xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 39b6f3aa)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #define DM_MSG_PREFIX "cache"
21 
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 	"A percentage of time allocated for copying to and/or from cache");
24 
25 /*----------------------------------------------------------------*/
26 
27 /*
28  * Glossary:
29  *
30  * oblock: index of an origin block
31  * cblock: index of a cache block
32  * promotion: movement of a block from origin to cache
33  * demotion: movement of a block from cache to origin
34  * migration: movement of a block between the origin and cache device,
35  *	      either direction
36  */
37 
38 /*----------------------------------------------------------------*/
39 
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44 
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 	size_t s = bitset_size_in_bytes(nr_entries);
48 	return vzalloc(s);
49 }
50 
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 	size_t s = bitset_size_in_bytes(nr_entries);
54 	memset(bitset, 0, s);
55 }
56 
57 static void free_bitset(unsigned long *bits)
58 {
59 	vfree(bits);
60 }
61 
62 /*----------------------------------------------------------------*/
63 
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68 
69 /*
70  * The block size of the device holding cache data must be >= 32KB
71  */
72 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
73 
74 /*
75  * FIXME: the cache is read/write for the time being.
76  */
77 enum cache_mode {
78 	CM_WRITE,		/* metadata may be changed */
79 	CM_READ_ONLY,		/* metadata may not be changed */
80 };
81 
82 struct cache_features {
83 	enum cache_mode mode;
84 	bool write_through:1;
85 };
86 
87 struct cache_stats {
88 	atomic_t read_hit;
89 	atomic_t read_miss;
90 	atomic_t write_hit;
91 	atomic_t write_miss;
92 	atomic_t demotion;
93 	atomic_t promotion;
94 	atomic_t copies_avoided;
95 	atomic_t cache_cell_clash;
96 	atomic_t commit_count;
97 	atomic_t discard_count;
98 };
99 
100 struct cache {
101 	struct dm_target *ti;
102 	struct dm_target_callbacks callbacks;
103 
104 	/*
105 	 * Metadata is written to this device.
106 	 */
107 	struct dm_dev *metadata_dev;
108 
109 	/*
110 	 * The slower of the two data devices.  Typically a spindle.
111 	 */
112 	struct dm_dev *origin_dev;
113 
114 	/*
115 	 * The faster of the two data devices.  Typically an SSD.
116 	 */
117 	struct dm_dev *cache_dev;
118 
119 	/*
120 	 * Cache features such as write-through.
121 	 */
122 	struct cache_features features;
123 
124 	/*
125 	 * Size of the origin device in _complete_ blocks and native sectors.
126 	 */
127 	dm_oblock_t origin_blocks;
128 	sector_t origin_sectors;
129 
130 	/*
131 	 * Size of the cache device in blocks.
132 	 */
133 	dm_cblock_t cache_size;
134 
135 	/*
136 	 * Fields for converting from sectors to blocks.
137 	 */
138 	uint32_t sectors_per_block;
139 	int sectors_per_block_shift;
140 
141 	struct dm_cache_metadata *cmd;
142 
143 	spinlock_t lock;
144 	struct bio_list deferred_bios;
145 	struct bio_list deferred_flush_bios;
146 	struct bio_list deferred_writethrough_bios;
147 	struct list_head quiesced_migrations;
148 	struct list_head completed_migrations;
149 	struct list_head need_commit_migrations;
150 	sector_t migration_threshold;
151 	atomic_t nr_migrations;
152 	wait_queue_head_t migration_wait;
153 
154 	/*
155 	 * cache_size entries, dirty if set
156 	 */
157 	dm_cblock_t nr_dirty;
158 	unsigned long *dirty_bitset;
159 
160 	/*
161 	 * origin_blocks entries, discarded if set.
162 	 */
163 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
164 	dm_dblock_t discard_nr_blocks;
165 	unsigned long *discard_bitset;
166 
167 	struct dm_kcopyd_client *copier;
168 	struct workqueue_struct *wq;
169 	struct work_struct worker;
170 
171 	struct delayed_work waker;
172 	unsigned long last_commit_jiffies;
173 
174 	struct dm_bio_prison *prison;
175 	struct dm_deferred_set *all_io_ds;
176 
177 	mempool_t *migration_pool;
178 	struct dm_cache_migration *next_migration;
179 
180 	struct dm_cache_policy *policy;
181 	unsigned policy_nr_args;
182 
183 	bool need_tick_bio:1;
184 	bool sized:1;
185 	bool quiescing:1;
186 	bool commit_requested:1;
187 	bool loaded_mappings:1;
188 	bool loaded_discards:1;
189 
190 	struct cache_stats stats;
191 
192 	/*
193 	 * Rather than reconstructing the table line for the status we just
194 	 * save it and regurgitate.
195 	 */
196 	unsigned nr_ctr_args;
197 	const char **ctr_args;
198 };
199 
200 struct per_bio_data {
201 	bool tick:1;
202 	unsigned req_nr:2;
203 	struct dm_deferred_entry *all_io_entry;
204 
205 	/*
206 	 * writethrough fields.  These MUST remain at the end of this
207 	 * structure and the 'cache' member must be the first as it
208 	 * is used to determine the offset of the writethrough fields.
209 	 */
210 	struct cache *cache;
211 	dm_cblock_t cblock;
212 	bio_end_io_t *saved_bi_end_io;
213 	struct dm_bio_details bio_details;
214 };
215 
216 struct dm_cache_migration {
217 	struct list_head list;
218 	struct cache *cache;
219 
220 	unsigned long start_jiffies;
221 	dm_oblock_t old_oblock;
222 	dm_oblock_t new_oblock;
223 	dm_cblock_t cblock;
224 
225 	bool err:1;
226 	bool writeback:1;
227 	bool demote:1;
228 	bool promote:1;
229 
230 	struct dm_bio_prison_cell *old_ocell;
231 	struct dm_bio_prison_cell *new_ocell;
232 };
233 
234 /*
235  * Processing a bio in the worker thread may require these memory
236  * allocations.  We prealloc to avoid deadlocks (the same worker thread
237  * frees them back to the mempool).
238  */
239 struct prealloc {
240 	struct dm_cache_migration *mg;
241 	struct dm_bio_prison_cell *cell1;
242 	struct dm_bio_prison_cell *cell2;
243 };
244 
245 static void wake_worker(struct cache *cache)
246 {
247 	queue_work(cache->wq, &cache->worker);
248 }
249 
250 /*----------------------------------------------------------------*/
251 
252 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
253 {
254 	/* FIXME: change to use a local slab. */
255 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
256 }
257 
258 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
259 {
260 	dm_bio_prison_free_cell(cache->prison, cell);
261 }
262 
263 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
264 {
265 	if (!p->mg) {
266 		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
267 		if (!p->mg)
268 			return -ENOMEM;
269 	}
270 
271 	if (!p->cell1) {
272 		p->cell1 = alloc_prison_cell(cache);
273 		if (!p->cell1)
274 			return -ENOMEM;
275 	}
276 
277 	if (!p->cell2) {
278 		p->cell2 = alloc_prison_cell(cache);
279 		if (!p->cell2)
280 			return -ENOMEM;
281 	}
282 
283 	return 0;
284 }
285 
286 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
287 {
288 	if (p->cell2)
289 		free_prison_cell(cache, p->cell2);
290 
291 	if (p->cell1)
292 		free_prison_cell(cache, p->cell1);
293 
294 	if (p->mg)
295 		mempool_free(p->mg, cache->migration_pool);
296 }
297 
298 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
299 {
300 	struct dm_cache_migration *mg = p->mg;
301 
302 	BUG_ON(!mg);
303 	p->mg = NULL;
304 
305 	return mg;
306 }
307 
308 /*
309  * You must have a cell within the prealloc struct to return.  If not this
310  * function will BUG() rather than returning NULL.
311  */
312 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
313 {
314 	struct dm_bio_prison_cell *r = NULL;
315 
316 	if (p->cell1) {
317 		r = p->cell1;
318 		p->cell1 = NULL;
319 
320 	} else if (p->cell2) {
321 		r = p->cell2;
322 		p->cell2 = NULL;
323 	} else
324 		BUG();
325 
326 	return r;
327 }
328 
329 /*
330  * You can't have more than two cells in a prealloc struct.  BUG() will be
331  * called if you try and overfill.
332  */
333 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
334 {
335 	if (!p->cell2)
336 		p->cell2 = cell;
337 
338 	else if (!p->cell1)
339 		p->cell1 = cell;
340 
341 	else
342 		BUG();
343 }
344 
345 /*----------------------------------------------------------------*/
346 
347 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
348 {
349 	key->virtual = 0;
350 	key->dev = 0;
351 	key->block = from_oblock(oblock);
352 }
353 
354 /*
355  * The caller hands in a preallocated cell, and a free function for it.
356  * The cell will be freed if there's an error, or if it wasn't used because
357  * a cell with that key already exists.
