xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 2208f39c)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 
78 	spin_lock_irq(&iot->lock);
79 	r = __iot_idle_for(iot, jifs);
80 	spin_unlock_irq(&iot->lock);
81 
82 	return r;
83 }
84 
85 static void iot_io_begin(struct io_tracker *iot, sector_t len)
86 {
87 	spin_lock_irq(&iot->lock);
88 	iot->in_flight += len;
89 	spin_unlock_irq(&iot->lock);
90 }
91 
92 static void __iot_io_end(struct io_tracker *iot, sector_t len)
93 {
94 	if (!len)
95 		return;
96 
97 	iot->in_flight -= len;
98 	if (!iot->in_flight)
99 		iot->idle_time = jiffies;
100 }
101 
102 static void iot_io_end(struct io_tracker *iot, sector_t len)
103 {
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&iot->lock, flags);
107 	__iot_io_end(iot, len);
108 	spin_unlock_irqrestore(&iot->lock, flags);
109 }
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Represents a chunk of future work.  'input' allows continuations to pass
115  * values between themselves, typically error values.
116  */
117 struct continuation {
118 	struct work_struct ws;
119 	blk_status_t input;
120 };
121 
122 static inline void init_continuation(struct continuation *k,
123 				     void (*fn)(struct work_struct *))
124 {
125 	INIT_WORK(&k->ws, fn);
126 	k->input = 0;
127 }
128 
129 static inline void queue_continuation(struct workqueue_struct *wq,
130 				      struct continuation *k)
131 {
132 	queue_work(wq, &k->ws);
133 }
134 
135 /*----------------------------------------------------------------*/
136 
137 /*
138  * The batcher collects together pieces of work that need a particular
139  * operation to occur before they can proceed (typically a commit).
140  */
141 struct batcher {
142 	/*
143 	 * The operation that everyone is waiting for.
144 	 */
145 	blk_status_t (*commit_op)(void *context);
146 	void *commit_context;
147 
148 	/*
149 	 * This is how bios should be issued once the commit op is complete
150 	 * (accounted_request).
151 	 */
152 	void (*issue_op)(struct bio *bio, void *context);
153 	void *issue_context;
154 
155 	/*
156 	 * Queued work gets put on here after commit.
157 	 */
158 	struct workqueue_struct *wq;
159 
160 	spinlock_t lock;
161 	struct list_head work_items;
162 	struct bio_list bios;
163 	struct work_struct commit_work;
164 
165 	bool commit_scheduled;
166 };
167 
168 static void __commit(struct work_struct *_ws)
169 {
170 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
171 	blk_status_t r;
172 	struct list_head work_items;
173 	struct work_struct *ws, *tmp;
174 	struct continuation *k;
175 	struct bio *bio;
176 	struct bio_list bios;
177 
178 	INIT_LIST_HEAD(&work_items);
179 	bio_list_init(&bios);
180 
181 	/*
182 	 * We have to grab these before the commit_op to avoid a race
183 	 * condition.
