/ 432 433 static bool writethrough_mode(struct cache *cache) 434 { 435 return cache->features.io_mode == CM_IO_WRITETHROUGH; 436 } 437 438 static bool writeback_mode(struct cache *cache) 439 { 440 return cache->features.io_mode == CM_IO_WRITEBACK; 441 } 442 443 static inline bool passthrough_mode(struct cache *cache) 444 { 445 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); 446 } 447 448 /*----------------------------------------------------------------*/ 449 450 static void wake_deferred_bio_worker(struct cache *cache) 451 { 452 queue_work(cache->wq, &cache->deferred_bio_worker); 453 } 454 455 static void wake_migration_worker(struct cache *cache) 456 { 457 if (passthrough_mode(cache)) 458 return; 459 460 queue_work(cache->wq, &cache->migration_worker); 461 } 462 463 /*----------------------------------------------------------------*/ 464 465 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) 466 { 467 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); 468 } 469 470 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) 471 { 472 dm_bio_prison_free_cell_v2(cache->prison, cell); 473 } 474 475 static struct dm_cache_migration *alloc_migration(struct cache *cache) 476 { 477 struct dm_cache_migration *mg; 478 479 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); 480 481 memset(mg, 0, sizeof(*mg)); 482 483 mg->cache = cache; 484 atomic_inc(&cache->nr_allocated_migrations); 485 486 return mg; 487 } 488 489 static void free_migration(struct dm_cache_migration *mg) 490 { 491 struct cache *cache = mg->cache; 492 493 if (atomic_dec_and_test(&cache->nr_allocated_migrations)) 494 wake_up(&cache->migration_wait); 495 496 mempool_free(mg, &cache->migration_pool); 497 } 498 499 /*----------------------------------------------------------------*/ 500 501 static inline dm_oblock_t oblock_succ(dm_oblock_t b) 502 { 503 return to_oblock(from_oblock(b) + 1ull); 504 } 505 506 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) 507 { 508 key->virtual = 0; 509 key->dev = 0; 510 key->block_begin = from_oblock(begin); 511 key->block_end = from_oblock(end); 512 } 513 514 /* 515 * We have two lock levels. Level 0, which is used to prevent WRITEs, and 516 * level 1 which prevents *both* READs and WRITEs. 517 */ 518 #define WRITE_LOCK_LEVEL 0 519 #define READ_WRITE_LOCK_LEVEL 1 520 521 static unsigned int lock_level(struct bio *bio) 522 { 523 return bio_data_dir(bio) == WRITE ? 524 WRITE_LOCK_LEVEL : 525 READ_WRITE_LOCK_LEVEL; 526 } 527 528 /* 529 *-------------------------------------------------------------- 530 * Per bio data 531 *-------------------------------------------------------------- 532 */ 533 534 static struct per_bio_data *get_per_bio_data(struct bio *bio) 535 { 536 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); 537 538 BUG_ON(!pb); 539 return pb; 540 } 541 542 static struct per_bio_data *init_per_bio_data(struct bio *bio) 543 { 544 struct per_bio_data *pb = get_per_bio_data(bio); 545 546 pb->tick = false; 547 pb->req_nr = dm_bio_get_target_bio_nr(bio); 548 pb->cell = NULL; 549 pb->len = 0; 550 551 return pb; 552 } 553 554 /*----------------------------------------------------------------*/ 555 556 static void defer_bio(struct cache *cache, struct bio *bio) 557 { 558 spin_lock_irq(&cache->lock); 559 bio_list_add(&cache->deferred_bios, bio); 560 spin_unlock_irq(&cache->lock); 561 562 wake_deferred_bio_worker(cache); 563 } 564 565 static void defer_bios(struct cache *cache, struct bio_list *bios) 566 { 567 spin_lock_irq(&cache->lock); 568 bio_list_merge(&cache->deferred_bios, bios); 569 bio_list_init(bios); 570 spin_unlock_irq(&cache->lock); 571 572 wake_deferred_bio_worker(cache); 573 } 574 575 /*----------------------------------------------------------------*/ 576 577 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) 578 { 579 bool r; 580 struct per_bio_data *pb; 581 struct dm_cell_key_v2 key; 582 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); 583 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; 584 585 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ 586 587 build_key(oblock, end, &key); 588 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); 589 if (!r) { 590 /* 591 * Failed to get the lock. 592 */ 593 free_prison_cell(cache, cell_prealloc); 594 return r; 595 } 596 597 if (cell != cell_prealloc) 598 free_prison_cell(cache, cell_prealloc); 599 600 pb = get_per_bio_data(bio); 601 pb->cell = cell; 602 603 return r; 604 } 605 606 /*----------------------------------------------------------------*/ 607 608 static bool is_dirty(struct cache *cache, dm_cblock_t b) 609 { 610 return test_bit(from_cblock(b), cache->dirty_bitset); 611 } 612 613 static void set_dirty(struct cache *cache, dm_cblock_t cblock) 614 { 615 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { 616 atomic_inc(&cache->nr_dirty); 617 policy_set_dirty(cache->policy, cblock); 618 } 619 } 620 621 /* 622 * These two are called when setting after migrations to force the policy 623 * and dirty bitset to be in sync. 624 */ 625 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) 626 { 627 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) 628 atomic_inc(&cache->nr_dirty); 629 policy_set_dirty(cache->policy, cblock); 630 } 631 632 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) 633 { 634 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { 635 if (atomic_dec_return(&cache->nr_dirty) == 0) 636 dm_table_event(cache->ti->table); 637 } 638 639 policy_clear_dirty(cache->policy, cblock); 640 } 641 642 /*----------------------------------------------------------------*/ 643 644 static bool block_size_is_power_of_two(struct cache *cache) 645 { 646 return cache->sectors_per_block_shift >= 0; 647 } 648 649 static dm_block_t block_div(dm_block_t b, uint32_t n) 650 { 651 do_div(b, n); 652 653 return b; 654 } 655 656 static dm_block_t oblocks_per_dblock(struct cache *cache) 657 { 658 dm_block_t oblocks = cache->discard_block_size; 659 660 if (block_size_is_power_of_two(cache)) 661 oblocks >>= cache->sectors_per_block_shift; 662 else 663 oblocks = block_div(oblocks, cache->sectors_per_block); 664 665 return oblocks; 666 } 667 668 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) 669 { 670 return to_dblock(block_div(from_oblock(oblock), 671 oblocks_per_dblock(cache))); 672 } 673 674 static void set_discard(struct cache *cache, dm_dblock_t b) 675 { 676 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); 677 atomic_inc(&cache->stats.discard_count); 678 679 spin_lock_irq(&cache->lock); 680 set_bit(from_dblock(b), cache->discard_bitset); 681 spin_unlock_irq(&cache->lock); 682 } 683 684 static void clear_discard(struct cache *cache, dm_dblock_t b) 685 { 686 spin_lock_irq(&cache->lock); 687 clear_bit(from_dblock(b), cache->discard_bitset); 688 spin_unlock_irq(&cache->lock); 689 } 690 691 static bool is_discarded(struct cache *cache, dm_dblock_t b) 692 { 693 int r; 694 695 spin_lock_irq(&cache->lock); 696 r = test_bit(from_dblock(b), cache->discard_bitset); 697 spin_unlock_irq(&cache->lock); 698 699 return r; 700 } 701 702 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) 703 { 704 int r; 705 706 spin_lock_irq(&cache->lock); 707 r = test_bit(from_dblock(oblock_to_dblock(cache, b)), 708 cache->discard_bitset); 709 spin_unlock_irq(&cache->lock); 710 711 return r; 712 } 713 714 /* 715 * ------------------------------------------------------------- 716 * Remapping 717 *-------------------------------------------------------------- 718 */ 719 static void remap_to_origin(struct cache *cache, struct bio *bio) 720 { 721 bio_set_dev(bio, cache->origin_dev->bdev); 722 } 723 724 static void remap_to_cache(struct cache *cache, struct bio *bio, 725 dm_cblock_t cblock) 726 { 727 sector_t bi_sector = bio->bi_iter.bi_sector; 728 sector_t block = from_cblock(cblock); 729 730 bio_set_dev(bio, cache->cache_dev->bdev); 731 if (!block_size_is_power_of_two(cache)) 732 bio->bi_iter.bi_sector = 733 (block * cache->sectors_per_block) + 734 sector_div(bi_sector, cache->sectors_per_block); 735 else 736 bio->bi_iter.bi_sector = 737 (block << cache->sectors_per_block_shift) | 738 (bi_sector & (cache->sectors_per_block - 1)); 739 } 740 741 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) 742 { 743 struct per_bio_data *pb; 744 745 spin_lock_irq(&cache->lock); 746 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && 747 bio_op(bio) != REQ_OP_DISCARD) { 748 pb = get_per_bio_data(bio); 749 pb->tick = true; 750 cache->need_tick_bio = false; 751 } 752 spin_unlock_irq(&cache->lock); 753 } 754 755 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, 756 dm_oblock_t oblock) 757 { 758 // FIXME: check_if_tick_bio_needed() is called way too much through this interface 759 check_if_tick_bio_needed(cache, bio); 760 remap_to_origin(cache, bio); 761 if (bio_data_dir(bio) == WRITE) 762 clear_discard(cache, oblock_to_dblock(cache, oblock)); 763 } 764 765 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, 766 dm_oblock_t oblock, dm_cblock_t cblock) 767 { 768 check_if_tick_bio_needed(cache, bio); 769 remap_to_cache(cache, bio, cblock); 770 if (bio_data_dir(bio) == WRITE) { 771 set_dirty(cache, cblock); 772 clear_discard(cache, oblock_to_dblock(cache, oblock)); 773 } 774 } 775 776 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) 777 { 778 sector_t block_nr = bio->bi_iter.bi_sector; 779 780 if (!block_size_is_power_of_two(cache)) 781 (void) sector_div(block_nr, cache->sectors_per_block); 782 else 783 block_nr >>= cache->sectors_per_block_shift; 784 785 return to_oblock(block_nr); 786 } 787 788 static bool accountable_bio(struct cache *cache, struct bio *bio) 789 { 790 return bio_op(bio) != REQ_OP_DISCARD; 791 } 792 793 static void accounted_begin(struct cache *cache, struct bio *bio) 794 { 795 struct per_bio_data *pb; 796 797 if (accountable_bio(cache, bio)) { 798 pb = get_per_bio_data(bio); 799 pb->len = bio_sectors(bio); 800 dm_iot_io_begin(&cache->tracker, pb->len); 801 } 802 } 803 804 static void accounted_complete(struct cache *cache, struct bio *bio) 805 { 806 struct per_bio_data *pb = get_per_bio_data(bio); 807 808 dm_iot_io_end(&cache->tracker, pb->len); 809 } 810 811 static void accounted_request(struct cache *cache, struct bio *bio) 812 { 813 accounted_begin(cache, bio); 814 dm_submit_bio_remap(bio, NULL); 815 } 816 817 static void issue_op(struct bio *bio, void *context) 818 { 819 struct cache *cache = context; 820 821 accounted_request(cache, bio); 822 } 823 824 /* 825 * When running in writethrough mode we need to send writes to clean blocks 826 * to both the cache and origin devices. Clone the bio and send them in parallel. 