358  */
359 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
360 
361 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
362 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
363 		      cell_free_fn free_fn, void *free_context,
364 		      struct dm_bio_prison_cell **cell_result)
365 {
366 	int r;
367 	struct dm_cell_key key;
368 
369 	build_key(oblock, &key);
370 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
371 	if (r)
372 		free_fn(free_context, cell_prealloc);
373 
374 	return r;
375 }
376 
377 static int get_cell(struct cache *cache,
378 		    dm_oblock_t oblock,
379 		    struct prealloc *structs,
380 		    struct dm_bio_prison_cell **cell_result)
381 {
382 	int r;
383 	struct dm_cell_key key;
384 	struct dm_bio_prison_cell *cell_prealloc;
385 
386 	cell_prealloc = prealloc_get_cell(structs);
387 
388 	build_key(oblock, &key);
389 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
390 	if (r)
391 		prealloc_put_cell(structs, cell_prealloc);
392 
393 	return r;
394 }
395 
396 /*----------------------------------------------------------------*/
397 
398 static bool is_dirty(struct cache *cache, dm_cblock_t b)
399 {
400 	return test_bit(from_cblock(b), cache->dirty_bitset);
401 }
402 
403 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
404 {
405 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
406 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
407 		policy_set_dirty(cache->policy, oblock);
408 	}
409 }
410 
411 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
412 {
413 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
414 		policy_clear_dirty(cache->policy, oblock);
415 		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
416 		if (!from_cblock(cache->nr_dirty))
417 			dm_table_event(cache->ti->table);
418 	}
419 }
420 
421 /*----------------------------------------------------------------*/
422 
423 static bool block_size_is_power_of_two(struct cache *cache)
424 {
425 	return cache->sectors_per_block_shift >= 0;
426 }
427 
428 static dm_block_t block_div(dm_block_t b, uint32_t n)
429 {
430 	do_div(b, n);
431 
432 	return b;
433 }
434 
435 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
436 {
437 	uint32_t discard_blocks = cache->discard_block_size;
438 	dm_block_t b = from_oblock(oblock);
439 
440 	if (!block_size_is_power_of_two(cache))
441 		discard_blocks = discard_blocks / cache->sectors_per_block;
442 	else
443 		discard_blocks >>= cache->sectors_per_block_shift;
444 
445 	b = block_div(b, discard_blocks);
446 
447 	return to_dblock(b);
448 }
449 
450 static void set_discard(struct cache *cache, dm_dblock_t b)
451 {
452 	unsigned long flags;
453 
454 	atomic_inc(&cache->stats.discard_count);
455 
456 	spin_lock_irqsave(&cache->lock, flags);
457 	set_bit(from_dblock(b), cache->discard_bitset);
458 	spin_unlock_irqrestore(&cache->lock, flags);
459 }
460 
461 static void clear_discard(struct cache *cache, dm_dblock_t b)
462 {
463 	unsigned long flags;
464 
465 	spin_lock_irqsave(&cache->lock, flags);
466 	clear_bit(from_dblock(b), cache->discard_bitset);
467 	spin_unlock_irqrestore(&cache->lock, flags);
468 }
469 
470 static bool is_discarded(struct cache *cache, dm_dblock_t b)
471 {
472 	int r;
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(&cache->lock, flags);
476 	r = test_bit(from_dblock(b), cache->discard_bitset);
477 	spin_unlock_irqrestore(&cache->lock, flags);
478 
479 	return r;
480 }
481 
482 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
483 {
484 	int r;
485 	unsigned long flags;
486 
487 	spin_lock_irqsave(&cache->lock, flags);
488 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
489 		     cache->discard_bitset);
490 	spin_unlock_irqrestore(&cache->lock, flags);
491 
492 	return r;
493 }
494 
495 /*----------------------------------------------------------------*/
496 
497 static void load_stats(struct cache *cache)
498 {
499 	struct dm_cache_statistics stats;
500 
501 	dm_cache_metadata_get_stats(cache->cmd, &stats);
502 	atomic_set(&cache->stats.read_hit, stats.read_hits);
503 	atomic_set(&cache->stats.read_miss, stats.read_misses);
504 	atomic_set(&cache->stats.write_hit, stats.write_hits);
505 	atomic_set(&cache->stats.write_miss, stats.write_misses);
506 }
507 
508 static void save_stats(struct cache *cache)
509 {
510 	struct dm_cache_statistics stats;
511 
512 	stats.read_hits = atomic_read(&cache->stats.read_hit);
513 	stats.read_misses = atomic_read(&cache->stats.read_miss);
514 	stats.write_hits = atomic_read(&cache->stats.write_hit);
515 	stats.write_misses = atomic_read(&cache->stats.write_miss);
516 
517 	dm_cache_metadata_set_stats(cache->cmd, &stats);
518 }
519 
520 /*----------------------------------------------------------------
521  * Per bio data
522  *--------------------------------------------------------------*/
523 
524 /*
525  * If using writeback, leave out struct per_bio_data's writethrough fields.
526  */
527 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
528 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
529 
530 static size_t get_per_bio_data_size(struct cache *cache)
531 {
532 	return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
533 }
534 
535 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
536 {
537 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
538 	BUG_ON(!pb);
539 	return pb;
540 }
541 
542 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
543 {
544 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
545 
546 	pb->tick = false;
547 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
548 	pb->all_io_entry = NULL;
549 
550 	return pb;
551 }
552 
553 /*----------------------------------------------------------------
554  * Remapping
555  *--------------------------------------------------------------*/
556 static void remap_to_origin(struct cache *cache, struct bio *bio)
557 {
558 	bio->bi_bdev = cache->origin_dev->bdev;
559 }
560 
561 static void remap_to_cache(struct cache *cache, struct bio *bio,
562 			   dm_cblock_t cblock)
563 {
564 	sector_t bi_sector = bio->bi_sector;
565 
566 	bio->bi_bdev = cache->cache_dev->bdev;
567 	if (!block_size_is_power_of_two(cache))
568 		bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
569 				sector_div(bi_sector, cache->sectors_per_block);
570 	else
571 		bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
572 				(bi_sector & (cache->sectors_per_block - 1));
573 }
574 
575 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
576 {
577 	unsigned long flags;
578 	size_t pb_data_size = get_per_bio_data_size(cache);
579 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
580 
581 	spin_lock_irqsave(&cache->lock, flags);
582 	if (cache->need_tick_bio &&
583 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
584 		pb->tick = true;
585 		cache->need_tick_bio = false;
586 	}
587 	spin_unlock_irqrestore(&cache->lock, flags);
588 }
589 
590 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
591 				  dm_oblock_t oblock)
592 {
593 	check_if_tick_bio_needed(cache, bio);
594 	remap_to_origin(cache, bio);
595 	if (bio_data_dir(bio) == WRITE)
596 		clear_discard(cache, oblock_to_dblock(cache, oblock));
597 }
598 
599 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
600 				 dm_oblock_t oblock, dm_cblock_t cblock)
601 {
602 	remap_to_cache(cache, bio, cblock);
603 	if (bio_data_dir(bio) == WRITE) {
604 		set_dirty(cache, oblock, cblock);
605 		clear_discard(cache, oblock_to_dblock(cache, oblock));
606 	}
607 }
608 
609 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
610 {
611 	sector_t block_nr = bio->bi_sector;
612 
613 	if (!block_size_is_power_of_two(cache))
614 		(void) sector_div(block_nr, cache->sectors_per_block);
615 	else
616 		block_nr >>= cache->sectors_per_block_shift;
617 
618 	return to_oblock(block_nr);
619 }
620 
621 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
622 {
623 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
624 }
625 
626 static void issue(struct cache *cache, struct bio *bio)
627 {
628 	unsigned long flags;
629 
630 	if (!bio_triggers_commit(cache, bio)) {
631 		generic_make_request(bio);
632 		return;
633 	}
634 
635 	/*
636 	 * Batch together any bios that trigger commits and then issue a
637 	 * single commit for them in do_worker().
638 	 */
639 	spin_lock_irqsave(&cache->lock, flags);
640 	cache->commit_requested = true;
641 	bio_list_add(&cache->deferred_flush_bios, bio);
642 	spin_unlock_irqrestore(&cache->lock, flags);
643 }
644 
645 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&cache->lock, flags);
650 	bio_list_add(&cache->deferred_writethrough_bios, bio);
651 	spin_unlock_irqrestore(&cache->lock, flags);
652 
653 	wake_worker(cache);
654 }
655 
656 static void writethrough_endio(struct bio *bio, int err)
657 {
658 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
659 	bio->bi_end_io = pb->saved_bi_end_io;
660 
661 	if (err) {
662 		bio_endio(bio, err);
663 		return;
664 	}
665 
666 	dm_bio_restore(&pb->bio_details, bio);
667 	remap_to_cache(pb->cache, bio, pb->cblock);
668 
669 	/*
670 	 * We can't issue this bio directly, since we're in interrupt
671 	 * context.  So it gets put on a bio list for processing by the
672 	 * worker thread.
673 	 */
674 	defer_writethrough_bio(pb->cache, bio);
675 }
676 
677 /*
678  * When running in writethrough mode we need to send writes to clean blocks
679  * to both the cache and origin devices.  In future we'd like to clone the
680  * bio and send them in parallel, but for now we're doing them in
681  * series as this is easier.
682  */
683 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
684 				       dm_oblock_t oblock, dm_cblock_t cblock)
685 {
686 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
687 
688 	pb->cache = cache;
689 	pb->cblock = cblock;
690 	pb->saved_bi_end_io = bio->bi_end_io;
691 	dm_bio_record(&pb->bio_details, bio);
692 	bio->bi_end_io = writethrough_endio;
693 
694 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
695 }
696 
697 /*----------------------------------------------------------------
698  * Migration processing
699  *
700  * Migration covers moving data from the origin device to the cache, or
701  * vice versa.
702  *--------------------------------------------------------------*/
703 static void free_migration(struct dm_cache_migration *mg)
704 {
705 	mempool_free(mg, mg->cache->migration_pool);
706 }
707 
708 static void inc_nr_migrations(struct cache *cache)
709 {
710 	atomic_inc(&cache->nr_migrations);
711 }
712 
713 static void dec_nr_migrations(struct cache *cache)
714 {
715 	atomic_dec(&cache->nr_migrations);
716 
717 	/*
718 	 * Wake the worker in case we're suspending the target.