184 	 */
185 	spin_lock_irq(&b->lock);
186 	list_splice_init(&b->work_items, &work_items);
187 	bio_list_merge(&bios, &b->bios);
188 	bio_list_init(&b->bios);
189 	b->commit_scheduled = false;
190 	spin_unlock_irq(&b->lock);
191 
192 	r = b->commit_op(b->commit_context);
193 
194 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
195 		k = container_of(ws, struct continuation, ws);
196 		k->input = r;
197 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
198 		queue_work(b->wq, ws);
199 	}
200 
201 	while ((bio = bio_list_pop(&bios))) {
202 		if (r) {
203 			bio->bi_status = r;
204 			bio_endio(bio);
205 		} else
206 			b->issue_op(bio, b->issue_context);
207 	}
208 }
209 
210 static void batcher_init(struct batcher *b,
211 			 blk_status_t (*commit_op)(void *),
212 			 void *commit_context,
213 			 void (*issue_op)(struct bio *bio, void *),
214 			 void *issue_context,
215 			 struct workqueue_struct *wq)
216 {
217 	b->commit_op = commit_op;
218 	b->commit_context = commit_context;
219 	b->issue_op = issue_op;
220 	b->issue_context = issue_context;
221 	b->wq = wq;
222 
223 	spin_lock_init(&b->lock);
224 	INIT_LIST_HEAD(&b->work_items);
225 	bio_list_init(&b->bios);
226 	INIT_WORK(&b->commit_work, __commit);
227 	b->commit_scheduled = false;
228 }
229 
230 static void async_commit(struct batcher *b)
231 {
232 	queue_work(b->wq, &b->commit_work);
233 }
234 
235 static void continue_after_commit(struct batcher *b, struct continuation *k)
236 {
237 	bool commit_scheduled;
238 
239 	spin_lock_irq(&b->lock);
240 	commit_scheduled = b->commit_scheduled;
241 	list_add_tail(&k->ws.entry, &b->work_items);
242 	spin_unlock_irq(&b->lock);
243 
244 	if (commit_scheduled)
245 		async_commit(b);
246 }
247 
248 /*
249  * Bios are errored if commit failed.
250  */
251 static void issue_after_commit(struct batcher *b, struct bio *bio)
252 {
253        bool commit_scheduled;
254 
255        spin_lock_irq(&b->lock);
256        commit_scheduled = b->commit_scheduled;
257        bio_list_add(&b->bios, bio);
258        spin_unlock_irq(&b->lock);
259 
260        if (commit_scheduled)
261 	       async_commit(b);
262 }
263 
264 /*
265  * Call this if some urgent work is waiting for the commit to complete.
266  */
267 static void schedule_commit(struct batcher *b)
268 {
269 	bool immediate;
270 
271 	spin_lock_irq(&b->lock);
272 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
273 	b->commit_scheduled = true;
274 	spin_unlock_irq(&b->lock);
275 
276 	if (immediate)
277 		async_commit(b);
278 }
279 
280 /*
281  * There are a couple of places where we let a bio run, but want to do some
282  * work before calling its endio function.  We do this by temporarily
283  * changing the endio fn.
284  */
285 struct dm_hook_info {
286 	bio_end_io_t *bi_end_io;
287 };
288 
289 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
290 			bio_end_io_t *bi_end_io, void *bi_private)
291 {
292 	h->bi_end_io = bio->bi_end_io;
293 
294 	bio->bi_end_io = bi_end_io;
295 	bio->bi_private = bi_private;
296 }
297 
298 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
299 {
300 	bio->bi_end_io = h->bi_end_io;
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 #define MIGRATION_POOL_SIZE 128
306 #define COMMIT_PERIOD HZ
307 #define MIGRATION_COUNT_WINDOW 10
308 
309 /*
310  * The block size of the device holding cache data must be
311  * between 32KB and 1GB.
312  */
313 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
314 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
315 
316 enum cache_metadata_mode {
317 	CM_WRITE,		/* metadata may be changed */
318 	CM_READ_ONLY,		/* metadata may not be changed */
319 	CM_FAIL
320 };
321 
322 enum cache_io_mode {
323 	/*
324 	 * Data is written to cached blocks only.  These blocks are marked
325 	 * dirty.  If you lose the cache device you will lose data.
326 	 * Potential performance increase for both reads and writes.
327 	 */
328 	CM_IO_WRITEBACK,
329 
330 	/*
331 	 * Data is written to both cache and origin.  Blocks are never
332 	 * dirty.  Potential performance benfit for reads only.
333 	 */
334 	CM_IO_WRITETHROUGH,
335 
336 	/*
337 	 * A degraded mode useful for various cache coherency situations
338 	 * (eg, rolling back snapshots).  Reads and writes always go to the
339 	 * origin.  If a write goes to a cached oblock, then the cache
340 	 * block is invalidated.