827 */ 828 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, 829 dm_oblock_t oblock, dm_cblock_t cblock) 830 { 831 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio, 832 GFP_NOIO, &cache->bs); 833 834 BUG_ON(!origin_bio); 835 836 bio_chain(origin_bio, bio); 837 838 if (bio_data_dir(origin_bio) == WRITE) 839 clear_discard(cache, oblock_to_dblock(cache, oblock)); 840 submit_bio(origin_bio); 841 842 remap_to_cache(cache, bio, cblock); 843 } 844 845 /* 846 *-------------------------------------------------------------- 847 * Failure modes 848 *-------------------------------------------------------------- 849 */ 850 static enum cache_metadata_mode get_cache_mode(struct cache *cache) 851 { 852 return cache->features.mode; 853 } 854 855 static const char *cache_device_name(struct cache *cache) 856 { 857 return dm_table_device_name(cache->ti->table); 858 } 859 860 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) 861 { 862 static const char *descs[] = { 863 "write", 864 "read-only", 865 "fail" 866 }; 867 868 dm_table_event(cache->ti->table); 869 DMINFO("%s: switching cache to %s mode", 870 cache_device_name(cache), descs[(int)mode]); 871 } 872 873 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) 874 { 875 bool needs_check; 876 enum cache_metadata_mode old_mode = get_cache_mode(cache); 877 878 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { 879 DMERR("%s: unable to read needs_check flag, setting failure mode.", 880 cache_device_name(cache)); 881 new_mode = CM_FAIL; 882 } 883 884 if (new_mode == CM_WRITE && needs_check) { 885 DMERR("%s: unable to switch cache to write mode until repaired.", 886 cache_device_name(cache)); 887 if (old_mode != new_mode) 888 new_mode = old_mode; 889 else 890 new_mode = CM_READ_ONLY; 891 } 892 893 /* Never move out of fail mode */ 894 if (old_mode == CM_FAIL) 895 new_mode = CM_FAIL; 896 897 switch (new_mode) { 898 case CM_FAIL: 899 case CM_READ_ONLY: 900 dm_cache_metadata_set_read_only(cache->cmd); 901 break; 902 903 case CM_WRITE: 904 dm_cache_metadata_set_read_write(cache->cmd); 905 break; 906 } 907 908 cache->features.mode = new_mode; 909 910 if (new_mode != old_mode) 911 notify_mode_switch(cache, new_mode); 912 } 913 914 static void abort_transaction(struct cache *cache) 915 { 916 const char *dev_name = cache_device_name(cache); 917 918 if (get_cache_mode(cache) >= CM_READ_ONLY) 919 return; 920 921 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 922 if (dm_cache_metadata_abort(cache->cmd)) { 923 DMERR("%s: failed to abort metadata transaction", dev_name); 924 set_cache_mode(cache, CM_FAIL); 925 } 926 927 if (dm_cache_metadata_set_needs_check(cache->cmd)) { 928 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 929 set_cache_mode(cache, CM_FAIL); 930 } 931 } 932 933 static void metadata_operation_failed(struct cache *cache, const char *op, int r) 934 { 935 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 936 cache_device_name(cache), op, r); 937 abort_transaction(cache); 938 set_cache_mode(cache, CM_READ_ONLY); 939 } 940 941 /*----------------------------------------------------------------*/ 942 943 static void load_stats(struct cache *cache) 944 { 945 struct dm_cache_statistics stats; 946 947 dm_cache_metadata_get_stats(cache->cmd, &stats); 948 atomic_set(&cache->stats.read_hit, stats.read_hits); 949 atomic_set(&cache->stats.read_miss, stats.read_misses); 950 atomic_set(&cache->stats.write_hit, stats.write_hits); 951 atomic_set(&cache->stats.write_miss, stats.write_misses); 952 } 953 954 static void save_stats(struct cache *cache) 955 { 956 struct dm_cache_statistics stats; 957 958 if (get_cache_mode(cache) >= CM_READ_ONLY) 959 return; 960 961 stats.read_hits = atomic_read(&cache->stats.read_hit); 962 stats.read_misses = atomic_read(&cache->stats.read_miss); 963 stats.write_hits = atomic_read(&cache->stats.write_hit); 964 stats.write_misses = atomic_read(&cache->stats.write_miss); 965 966 dm_cache_metadata_set_stats(cache->cmd, &stats); 967 } 968 969 static void update_stats(struct cache_stats *stats, enum policy_operation op) 970 { 971 switch (op) { 972 case POLICY_PROMOTE: 973 atomic_inc(&stats->promotion); 974 break; 975 976 case POLICY_DEMOTE: 977 atomic_inc(&stats->demotion); 978 break; 979 980 case POLICY_WRITEBACK: 981 atomic_inc(&stats->writeback); 982 break; 983 } 984 } 985 986 /* 987 *--------------------------------------------------------------------- 988 * Migration processing 989 * 990 * Migration covers moving data from the origin device to the cache, or 991 * vice versa. 992 *--------------------------------------------------------------------- 993 */ 994 static void inc_io_migrations(struct cache *cache) 995 { 996 atomic_inc(&cache->nr_io_migrations); 997 } 998 999 static void dec_io_migrations(struct cache *cache) 1000 { 1001 atomic_dec(&cache->nr_io_migrations); 1002 } 1003 1004 static bool discard_or_flush(struct bio *bio) 1005 { 1006 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); 1007 } 1008 1009 static void calc_discard_block_range(struct cache *cache, struct bio *bio, 1010 dm_dblock_t *b, dm_dblock_t *e) 1011 { 1012 sector_t sb = bio->bi_iter.bi_sector; 1013 sector_t se = bio_end_sector(bio); 1014 1015 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); 1016 1017 if (se - sb < cache->discard_block_size) 1018 *e = *b; 1019 else 1020 *e = to_dblock(block_div(se, cache->discard_block_size)); 1021 } 1022 1023 /*----------------------------------------------------------------*/ 1024 1025 static void prevent_background_work(struct cache *cache) 1026 { 1027 lockdep_off(); 1028 down_write(&cache->background_work_lock); 1029 lockdep_on(); 1030 } 1031 1032 static void allow_background_work(struct cache *cache) 1033 { 1034 lockdep_off(); 1035 up_write(&cache->background_work_lock); 1036 lockdep_on(); 1037 } 1038 1039 static bool background_work_begin(struct cache *cache) 1040 { 1041 bool r; 1042 1043 lockdep_off(); 1044 r = down_read_trylock(&cache->background_work_lock); 1045 lockdep_on(); 1046 1047 return r; 1048 } 1049 1050 static void background_work_end(struct cache *cache) 1051 { 1052 lockdep_off(); 1053 up_read(&cache->background_work_lock); 1054 lockdep_on(); 1055 } 1056 1057 /*----------------------------------------------------------------*/ 1058 1059 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) 1060 { 1061 return (bio_data_dir(bio) == WRITE) && 1062 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); 1063 } 1064 1065 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) 1066 { 1067 return writeback_mode(cache) && 1068 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); 1069 } 1070 1071 static void quiesce(struct dm_cache_migration *mg, 1072 void (*continuation)(struct work_struct *)) 1073 { 1074 init_continuation(&mg->k, continuation); 1075 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); 1076 } 1077 1078 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) 1079 { 1080 struct continuation *k = container_of(ws, struct continuation, ws); 1081 1082 return container_of(k, struct dm_cache_migration, k); 1083 } 1084 1085 static void copy_complete(int read_err, unsigned long write_err, void *context) 1086 { 1087 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); 1088 1089 if (read_err || write_err) 1090 mg->k.input = BLK_STS_IOERR; 1091 1092 queue_continuation(mg->cache->wq, &mg->k); 1093 } 1094 1095 static void copy(struct dm_cache_migration *mg, bool promote) 1096 { 1097 struct dm_io_region o_region, c_region; 1098 struct cache *cache = mg->cache; 1099 1100 o_region.bdev = cache->origin_dev->bdev; 1101 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; 1102 o_region.count = cache->sectors_per_block; 1103 1104 c_region.bdev = cache->cache_dev->bdev; 1105 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; 1106 c_region.count = cache->sectors_per_block; 1107 1108 if (promote) 1109 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); 1110 else 1111 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); 1112 } 1113 1114 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) 1115 { 1116 struct per_bio_data *pb = get_per_bio_data(bio); 1117 1118 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) 1119 free_prison_cell(cache, pb->cell); 1120 pb->cell = NULL; 1121 } 1122 1123 static void overwrite_endio(struct bio *bio) 1124 { 1125 struct dm_cache_migration *mg = bio->bi_private; 1126 struct cache *cache = mg->cache; 1127 struct per_bio_data *pb = get_per_bio_data(bio); 1128 1129 dm_unhook_bio(&pb->hook_info, bio); 1130 1131 if (bio->bi_status) 1132 mg->k.input = bio->bi_status; 1133 1134 queue_continuation(cache->wq, &mg->k); 1135 } 1136 1137 static void overwrite(struct dm_cache_migration *mg, 1138 void (*continuation)(struct work_struct *)) 1139 { 1140 struct bio *bio = mg->overwrite_bio; 1141 struct per_bio_data *pb = get_per_bio_data(bio); 1142 1143 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); 1144 1145 /* 1146 * The overwrite bio is part of the copy operation, as such it does 1147 * not set/clear discard or dirty flags. 1148 */ 1149 if (mg->op->op == POLICY_PROMOTE) 1150 remap_to_cache(mg->cache, bio, mg->op->cblock); 1151 else 1152 remap_to_origin(mg->cache, bio); 1153 1154 init_continuation(&mg->k, continuation); 1155 accounted_request(mg->cache, bio); 1156 } 1157 1158 /* 1159 * Migration steps: 1160 * 1161 * 1) exclusive lock preventing WRITEs 1162 * 2) quiesce 1163 * 3) copy or issue overwrite bio 1164 * 4) upgrade to exclusive lock preventing READs and WRITEs 1165 * 5) quiesce 1166 * 6) update metadata and commit 1167 * 7) unlock 1168 */ 1169 static void mg_complete(struct dm_cache_migration *mg, bool success) 1170 { 1171 struct bio_list bios; 1172 struct cache *cache = mg->cache; 1173 struct policy_work *op = mg->op; 1174 dm_cblock_t cblock = op->cblock; 1175 1176 if (success) 1177 update_stats(&cache->stats, op->op); 1178 1179 switch (op->op) { 1180 case POLICY_PROMOTE: 1181 clear_discard(cache, oblock_to_dblock(cache, op->oblock)); 1182 policy_complete_background_work(cache->policy, op, success); 1183 1184 if (mg->overwrite_bio) { 1185 if (success) 1186 force_set_dirty(cache, cblock); 1187 else if (mg->k.input) 1188 mg->overwrite_bio->bi_status = mg->k.input; 1189 else 1190 mg->overwrite_bio->bi_status = BLK_STS_IOERR; 1191 bio_endio(mg->overwrite_bio); 1192 } else { 1193 if (success) 1194 force_clear_dirty(cache, cblock); 1195 dec_io_migrations(cache); 1196 } 1197 break; 1198 1199 case POLICY_DEMOTE: 1200 /* 1201 * We clear dirty here to update the nr_dirty counter. 