719 	 */
720 	wake_up(&cache->migration_wait);
721 }
722 
723 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
724 			 bool holder)
725 {
726 	(holder ? dm_cell_release : dm_cell_release_no_holder)
727 		(cache->prison, cell, &cache->deferred_bios);
728 	free_prison_cell(cache, cell);
729 }
730 
731 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
732 		       bool holder)
733 {
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(&cache->lock, flags);
737 	__cell_defer(cache, cell, holder);
738 	spin_unlock_irqrestore(&cache->lock, flags);
739 
740 	wake_worker(cache);
741 }
742 
743 static void cleanup_migration(struct dm_cache_migration *mg)
744 {
745 	dec_nr_migrations(mg->cache);
746 	free_migration(mg);
747 }
748 
749 static void migration_failure(struct dm_cache_migration *mg)
750 {
751 	struct cache *cache = mg->cache;
752 
753 	if (mg->writeback) {
754 		DMWARN_LIMIT("writeback failed; couldn't copy block");
755 		set_dirty(cache, mg->old_oblock, mg->cblock);
756 		cell_defer(cache, mg->old_ocell, false);
757 
758 	} else if (mg->demote) {
759 		DMWARN_LIMIT("demotion failed; couldn't copy block");
760 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
761 
762 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
763 		if (mg->promote)
764 			cell_defer(cache, mg->new_ocell, 1);
765 	} else {
766 		DMWARN_LIMIT("promotion failed; couldn't copy block");
767 		policy_remove_mapping(cache->policy, mg->new_oblock);
768 		cell_defer(cache, mg->new_ocell, 1);
769 	}
770 
771 	cleanup_migration(mg);
772 }
773 
774 static void migration_success_pre_commit(struct dm_cache_migration *mg)
775 {
776 	unsigned long flags;
777 	struct cache *cache = mg->cache;
778 
779 	if (mg->writeback) {
780 		cell_defer(cache, mg->old_ocell, false);
781 		clear_dirty(cache, mg->old_oblock, mg->cblock);
782 		cleanup_migration(mg);
783 		return;
784 
785 	} else if (mg->demote) {
786 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
787 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
788 			policy_force_mapping(cache->policy, mg->new_oblock,
789 					     mg->old_oblock);
790 			if (mg->promote)
791 				cell_defer(cache, mg->new_ocell, true);
792 			cleanup_migration(mg);
793 			return;
794 		}
795 	} else {
796 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
797 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
798 			policy_remove_mapping(cache->policy, mg->new_oblock);
799 			cleanup_migration(mg);
800 			return;
801 		}
802 	}
803 
804 	spin_lock_irqsave(&cache->lock, flags);
805 	list_add_tail(&mg->list, &cache->need_commit_migrations);
806 	cache->commit_requested = true;
807 	spin_unlock_irqrestore(&cache->lock, flags);
808 }
809 
810 static void migration_success_post_commit(struct dm_cache_migration *mg)
811 {
812 	unsigned long flags;
813 	struct cache *cache = mg->cache;
814 
815 	if (mg->writeback) {
816 		DMWARN("writeback unexpectedly triggered commit");
817 		return;
818 
819 	} else if (mg->demote) {
820 		cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
821 
822 		if (mg->promote) {
823 			mg->demote = false;
824 
825 			spin_lock_irqsave(&cache->lock, flags);
826 			list_add_tail(&mg->list, &cache->quiesced_migrations);
827 			spin_unlock_irqrestore(&cache->lock, flags);
828 
829 		} else
830 			cleanup_migration(mg);
831 
832 	} else {
833 		cell_defer(cache, mg->new_ocell, true);
834 		clear_dirty(cache, mg->new_oblock, mg->cblock);
835 		cleanup_migration(mg);
836 	}
837 }
838 
839 static void copy_complete(int read_err, unsigned long write_err, void *context)
840 {
841 	unsigned long flags;
842 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
843 	struct cache *cache = mg->cache;
844 
845 	if (read_err || write_err)
846 		mg->err = true;
847 
848 	spin_lock_irqsave(&cache->lock, flags);
849 	list_add_tail(&mg->list, &cache->completed_migrations);
850 	spin_unlock_irqrestore(&cache->lock, flags);
851 
852 	wake_worker(cache);
853 }
854 
855 static void issue_copy_real(struct dm_cache_migration *mg)
856 {
857 	int r;
858 	struct dm_io_region o_region, c_region;
859 	struct cache *cache = mg->cache;
860 
861 	o_region.bdev = cache->origin_dev->bdev;
862 	o_region.count = cache->sectors_per_block;
863 
864 	c_region.bdev = cache->cache_dev->bdev;
865 	c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
866 	c_region.count = cache->sectors_per_block;
867 
868 	if (mg->writeback || mg->demote) {
869 		/* demote */
870 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
871 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
872 	} else {
873 		/* promote */
874 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
875 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
876 	}
877 
878 	if (r < 0)
879 		migration_failure(mg);
880 }
881 
882 static void avoid_copy(struct dm_cache_migration *mg)
883 {
884 	atomic_inc(&mg->cache->stats.copies_avoided);
885 	migration_success_pre_commit(mg);
886 }
887 
888 static void issue_copy(struct dm_cache_migration *mg)
889 {
890 	bool avoid;
891 	struct cache *cache = mg->cache;
892 
893 	if (mg->writeback || mg->demote)
894 		avoid = !is_dirty(cache, mg->cblock) ||
895 			is_discarded_oblock(cache, mg->old_oblock);
896 	else
897 		avoid = is_discarded_oblock(cache, mg->new_oblock);
898 
899 	avoid ? avoid_copy(mg) : issue_copy_real(mg);
900 }
901 
902 static void complete_migration(struct dm_cache_migration *mg)
903 {
904 	if (mg->err)
905 		migration_failure(mg);
906 	else
907 		migration_success_pre_commit(mg);
908 }
909 
910 static void process_migrations(struct cache *cache, struct list_head *head,
911 			       void (*fn)(struct dm_cache_migration *))
912 {
913 	unsigned long flags;
914 	struct list_head list;
915 	struct dm_cache_migration *mg, *tmp;
916 
917 	INIT_LIST_HEAD(&list);
918 	spin_lock_irqsave(&cache->lock, flags);
919 	list_splice_init(head, &list);
920 	spin_unlock_irqrestore(&cache->lock, flags);
921 
922 	list_for_each_entry_safe(mg, tmp, &list, list)
923 		fn(mg);
924 }
925 
926 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
927 {
928 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
929 }
930 
931 static void queue_quiesced_migration(struct dm_cache_migration *mg)
932 {
933 	unsigned long flags;
934 	struct cache *cache = mg->cache;
935 
936 	spin_lock_irqsave(&cache->lock, flags);
937 	__queue_quiesced_migration(mg);
938 	spin_unlock_irqrestore(&cache->lock, flags);
939 
940 	wake_worker(cache);
941 }
942 
943 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
944 {
945 	unsigned long flags;
946 	struct dm_cache_migration *mg, *tmp;
947 
948 	spin_lock_irqsave(&cache->lock, flags);
949 	list_for_each_entry_safe(mg, tmp, work, list)
950 		__queue_quiesced_migration(mg);
951 	spin_unlock_irqrestore(&cache->lock, flags);
952 
953 	wake_worker(cache);
954 }
955 
956 static void check_for_quiesced_migrations(struct cache *cache,
957 					  struct per_bio_data *pb)
958 {
959 	struct list_head work;
960 
961 	if (!pb->all_io_entry)
962 		return;
963 
964 	INIT_LIST_HEAD(&work);
965 	if (pb->all_io_entry)
966 		dm_deferred_entry_dec(pb->all_io_entry, &work);
967 
968 	if (!list_empty(&work))
969 		queue_quiesced_migrations(cache, &work);
970 }
971 
972 static void quiesce_migration(struct dm_cache_migration *mg)
973 {
974 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
975 		queue_quiesced_migration(mg);
976 }
977 
978 static void promote(struct cache *cache, struct prealloc *structs,
979 		    dm_oblock_t oblock, dm_cblock_t cblock,
980 		    struct dm_bio_prison_cell *cell)
981 {
982 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
983 
984 	mg->err = false;
985 	mg->writeback = false;
986 	mg->demote = false;
987 	mg->promote = true;
988 	mg->cache = cache;
989 	mg->new_oblock = oblock;
990 	mg->cblock = cblock;
991 	mg->old_ocell = NULL;
992 	mg->new_ocell = cell;
993 	mg->start_jiffies = jiffies;
994 
995 	inc_nr_migrations(cache);
996 	quiesce_migration(mg);
997 }
998 
999 static void writeback(struct cache *cache, struct prealloc *structs,
1000 		      dm_oblock_t oblock, dm_cblock_t cblock,
1001 		      struct dm_bio_prison_cell *cell)
1002 {
1003 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1004 
1005 	mg->err = false;
1006 	mg->writeback = true;
1007 	mg->demote = false;
1008 	mg->promote = false;
1009 	mg->cache = cache;
1010 	mg->old_oblock = oblock;
1011 	mg->cblock = cblock;
1012 	mg->old_ocell = cell;
1013 	mg->new_ocell = NULL;
1014 	mg->start_jiffies = jiffies;
1015 
1016 	inc_nr_migrations(cache);
1017 	quiesce_migration(mg);
1018 }
1019 
1020 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1021 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1022 				dm_cblock_t cblock,
1023 				struct dm_bio_prison_cell *old_ocell,
1024 				struct dm_bio_prison_cell *new_ocell)
1025 {
1026 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1027 
1028 	mg->err = false;
1029 	mg->writeback = false;
1030 	mg->demote = true;
1031 	mg->promote = true;
1032 	mg->cache = cache;
1033 	mg->old_oblock = old_oblock;
1034 	mg->new_oblock = new_oblock;
1035 	mg->cblock = cblock;
1036 	mg->old_ocell = old_ocell;
1037 	mg->new_ocell = new_ocell;
1038 	mg->start_jiffies = jiffies;
1039 
1040 	inc_nr_migrations(cache);
1041 	quiesce_migration(mg);
1042 }
1043 
1044 /*----------------------------------------------------------------
1045  * bio processing
1046  *--------------------------------------------------------------*/
1047 static void defer_bio(struct cache *cache, struct bio *bio)
1048 {
1049 	unsigned long flags;
1050 
1051 	spin_lock_irqsave(&cache->lock, flags);
1052 	bio_list_add(&cache->deferred_bios, bio);
1053 	spin_unlock_irqrestore(&cache->lock, flags);
1054 
1055 	wake_worker(cache);
1056 }
1057 
1058 static void process_flush_bio(struct cache *cache, struct bio *bio)
1059 {
1060 	size_t pb_data_size = get_per_bio_data_size(cache);
1061 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1062 
1063 	BUG_ON(bio->bi_size);
1064 	if (!pb->req_nr)
1065 		remap_to_origin(cache, bio);
1066 	else
1067 		remap_to_cache(cache, bio, 0);
1068 
1069 	issue(cache, bio);
1070 }
1071 
1072 /*
1073  * People generally discard large parts of a device, eg, the whole device
1074  * when formatting.  Splitting these large discards up into cache block
1075  * sized ios and then quiescing (always neccessary for discard) takes too
1076  * long.