341 	 */
342 	CM_IO_PASSTHROUGH
343 };
344 
345 struct cache_features {
346 	enum cache_metadata_mode mode;
347 	enum cache_io_mode io_mode;
348 	unsigned metadata_version;
349 	bool discard_passdown:1;
350 };
351 
352 struct cache_stats {
353 	atomic_t read_hit;
354 	atomic_t read_miss;
355 	atomic_t write_hit;
356 	atomic_t write_miss;
357 	atomic_t demotion;
358 	atomic_t promotion;
359 	atomic_t writeback;
360 	atomic_t copies_avoided;
361 	atomic_t cache_cell_clash;
362 	atomic_t commit_count;
363 	atomic_t discard_count;
364 };
365 
366 struct cache {
367 	struct dm_target *ti;
368 	spinlock_t lock;
369 
370 	/*
371 	 * Fields for converting from sectors to blocks.
372 	 */
373 	int sectors_per_block_shift;
374 	sector_t sectors_per_block;
375 
376 	struct dm_cache_metadata *cmd;
377 
378 	/*
379 	 * Metadata is written to this device.
380 	 */
381 	struct dm_dev *metadata_dev;
382 
383 	/*
384 	 * The slower of the two data devices.  Typically a spindle.
385 	 */
386 	struct dm_dev *origin_dev;
387 
388 	/*
389 	 * The faster of the two data devices.  Typically an SSD.
390 	 */
391 	struct dm_dev *cache_dev;
392 
393 	/*
394 	 * Size of the origin device in _complete_ blocks and native sectors.
395 	 */
396 	dm_oblock_t origin_blocks;
397 	sector_t origin_sectors;
398 
399 	/*
400 	 * Size of the cache device in blocks.
401 	 */
402 	dm_cblock_t cache_size;
403 
404 	/*
405 	 * Invalidation fields.
406 	 */
407 	spinlock_t invalidation_lock;
408 	struct list_head invalidation_requests;
409 
410 	sector_t migration_threshold;
411 	wait_queue_head_t migration_wait;
412 	atomic_t nr_allocated_migrations;
413 
414 	/*
415 	 * The number of in flight migrations that are performing
416 	 * background io. eg, promotion, writeback.
417 	 */
418 	atomic_t nr_io_migrations;
419 
420 	struct bio_list deferred_bios;
421 
422 	struct rw_semaphore quiesce_lock;
423 
424 	/*
425 	 * origin_blocks entries, discarded if set.
426 	 */
427 	dm_dblock_t discard_nr_blocks;
428 	unsigned long *discard_bitset;
429 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
430 
431 	/*
432 	 * Rather than reconstructing the table line for the status we just
433 	 * save it and regurgitate.
434 	 */
435 	unsigned nr_ctr_args;
436 	const char **ctr_args;
437 
438 	struct dm_kcopyd_client *copier;
439 	struct work_struct deferred_bio_worker;
440 	struct work_struct migration_worker;
441 	struct workqueue_struct *wq;
442 	struct delayed_work waker;
443 	struct dm_bio_prison_v2 *prison;
444 
445 	/*
446 	 * cache_size entries, dirty if set
447 	 */
448 	unsigned long *dirty_bitset;
449 	atomic_t nr_dirty;
450 
451 	unsigned policy_nr_args;
452 	struct dm_cache_policy *policy;
453 
454 	/*
455 	 * Cache features such as write-through.