1202 */ 1203 if (success) 1204 force_clear_dirty(cache, cblock); 1205 policy_complete_background_work(cache->policy, op, success); 1206 dec_io_migrations(cache); 1207 break; 1208 1209 case POLICY_WRITEBACK: 1210 if (success) 1211 force_clear_dirty(cache, cblock); 1212 policy_complete_background_work(cache->policy, op, success); 1213 dec_io_migrations(cache); 1214 break; 1215 } 1216 1217 bio_list_init(&bios); 1218 if (mg->cell) { 1219 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1220 free_prison_cell(cache, mg->cell); 1221 } 1222 1223 free_migration(mg); 1224 defer_bios(cache, &bios); 1225 wake_migration_worker(cache); 1226 1227 background_work_end(cache); 1228 } 1229 1230 static void mg_success(struct work_struct *ws) 1231 { 1232 struct dm_cache_migration *mg = ws_to_mg(ws); 1233 1234 mg_complete(mg, mg->k.input == 0); 1235 } 1236 1237 static void mg_update_metadata(struct work_struct *ws) 1238 { 1239 int r; 1240 struct dm_cache_migration *mg = ws_to_mg(ws); 1241 struct cache *cache = mg->cache; 1242 struct policy_work *op = mg->op; 1243 1244 switch (op->op) { 1245 case POLICY_PROMOTE: 1246 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); 1247 if (r) { 1248 DMERR_LIMIT("%s: migration failed; couldn't insert mapping", 1249 cache_device_name(cache)); 1250 metadata_operation_failed(cache, "dm_cache_insert_mapping", r); 1251 1252 mg_complete(mg, false); 1253 return; 1254 } 1255 mg_complete(mg, true); 1256 break; 1257 1258 case POLICY_DEMOTE: 1259 r = dm_cache_remove_mapping(cache->cmd, op->cblock); 1260 if (r) { 1261 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", 1262 cache_device_name(cache)); 1263 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1264 1265 mg_complete(mg, false); 1266 return; 1267 } 1268 1269 /* 1270 * It would be nice if we only had to commit when a REQ_FLUSH 1271 * comes through. But there's one scenario that we have to 1272 * look out for: 1273 * 1274 * - vblock x in a cache block 1275 * - domotion occurs 1276 * - cache block gets reallocated and over written 1277 * - crash 1278 * 1279 * When we recover, because there was no commit the cache will 1280 * rollback to having the data for vblock x in the cache block. 1281 * But the cache block has since been overwritten, so it'll end 1282 * up pointing to data that was never in 'x' during the history 1283 * of the device. 1284 * 1285 * To avoid this issue we require a commit as part of the 1286 * demotion operation. 1287 */ 1288 init_continuation(&mg->k, mg_success); 1289 continue_after_commit(&cache->committer, &mg->k); 1290 schedule_commit(&cache->committer); 1291 break; 1292 1293 case POLICY_WRITEBACK: 1294 mg_complete(mg, true); 1295 break; 1296 } 1297 } 1298 1299 static void mg_update_metadata_after_copy(struct work_struct *ws) 1300 { 1301 struct dm_cache_migration *mg = ws_to_mg(ws); 1302 1303 /* 1304 * Did the copy succeed? 1305 */ 1306 if (mg->k.input) 1307 mg_complete(mg, false); 1308 else 1309 mg_update_metadata(ws); 1310 } 1311 1312 static void mg_upgrade_lock(struct work_struct *ws) 1313 { 1314 int r; 1315 struct dm_cache_migration *mg = ws_to_mg(ws); 1316 1317 /* 1318 * Did the copy succeed? 1319 */ 1320 if (mg->k.input) 1321 mg_complete(mg, false); 1322 1323 else { 1324 /* 1325 * Now we want the lock to prevent both reads and writes. 1326 */ 1327 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, 1328 READ_WRITE_LOCK_LEVEL); 1329 if (r < 0) 1330 mg_complete(mg, false); 1331 1332 else if (r) 1333 quiesce(mg, mg_update_metadata); 1334 1335 else 1336 mg_update_metadata(ws); 1337 } 1338 } 1339 1340 static void mg_full_copy(struct work_struct *ws) 1341 { 1342 struct dm_cache_migration *mg = ws_to_mg(ws); 1343 struct cache *cache = mg->cache; 1344 struct policy_work *op = mg->op; 1345 bool is_policy_promote = (op->op == POLICY_PROMOTE); 1346 1347 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || 1348 is_discarded_oblock(cache, op->oblock)) { 1349 mg_upgrade_lock(ws); 1350 return; 1351 } 1352 1353 init_continuation(&mg->k, mg_upgrade_lock); 1354 copy(mg, is_policy_promote); 1355 } 1356 1357 static void mg_copy(struct work_struct *ws) 1358 { 1359 struct dm_cache_migration *mg = ws_to_mg(ws); 1360 1361 if (mg->overwrite_bio) { 1362 /* 1363 * No exclusive lock was held when we last checked if the bio 1364 * was optimisable. So we have to check again in case things 1365 * have changed (eg, the block may no longer be discarded). 1366 */ 1367 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { 1368 /* 1369 * Fallback to a real full copy after doing some tidying up. 1370 */ 1371 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); 1372 1373 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ 1374 mg->overwrite_bio = NULL; 1375 inc_io_migrations(mg->cache); 1376 mg_full_copy(ws); 1377 return; 1378 } 1379 1380 /* 1381 * It's safe to do this here, even though it's new data 1382 * because all IO has been locked out of the block. 1383 * 1384 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL 1385 * so _not_ using mg_upgrade_lock() as continutation. 1386 */ 1387 overwrite(mg, mg_update_metadata_after_copy); 1388 1389 } else 1390 mg_full_copy(ws); 1391 } 1392 1393 static int mg_lock_writes(struct dm_cache_migration *mg) 1394 { 1395 int r; 1396 struct dm_cell_key_v2 key; 1397 struct cache *cache = mg->cache; 1398 struct dm_bio_prison_cell_v2 *prealloc; 1399 1400 prealloc = alloc_prison_cell(cache); 1401 1402 /* 1403 * Prevent writes to the block, but allow reads to continue. 1404 * Unless we're using an overwrite bio, in which case we lock 1405 * everything. 1406 */ 1407 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); 1408 r = dm_cell_lock_v2(cache->prison, &key, 1409 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, 1410 prealloc, &mg->cell); 1411 if (r < 0) { 1412 free_prison_cell(cache, prealloc); 1413 mg_complete(mg, false); 1414 return r; 1415 } 1416 1417 if (mg->cell != prealloc) 1418 free_prison_cell(cache, prealloc); 1419 1420 if (r == 0) 1421 mg_copy(&mg->k.ws); 1422 else 1423 quiesce(mg, mg_copy); 1424 1425 return 0; 1426 } 1427 1428 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) 1429 { 1430 struct dm_cache_migration *mg; 1431 1432 if (!background_work_begin(cache)) { 1433 policy_complete_background_work(cache->policy, op, false); 1434 return -EPERM; 1435 } 1436 1437 mg = alloc_migration(cache); 1438 1439 mg->op = op; 1440 mg->overwrite_bio = bio; 1441 1442 if (!bio) 1443 inc_io_migrations(cache); 1444 1445 return mg_lock_writes(mg); 1446 } 1447 1448 /* 1449 *-------------------------------------------------------------- 1450 * invalidation processing 1451 *-------------------------------------------------------------- 1452 */ 1453 1454 static void invalidate_complete(struct dm_cache_migration *mg, bool success) 1455 { 1456 struct bio_list bios; 1457 struct cache *cache = mg->cache; 1458 1459 bio_list_init(&bios); 1460 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) 1461 free_prison_cell(cache, mg->cell); 1462 1463 if (!success && mg->overwrite_bio) 1464 bio_io_error(mg->overwrite_bio); 1465 1466 free_migration(mg); 1467 defer_bios(cache, &bios); 1468 1469 background_work_end(cache); 1470 } 1471 1472 static void invalidate_completed(struct work_struct *ws) 1473 { 1474 struct dm_cache_migration *mg = ws_to_mg(ws); 1475 1476 invalidate_complete(mg, !mg->k.input); 1477 } 1478 1479 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) 1480 { 1481 int r; 1482 1483 r = policy_invalidate_mapping(cache->policy, cblock); 1484 if (!r) { 1485 r = dm_cache_remove_mapping(cache->cmd, cblock); 1486 if (r) { 1487 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", 1488 cache_device_name(cache)); 1489 metadata_operation_failed(cache, "dm_cache_remove_mapping", r); 1490 } 1491 1492 } else if (r == -ENODATA) { 1493 /* 1494 * Harmless, already unmapped. 1495 */ 1496 r = 0; 1497 1498 } else 1499 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); 1500 1501 return r; 1502 } 1503 1504 static void invalidate_remove(struct work_struct *ws) 1505 { 1506 int r; 1507 struct dm_cache_migration *mg = ws_to_mg(ws); 1508 struct cache *cache = mg->cache; 1509 1510 r = invalidate_cblock(cache, mg->invalidate_cblock); 1511 if (r) { 1512 invalidate_complete(mg, false); 1513 return; 1514 } 1515 1516 init_continuation(&mg->k, invalidate_completed); 1517 continue_after_commit(&cache->committer, &mg->k); 1518 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); 1519 mg->overwrite_bio = NULL; 1520 schedule_commit(&cache->committer); 1521 } 1522 1523 static int invalidate_lock(struct dm_cache_migration *mg) 1524 { 1525 int r; 1526 struct dm_cell_key_v2 key; 1527 struct cache *cache = mg->cache; 1528 struct dm_bio_prison_cell_v2 *prealloc; 1529 1530 prealloc = alloc_prison_cell(cache); 1531 1532 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); 1533 r = dm_cell_lock_v2(cache->prison, &key, 1534 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); 1535 if (r < 0) { 1536 free_prison_cell(cache, prealloc); 1537 invalidate_complete(mg, false); 1538 return r; 1539 } 1540 1541 if (mg->cell != prealloc) 1542 free_prison_cell(cache, prealloc); 1543 1544 if (r) 1545 quiesce(mg, invalidate_remove); 1546 1547 else { 1548 /* 1549 * We can't call invalidate_remove() directly here because we 1550 * might still be in request context. 1551 */ 1552 init_continuation(&mg->k, invalidate_remove); 1553 queue_work(cache->wq, &mg->k.ws); 1554 } 1555 1556 return 0; 1557 } 1558 1559 static int invalidate_start(struct cache *cache, dm_cblock_t cblock, 1560 dm_oblock_t oblock, struct bio *bio) 1561 { 1562 struct dm_cache_migration *mg; 1563 1564 if (!background_work_begin(cache)) 1565 return -EPERM; 1566 1567 mg = alloc_migration(cache); 1568 1569 mg->overwrite_bio = bio; 1570 mg->invalidate_cblock = cblock; 1571 mg->invalidate_oblock = oblock; 1572 1573 return invalidate_lock(mg); 1574 } 1575 1576 /* 1577 *-------------------------------------------------------------- 1578 * bio processing 1579 *-------------------------------------------------------------- 1580 */ 1581 1582 enum busy { 1583 IDLE, 1584 BUSY 1585 }; 1586 1587 static enum busy spare_migration_bandwidth(struct cache *cache) 1588 { 1589 bool idle = dm_iot_idle_for(&cache->tracker, HZ); 1590 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * 1591 cache->sectors_per_block; 1592 1593 if (idle && current_volume <= cache->migration_threshold) 1594 return IDLE; 1595 else 1596 return BUSY; 1597 } 1598 1599 static void inc_hit_counter(struct cache *cache, struct bio *bio) 1600 { 1601 atomic_inc(bio_data_dir(bio) == READ ? 