1077  *
1078  * We keep it simple, and allow any size of discard to come in, and just
1079  * mark off blocks on the discard bitset.  No passdown occurs!
1080  *
1081  * To implement passdown we need to change the bio_prison such that a cell
1082  * can have a key that spans many blocks.
1083  */
1084 static void process_discard_bio(struct cache *cache, struct bio *bio)
1085 {
1086 	dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1087 						  cache->discard_block_size);
1088 	dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1089 	dm_block_t b;
1090 
1091 	end_block = block_div(end_block, cache->discard_block_size);
1092 
1093 	for (b = start_block; b < end_block; b++)
1094 		set_discard(cache, to_dblock(b));
1095 
1096 	bio_endio(bio, 0);
1097 }
1098 
1099 static bool spare_migration_bandwidth(struct cache *cache)
1100 {
1101 	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1102 		cache->sectors_per_block;
1103 	return current_volume < cache->migration_threshold;
1104 }
1105 
1106 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1107 			       dm_cblock_t cblock)
1108 {
1109 	return bio_data_dir(bio) == WRITE &&
1110 		cache->features.write_through && !is_dirty(cache, cblock);
1111 }
1112 
1113 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1114 {
1115 	atomic_inc(bio_data_dir(bio) == READ ?
1116 		   &cache->stats.read_hit : &cache->stats.write_hit);
1117 }
1118 
1119 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1120 {
1121 	atomic_inc(bio_data_dir(bio) == READ ?
1122 		   &cache->stats.read_miss : &cache->stats.write_miss);
1123 }
1124 
1125 static void process_bio(struct cache *cache, struct prealloc *structs,
1126 			struct bio *bio)
1127 {
1128 	int r;
1129 	bool release_cell = true;
1130 	dm_oblock_t block = get_bio_block(cache, bio);
1131 	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1132 	struct policy_result lookup_result;
1133 	size_t pb_data_size = get_per_bio_data_size(cache);
1134 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1135 	bool discarded_block = is_discarded_oblock(cache, block);
1136 	bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1137 
1138 	/*
1139 	 * Check to see if that block is currently migrating.
1140 	 */
1141 	cell_prealloc = prealloc_get_cell(structs);
1142 	r = bio_detain(cache, block, bio, cell_prealloc,
1143 		       (cell_free_fn) prealloc_put_cell,
1144 		       structs, &new_ocell);
1145 	if (r > 0)
1146 		return;
1147 
1148 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1149 		       bio, &lookup_result);
1150 
1151 	if (r == -EWOULDBLOCK)
1152 		/* migration has been denied */
1153 		lookup_result.op = POLICY_MISS;
1154 
1155 	switch (lookup_result.op) {
1156 	case POLICY_HIT:
1157 		inc_hit_counter(cache, bio);
1158 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1159 
1160 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
1161 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1162 		else
1163 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1164 
1165 		issue(cache, bio);
1166 		break;
1167 
1168 	case POLICY_MISS:
1169 		inc_miss_counter(cache, bio);
1170 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1171 		remap_to_origin_clear_discard(cache, bio, block);
1172 		issue(cache, bio);
1173 		break;
1174 
1175 	case POLICY_NEW:
1176 		atomic_inc(&cache->stats.promotion);
1177 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1178 		release_cell = false;
1179 		break;
1180 
1181 	case POLICY_REPLACE:
1182 		cell_prealloc = prealloc_get_cell(structs);
1183 		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1184 			       (cell_free_fn) prealloc_put_cell,
1185 			       structs, &old_ocell);
1186 		if (r > 0) {
1187 			/*
1188 			 * We have to be careful to avoid lock inversion of
1189 			 * the cells.  So we back off, and wait for the
1190 			 * old_ocell to become free.
1191 			 */
1192 			policy_force_mapping(cache->policy, block,
1193 					     lookup_result.old_oblock);
1194 			atomic_inc(&cache->stats.cache_cell_clash);
1195 			break;
1196 		}
1197 		atomic_inc(&cache->stats.demotion);
1198 		atomic_inc(&cache->stats.promotion);
1199 
1200 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1201 				    block, lookup_result.cblock,
1202 				    old_ocell, new_ocell);
1203 		release_cell = false;
1204 		break;
1205 
1206 	default:
1207 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1208 			    (unsigned) lookup_result.op);
1209 		bio_io_error(bio);
1210 	}
1211 
1212 	if (release_cell)
1213 		cell_defer(cache, new_ocell, false);
1214 }
1215 
1216 static int need_commit_due_to_time(struct cache *cache)
1217 {
1218 	return jiffies < cache->last_commit_jiffies ||
1219 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1220 }
1221 
1222 static int commit_if_needed(struct cache *cache)
1223 {
1224 	if (dm_cache_changed_this_transaction(cache->cmd) &&
1225 	    (cache->commit_requested || need_commit_due_to_time(cache))) {
1226 		atomic_inc(&cache->stats.commit_count);
1227 		cache->last_commit_jiffies = jiffies;
1228 		cache->commit_requested = false;
1229 		return dm_cache_commit(cache->cmd, false);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static void process_deferred_bios(struct cache *cache)
1236 {
1237 	unsigned long flags;
1238 	struct bio_list bios;
1239 	struct bio *bio;
1240 	struct prealloc structs;
1241 
1242 	memset(&structs, 0, sizeof(structs));
1243 	bio_list_init(&bios);
1244 
1245 	spin_lock_irqsave(&cache->lock, flags);
1246 	bio_list_merge(&bios, &cache->deferred_bios);
1247 	bio_list_init(&cache->deferred_bios);
1248 	spin_unlock_irqrestore(&cache->lock, flags);
1249 
1250 	while (!bio_list_empty(&bios)) {
1251 		/*
1252 		 * If we've got no free migration structs, and processing
1253 		 * this bio might require one, we pause until there are some
1254 		 * prepared mappings to process.
1255 		 */
1256 		if (prealloc_data_structs(cache, &structs)) {
1257 			spin_lock_irqsave(&cache->lock, flags);
1258 			bio_list_merge(&cache->deferred_bios, &bios);
1259 			spin_unlock_irqrestore(&cache->lock, flags);
1260 			break;
1261 		}
1262 
1263 		bio = bio_list_pop(&bios);
1264 
1265 		if (bio->bi_rw & REQ_FLUSH)
1266 			process_flush_bio(cache, bio);
1267 		else if (bio->bi_rw & REQ_DISCARD)
1268 			process_discard_bio(cache, bio);
1269 		else
1270 			process_bio(cache, &structs, bio);
1271 	}
1272 
1273 	prealloc_free_structs(cache, &structs);
1274 }
1275 
1276 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1277 {
1278 	unsigned long flags;
1279 	struct bio_list bios;
1280 	struct bio *bio;
1281 
1282 	bio_list_init(&bios);
1283 
1284 	spin_lock_irqsave(&cache->lock, flags);
1285 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1286 	bio_list_init(&cache->deferred_flush_bios);
1287 	spin_unlock_irqrestore(&cache->lock, flags);
1288 
1289 	while ((bio = bio_list_pop(&bios)))
1290 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1291 }
1292 
1293 static void process_deferred_writethrough_bios(struct cache *cache)
1294 {
1295 	unsigned long flags;
1296 	struct bio_list bios;
1297 	struct bio *bio;
1298 
1299 	bio_list_init(&bios);
1300 
1301 	spin_lock_irqsave(&cache->lock, flags);
1302 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1303 	bio_list_init(&cache->deferred_writethrough_bios);
1304 	spin_unlock_irqrestore(&cache->lock, flags);
1305 
1306 	while ((bio = bio_list_pop(&bios)))
1307 		generic_make_request(bio);
1308 }
1309 
1310 static void writeback_some_dirty_blocks(struct cache *cache)
1311 {
1312 	int r = 0;
1313 	dm_oblock_t oblock;
1314 	dm_cblock_t cblock;
1315 	struct prealloc structs;
1316 	struct dm_bio_prison_cell *old_ocell;
1317 
1318 	memset(&structs, 0, sizeof(structs));
1319 
1320 	while (spare_migration_bandwidth(cache)) {