456 	 */
457 	struct cache_features features;
458 
459 	struct cache_stats stats;
460 
461 	bool need_tick_bio:1;
462 	bool sized:1;
463 	bool invalidate:1;
464 	bool commit_requested:1;
465 	bool loaded_mappings:1;
466 	bool loaded_discards:1;
467 
468 	struct rw_semaphore background_work_lock;
469 
470 	struct batcher committer;
471 	struct work_struct commit_ws;
472 
473 	struct io_tracker tracker;
474 
475 	mempool_t migration_pool;
476 
477 	struct bio_set bs;
478 };
479 
480 struct per_bio_data {
481 	bool tick:1;
482 	unsigned req_nr:2;
483 	struct dm_bio_prison_cell_v2 *cell;
484 	struct dm_hook_info hook_info;
485 	sector_t len;
486 };
487 
488 struct dm_cache_migration {
489 	struct continuation k;
490 	struct cache *cache;
491 
492 	struct policy_work *op;
493 	struct bio *overwrite_bio;
494 	struct dm_bio_prison_cell_v2 *cell;
495 
496 	dm_cblock_t invalidate_cblock;
497 	dm_oblock_t invalidate_oblock;
498 };
499 
500 /*----------------------------------------------------------------*/
501 
502 static bool writethrough_mode(struct cache *cache)
503 {
504 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
505 }
506 
507 static bool writeback_mode(struct cache *cache)
508 {
509 	return cache->features.io_mode == CM_IO_WRITEBACK;
510 }
511 
512 static inline bool passthrough_mode(struct cache *cache)
513 {
514 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
515 }
516 
517 /*----------------------------------------------------------------*/
518 
519 static void wake_deferred_bio_worker(struct cache *cache)
520 {
521 	queue_work(cache->wq, &cache->deferred_bio_worker);
522 }
523 
524 static void wake_migration_worker(struct cache *cache)
525 {
526 	if (passthrough_mode(cache))
527 		return;
528 
529 	queue_work(cache->wq, &cache->migration_worker);
530 }
531 
532 /*----------------------------------------------------------------*/
533 
534 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
535 {
536 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
537 }
538 
539 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
540 {
541 	dm_bio_prison_free_cell_v2(cache->prison, cell);
542 }
543 
544 static struct dm_cache_migration *alloc_migration(struct cache *cache)
545 {
546 	struct dm_cache_migration *mg;
547 
548 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
549 
550 	memset(mg, 0, sizeof(*mg));
551 
552 	mg->cache = cache;
553 	atomic_inc(&cache->nr_allocated_migrations);
554 
555 	return mg;
556 }
557 
558 static void free_migration(struct dm_cache_migration *mg)
559 {
560 	struct cache *cache = mg->cache;
561 
562 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
563 		wake_up(&cache->migration_wait);
564 
565 	mempool_free(mg, &cache->migration_pool);
566 }
567 
568 /*----------------------------------------------------------------*/
569 
570 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
571 {
572 	return to_oblock(from_oblock(b) + 1ull);
573 }
574 
575 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
576 {
577 	key->virtual = 0;
578 	key->dev = 0;
579 	key->block_begin = from_oblock(begin);
580 	key->block_end = from_oblock(end);
581 }
582 
583 /*
584  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
585  * level 1 which prevents *both* READs and WRITEs.
586  */
587 #define WRITE_LOCK_LEVEL 0
588 #define READ_WRITE_LOCK_LEVEL 1
589 
590 static unsigned lock_level(struct bio *bio)
591 {
592 	return bio_data_dir(bio) == WRITE ?
593 		WRITE_LOCK_LEVEL :
594 		READ_WRITE_LOCK_LEVEL;
595 }
596 
597 /*----------------------------------------------------------------
598  * Per bio data
599  *--------------------------------------------------------------*/
600 
601 static struct per_bio_data *get_per_bio_data(struct bio *bio)
602 {
603 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
604 	BUG_ON(!pb);
605 	return pb;
606 }
607 
608 static struct per_bio_data *init_per_bio_data(struct bio *bio)
609 {
610 	struct per_bio_data *pb = get_per_bio_data(bio);
611 
612 	pb->tick = false;
613 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
614 	pb->cell = NULL;
615 	pb->len = 0;
616 
617 	return pb;
618 }
619 
620 /*----------------------------------------------------------------*/
621 
622 static void defer_bio(struct cache *cache, struct bio *bio)
623 {
624 	spin_lock_irq(&cache->lock);
625 	bio_list_add(&cache->deferred_bios, bio);
626 	spin_unlock_irq(&cache->lock);
627 
628 	wake_deferred_bio_worker(cache);
629 }
630 
631 static void defer_bios(struct cache *cache, struct bio_list *bios)
632 {
633 	spin_lock_irq(&cache->lock);
634 	bio_list_merge(&cache->deferred_bios, bios);
635 	bio_list_init(bios);
636 	spin_unlock_irq(&cache->lock);
637 
638 	wake_deferred_bio_worker(cache);
639 }
640 
641 /*----------------------------------------------------------------*/
642 
643 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
644 {
645 	bool r;
646 	struct per_bio_data *pb;
647 	struct dm_cell_key_v2 key;
648 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
649 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
650 
651 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
652 
653 	build_key(oblock, end, &key);
654 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
655 	if (!r) {
656 		/*
657 		 * Failed to get the lock.