1602 &cache->stats.read_hit : &cache->stats.write_hit); 1603 } 1604 1605 static void inc_miss_counter(struct cache *cache, struct bio *bio) 1606 { 1607 atomic_inc(bio_data_dir(bio) == READ ? 1608 &cache->stats.read_miss : &cache->stats.write_miss); 1609 } 1610 1611 /*----------------------------------------------------------------*/ 1612 1613 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, 1614 bool *commit_needed) 1615 { 1616 int r, data_dir; 1617 bool rb, background_queued; 1618 dm_cblock_t cblock; 1619 1620 *commit_needed = false; 1621 1622 rb = bio_detain_shared(cache, block, bio); 1623 if (!rb) { 1624 /* 1625 * An exclusive lock is held for this block, so we have to 1626 * wait. We set the commit_needed flag so the current 1627 * transaction will be committed asap, allowing this lock 1628 * to be dropped. 1629 */ 1630 *commit_needed = true; 1631 return DM_MAPIO_SUBMITTED; 1632 } 1633 1634 data_dir = bio_data_dir(bio); 1635 1636 if (optimisable_bio(cache, bio, block)) { 1637 struct policy_work *op = NULL; 1638 1639 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); 1640 if (unlikely(r && r != -ENOENT)) { 1641 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", 1642 cache_device_name(cache), r); 1643 bio_io_error(bio); 1644 return DM_MAPIO_SUBMITTED; 1645 } 1646 1647 if (r == -ENOENT && op) { 1648 bio_drop_shared_lock(cache, bio); 1649 BUG_ON(op->op != POLICY_PROMOTE); 1650 mg_start(cache, op, bio); 1651 return DM_MAPIO_SUBMITTED; 1652 } 1653 } else { 1654 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); 1655 if (unlikely(r && r != -ENOENT)) { 1656 DMERR_LIMIT("%s: policy_lookup() failed with r = %d", 1657 cache_device_name(cache), r); 1658 bio_io_error(bio); 1659 return DM_MAPIO_SUBMITTED; 1660 } 1661 1662 if (background_queued) 1663 wake_migration_worker(cache); 1664 } 1665 1666 if (r == -ENOENT) { 1667 struct per_bio_data *pb = get_per_bio_data(bio); 1668 1669 /* 1670 * Miss. 1671 */ 1672 inc_miss_counter(cache, bio); 1673 if (pb->req_nr == 0) { 1674 accounted_begin(cache, bio); 1675 remap_to_origin_clear_discard(cache, bio, block); 1676 } else { 1677 /* 1678 * This is a duplicate writethrough io that is no 1679 * longer needed because the block has been demoted. 1680 */ 1681 bio_endio(bio); 1682 return DM_MAPIO_SUBMITTED; 1683 } 1684 } else { 1685 /* 1686 * Hit. 1687 */ 1688 inc_hit_counter(cache, bio); 1689 1690 /* 1691 * Passthrough always maps to the origin, invalidating any 1692 * cache blocks that are written to. 1693 */ 1694 if (passthrough_mode(cache)) { 1695 if (bio_data_dir(bio) == WRITE) { 1696 bio_drop_shared_lock(cache, bio); 1697 atomic_inc(&cache->stats.demotion); 1698 invalidate_start(cache, cblock, block, bio); 1699 } else 1700 remap_to_origin_clear_discard(cache, bio, block); 1701 } else { 1702 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && 1703 !is_dirty(cache, cblock)) { 1704 remap_to_origin_and_cache(cache, bio, block, cblock); 1705 accounted_begin(cache, bio); 1706 } else 1707 remap_to_cache_dirty(cache, bio, block, cblock); 1708 } 1709 } 1710 1711 /* 1712 * dm core turns FUA requests into a separate payload and FLUSH req. 1713 */ 1714 if (bio->bi_opf & REQ_FUA) { 1715 /* 1716 * issue_after_commit will call accounted_begin a second time. So 1717 * we call accounted_complete() to avoid double accounting. 1718 */ 1719 accounted_complete(cache, bio); 1720 issue_after_commit(&cache->committer, bio); 1721 *commit_needed = true; 1722 return DM_MAPIO_SUBMITTED; 1723 } 1724 1725 return DM_MAPIO_REMAPPED; 1726 } 1727 1728 static bool process_bio(struct cache *cache, struct bio *bio) 1729 { 1730 bool commit_needed; 1731 1732 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) 1733 dm_submit_bio_remap(bio, NULL); 1734 1735 return commit_needed; 1736 } 1737 1738 /* 1739 * A non-zero return indicates read_only or fail_io mode. 1740 */ 1741 static int commit(struct cache *cache, bool clean_shutdown) 1742 { 1743 int r; 1744 1745 if (get_cache_mode(cache) >= CM_READ_ONLY) 1746 return -EINVAL; 1747 1748 atomic_inc(&cache->stats.commit_count); 1749 r = dm_cache_commit(cache->cmd, clean_shutdown); 1750 if (r) 1751 metadata_operation_failed(cache, "dm_cache_commit", r); 1752 1753 return r; 1754 } 1755 1756 /* 1757 * Used by the batcher. 1758 */ 1759 static blk_status_t commit_op(void *context) 1760 { 1761 struct cache *cache = context; 1762 1763 if (dm_cache_changed_this_transaction(cache->cmd)) 1764 return errno_to_blk_status(commit(cache, false)); 1765 1766 return 0; 1767 } 1768 1769 /*----------------------------------------------------------------*/ 1770 1771 static bool process_flush_bio(struct cache *cache, struct bio *bio) 1772 { 1773 struct per_bio_data *pb = get_per_bio_data(bio); 1774 1775 if (!pb->req_nr) 1776 remap_to_origin(cache, bio); 1777 else 1778 remap_to_cache(cache, bio, 0); 1779 1780 issue_after_commit(&cache->committer, bio); 1781 return true; 1782 } 1783 1784 static bool process_discard_bio(struct cache *cache, struct bio *bio) 1785 { 1786 dm_dblock_t b, e; 1787 1788 /* 1789 * FIXME: do we need to lock the region? Or can we just assume the 1790 * user wont be so foolish as to issue discard concurrently with 1791 * other IO? 1792 */ 1793 calc_discard_block_range(cache, bio, &b, &e); 1794 while (b != e) { 1795 set_discard(cache, b); 1796 b = to_dblock(from_dblock(b) + 1); 1797 } 1798 1799 if (cache->features.discard_passdown) { 1800 remap_to_origin(cache, bio); 1801 dm_submit_bio_remap(bio, NULL); 1802 } else 1803 bio_endio(bio); 1804 1805 return false; 1806 } 1807 1808 static void process_deferred_bios(struct work_struct *ws) 1809 { 1810 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); 1811 1812 bool commit_needed = false; 1813 struct bio_list bios; 1814 struct bio *bio; 1815 1816 bio_list_init(&bios); 1817 1818 spin_lock_irq(&cache->lock); 1819 bio_list_merge(&bios, &cache->deferred_bios); 1820 bio_list_init(&cache->deferred_bios); 1821 spin_unlock_irq(&cache->lock); 1822 1823 while ((bio = bio_list_pop(&bios))) { 1824 if (bio->bi_opf & REQ_PREFLUSH) 1825 commit_needed = process_flush_bio(cache, bio) || commit_needed; 1826 1827 else if (bio_op(bio) == REQ_OP_DISCARD) 1828 commit_needed = process_discard_bio(cache, bio) || commit_needed; 1829 1830 else 1831 commit_needed = process_bio(cache, bio) || commit_needed; 1832 cond_resched(); 1833 } 1834 1835 if (commit_needed) 1836 schedule_commit(&cache->committer); 1837 } 1838 1839 /* 1840 *-------------------------------------------------------------- 1841 * Main worker loop 1842 *-------------------------------------------------------------- 1843 */ 1844 static void requeue_deferred_bios(struct cache *cache) 1845 { 1846 struct bio *bio; 1847 struct bio_list bios; 1848 1849 bio_list_init(&bios); 1850 bio_list_merge(&bios, &cache->deferred_bios); 1851 bio_list_init(&cache->deferred_bios); 1852 1853 while ((bio = bio_list_pop(&bios))) { 1854 bio->bi_status = BLK_STS_DM_REQUEUE; 1855 bio_endio(bio); 1856 cond_resched(); 1857 } 1858 } 1859 1860 /* 1861 * We want to commit periodically so that not too much 1862 * unwritten metadata builds up. 1863 */ 1864 static void do_waker(struct work_struct *ws) 1865 { 1866 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); 1867 1868 policy_tick(cache->policy, true); 1869 wake_migration_worker(cache); 1870 schedule_commit(&cache->committer); 1871 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); 1872 } 1873 1874 static void check_migrations(struct work_struct *ws) 1875 { 1876 int r; 1877 struct policy_work *op; 1878 struct cache *cache = container_of(ws, struct cache, migration_worker); 1879 enum busy b; 1880 1881 for (;;) { 1882 b = spare_migration_bandwidth(cache); 1883 1884 r = policy_get_background_work(cache->policy, b == IDLE, &op); 1885 if (r == -ENODATA) 1886 break; 1887 1888 if (r) { 1889 DMERR_LIMIT("%s: policy_background_work failed", 1890 cache_device_name(cache)); 1891 break; 1892 } 1893 1894 r = mg_start(cache, op, NULL); 1895 if (r) 1896 break; 1897 1898 cond_resched(); 1899 } 1900 } 1901 1902 /* 1903 *-------------------------------------------------------------- 1904 * Target methods 1905 *-------------------------------------------------------------- 1906 */ 1907 1908 /* 1909 * This function gets called on the error paths of the constructor, so we 1910 * have to cope with a partially initialised struct. 1911 */ 1912 static void __destroy(struct cache *cache) 1913 { 1914 mempool_exit(&cache->migration_pool); 1915 1916 if (cache->prison) 1917 dm_bio_prison_destroy_v2(cache->prison); 1918 1919 if (cache->wq) 1920 destroy_workqueue(cache->wq); 1921 1922 if (cache->dirty_bitset) 1923 free_bitset(cache->dirty_bitset); 1924 1925 if (cache->discard_bitset) 1926 free_bitset(cache->discard_bitset); 1927 1928 if (cache->copier) 1929 dm_kcopyd_client_destroy(cache->copier); 1930 1931 if (cache->cmd) 1932 dm_cache_metadata_close(cache->cmd); 1933 1934 if (cache->metadata_dev) 1935 dm_put_device(cache->ti, cache->metadata_dev); 1936 1937 if (cache->origin_dev) 1938 dm_put_device(cache->ti, cache->origin_dev); 1939 1940 if (cache->cache_dev) 1941 dm_put_device(cache->ti, cache->cache_dev); 1942 1943 if (cache->policy) 1944 dm_cache_policy_destroy(cache->policy); 1945 1946 bioset_exit(&cache->bs); 1947 1948 kfree(cache); 1949 } 1950 1951 static void destroy(struct cache *cache) 1952 { 1953 unsigned int i; 1954 1955 cancel_delayed_work_sync(&cache->waker); 1956 1957 for (i = 0; i < cache->nr_ctr_args ; i++) 1958 kfree(cache->ctr_args[i]); 1959 kfree(cache->ctr_args); 1960 1961 __destroy(cache); 1962 } 1963 1964 static void cache_dtr(struct dm_target *ti) 1965 { 1966 struct cache *cache = ti->private; 1967 1968 destroy(cache); 1969 } 1970 1971 static sector_t get_dev_size(struct dm_dev *dev) 1972 { 1973 return bdev_nr_sectors(dev->bdev); 1974 } 1975 1976 /*----------------------------------------------------------------*/ 1977 1978 /* 1979 * Construct a cache device mapping. 