1321 		if (prealloc_data_structs(cache, &structs))
1322 			break;
1323 
1324 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1325 		if (r)
1326 			break;
1327 
1328 		r = get_cell(cache, oblock, &structs, &old_ocell);
1329 		if (r) {
1330 			policy_set_dirty(cache->policy, oblock);
1331 			break;
1332 		}
1333 
1334 		writeback(cache, &structs, oblock, cblock, old_ocell);
1335 	}
1336 
1337 	prealloc_free_structs(cache, &structs);
1338 }
1339 
1340 /*----------------------------------------------------------------
1341  * Main worker loop
1342  *--------------------------------------------------------------*/
1343 static void start_quiescing(struct cache *cache)
1344 {
1345 	unsigned long flags;
1346 
1347 	spin_lock_irqsave(&cache->lock, flags);
1348 	cache->quiescing = 1;
1349 	spin_unlock_irqrestore(&cache->lock, flags);
1350 }
1351 
1352 static void stop_quiescing(struct cache *cache)
1353 {
1354 	unsigned long flags;
1355 
1356 	spin_lock_irqsave(&cache->lock, flags);
1357 	cache->quiescing = 0;
1358 	spin_unlock_irqrestore(&cache->lock, flags);
1359 }
1360 
1361 static bool is_quiescing(struct cache *cache)
1362 {
1363 	int r;
1364 	unsigned long flags;
1365 
1366 	spin_lock_irqsave(&cache->lock, flags);
1367 	r = cache->quiescing;
1368 	spin_unlock_irqrestore(&cache->lock, flags);
1369 
1370 	return r;
1371 }
1372 
1373 static void wait_for_migrations(struct cache *cache)
1374 {
1375 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1376 }
1377 
1378 static void stop_worker(struct cache *cache)
1379 {
1380 	cancel_delayed_work(&cache->waker);
1381 	flush_workqueue(cache->wq);
1382 }
1383 
1384 static void requeue_deferred_io(struct cache *cache)
1385 {
1386 	struct bio *bio;
1387 	struct bio_list bios;
1388 
1389 	bio_list_init(&bios);
1390 	bio_list_merge(&bios, &cache->deferred_bios);
1391 	bio_list_init(&cache->deferred_bios);
1392 
1393 	while ((bio = bio_list_pop(&bios)))
1394 		bio_endio(bio, DM_ENDIO_REQUEUE);
1395 }
1396 
1397 static int more_work(struct cache *cache)
1398 {
1399 	if (is_quiescing(cache))
1400 		return !list_empty(&cache->quiesced_migrations) ||
1401 			!list_empty(&cache->completed_migrations) ||
1402 			!list_empty(&cache->need_commit_migrations);
1403 	else
1404 		return !bio_list_empty(&cache->deferred_bios) ||
1405 			!bio_list_empty(&cache->deferred_flush_bios) ||
1406 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1407 			!list_empty(&cache->quiesced_migrations) ||
1408 			!list_empty(&cache->completed_migrations) ||
1409 			!list_empty(&cache->need_commit_migrations);
1410 }
1411 
1412 static void do_worker(struct work_struct *ws)
1413 {
1414 	struct cache *cache = container_of(ws, struct cache, worker);
1415 
1416 	do {
1417 		if (!is_quiescing(cache))
1418 			process_deferred_bios(cache);
1419 
1420 		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1421 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1422 
1423 		writeback_some_dirty_blocks(cache);
1424 
1425 		process_deferred_writethrough_bios(cache);
1426 
1427 		if (commit_if_needed(cache)) {
1428 			process_deferred_flush_bios(cache, false);
1429 
1430 			/*
1431 			 * FIXME: rollback metadata or just go into a
1432 			 * failure mode and error everything
1433 			 */
1434 		} else {
1435 			process_deferred_flush_bios(cache, true);
1436 			process_migrations(cache, &cache->need_commit_migrations,
1437 					   migration_success_post_commit);
1438 		}
1439 	} while (more_work(cache));
1440 }
1441 
1442 /*
1443  * We want to commit periodically so that not too much
1444  * unwritten metadata builds up.
1445  */
1446 static void do_waker(struct work_struct *ws)
1447 {
1448 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1449 	policy_tick(cache->policy);
1450 	wake_worker(cache);
1451 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1452 }
1453 
1454 /*----------------------------------------------------------------*/
1455 
1456 static int is_congested(struct dm_dev *dev, int bdi_bits)
1457 {
1458 	struct request_queue *q = bdev_get_queue(dev->bdev);
1459 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1460 }
1461 
1462 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1463 {
1464 	struct cache *cache = container_of(cb, struct cache, callbacks);
1465 
1466 	return is_congested(cache->origin_dev, bdi_bits) ||
1467 		is_congested(cache->cache_dev, bdi_bits);
1468 }
1469 
1470 /*----------------------------------------------------------------
1471  * Target methods
1472  *--------------------------------------------------------------*/
1473 
1474 /*
1475  * This function gets called on the error paths of the constructor, so we
1476  * have to cope with a partially initialised struct.
1477  */
1478 static void destroy(struct cache *cache)
1479 {
1480 	unsigned i;
1481 
1482 	if (cache->next_migration)
1483 		mempool_free(cache->next_migration, cache->migration_pool);
1484 
1485 	if (cache->migration_pool)
1486 		mempool_destroy(cache->migration_pool);
1487 
1488 	if (cache->all_io_ds)
1489 		dm_deferred_set_destroy(cache->all_io_ds);
1490 
1491 	if (cache->prison)
1492 		dm_bio_prison_destroy(cache->prison);
1493 
1494 	if (cache->wq)
1495 		destroy_workqueue(cache->wq);
1496 
1497 	if (cache->dirty_bitset)
1498 		free_bitset(cache->dirty_bitset);
1499 
1500 	if (cache->discard_bitset)
1501 		free_bitset(cache->discard_bitset);
1502 
1503 	if (cache->copier)
1504 		dm_kcopyd_client_destroy(cache->copier);
1505 
1506 	if (cache->cmd)
1507 		dm_cache_metadata_close(cache->cmd);
1508 
1509 	if (cache->metadata_dev)
1510 		dm_put_device(cache->ti, cache->metadata_dev);
1511 
1512 	if (cache->origin_dev)
1513 		dm_put_device(cache->ti, cache->origin_dev);
1514 
1515 	if (cache->cache_dev)
1516 		dm_put_device(cache->ti, cache->cache_dev);
1517 
1518 	if (cache->policy)
1519 		dm_cache_policy_destroy(cache->policy);
1520 
1521 	for (i = 0; i < cache->nr_ctr_args ; i++)
1522 		kfree(cache->ctr_args[i]);
1523 	kfree(cache->ctr_args);
1524 
1525 	kfree(cache);
1526 }
1527 
1528 static void cache_dtr(struct dm_target *ti)
1529 {
1530 	struct cache *cache = ti->private;
1531 
1532 	destroy(cache);
1533 }
1534 
1535 static sector_t get_dev_size(struct dm_dev *dev)
1536 {
1537 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1538 }
1539 
1540 /*----------------------------------------------------------------*/
1541 
1542 /*
1543  * Construct a cache device mapping.
1544  *
1545  * cache <metadata dev> <cache dev> <origin dev> <block size>
1546  *       <#feature args> [<feature arg>]*
1547  *       <policy> <#policy args> [<policy arg>]*
1548  *
1549  * metadata dev    : fast device holding the persistent metadata
1550  * cache dev	   : fast device holding cached data blocks
1551  * origin dev	   : slow device holding original data blocks
1552  * block size	   : cache unit size in sectors
1553  *
1554  * #feature args   : number of feature arguments passed
1555  * feature args    : writethrough.  (The default is writeback.)
1556  *
1557  * policy	   : the replacement policy to use
1558  * #policy args    : an even number of policy arguments corresponding
1559  *		     to key/value pairs passed to the policy
1560  * policy args	   : key/value pairs passed to the policy
1561  *		     E.g. 'sequential_threshold 1024'
1562  *		     See cache-policies.txt for details.
1563  *
1564  * Optional feature arguments are:
1565  *   writethrough  : write through caching that prohibits cache block
1566  *		     content from being different from origin block content.
1567  *		     Without this argument, the default behaviour is to write
1568  *		     back cache block contents later for performance reasons,
1569  *		     so they may differ from the corresponding origin blocks.