658 		 */
659 		free_prison_cell(cache, cell_prealloc);
660 		return r;
661 	}
662 
663 	if (cell != cell_prealloc)
664 		free_prison_cell(cache, cell_prealloc);
665 
666 	pb = get_per_bio_data(bio);
667 	pb->cell = cell;
668 
669 	return r;
670 }
671 
672 /*----------------------------------------------------------------*/
673 
674 static bool is_dirty(struct cache *cache, dm_cblock_t b)
675 {
676 	return test_bit(from_cblock(b), cache->dirty_bitset);
677 }
678 
679 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
680 {
681 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
682 		atomic_inc(&cache->nr_dirty);
683 		policy_set_dirty(cache->policy, cblock);
684 	}
685 }
686 
687 /*
688  * These two are called when setting after migrations to force the policy
689  * and dirty bitset to be in sync.
690  */
691 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
692 {
693 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
694 		atomic_inc(&cache->nr_dirty);
695 	policy_set_dirty(cache->policy, cblock);
696 }
697 
698 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
699 {
700 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
701 		if (atomic_dec_return(&cache->nr_dirty) == 0)
702 			dm_table_event(cache->ti->table);
703 	}
704 
705 	policy_clear_dirty(cache->policy, cblock);
706 }
707 
708 /*----------------------------------------------------------------*/
709 
710 static bool block_size_is_power_of_two(struct cache *cache)
711 {
712 	return cache->sectors_per_block_shift >= 0;
713 }
714 
715 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
716 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
717 __always_inline
718 #endif
719 static dm_block_t block_div(dm_block_t b, uint32_t n)
720 {
721 	do_div(b, n);
722 
723 	return b;
724 }
725 
726 static dm_block_t oblocks_per_dblock(struct cache *cache)
727 {
728 	dm_block_t oblocks = cache->discard_block_size;
729 
730 	if (block_size_is_power_of_two(cache))
731 		oblocks >>= cache->sectors_per_block_shift;
732 	else
733 		oblocks = block_div(oblocks, cache->sectors_per_block);
734 
735 	return oblocks;
736 }
737 
738 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
739 {
740 	return to_dblock(block_div(from_oblock(oblock),
741 				   oblocks_per_dblock(cache)));
742 }
743 
744 static void set_discard(struct cache *cache, dm_dblock_t b)
745 {
746 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
747 	atomic_inc(&cache->stats.discard_count);
748 
749 	spin_lock_irq(&cache->lock);
750 	set_bit(from_dblock(b), cache->discard_bitset);
751 	spin_unlock_irq(&cache->lock);
752 }
753 
754 static void clear_discard(struct cache *cache, dm_dblock_t b)
755 {
756 	spin_lock_irq(&cache->lock);
757 	clear_bit(from_dblock(b), cache->discard_bitset);
758 	spin_unlock_irq(&cache->lock);
759 }
760 
761 static bool is_discarded(struct cache *cache, dm_dblock_t b)
762 {
763 	int r;
764 	spin_lock_irq(&cache->lock);
765 	r = test_bit(from_dblock(b), cache->discard_bitset);
766 	spin_unlock_irq(&cache->lock);
767 
768 	return r;
769 }
770 
771 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
772 {
773 	int r;
774 	spin_lock_irq(&cache->lock);
775 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
776 		     cache->discard_bitset);
777 	spin_unlock_irq(&cache->lock);
778 
779 	return r;
780 }
781 
782 /*----------------------------------------------------------------