1980 * 1981 * cache <metadata dev> <cache dev> <origin dev> <block size> 1982 * <#feature args> [<feature arg>]* 1983 * <policy> <#policy args> [<policy arg>]* 1984 * 1985 * metadata dev : fast device holding the persistent metadata 1986 * cache dev : fast device holding cached data blocks 1987 * origin dev : slow device holding original data blocks 1988 * block size : cache unit size in sectors 1989 * 1990 * #feature args : number of feature arguments passed 1991 * feature args : writethrough. (The default is writeback.) 1992 * 1993 * policy : the replacement policy to use 1994 * #policy args : an even number of policy arguments corresponding 1995 * to key/value pairs passed to the policy 1996 * policy args : key/value pairs passed to the policy 1997 * E.g. 'sequential_threshold 1024' 1998 * See cache-policies.txt for details. 1999 * 2000 * Optional feature arguments are: 2001 * writethrough : write through caching that prohibits cache block 2002 * content from being different from origin block content. 2003 * Without this argument, the default behaviour is to write 2004 * back cache block contents later for performance reasons, 2005 * so they may differ from the corresponding origin blocks. 2006 */ 2007 struct cache_args { 2008 struct dm_target *ti; 2009 2010 struct dm_dev *metadata_dev; 2011 2012 struct dm_dev *cache_dev; 2013 sector_t cache_sectors; 2014 2015 struct dm_dev *origin_dev; 2016 2017 uint32_t block_size; 2018 2019 const char *policy_name; 2020 int policy_argc; 2021 const char **policy_argv; 2022 2023 struct cache_features features; 2024 }; 2025 2026 static void destroy_cache_args(struct cache_args *ca) 2027 { 2028 if (ca->metadata_dev) 2029 dm_put_device(ca->ti, ca->metadata_dev); 2030 2031 if (ca->cache_dev) 2032 dm_put_device(ca->ti, ca->cache_dev); 2033 2034 if (ca->origin_dev) 2035 dm_put_device(ca->ti, ca->origin_dev); 2036 2037 kfree(ca); 2038 } 2039 2040 static bool at_least_one_arg(struct dm_arg_set *as, char **error) 2041 { 2042 if (!as->argc) { 2043 *error = "Insufficient args"; 2044 return false; 2045 } 2046 2047 return true; 2048 } 2049 2050 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, 2051 char **error) 2052 { 2053 int r; 2054 sector_t metadata_dev_size; 2055 2056 if (!at_least_one_arg(as, error)) 2057 return -EINVAL; 2058 2059 r = dm_get_device(ca->ti, dm_shift_arg(as), 2060 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev); 2061 if (r) { 2062 *error = "Error opening metadata device"; 2063 return r; 2064 } 2065 2066 metadata_dev_size = get_dev_size(ca->metadata_dev); 2067 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) 2068 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 2069 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS); 2070 2071 return 0; 2072 } 2073 2074 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, 2075 char **error) 2076 { 2077 int r; 2078 2079 if (!at_least_one_arg(as, error)) 2080 return -EINVAL; 2081 2082 r = dm_get_device(ca->ti, dm_shift_arg(as), 2083 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev); 2084 if (r) { 2085 *error = "Error opening cache device"; 2086 return r; 2087 } 2088 ca->cache_sectors = get_dev_size(ca->cache_dev); 2089 2090 return 0; 2091 } 2092 2093 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, 2094 char **error) 2095 { 2096 sector_t origin_sectors; 2097 int r; 2098 2099 if (!at_least_one_arg(as, error)) 2100 return -EINVAL; 2101 2102 r = dm_get_device(ca->ti, dm_shift_arg(as), 2103 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev); 2104 if (r) { 2105 *error = "Error opening origin device"; 2106 return r; 2107 } 2108 2109 origin_sectors = get_dev_size(ca->origin_dev); 2110 if (ca->ti->len > origin_sectors) { 2111 *error = "Device size larger than cached device"; 2112 return -EINVAL; 2113 } 2114 2115 return 0; 2116 } 2117 2118 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, 2119 char **error) 2120 { 2121 unsigned long block_size; 2122 2123 if (!at_least_one_arg(as, error)) 2124 return -EINVAL; 2125 2126 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || 2127 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2128 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2129 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2130 *error = "Invalid data block size"; 2131 return -EINVAL; 2132 } 2133 2134 if (block_size > ca->cache_sectors) { 2135 *error = "Data block size is larger than the cache device"; 2136 return -EINVAL; 2137 } 2138 2139 ca->block_size = block_size; 2140 2141 return 0; 2142 } 2143 2144 static void init_features(struct cache_features *cf) 2145 { 2146 cf->mode = CM_WRITE; 2147 cf->io_mode = CM_IO_WRITEBACK; 2148 cf->metadata_version = 1; 2149 cf->discard_passdown = true; 2150 } 2151 2152 static int parse_features(struct cache_args *ca, struct dm_arg_set *as, 2153 char **error) 2154 { 2155 static const struct dm_arg _args[] = { 2156 {0, 3, "Invalid number of cache feature arguments"}, 2157 }; 2158 2159 int r, mode_ctr = 0; 2160 unsigned int argc; 2161 const char *arg; 2162 struct cache_features *cf = &ca->features; 2163 2164 init_features(cf); 2165 2166 r = dm_read_arg_group(_args, as, &argc, error); 2167 if (r) 2168 return -EINVAL; 2169 2170 while (argc--) { 2171 arg = dm_shift_arg(as); 2172 2173 if (!strcasecmp(arg, "writeback")) { 2174 cf->io_mode = CM_IO_WRITEBACK; 2175 mode_ctr++; 2176 } 2177 2178 else if (!strcasecmp(arg, "writethrough")) { 2179 cf->io_mode = CM_IO_WRITETHROUGH; 2180 mode_ctr++; 2181 } 2182 2183 else if (!strcasecmp(arg, "passthrough")) { 2184 cf->io_mode = CM_IO_PASSTHROUGH; 2185 mode_ctr++; 2186 } 2187 2188 else if (!strcasecmp(arg, "metadata2")) 2189 cf->metadata_version = 2; 2190 2191 else if (!strcasecmp(arg, "no_discard_passdown")) 2192 cf->discard_passdown = false; 2193 2194 else { 2195 *error = "Unrecognised cache feature requested"; 2196 return -EINVAL; 2197 } 2198 } 2199 2200 if (mode_ctr > 1) { 2201 *error = "Duplicate cache io_mode features requested"; 2202 return -EINVAL; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, 2209 char **error) 2210 { 2211 static const struct dm_arg _args[] = { 2212 {0, 1024, "Invalid number of policy arguments"}, 2213 }; 2214 2215 int r; 2216 2217 if (!at_least_one_arg(as, error)) 2218 return -EINVAL; 2219 2220 ca->policy_name = dm_shift_arg(as); 2221 2222 r = dm_read_arg_group(_args, as, &ca->policy_argc, error); 2223 if (r) 2224 return -EINVAL; 2225 2226 ca->policy_argv = (const char **)as->argv; 2227 dm_consume_args(as, ca->policy_argc); 2228 2229 return 0; 2230 } 2231 2232 static int parse_cache_args(struct cache_args *ca, int argc, char **argv, 2233 char **error) 2234 { 2235 int r; 2236 struct dm_arg_set as; 2237 2238 as.argc = argc; 2239 as.argv = argv; 2240 2241 r = parse_metadata_dev(ca, &as, error); 2242 if (r) 2243 return r; 2244 2245 r = parse_cache_dev(ca, &as, error); 2246 if (r) 2247 return r; 2248 2249 r = parse_origin_dev(ca, &as, error); 2250 if (r) 2251 return r; 2252 2253 r = parse_block_size(ca, &as, error); 2254 if (r) 2255 return r; 2256 2257 r = parse_features(ca, &as, error); 2258 if (r) 2259 return r; 2260 2261 r = parse_policy(ca, &as, error); 2262 if (r) 2263 return r; 2264 2265 return 0; 2266 } 2267 2268 /*----------------------------------------------------------------*/ 2269 2270 static struct kmem_cache *migration_cache; 2271 2272 #define NOT_CORE_OPTION 1 2273 2274 static int process_config_option(struct cache *cache, const char *key, const char *value) 2275 { 2276 unsigned long tmp; 2277 2278 if (!strcasecmp(key, "migration_threshold")) { 2279 if (kstrtoul(value, 10, &tmp)) 2280 return -EINVAL; 2281 2282 cache->migration_threshold = tmp; 2283 return 0; 2284 } 2285 2286 return NOT_CORE_OPTION; 2287 } 2288 2289 static int set_config_value(struct cache *cache, const char *key, const char *value) 2290 { 2291 int r = process_config_option(cache, key, value); 2292 2293 if (r == NOT_CORE_OPTION) 2294 r = policy_set_config_value(cache->policy, key, value); 2295 2296 if (r) 2297 DMWARN("bad config value for %s: %s", key, value); 2298 2299 return r; 2300 } 2301 2302 static int set_config_values(struct cache *cache, int argc, const char **argv) 2303 { 2304 int r = 0; 2305 2306 if (argc & 1) { 2307 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); 2308 return -EINVAL; 2309 } 2310 2311 while (argc) { 2312 r = set_config_value(cache, argv[0], argv[1]); 2313 if (r) 2314 break; 2315 2316 argc -= 2; 2317 argv += 2; 2318 } 2319 2320 return r; 2321 } 2322 2323 static int create_cache_policy(struct cache *cache, struct cache_args *ca, 2324 char **error) 2325 { 2326 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, 2327 cache->cache_size, 2328 cache->origin_sectors, 2329 cache->sectors_per_block); 2330 if (IS_ERR(p)) { 2331 *error = "Error creating cache's policy"; 2332 return PTR_ERR(p); 2333 } 2334 cache->policy = p; 2335 BUG_ON(!cache->policy); 2336 2337 return 0; 2338 } 2339 2340 /* 2341 * We want the discard block size to be at least the size of the cache 2342 * block size and have no more than 2^14 discard blocks across the origin. 