1570  */
1571 struct cache_args {
1572 	struct dm_target *ti;
1573 
1574 	struct dm_dev *metadata_dev;
1575 
1576 	struct dm_dev *cache_dev;
1577 	sector_t cache_sectors;
1578 
1579 	struct dm_dev *origin_dev;
1580 	sector_t origin_sectors;
1581 
1582 	uint32_t block_size;
1583 
1584 	const char *policy_name;
1585 	int policy_argc;
1586 	const char **policy_argv;
1587 
1588 	struct cache_features features;
1589 };
1590 
1591 static void destroy_cache_args(struct cache_args *ca)
1592 {
1593 	if (ca->metadata_dev)
1594 		dm_put_device(ca->ti, ca->metadata_dev);
1595 
1596 	if (ca->cache_dev)
1597 		dm_put_device(ca->ti, ca->cache_dev);
1598 
1599 	if (ca->origin_dev)
1600 		dm_put_device(ca->ti, ca->origin_dev);
1601 
1602 	kfree(ca);
1603 }
1604 
1605 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1606 {
1607 	if (!as->argc) {
1608 		*error = "Insufficient args";
1609 		return false;
1610 	}
1611 
1612 	return true;
1613 }
1614 
1615 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1616 			      char **error)
1617 {
1618 	int r;
1619 	sector_t metadata_dev_size;
1620 	char b[BDEVNAME_SIZE];
1621 
1622 	if (!at_least_one_arg(as, error))
1623 		return -EINVAL;
1624 
1625 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1626 			  &ca->metadata_dev);
1627 	if (r) {
1628 		*error = "Error opening metadata device";
1629 		return r;
1630 	}
1631 
1632 	metadata_dev_size = get_dev_size(ca->metadata_dev);
1633 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1634 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1635 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1636 
1637 	return 0;
1638 }
1639 
1640 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1641 			   char **error)
1642 {
1643 	int r;
1644 
1645 	if (!at_least_one_arg(as, error))
1646 		return -EINVAL;
1647 
1648 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1649 			  &ca->cache_dev);
1650 	if (r) {
1651 		*error = "Error opening cache device";
1652 		return r;
1653 	}
1654 	ca->cache_sectors = get_dev_size(ca->cache_dev);
1655 
1656 	return 0;
1657 }
1658 
1659 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1660 			    char **error)
1661 {
1662 	int r;
1663 
1664 	if (!at_least_one_arg(as, error))
1665 		return -EINVAL;
1666 
1667 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1668 			  &ca->origin_dev);
1669 	if (r) {
1670 		*error = "Error opening origin device";
1671 		return r;
1672 	}
1673 
1674 	ca->origin_sectors = get_dev_size(ca->origin_dev);
1675 	if (ca->ti->len > ca->origin_sectors) {
1676 		*error = "Device size larger than cached device";
1677 		return -EINVAL;
1678 	}
1679 
1680 	return 0;
1681 }
1682 
1683 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1684 			    char **error)
1685 {
1686 	unsigned long tmp;
1687 
1688 	if (!at_least_one_arg(as, error))
1689 		return -EINVAL;
1690 
1691 	if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1692 	    tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1693 	    tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1694 		*error = "Invalid data block size";
1695 		return -EINVAL;
1696 	}
1697 
1698 	if (tmp > ca->cache_sectors) {
1699 		*error = "Data block size is larger than the cache device";
1700 		return -EINVAL;
1701 	}
1702 
1703 	ca->block_size = tmp;
1704 
1705 	return 0;
1706 }
1707 
1708 static void init_features(struct cache_features *cf)
1709 {
1710 	cf->mode = CM_WRITE;
1711 	cf->write_through = false;
1712 }
1713 
1714 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1715 			  char **error)
1716 {
1717 	static struct dm_arg _args[] = {
1718 		{0, 1, "Invalid number of cache feature arguments"},
1719 	};
1720 
1721 	int r;
1722 	unsigned argc;
1723 	const char *arg;
1724 	struct cache_features *cf = &ca->features;
1725 
1726 	init_features(cf);
1727 
1728 	r = dm_read_arg_group(_args, as, &argc, error);
1729 	if (r)
1730 		return -EINVAL;
1731 
1732 	while (argc--) {
1733 		arg = dm_shift_arg(as);
1734 
1735 		if (!strcasecmp(arg, "writeback"))
1736 			cf->write_through = false;
1737 
1738 		else if (!strcasecmp(arg, "writethrough"))
1739 			cf->write_through = true;
1740 
1741 		else {
1742 			*error = "Unrecognised cache feature requested";
1743 			return -EINVAL;
1744 		}
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1751 			char **error)
1752 {
1753 	static struct dm_arg _args[] = {
1754 		{0, 1024, "Invalid number of policy arguments"},
1755 	};
1756 
1757 	int r;
1758 
1759 	if (!at_least_one_arg(as, error))
1760 		return -EINVAL;
1761 
1762 	ca->policy_name = dm_shift_arg(as);
1763 
1764 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1765 	if (r)
1766 		return -EINVAL;
1767 
1768 	ca->policy_argv = (const char **)as->argv;
1769 	dm_consume_args(as, ca->policy_argc);
1770 
1771 	return 0;
1772 }
1773 
1774 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1775 			    char **error)
1776 {
1777 	int r;
1778 	struct dm_arg_set as;
1779 
1780 	as.argc = argc;
1781 	as.argv = argv;
1782 
1783 	r = parse_metadata_dev(ca, &as, error);
1784 	if (r)
1785 		return r;
1786 
1787 	r = parse_cache_dev(ca, &as, error);
1788 	if (r)
1789 		return r;
1790 
1791 	r = parse_origin_dev(ca, &as, error);
1792 	if (r)
1793 		return r;
1794 
1795 	r = parse_block_size(ca, &as, error);
1796 	if (r)
1797 		return r;
1798 
1799 	r = parse_features(ca, &as, error);
1800 	if (r)
1801 		return r;
1802 
1803 	r = parse_policy(ca, &as, error);
1804 	if (r)
1805 		return r;
1806 
1807 	return 0;
1808 }
1809 
1810 /*----------------------------------------------------------------*/
1811 
1812 static struct kmem_cache *migration_cache;
1813 
1814 #define NOT_CORE_OPTION 1
1815 
1816 static int process_config_option(struct cache *cache, const char *key, const char *value)
1817 {
1818 	unsigned long tmp;
1819 
1820 	if (!strcasecmp(key, "migration_threshold")) {
1821 		if (kstrtoul(value, 10, &tmp))
1822 			return -EINVAL;
1823 
1824 		cache->migration_threshold = tmp;
1825 		return 0;
1826 	}
1827 
1828 	return NOT_CORE_OPTION;
1829 }
1830 
1831 static int set_config_value(struct cache *cache, const char *key, const char *value)
1832 {
1833 	int r = process_config_option(cache, key, value);
1834 
1835 	if (r == NOT_CORE_OPTION)
1836 		r = policy_set_config_value(cache->policy, key, value);
1837 
1838 	if (r)
1839 		DMWARN("bad config value for %s: %s", key, value);
1840 
1841 	return r;
1842 }
1843 
1844 static int set_config_values(struct cache *cache, int argc, const char **argv)
1845 {
1846 	int r = 0;
1847 
1848 	if (argc & 1) {
1849 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1850 		return -EINVAL;
1851 	}
1852 
1853 	while (argc) {
1854 		r = set_config_value(cache, argv[0], argv[1]);
1855 		if (r)
1856 			break;
1857 
1858 		argc -= 2;
1859 		argv += 2;
1860 	}
1861 
1862 	return r;
1863 }
1864 
1865 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1866 			       char **error)
1867 {
1868 	cache->policy =	dm_cache_policy_create(ca->policy_name,
1869 					       cache->cache_size,
1870 					       cache->origin_sectors,
1871 					       cache->sectors_per_block);
1872 	if (!cache->policy) {
1873 		*error = "Error creating cache's policy";
1874 		return -ENOMEM;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * We want the discard block size to be a power of two, at least the size
1882  * of the cache block size, and have no more than 2^14 discard blocks
1883  * across the origin.
1884  */
1885 #define MAX_DISCARD_BLOCKS (1 << 14)
1886 
1887 static bool too_many_discard_blocks(sector_t discard_block_size,
1888 				    sector_t origin_size)
1889 {
1890 	(void) sector_div(origin_size, discard_block_size);
1891 
1892 	return origin_size > MAX_DISCARD_BLOCKS;
1893 }
1894 
1895 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1896 					     sector_t origin_size)
1897 {
1898 	sector_t discard_block_size;
1899 
1900 	discard_block_size = roundup_pow_of_two(cache_block_size);
1901 
1902 	if (origin_size)
1903 		while (too_many_discard_blocks(discard_block_size, origin_size))
1904 			discard_block_size *= 2;
1905 
1906 	return discard_block_size;
1907 }
1908 
1909 #define DEFAULT_MIGRATION_THRESHOLD 2048
1910 
1911 static int cache_create(struct cache_args *ca, struct cache **result)
1912 {
1913 	int r = 0;
1914 	char **error = &ca->ti->error;
1915 	struct cache *cache;
1916 	struct dm_target *ti = ca->ti;
1917 	dm_block_t origin_blocks;
1918 	struct dm_cache_metadata *cmd;
1919 	bool may_format = ca->features.mode == CM_WRITE;
1920 
1921 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1922 	if (!cache)
1923 		return -ENOMEM;
1924 
1925 	cache->ti = ca->ti;
1926 	ti->private = cache;
1927 	ti->num_flush_bios = 2;
1928 	ti->flush_supported = true;
1929 
1930 	ti->num_discard_bios = 1;
1931 	ti->discards_supported = true;
1932 	ti->discard_zeroes_data_unsupported = true;
1933 
1934 	cache->features = ca->features;
1935 	ti->per_bio_data_size = get_per_bio_data_size(cache);
1936 
1937 	cache->callbacks.congested_fn = cache_is_congested;
1938 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1939 
1940 	cache->metadata_dev = ca->metadata_dev;
1941 	cache->origin_dev = ca->origin_dev;
1942 	cache->cache_dev = ca->cache_dev;
1943 
1944 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1945 
1946 	/* FIXME: factor out this whole section */
1947 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
1948 	origin_blocks = block_div(origin_blocks, ca->block_size);
1949 	cache->origin_blocks = to_oblock(origin_blocks);
1950 
1951 	cache->sectors_per_block = ca->block_size;
1952 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1953 		r = -EINVAL;
1954 		goto bad;
1955 	}
1956 
1957 	if (ca->block_size & (ca->block_size - 1)) {
1958 		dm_block_t cache_size = ca->cache_sectors;
1959 
1960 		cache->sectors_per_block_shift = -1;
1961 		cache_size = block_div(cache_size, ca->block_size);
1962 		cache->cache_size = to_cblock(cache_size);
1963 	} else {
1964 		cache->sectors_per_block_shift = __ffs(ca->block_size);
1965 		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1966 	}
1967 
1968 	r = create_cache_policy(cache, ca, error);
1969 	if (r)
1970 		goto bad;
1971 
1972 	cache->policy_nr_args = ca->policy_argc;
1973 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1974 
1975 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
1976 	if (r) {
1977 		*error = "Error setting cache policy's config values";
1978 		goto bad;
1979 	}
1980 
1981 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1982 				     ca->block_size, may_format,
1983 				     dm_cache_policy_get_hint_size(cache->policy));
1984 	if (IS_ERR(cmd)) {
1985 		*error = "Error creating metadata object";
1986 		r = PTR_ERR(cmd);
1987 		goto bad;
1988 	}
1989 	cache->cmd = cmd;
1990 
1991 	spin_lock_init(&cache->lock);
1992 	bio_list_init(&cache->deferred_bios);
1993 	bio_list_init(&cache->deferred_flush_bios);
1994 	bio_list_init(&cache->deferred_writethrough_bios);
1995 	INIT_LIST_HEAD(&cache->quiesced_migrations);
1996 	INIT_LIST_HEAD(&cache->completed_migrations);
1997 	INIT_LIST_HEAD(&cache->need_commit_migrations);
1998 	atomic_set(&cache->nr_migrations, 0);
1999 	init_waitqueue_head(&cache->migration_wait);
2000 
2001 	r = -ENOMEM;
2002 	cache->nr_dirty = 0;
2003 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2004 	if (!cache->dirty_bitset) {
2005 		*error = "could not allocate dirty bitset";
2006 		goto bad;
2007 	}
2008 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2009 
2010 	cache->discard_block_size =
2011 		calculate_discard_block_size(cache->sectors_per_block,
2012 					     cache->origin_sectors);
2013 	cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
2014 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2015 	if (!cache->discard_bitset) {
2016 		*error = "could not allocate discard bitset";
2017 		goto bad;
2018 	}
2019 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2020 
2021 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2022 	if (IS_ERR(cache->copier)) {
2023 		*error = "could not create kcopyd client";
2024 		r = PTR_ERR(cache->copier);
2025 		goto bad;
2026 	}
2027 
2028 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2029 	if (!cache->wq) {
2030 		*error = "could not create workqueue for metadata object";
2031 		goto bad;
2032 	}
2033 	INIT_WORK(&cache->worker, do_worker);
2034 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2035 	cache->last_commit_jiffies = jiffies;
2036 
2037 	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2038 	if (!cache->prison) {
2039 		*error = "could not create bio prison";
2040 		goto bad;
2041 	}
2042 
2043 	cache->all_io_ds = dm_deferred_set_create();
2044 	if (!cache->all_io_ds) {
2045 		*error = "could not create all_io deferred set";
2046 		goto bad;
2047 	}
2048 
2049 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2050 							 migration_cache);
2051 	if (!cache->migration_pool) {
2052 		*error = "Error creating cache's migration mempool";
2053 		goto bad;
2054 	}
2055 
2056 	cache->next_migration = NULL;
2057 
2058 	cache->need_tick_bio = true;
2059 	cache->sized = false;
2060 	cache->quiescing = false;
2061 	cache->commit_requested = false;
2062 	cache->loaded_mappings = false;
2063 	cache->loaded_discards = false;
2064 
2065 	load_stats(cache);
2066 
2067 	atomic_set(&cache->stats.demotion, 0);
2068 	atomic_set(&cache->stats.promotion, 0);
2069 	atomic_set(&cache->stats.copies_avoided, 0);
2070 	atomic_set(&cache->stats.cache_cell_clash, 0);
2071 	atomic_set(&cache->stats.commit_count, 0);
2072 	atomic_set(&cache->stats.discard_count, 0);
2073 
2074 	*result = cache;
2075 	return 0;
2076 
2077 bad:
2078 	destroy(cache);
2079 	return r;
2080 }
2081 
2082 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2083 {
2084 	unsigned i;
2085 	const char **copy;
2086 
2087 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2088 	if (!copy)
2089 		return -ENOMEM;
2090 	for (i = 0; i < argc; i++) {
2091 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2092 		if (!copy[i]) {
2093 			while (i--)
2094 				kfree(copy[i]);
2095 			kfree(copy);
2096 			return -ENOMEM;
2097 		}
2098 	}
2099 
2100 	cache->nr_ctr_args = argc;
2101 	cache->ctr_args = copy;
2102 
2103 	return 0;
2104 }
2105 
2106 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2107 {
2108 	int r = -EINVAL;
2109 	struct cache_args *ca;
2110 	struct cache *cache = NULL;
2111 
2112 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2113 	if (!ca) {
2114 		ti->error = "Error allocating memory for cache";
2115 		return -ENOMEM;
2116 	}
2117 	ca->ti = ti;
2118 
2119 	r = parse_cache_args(ca, argc, argv, &ti->error);
2120 	if (r)
2121 		goto out;
2122 
2123 	r = cache_create(ca, &cache);
2124 	if (r)
2125 		goto out;
2126 
2127 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2128 	if (r) {
2129 		destroy(cache);
2130 		goto out;
2131 	}
2132 
2133 	ti->private = cache;
2134 
2135 out:
2136 	destroy_cache_args(ca);
2137 	return r;
2138 }
2139 
2140 static int cache_map(struct dm_target *ti, struct bio *bio)
2141 {
2142 	struct cache *cache = ti->private;
2143 
2144 	int r;
2145 	dm_oblock_t block = get_bio_block(cache, bio);
2146 	size_t pb_data_size = get_per_bio_data_size(cache);
2147 	bool can_migrate = false;
2148 	bool discarded_block;
2149 	struct dm_bio_prison_cell *cell;
2150 	struct policy_result lookup_result;
2151 	struct per_bio_data *pb;
2152 
2153 	if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2154 		/*
2155 		 * This can only occur if the io goes to a partial block at
2156 		 * the end of the origin device.  We don't cache these.
2157 		 * Just remap to the origin and carry on.
2158 		 */
2159 		remap_to_origin_clear_discard(cache, bio, block);
2160 		return DM_MAPIO_REMAPPED;
2161 	}
2162 
2163 	pb = init_per_bio_data(bio, pb_data_size);
2164 
2165 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2166 		defer_bio(cache, bio);
2167 		return DM_MAPIO_SUBMITTED;
2168 	}
2169 
2170 	/*
2171 	 * Check to see if that block is currently migrating.
2172 	 */
2173 	cell = alloc_prison_cell(cache);
2174 	if (!cell) {
2175 		defer_bio(cache, bio);
2176 		return DM_MAPIO_SUBMITTED;
2177 	}
2178 
2179 	r = bio_detain(cache, block, bio, cell,
2180 		       (cell_free_fn) free_prison_cell,
2181 		       cache, &cell);
2182 	if (r) {
2183 		if (r < 0)
2184 			defer_bio(cache, bio);
2185 
2186 		return DM_MAPIO_SUBMITTED;
2187 	}
2188 
2189 	discarded_block = is_discarded_oblock(cache, block);
2190 
2191 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2192 		       bio, &lookup_result);
2193 	if (r == -EWOULDBLOCK) {
2194 		cell_defer(cache, cell, true);
2195 		return DM_MAPIO_SUBMITTED;
2196 
2197 	} else if (r) {
2198 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2199 		bio_io_error(bio);
2200 		return DM_MAPIO_SUBMITTED;
2201 	}
2202 
2203 	switch (lookup_result.op) {
2204 	case POLICY_HIT:
2205 		inc_hit_counter(cache, bio);
2206 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2207 
2208 		if (is_writethrough_io(cache, bio, lookup_result.cblock))
2209 			remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2210 		else
2211 			remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2212 
2213 		cell_defer(cache, cell, false);
2214 		break;
2215 
2216 	case POLICY_MISS:
2217 		inc_miss_counter(cache, bio);
2218 		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2219 
2220 		if (pb->req_nr != 0) {
2221 			/*
2222 			 * This is a duplicate writethrough io that is no
2223 			 * longer needed because the block has been demoted.
2224 			 */
2225 			bio_endio(bio, 0);
2226 			cell_defer(cache, cell, false);
2227 			return DM_MAPIO_SUBMITTED;
2228 		} else {
2229 			remap_to_origin_clear_discard(cache, bio, block);
2230 			cell_defer(cache, cell, false);
2231 		}
2232 		break;
2233 
2234 	default:
2235 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2236 			    (unsigned) lookup_result.op);
2237 		bio_io_error(bio);
2238 		return DM_MAPIO_SUBMITTED;
2239 	}
2240 
2241 	return DM_MAPIO_REMAPPED;
2242 }
2243 
2244 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2245 {
2246 	struct cache *cache = ti->private;
2247 	unsigned long flags;
2248 	size_t pb_data_size = get_per_bio_data_size(cache);
2249 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2250 
2251 	if (pb->tick) {
2252 		policy_tick(cache->policy);
2253 
2254 		spin_lock_irqsave(&cache->lock, flags);
2255 		cache->need_tick_bio = true;
2256 		spin_unlock_irqrestore(&cache->lock, flags);
2257 	}
2258 
2259 	check_for_quiesced_migrations(cache, pb);
2260 
2261 	return 0;
2262 }
2263 
2264 static int write_dirty_bitset(struct cache *cache)
2265 {
2266 	unsigned i, r;
2267 
2268 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2269 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2270 				       is_dirty(cache, to_cblock(i)));
2271 		if (r)
2272 			return r;
2273 	}
2274 
2275 	return 0;
2276 }
2277 
2278 static int write_discard_bitset(struct cache *cache)
2279 {
2280 	unsigned i, r;
2281 
2282 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2283 					   cache->discard_nr_blocks);
2284 	if (r) {
2285 		DMERR("could not resize on-disk discard bitset");
2286 		return r;
2287 	}
2288 
2289 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2290 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2291 					 is_discarded(cache, to_dblock(i)));
2292 		if (r)
2293 			return r;
2294 	}
2295 
2296 	return 0;
2297 }
2298 
2299 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2300 		     uint32_t hint)
2301 {
2302 	struct cache *cache = context;
2303 	return dm_cache_save_hint(cache->cmd, cblock, hint);
2304 }
2305 
2306 static int write_hints(struct cache *cache)
2307 {
2308 	int r;
2309 
2310 	r = dm_cache_begin_hints(cache->cmd, cache->policy);
2311 	if (r) {
2312 		DMERR("dm_cache_begin_hints failed");
2313 		return r;
2314 	}
2315 
2316 	r = policy_walk_mappings(cache->policy, save_hint, cache);
2317 	if (r)
2318 		DMERR("policy_walk_mappings failed");
2319 
2320 	return r;
2321 }
2322 
2323 /*
2324  * returns true on success
2325  */
2326 static bool sync_metadata(struct cache *cache)
2327 {
2328 	int r1, r2, r3, r4;
2329 
2330 	r1 = write_dirty_bitset(cache);
2331 	if (r1)
2332 		DMERR("could not write dirty bitset");
2333 
2334 	r2 = write_discard_bitset(cache);
2335 	if (r2)
2336 		DMERR("could not write discard bitset");
2337 
2338 	save_stats(cache);
2339 
2340 	r3 = write_hints(cache);
2341 	if (r3)
2342 		DMERR("could not write hints");
2343 
2344 	/*
2345 	 * If writing the above metadata failed, we still commit, but don't
2346 	 * set the clean shutdown flag.  This will effectively force every
2347 	 * dirty bit to be set on reload.