2343 */ 2344 #define MAX_DISCARD_BLOCKS (1 << 14) 2345 2346 static bool too_many_discard_blocks(sector_t discard_block_size, 2347 sector_t origin_size) 2348 { 2349 (void) sector_div(origin_size, discard_block_size); 2350 2351 return origin_size > MAX_DISCARD_BLOCKS; 2352 } 2353 2354 static sector_t calculate_discard_block_size(sector_t cache_block_size, 2355 sector_t origin_size) 2356 { 2357 sector_t discard_block_size = cache_block_size; 2358 2359 if (origin_size) 2360 while (too_many_discard_blocks(discard_block_size, origin_size)) 2361 discard_block_size *= 2; 2362 2363 return discard_block_size; 2364 } 2365 2366 static void set_cache_size(struct cache *cache, dm_cblock_t size) 2367 { 2368 dm_block_t nr_blocks = from_cblock(size); 2369 2370 if (nr_blocks > (1 << 20) && cache->cache_size != size) 2371 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" 2372 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" 2373 "Please consider increasing the cache block size to reduce the overall cache block count.", 2374 (unsigned long long) nr_blocks); 2375 2376 cache->cache_size = size; 2377 } 2378 2379 #define DEFAULT_MIGRATION_THRESHOLD 2048 2380 2381 static int cache_create(struct cache_args *ca, struct cache **result) 2382 { 2383 int r = 0; 2384 char **error = &ca->ti->error; 2385 struct cache *cache; 2386 struct dm_target *ti = ca->ti; 2387 dm_block_t origin_blocks; 2388 struct dm_cache_metadata *cmd; 2389 bool may_format = ca->features.mode == CM_WRITE; 2390 2391 cache = kzalloc(sizeof(*cache), GFP_KERNEL); 2392 if (!cache) 2393 return -ENOMEM; 2394 2395 cache->ti = ca->ti; 2396 ti->private = cache; 2397 ti->accounts_remapped_io = true; 2398 ti->num_flush_bios = 2; 2399 ti->flush_supported = true; 2400 2401 ti->num_discard_bios = 1; 2402 ti->discards_supported = true; 2403 2404 ti->per_io_data_size = sizeof(struct per_bio_data); 2405 2406 cache->features = ca->features; 2407 if (writethrough_mode(cache)) { 2408 /* Create bioset for writethrough bios issued to origin */ 2409 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); 2410 if (r) 2411 goto bad; 2412 } 2413 2414 cache->metadata_dev = ca->metadata_dev; 2415 cache->origin_dev = ca->origin_dev; 2416 cache->cache_dev = ca->cache_dev; 2417 2418 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; 2419 2420 origin_blocks = cache->origin_sectors = ti->len; 2421 origin_blocks = block_div(origin_blocks, ca->block_size); 2422 cache->origin_blocks = to_oblock(origin_blocks); 2423 2424 cache->sectors_per_block = ca->block_size; 2425 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { 2426 r = -EINVAL; 2427 goto bad; 2428 } 2429 2430 if (ca->block_size & (ca->block_size - 1)) { 2431 dm_block_t cache_size = ca->cache_sectors; 2432 2433 cache->sectors_per_block_shift = -1; 2434 cache_size = block_div(cache_size, ca->block_size); 2435 set_cache_size(cache, to_cblock(cache_size)); 2436 } else { 2437 cache->sectors_per_block_shift = __ffs(ca->block_size); 2438 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); 2439 } 2440 2441 r = create_cache_policy(cache, ca, error); 2442 if (r) 2443 goto bad; 2444 2445 cache->policy_nr_args = ca->policy_argc; 2446 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; 2447 2448 r = set_config_values(cache, ca->policy_argc, ca->policy_argv); 2449 if (r) { 2450 *error = "Error setting cache policy's config values"; 2451 goto bad; 2452 } 2453 2454 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, 2455 ca->block_size, may_format, 2456 dm_cache_policy_get_hint_size(cache->policy), 2457 ca->features.metadata_version); 2458 if (IS_ERR(cmd)) { 2459 *error = "Error creating metadata object"; 2460 r = PTR_ERR(cmd); 2461 goto bad; 2462 } 2463 cache->cmd = cmd; 2464 set_cache_mode(cache, CM_WRITE); 2465 if (get_cache_mode(cache) != CM_WRITE) { 2466 *error = "Unable to get write access to metadata, please check/repair metadata."; 2467 r = -EINVAL; 2468 goto bad; 2469 } 2470 2471 if (passthrough_mode(cache)) { 2472 bool all_clean; 2473 2474 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); 2475 if (r) { 2476 *error = "dm_cache_metadata_all_clean() failed"; 2477 goto bad; 2478 } 2479 2480 if (!all_clean) { 2481 *error = "Cannot enter passthrough mode unless all blocks are clean"; 2482 r = -EINVAL; 2483 goto bad; 2484 } 2485 2486 policy_allow_migrations(cache->policy, false); 2487 } 2488 2489 spin_lock_init(&cache->lock); 2490 bio_list_init(&cache->deferred_bios); 2491 atomic_set(&cache->nr_allocated_migrations, 0); 2492 atomic_set(&cache->nr_io_migrations, 0); 2493 init_waitqueue_head(&cache->migration_wait); 2494 2495 r = -ENOMEM; 2496 atomic_set(&cache->nr_dirty, 0); 2497 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); 2498 if (!cache->dirty_bitset) { 2499 *error = "could not allocate dirty bitset"; 2500 goto bad; 2501 } 2502 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); 2503 2504 cache->discard_block_size = 2505 calculate_discard_block_size(cache->sectors_per_block, 2506 cache->origin_sectors); 2507 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, 2508 cache->discard_block_size)); 2509 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); 2510 if (!cache->discard_bitset) { 2511 *error = "could not allocate discard bitset"; 2512 goto bad; 2513 } 2514 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2515 2516 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2517 if (IS_ERR(cache->copier)) { 2518 *error = "could not create kcopyd client"; 2519 r = PTR_ERR(cache->copier); 2520 goto bad; 2521 } 2522 2523 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); 2524 if (!cache->wq) { 2525 *error = "could not create workqueue for metadata object"; 2526 goto bad; 2527 } 2528 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); 2529 INIT_WORK(&cache->migration_worker, check_migrations); 2530 INIT_DELAYED_WORK(&cache->waker, do_waker); 2531 2532 cache->prison = dm_bio_prison_create_v2(cache->wq); 2533 if (!cache->prison) { 2534 *error = "could not create bio prison"; 2535 goto bad; 2536 } 2537 2538 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, 2539 migration_cache); 2540 if (r) { 2541 *error = "Error creating cache's migration mempool"; 2542 goto bad; 2543 } 2544 2545 cache->need_tick_bio = true; 2546 cache->sized = false; 2547 cache->invalidate = false; 2548 cache->commit_requested = false; 2549 cache->loaded_mappings = false; 2550 cache->loaded_discards = false; 2551 2552 load_stats(cache); 2553 2554 atomic_set(&cache->stats.demotion, 0); 2555 atomic_set(&cache->stats.promotion, 0); 2556 atomic_set(&cache->stats.copies_avoided, 0); 2557 atomic_set(&cache->stats.cache_cell_clash, 0); 2558 atomic_set(&cache->stats.commit_count, 0); 2559 atomic_set(&cache->stats.discard_count, 0); 2560 2561 spin_lock_init(&cache->invalidation_lock); 2562 INIT_LIST_HEAD(&cache->invalidation_requests); 2563 2564 batcher_init(&cache->committer, commit_op, cache, 2565 issue_op, cache, cache->wq); 2566 dm_iot_init(&cache->tracker); 2567 2568 init_rwsem(&cache->background_work_lock); 2569 prevent_background_work(cache); 2570 2571 *result = cache; 2572 return 0; 2573 bad: 2574 __destroy(cache); 2575 return r; 2576 } 2577 2578 static int copy_ctr_args(struct cache *cache, int argc, const char **argv) 2579 { 2580 unsigned int i; 2581 const char **copy; 2582 2583 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); 2584 if (!copy) 2585 return -ENOMEM; 2586 for (i = 0; i < argc; i++) { 2587 copy[i] = kstrdup(argv[i], GFP_KERNEL); 2588 if (!copy[i]) { 2589 while (i--) 2590 kfree(copy[i]); 2591 kfree(copy); 2592 return -ENOMEM; 2593 } 2594 } 2595 2596 cache->nr_ctr_args = argc; 2597 cache->ctr_args = copy; 2598 2599 return 0; 2600 } 2601 2602 static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv) 2603 { 2604 int r = -EINVAL; 2605 struct cache_args *ca; 2606 struct cache *cache = NULL; 2607 2608 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2609 if (!ca) { 2610 ti->error = "Error allocating memory for cache"; 2611 return -ENOMEM; 2612 } 2613 ca->ti = ti; 2614 2615 r = parse_cache_args(ca, argc, argv, &ti->error); 2616 if (r) 2617 goto out; 2618 2619 r = cache_create(ca, &cache); 2620 if (r) 2621 goto out; 2622 2623 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); 2624 if (r) { 2625 __destroy(cache); 2626 goto out; 2627 } 2628 2629 ti->private = cache; 2630 out: 2631 destroy_cache_args(ca); 2632 return r; 2633 } 2634 2635 /*----------------------------------------------------------------*/ 2636 2637 static int cache_map(struct dm_target *ti, struct bio *bio) 2638 { 2639 struct cache *cache = ti->private; 2640 2641 int r; 2642 bool commit_needed; 2643 dm_oblock_t block = get_bio_block(cache, bio); 2644 2645 init_per_bio_data(bio); 2646 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { 2647 /* 2648 * This can only occur if the io goes to a partial block at 2649 * the end of the origin device. We don't cache these. 2650 * Just remap to the origin and carry on. 2651 */ 2652 remap_to_origin(cache, bio); 2653 accounted_begin(cache, bio); 2654 return DM_MAPIO_REMAPPED; 2655 } 2656 2657 if (discard_or_flush(bio)) { 2658 defer_bio(cache, bio); 2659 return DM_MAPIO_SUBMITTED; 2660 } 2661 2662 r = map_bio(cache, bio, block, &commit_needed); 2663 if (commit_needed) 2664 schedule_commit(&cache->committer); 2665 2666 return r; 2667 } 2668 2669 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) 2670 { 2671 struct cache *cache = ti->private; 2672 unsigned long flags; 2673 struct per_bio_data *pb = get_per_bio_data(bio); 2674 2675 if (pb->tick) { 2676 policy_tick(cache->policy, false); 2677 2678 spin_lock_irqsave(&cache->lock, flags); 2679 cache->need_tick_bio = true; 2680 spin_unlock_irqrestore(&cache->lock, flags); 2681 } 2682 2683 bio_drop_shared_lock(cache, bio); 2684 accounted_complete(cache, bio); 2685 2686 return DM_ENDIO_DONE; 2687 } 2688 2689 static int write_dirty_bitset(struct cache *cache) 2690 { 2691 int r; 2692 2693 if (get_cache_mode(cache) >= CM_READ_ONLY) 2694 return -EINVAL; 2695 2696 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); 2697 if (r) 2698 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); 2699 2700 return r; 2701 } 2702 2703 static int write_discard_bitset(struct cache *cache) 2704 { 2705 unsigned int i, r; 2706 2707 if (get_cache_mode(cache) >= CM_READ_ONLY) 2708 return -EINVAL; 2709 2710 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, 2711 cache->discard_nr_blocks); 2712 if (r) { 2713 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); 2714 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); 2715 return r; 2716 } 2717 2718 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { 2719 r = dm_cache_set_discard(cache->cmd, to_dblock(i), 2720 is_discarded(cache, to_dblock(i))); 2721 if (r) { 2722 metadata_operation_failed(cache, "dm_cache_set_discard", r); 2723 return r; 2724 } 2725 } 2726 2727 return 0; 2728 } 2729 2730 static int write_hints(struct cache *cache) 2731 { 2732 int r; 2733 2734 if (get_cache_mode(cache) >= CM_READ_ONLY) 2735 return -EINVAL; 2736 2737 r = dm_cache_write_hints(cache->cmd, cache->policy); 2738 if (r) { 2739 metadata_operation_failed(cache, "dm_cache_write_hints", r); 2740 return r; 2741 } 2742 2743 return 0; 2744 } 2745 2746 /* 2747 * returns true on success 2748 */ 2749 static bool sync_metadata(struct cache *cache) 2750 { 2751 int r1, r2, r3, r4; 2752 2753 r1 = write_dirty_bitset(cache); 2754 if (r1) 2755 DMERR("%s: could not write dirty bitset", cache_device_name(cache)); 2756 2757 r2 = write_discard_bitset(cache); 2758 if (r2) 2759 DMERR("%s: could not write discard bitset", cache_device_name(cache)); 2760 2761 save_stats(cache); 2762 2763 r3 = write_hints(cache); 2764 if (r3) 2765 DMERR("%s: could not write hints", cache_device_name(cache)); 2766 2767 /* 2768 * If writing the above metadata failed, we still commit, but don't 2769 * set the clean shutdown flag. This will effectively force every 2770 * dirty bit to be set on reload. 2771 */ 2772 r4 = commit(cache, !r1 && !r2 && !r3); 2773 if (r4) 2774 DMERR("%s: could not write cache metadata", cache_device_name(cache)); 2775 2776 return !r1 && !r2 && !r3 && !r4; 2777 } 2778 2779 static void cache_postsuspend(struct dm_target *ti) 2780 { 2781 struct cache *cache = ti->private; 2782 2783 prevent_background_work(cache); 2784 BUG_ON(atomic_read(&cache->nr_io_migrations)); 2785 2786 cancel_delayed_work_sync(&cache->waker); 2787 drain_workqueue(cache->wq); 2788 WARN_ON(cache->tracker.in_flight); 2789 2790 /* 2791 * If it's a flush suspend there won't be any deferred bios, so this 2792 * call is harmless. 2793 */ 2794 requeue_deferred_bios(cache); 2795 2796 if (get_cache_mode(cache) == CM_WRITE) 2797 (void) sync_metadata(cache); 2798 } 2799 2800 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, 2801 bool dirty, uint32_t hint, bool hint_valid) 2802 { 2803 struct cache *cache = context; 2804 2805 if (dirty) { 2806 set_bit(from_cblock(cblock), cache->dirty_bitset); 2807 atomic_inc(&cache->nr_dirty); 2808 } else 2809 clear_bit(from_cblock(cblock), cache->dirty_bitset); 2810 2811 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); 2812 } 2813 2814 /* 2815 * The discard block size in the on disk metadata is not 2816 * necessarily the same as we're currently using. So we have to 2817 * be careful to only set the discarded attribute if we know it 2818 * covers a complete block of the new size. 2819 */ 2820 struct discard_load_info { 2821 struct cache *cache; 2822 2823 /* 2824 * These blocks are sized using the on disk dblock size, rather 2825 * than the current one. 2826 */ 2827 dm_block_t block_size; 2828 dm_block_t discard_begin, discard_end; 2829 }; 2830 2831 static void discard_load_info_init(struct cache *cache, 2832 struct discard_load_info *li) 2833 { 2834 li->cache = cache; 2835 li->discard_begin = li->discard_end = 0; 2836 } 2837 2838 static void set_discard_range(struct discard_load_info *li) 2839 { 2840 sector_t b, e; 2841 2842 if (li->discard_begin == li->discard_end) 2843 return; 2844 2845 /* 2846 * Convert to sectors. 2847 */ 2848 b = li->discard_begin * li->block_size; 2849 e = li->discard_end * li->block_size; 2850 2851 /* 2852 * Then convert back to the current dblock size. 2853 */ 2854 b = dm_sector_div_up(b, li->cache->discard_block_size); 2855 sector_div(e, li->cache->discard_block_size); 2856 2857 /* 2858 * The origin may have shrunk, so we need to check we're still in 2859 * bounds. 2860 */ 2861 if (e > from_dblock(li->cache->discard_nr_blocks)) 2862 e = from_dblock(li->cache->discard_nr_blocks); 2863 2864 for (; b < e; b++) 2865 set_discard(li->cache, to_dblock(b)); 2866 } 2867 2868 static int load_discard(void *context, sector_t discard_block_size, 2869 dm_dblock_t dblock, bool discard) 2870 { 2871 struct discard_load_info *li = context; 2872 2873 li->block_size = discard_block_size; 2874 2875 if (discard) { 2876 if (from_dblock(dblock) == li->discard_end) 2877 /* 2878 * We're already in a discard range, just extend it. 2879 */ 2880 li->discard_end = li->discard_end + 1ULL; 2881 2882 else { 2883 /* 2884 * Emit the old range and start a new one. 2885 */ 2886 set_discard_range(li); 2887 li->discard_begin = from_dblock(dblock); 2888 li->discard_end = li->discard_begin + 1ULL; 2889 } 2890 } else { 2891 set_discard_range(li); 2892 li->discard_begin = li->discard_end = 0; 2893 } 2894 2895 return 0; 2896 } 2897 2898 static dm_cblock_t get_cache_dev_size(struct cache *cache) 2899 { 2900 sector_t size = get_dev_size(cache->cache_dev); 2901 (void) sector_div(size, cache->sectors_per_block); 2902 return to_cblock(size); 2903 } 2904 2905 static bool can_resize(struct cache *cache, dm_cblock_t new_size) 2906 { 2907 if (from_cblock(new_size) > from_cblock(cache->cache_size)) { 2908 DMERR("%s: unable to extend cache due to missing cache table reload", 2909 cache_device_name(cache)); 2910 return false; 2911 } 2912 2913 /* 2914 * We can't drop a dirty block when shrinking the cache. 2915 */ 2916 if (cache->loaded_mappings) { 2917 new_size = to_cblock(find_next_bit(cache->dirty_bitset, 2918 from_cblock(cache->cache_size), 2919 from_cblock(new_size))); 2920 if (new_size != cache->cache_size) { 2921 DMERR("%s: unable to shrink cache; cache block %llu is dirty", 2922 cache_device_name(cache), 2923 (unsigned long long) from_cblock(new_size)); 2924 return false; 2925 } 2926 } 2927 2928 return true; 2929 } 2930 2931 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) 2932 { 2933 int r; 2934 2935 r = dm_cache_resize(cache->cmd, new_size); 2936 if (r) { 2937 DMERR("%s: could not resize cache metadata", cache_device_name(cache)); 2938 metadata_operation_failed(cache, "dm_cache_resize", r); 2939 return r; 2940 } 2941 2942 set_cache_size(cache, new_size); 2943 2944 return 0; 2945 } 2946 2947 static int cache_preresume(struct dm_target *ti) 2948 { 2949 int r = 0; 2950 struct cache *cache = ti->private; 2951 dm_cblock_t csize = get_cache_dev_size(cache); 2952 2953 /* 2954 * Check to see if the cache has resized. 2955 */ 2956 if (!cache->sized || csize != cache->cache_size) { 2957 if (!can_resize(cache, csize)) 2958 return -EINVAL; 2959 2960 r = resize_cache_dev(cache, csize); 2961 if (r) 2962 return r; 2963 2964 cache->sized = true; 2965 } 2966 2967 if (!cache->loaded_mappings) { 2968 r = dm_cache_load_mappings(cache->cmd, cache->policy, 2969 load_mapping, cache); 2970 if (r) { 2971 DMERR("%s: could not load cache mappings", cache_device_name(cache)); 2972 metadata_operation_failed(cache, "dm_cache_load_mappings", r); 2973 return r; 2974 } 2975 2976 cache->loaded_mappings = true; 2977 } 2978 2979 if (!cache->loaded_discards) { 2980 struct discard_load_info li; 2981 2982 /* 2983 * The discard bitset could have been resized, or the 2984 * discard block size changed. To be safe we start by 2985 * setting every dblock to not discarded. 2986 */ 2987 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); 2988 2989 discard_load_info_init(cache, &li); 2990 r = dm_cache_load_discards(cache->cmd, load_discard, &li); 2991 if (r) { 2992 DMERR("%s: could not load origin discards", cache_device_name(cache)); 2993 metadata_operation_failed(cache, "dm_cache_load_discards", r); 2994 return r; 2995 } 2996 set_discard_range(&li); 2997 2998 cache->loaded_discards = true; 2999 } 3000 3001 return r; 3002 } 3003 3004 static void cache_resume(struct dm_target *ti) 3005 { 3006 struct cache *cache = ti->private; 3007 3008 cache->need_tick_bio = true; 3009 allow_background_work(cache); 3010 do_waker(&cache->waker.work); 3011 } 3012 3013 static void emit_flags(struct cache *cache, char *result, 3014 unsigned int maxlen, ssize_t *sz_ptr) 3015 { 3016 ssize_t sz = *sz_ptr; 3017 struct cache_features *cf = &cache->features; 3018 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1; 3019 3020 DMEMIT("%u ", count); 3021 3022 if (cf->metadata_version == 2) 3023 DMEMIT("metadata2 "); 3024 3025 if (writethrough_mode(cache)) 3026 DMEMIT("writethrough "); 3027 3028 else if (passthrough_mode(cache)) 3029 DMEMIT("passthrough "); 3030 3031 else if (writeback_mode(cache)) 3032 DMEMIT("writeback "); 3033 3034 else { 3035 DMEMIT("unknown "); 3036 DMERR("%s: internal error: unknown io mode: %d", 3037 cache_device_name(cache), (int) cf->io_mode); 3038 } 3039 3040 if (!cf->discard_passdown) 3041 DMEMIT("no_discard_passdown "); 3042 3043 *sz_ptr = sz; 3044 } 3045 3046 /* 3047 * Status format: 3048 * 3049 * <metadata block size> <#used metadata blocks>/<#total metadata blocks> 3050 * <cache block size> <#used cache blocks>/<#total cache blocks> 3051 * <#read hits> <#read misses> <#write hits> <#write misses> 3052 * <#demotions> <#promotions> <#dirty> 3053 * <#features> <features>* 3054 * <#core args> <core args> 3055 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> 3056 */ 3057 static void cache_status(struct dm_target *ti, status_type_t type, 3058 unsigned int status_flags, char *result, unsigned int maxlen) 3059 { 3060 int r = 0; 3061 unsigned int i; 3062 ssize_t sz = 0; 3063 dm_block_t nr_free_blocks_metadata = 0; 3064 dm_block_t nr_blocks_metadata = 0; 3065 char buf[BDEVNAME_SIZE]; 3066 struct cache *cache = ti->private; 3067 dm_cblock_t residency; 3068 bool needs_check; 3069 3070 switch (type) { 3071 case STATUSTYPE_INFO: 3072 if (get_cache_mode(cache) == CM_FAIL) { 3073 DMEMIT("Fail"); 3074 break; 3075 } 3076 3077 /* Commit to ensure statistics aren't out-of-date */ 3078 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3079 (void) commit(cache, false); 3080 3081 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); 3082 if (r) { 3083 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", 3084 cache_device_name(cache), r); 3085 goto err; 3086 } 3087 3088 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); 3089 if (r) { 3090 DMERR("%s: dm_cache_get_metadata_dev_size returned %d", 3091 cache_device_name(cache), r); 3092 goto err; 3093 } 3094 3095 residency = policy_residency(cache->policy); 3096 3097 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", 3098 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE, 3099 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3100 (unsigned long long)nr_blocks_metadata, 3101 (unsigned long long)cache->sectors_per_block, 3102 (unsigned long long) from_cblock(residency), 3103 (unsigned long long) from_cblock(cache->cache_size), 3104 (unsigned int) atomic_read(&cache->stats.read_hit), 3105 (unsigned int) atomic_read(&cache->stats.read_miss), 3106 (unsigned int) atomic_read(&cache->stats.write_hit), 3107 (unsigned int) atomic_read(&cache->stats.write_miss), 3108 (unsigned int) atomic_read(&cache->stats.demotion), 3109 (unsigned int) atomic_read(&cache->stats.promotion), 3110 (unsigned long) atomic_read(&cache->nr_dirty)); 3111 3112 emit_flags(cache, result, maxlen, &sz); 3113 3114 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); 3115 3116 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); 