2348 	 */
2349 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2350 	if (r4)
2351 		DMERR("could not write cache metadata.  Data loss may occur.");
2352 
2353 	return !r1 && !r2 && !r3 && !r4;
2354 }
2355 
2356 static void cache_postsuspend(struct dm_target *ti)
2357 {
2358 	struct cache *cache = ti->private;
2359 
2360 	start_quiescing(cache);
2361 	wait_for_migrations(cache);
2362 	stop_worker(cache);
2363 	requeue_deferred_io(cache);
2364 	stop_quiescing(cache);
2365 
2366 	(void) sync_metadata(cache);
2367 }
2368 
2369 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2370 			bool dirty, uint32_t hint, bool hint_valid)
2371 {
2372 	int r;
2373 	struct cache *cache = context;
2374 
2375 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2376 	if (r)
2377 		return r;
2378 
2379 	if (dirty)
2380 		set_dirty(cache, oblock, cblock);
2381 	else
2382 		clear_dirty(cache, oblock, cblock);
2383 
2384 	return 0;
2385 }
2386 
2387 static int load_discard(void *context, sector_t discard_block_size,
2388 			dm_dblock_t dblock, bool discard)
2389 {
2390 	struct cache *cache = context;
2391 
2392 	/* FIXME: handle mis-matched block size */
2393 
2394 	if (discard)
2395 		set_discard(cache, dblock);
2396 	else
2397 		clear_discard(cache, dblock);
2398 
2399 	return 0;
2400 }
2401 
2402 static int cache_preresume(struct dm_target *ti)
2403 {
2404 	int r = 0;
2405 	struct cache *cache = ti->private;
2406 	sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2407 	(void) sector_div(actual_cache_size, cache->sectors_per_block);
2408 
2409 	/*
2410 	 * Check to see if the cache has resized.
2411 	 */
2412 	if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2413 		cache->cache_size = to_cblock(actual_cache_size);
2414 
2415 		r = dm_cache_resize(cache->cmd, cache->cache_size);
2416 		if (r) {
2417 			DMERR("could not resize cache metadata");
2418 			return r;
2419 		}
2420 
2421 		cache->sized = true;
2422 	}
2423 
2424 	if (!cache->loaded_mappings) {
2425 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2426 					   load_mapping, cache);
2427 		if (r) {
2428 			DMERR("could not load cache mappings");
2429 			return r;
2430 		}
2431 
2432 		cache->loaded_mappings = true;
2433 	}
2434 
2435 	if (!cache->loaded_discards) {
2436 		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2437 		if (r) {
2438 			DMERR("could not load origin discards");
2439 			return r;
2440 		}
2441 
2442 		cache->loaded_discards = true;
2443 	}
2444 
2445 	return r;
2446 }
2447 
2448 static void cache_resume(struct dm_target *ti)
2449 {
2450 	struct cache *cache = ti->private;
2451 
2452 	cache->need_tick_bio = true;
2453 	do_waker(&cache->waker.work);
2454 }
2455 
2456 /*
2457  * Status format:
2458  *
2459  * <#used metadata blocks>/<#total metadata blocks>
2460  * <#read hits> <#read misses> <#write hits> <#write misses>
2461  * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2462  * <#features> <features>*
2463  * <#core args> <core args>
2464  * <#policy args> <policy args>*
2465  */
2466 static void cache_status(struct dm_target *ti, status_type_t type,
2467 			 unsigned status_flags, char *result, unsigned maxlen)
2468 {
2469 	int r = 0;
2470 	unsigned i;
2471 	ssize_t sz = 0;
2472 	dm_block_t nr_free_blocks_metadata = 0;
2473 	dm_block_t nr_blocks_metadata = 0;
2474 	char buf[BDEVNAME_SIZE];
2475 	struct cache *cache = ti->private;
2476 	dm_cblock_t residency;
2477 
2478 	switch (type) {
2479 	case STATUSTYPE_INFO:
2480 		/* Commit to ensure statistics aren't out-of-date */
2481 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2482 			r = dm_cache_commit(cache->cmd, false);
2483 			if (r)
2484 				DMERR("could not commit metadata for accurate status");
2485 		}
2486 
2487 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2488 							   &nr_free_blocks_metadata);
2489 		if (r) {
2490 			DMERR("could not get metadata free block count");
2491 			goto err;
2492 		}
2493 
2494 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2495 		if (r) {
2496 			DMERR("could not get metadata device size");
2497 			goto err;
2498 		}
2499 
2500 		residency = policy_residency(cache->policy);
2501 
2502 		DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2503 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2504 		       (unsigned long long)nr_blocks_metadata,
2505 		       (unsigned) atomic_read(&cache->stats.read_hit),
2506 		       (unsigned) atomic_read(&cache->stats.read_miss),
2507 		       (unsigned) atomic_read(&cache->stats.write_hit),
2508 		       (unsigned) atomic_read(&cache->stats.write_miss),
2509 		       (unsigned) atomic_read(&cache->stats.demotion),
2510 		       (unsigned) atomic_read(&cache->stats.promotion),
2511 		       (unsigned long long) from_cblock(residency),
2512 		       cache->nr_dirty);
2513 
2514 		if (cache->features.write_through)
2515 			DMEMIT("1 writethrough ");
2516 		else
2517 			DMEMIT("0 ");
2518 
2519 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2520 		if (sz < maxlen) {
2521 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2522 			if (r)
2523 				DMERR("policy_emit_config_values returned %d", r);
2524 		}
2525 
2526 		break;
2527 
2528 	case STATUSTYPE_TABLE:
2529 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2530 		DMEMIT("%s ", buf);
2531 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2532 		DMEMIT("%s ", buf);
2533 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2534 		DMEMIT("%s", buf);
2535 
2536 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2537 			DMEMIT(" %s", cache->ctr_args[i]);
2538 		if (cache->nr_ctr_args)
2539 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2540 	}
2541 
2542 	return;
2543 
2544 err:
2545 	DMEMIT("Error");
2546 }
2547 
2548 /*
2549  * Supports <key> <value>.
2550  *
2551  * The key migration_threshold is supported by the cache target core.
2552  */
2553 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2554 {
2555 	struct cache *cache = ti->private;
2556 
2557 	if (argc != 2)
2558 		return -EINVAL;
2559 
2560 	return set_config_value(cache, argv[0], argv[1]);
2561 }
2562 
2563 static int cache_iterate_devices(struct dm_target *ti,
2564 				 iterate_devices_callout_fn fn, void *data)
2565 {
2566 	int r = 0;
2567 	struct cache *cache = ti->private;
2568 
2569 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2570 	if (!r)
2571 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
2572 
2573 	return r;
2574 }
2575 
2576 /*
2577  * We assume I/O is going to the origin (which is the volume
2578  * more likely to have restrictions e.g. by being striped).
2579  * (Looking up the exact location of the data would be expensive
2580  * and could always be out of date by the time the bio is submitted.)
2581  */
2582 static int cache_bvec_merge(struct dm_target *ti,
2583 			    struct bvec_merge_data *bvm,
2584 			    struct bio_vec *biovec, int max_size)
2585 {
2586 	struct cache *cache = ti->private;
2587 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2588 
2589 	if (!q->merge_bvec_fn)
2590 		return max_size;
2591 
2592 	bvm->bi_bdev = cache->origin_dev->bdev;
2593 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2594 }
2595 
2596 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2597 {
2598 	/*
2599 	 * FIXME: these limits may be incompatible with the cache device
2600 	 */
2601 	limits->max_discard_sectors = cache->discard_block_size * 1024;
2602 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2603 }
2604 
2605 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2606 {
2607 	struct cache *cache = ti->private;
2608 
2609 	blk_limits_io_min(limits, 0);
2610 	blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2611 	set_discard_limits(cache, limits);
2612 }
2613 
2614 /*----------------------------------------------------------------*/
2615 
2616 static struct target_type cache_target = {
2617 	.name = "cache",
2618 	.version = {1, 1, 1},
2619 	.module = THIS_MODULE,
2620 	.ctr = cache_ctr,
2621 	.dtr = cache_dtr,
2622 	.map = cache_map,
2623 	.end_io = cache_end_io,
2624 	.postsuspend = cache_postsuspend,
2625 	.preresume = cache_preresume,
2626 	.resume = cache_resume,
2627 	.status = cache_status,
2628 	.message = cache_message,
2629 	.iterate_devices = cache_iterate_devices,
2630 	.merge = cache_bvec_merge,
2631 	.io_hints = cache_io_hints,
2632 };
2633 
2634 static int __init dm_cache_init(void)
2635 {
2636 	int r;
2637 
2638 	r = dm_register_target(&cache_target);
2639 	if (r) {
2640 		DMERR("cache target registration failed: %d", r);
2641 		return r;
2642 	}
2643 
2644 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2645 	if (!migration_cache) {
2646 		dm_unregister_target(&cache_target);
2647 		return -ENOMEM;
2648 	}
2649 
2650 	return 0;
2651 }
2652 
2653 static void __exit dm_cache_exit(void)
2654 {
2655 	dm_unregister_target(&cache_target);
2656 	kmem_cache_destroy(migration_cache);
2657 }
2658 
2659 module_init(dm_cache_init);
2660 module_exit(dm_cache_exit);
2661 
2662 MODULE_DESCRIPTION(DM_NAME " cache target");
2663 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2664 MODULE_LICENSE("GPL");
2665