3117 if (sz < maxlen) { 3118 r = policy_emit_config_values(cache->policy, result, maxlen, &sz); 3119 if (r) 3120 DMERR("%s: policy_emit_config_values returned %d", 3121 cache_device_name(cache), r); 3122 } 3123 3124 if (get_cache_mode(cache) == CM_READ_ONLY) 3125 DMEMIT("ro "); 3126 else 3127 DMEMIT("rw "); 3128 3129 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); 3130 3131 if (r || needs_check) 3132 DMEMIT("needs_check "); 3133 else 3134 DMEMIT("- "); 3135 3136 break; 3137 3138 case STATUSTYPE_TABLE: 3139 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3140 DMEMIT("%s ", buf); 3141 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3142 DMEMIT("%s ", buf); 3143 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3144 DMEMIT("%s", buf); 3145 3146 for (i = 0; i < cache->nr_ctr_args - 1; i++) 3147 DMEMIT(" %s", cache->ctr_args[i]); 3148 if (cache->nr_ctr_args) 3149 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); 3150 break; 3151 3152 case STATUSTYPE_IMA: 3153 DMEMIT_TARGET_NAME_VERSION(ti->type); 3154 if (get_cache_mode(cache) == CM_FAIL) 3155 DMEMIT(",metadata_mode=fail"); 3156 else if (get_cache_mode(cache) == CM_READ_ONLY) 3157 DMEMIT(",metadata_mode=ro"); 3158 else 3159 DMEMIT(",metadata_mode=rw"); 3160 3161 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); 3162 DMEMIT(",cache_metadata_device=%s", buf); 3163 format_dev_t(buf, cache->cache_dev->bdev->bd_dev); 3164 DMEMIT(",cache_device=%s", buf); 3165 format_dev_t(buf, cache->origin_dev->bdev->bd_dev); 3166 DMEMIT(",cache_origin_device=%s", buf); 3167 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n'); 3168 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n'); 3169 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n'); 3170 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n'); 3171 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y'); 3172 DMEMIT(";"); 3173 break; 3174 } 3175 3176 return; 3177 3178 err: 3179 DMEMIT("Error"); 3180 } 3181 3182 /* 3183 * Defines a range of cblocks, begin to (end - 1) are in the range. end is 3184 * the one-past-the-end value. 3185 */ 3186 struct cblock_range { 3187 dm_cblock_t begin; 3188 dm_cblock_t end; 3189 }; 3190 3191 /* 3192 * A cache block range can take two forms: 3193 * 3194 * i) A single cblock, eg. '3456' 3195 * ii) A begin and end cblock with a dash between, eg. 123-234 3196 */ 3197 static int parse_cblock_range(struct cache *cache, const char *str, 3198 struct cblock_range *result) 3199 { 3200 char dummy; 3201 uint64_t b, e; 3202 int r; 3203 3204 /* 3205 * Try and parse form (ii) first. 3206 */ 3207 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); 3208 if (r < 0) 3209 return r; 3210 3211 if (r == 2) { 3212 result->begin = to_cblock(b); 3213 result->end = to_cblock(e); 3214 return 0; 3215 } 3216 3217 /* 3218 * That didn't work, try form (i). 3219 */ 3220 r = sscanf(str, "%llu%c", &b, &dummy); 3221 if (r < 0) 3222 return r; 3223 3224 if (r == 1) { 3225 result->begin = to_cblock(b); 3226 result->end = to_cblock(from_cblock(result->begin) + 1u); 3227 return 0; 3228 } 3229 3230 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); 3231 return -EINVAL; 3232 } 3233 3234 static int validate_cblock_range(struct cache *cache, struct cblock_range *range) 3235 { 3236 uint64_t b = from_cblock(range->begin); 3237 uint64_t e = from_cblock(range->end); 3238 uint64_t n = from_cblock(cache->cache_size); 3239 3240 if (b >= n) { 3241 DMERR("%s: begin cblock out of range: %llu >= %llu", 3242 cache_device_name(cache), b, n); 3243 return -EINVAL; 3244 } 3245 3246 if (e > n) { 3247 DMERR("%s: end cblock out of range: %llu > %llu", 3248 cache_device_name(cache), e, n); 3249 return -EINVAL; 3250 } 3251 3252 if (b >= e) { 3253 DMERR("%s: invalid cblock range: %llu >= %llu", 3254 cache_device_name(cache), b, e); 3255 return -EINVAL; 3256 } 3257 3258 return 0; 3259 } 3260 3261 static inline dm_cblock_t cblock_succ(dm_cblock_t b) 3262 { 3263 return to_cblock(from_cblock(b) + 1); 3264 } 3265 3266 static int request_invalidation(struct cache *cache, struct cblock_range *range) 3267 { 3268 int r = 0; 3269 3270 /* 3271 * We don't need to do any locking here because we know we're in 3272 * passthrough mode. There's is potential for a race between an 3273 * invalidation triggered by an io and an invalidation message. This 3274 * is harmless, we must not worry if the policy call fails. 3275 */ 3276 while (range->begin != range->end) { 3277 r = invalidate_cblock(cache, range->begin); 3278 if (r) 3279 return r; 3280 3281 range->begin = cblock_succ(range->begin); 3282 } 3283 3284 cache->commit_requested = true; 3285 return r; 3286 } 3287 3288 static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count, 3289 const char **cblock_ranges) 3290 { 3291 int r = 0; 3292 unsigned int i; 3293 struct cblock_range range; 3294 3295 if (!passthrough_mode(cache)) { 3296 DMERR("%s: cache has to be in passthrough mode for invalidation", 3297 cache_device_name(cache)); 3298 return -EPERM; 3299 } 3300 3301 for (i = 0; i < count; i++) { 3302 r = parse_cblock_range(cache, cblock_ranges[i], &range); 3303 if (r) 3304 break; 3305 3306 r = validate_cblock_range(cache, &range); 3307 if (r) 3308 break; 3309 3310 /* 3311 * Pass begin and end origin blocks to the worker and wake it. 3312 */ 3313 r = request_invalidation(cache, &range); 3314 if (r) 3315 break; 3316 } 3317 3318 return r; 3319 } 3320 3321 /* 3322 * Supports 3323 * "<key> <value>" 3324 * and 3325 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* 3326 * 3327 * The key migration_threshold is supported by the cache target core. 3328 */ 3329 static int cache_message(struct dm_target *ti, unsigned int argc, char **argv, 3330 char *result, unsigned int maxlen) 3331 { 3332 struct cache *cache = ti->private; 3333 3334 if (!argc) 3335 return -EINVAL; 3336 3337 if (get_cache_mode(cache) >= CM_READ_ONLY) { 3338 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", 3339 cache_device_name(cache)); 3340 return -EOPNOTSUPP; 3341 } 3342 3343 if (!strcasecmp(argv[0], "invalidate_cblocks")) 3344 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); 3345 3346 if (argc != 2) 3347 return -EINVAL; 3348 3349 return set_config_value(cache, argv[0], argv[1]); 3350 } 3351 3352 static int cache_iterate_devices(struct dm_target *ti, 3353 iterate_devices_callout_fn fn, void *data) 3354 { 3355 int r = 0; 3356 struct cache *cache = ti->private; 3357 3358 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); 3359 if (!r) 3360 r = fn(ti, cache->origin_dev, 0, ti->len, data); 3361 3362 return r; 3363 } 3364 3365 /* 3366 * If discard_passdown was enabled verify that the origin device 3367 * supports discards. Disable discard_passdown if not. 3368 */ 3369 static void disable_passdown_if_not_supported(struct cache *cache) 3370 { 3371 struct block_device *origin_bdev = cache->origin_dev->bdev; 3372 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3373 const char *reason = NULL; 3374 3375 if (!cache->features.discard_passdown) 3376 return; 3377 3378 if (!bdev_max_discard_sectors(origin_bdev)) 3379 reason = "discard unsupported"; 3380 3381 else if (origin_limits->max_discard_sectors < cache->sectors_per_block) 3382 reason = "max discard sectors smaller than a block"; 3383 3384 if (reason) { 3385 DMWARN("Origin device (%pg) %s: Disabling discard passdown.", 3386 origin_bdev, reason); 3387 cache->features.discard_passdown = false; 3388 } 3389 } 3390 3391 static void set_discard_limits(struct cache *cache, struct queue_limits *limits) 3392 { 3393 struct block_device *origin_bdev = cache->origin_dev->bdev; 3394 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits; 3395 3396 if (!cache->features.discard_passdown) { 3397 /* No passdown is done so setting own virtual limits */ 3398 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, 3399 cache->origin_sectors); 3400 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; 3401 return; 3402 } 3403 3404 /* 3405 * cache_iterate_devices() is stacking both origin and fast device limits 3406 * but discards aren't passed to fast device, so inherit origin's limits. 3407 */ 3408 limits->max_discard_sectors = origin_limits->max_discard_sectors; 3409 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors; 3410 limits->discard_granularity = origin_limits->discard_granularity; 3411 limits->discard_alignment = origin_limits->discard_alignment; 3412 limits->discard_misaligned = origin_limits->discard_misaligned; 3413 } 3414 3415 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) 3416 { 3417 struct cache *cache = ti->private; 3418 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3419 3420 /* 3421 * If the system-determined stacked limits are compatible with the 3422 * cache's blocksize (io_opt is a factor) do not override them. 3423 */ 3424 if (io_opt_sectors < cache->sectors_per_block || 3425 do_div(io_opt_sectors, cache->sectors_per_block)) { 3426 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); 3427 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); 3428 } 3429 3430 disable_passdown_if_not_supported(cache); 3431 set_discard_limits(cache, limits); 3432 } 3433 3434 /*----------------------------------------------------------------*/ 3435 3436 static struct target_type cache_target = { 3437 .name = "cache", 3438 .version = {2, 2, 0}, 3439 .module = THIS_MODULE, 3440 .ctr = cache_ctr, 3441 .dtr = cache_dtr, 3442 .map = cache_map, 3443 .end_io = cache_end_io, 3444 .postsuspend = cache_postsuspend, 3445 .preresume = cache_preresume, 3446 .resume = cache_resume, 3447 .status = cache_status, 3448 .message = cache_message, 3449 .iterate_devices = cache_iterate_devices, 3450 .io_hints = cache_io_hints, 3451 }; 3452 3453 static int __init dm_cache_init(void) 3454 { 3455 int r; 3456 3457 migration_cache = KMEM_CACHE(dm_cache_migration, 0); 3458 if (!migration_cache) 3459 return -ENOMEM; 3460 3461 r = dm_register_target(&cache_target); 3462 if (r) { 3463 kmem_cache_destroy(migration_cache); 3464 return r; 3465 } 3466 3467 return 0; 3468 } 3469 3470 static void __exit dm_cache_exit(void) 3471 { 3472 dm_unregister_target(&cache_target); 3473 kmem_cache_destroy(migration_cache); 3474 } 3475 3476 module_init(dm_cache_init); 3477 module_exit(dm_cache_exit); 3478 3479 MODULE_DESCRIPTION(DM_NAME " cache target"); 3480 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); 3481 MODULE_LICENSE("GPL"); 3482