783  * Remapping
784  *--------------------------------------------------------------*/
785 static void remap_to_origin(struct cache *cache, struct bio *bio)
786 {
787 	bio_set_dev(bio, cache->origin_dev->bdev);
788 }
789 
790 static void remap_to_cache(struct cache *cache, struct bio *bio,
791 			   dm_cblock_t cblock)
792 {
793 	sector_t bi_sector = bio->bi_iter.bi_sector;
794 	sector_t block = from_cblock(cblock);
795 
796 	bio_set_dev(bio, cache->cache_dev->bdev);
797 	if (!block_size_is_power_of_two(cache))
798 		bio->bi_iter.bi_sector =
799 			(block * cache->sectors_per_block) +
800 			sector_div(bi_sector, cache->sectors_per_block);
801 	else
802 		bio->bi_iter.bi_sector =
803 			(block << cache->sectors_per_block_shift) |
804 			(bi_sector & (cache->sectors_per_block - 1));
805 }
806 
807 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
808 {
809 	struct per_bio_data *pb;
810 
811 	spin_lock_irq(&cache->lock);
812 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
813 	    bio_op(bio) != REQ_OP_DISCARD) {
814 		pb = get_per_bio_data(bio);
815 		pb->tick = true;
816 		cache->need_tick_bio = false;
817 	}
818 	spin_unlock_irq(&cache->lock);
819 }
820 
821 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
822 					    dm_oblock_t oblock, bool bio_has_pbd)
823 {
824 	if (bio_has_pbd)
825 		check_if_tick_bio_needed(cache, bio);
826 	remap_to_origin(cache, bio);
827 	if (bio_data_dir(bio) == WRITE)
828 		clear_discard(cache, oblock_to_dblock(cache, oblock));
829 }
830 
831 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
832 					  dm_oblock_t oblock)
833 {
834 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
835 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
836 }
837 
838 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
839 				 dm_oblock_t oblock, dm_cblock_t cblock)
840 {
841 	check_if_tick_bio_needed(cache, bio);
842 	remap_to_cache(cache, bio, cblock);
843 	if (bio_data_dir(bio) == WRITE) {
844 		set_dirty(cache, cblock);
845 		clear_discard(cache, oblock_to_dblock(cache, oblock));
846 	}
847 }
848 
849 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
850 {
851 	sector_t block_nr = bio->bi_iter.bi_sector;
852 
853 	if (!block_size_is_power_of_two(cache))
854 		(void) sector_div(block_nr, cache->sectors_per_block);
855 	else
856 		block_nr >>= cache->sectors_per_block_shift;
857 
858 	return to_oblock(block_nr);
859 }
860 
861 static bool accountable_bio(struct cache *cache, struct bio *bio)
862 {
863 	return bio_op(bio) != REQ_OP_DISCARD;
864 }
865 
866 static void accounted_begin(struct cache *cache, struct bio *bio)
867 {
868 	struct per_bio_data *pb;
869 
870 	if (accountable_bio(cache, bio)) {
871 		pb = get_per_bio_data(bio);
872 		pb->len = bio_sectors(bio);
873 		iot_io_begin(&cache->tracker, pb->len);
874 	}
875 }
876 
877 static void accounted_complete(struct cache *cache, struct bio *bio)
878 {
879 	struct per_bio_data *pb = get_per_bio_data(bio);
880 
881 	iot_io_end(&cache->tracker, pb->len);
882 }
883 
884 static void accounted_request(struct cache *cache, struct bio *bio)
885 {
886 	accounted_begin(cache, bio);
887 	submit_bio_noacct(bio);
888 }
889 
890 static void issue_op(struct bio *bio, void *context)
891 {
892 	struct cache *cache = context;
893 	accounted_request(cache, bio);
894 }
895 
896 /*
897  * When running in writethrough mode we need to send writes to clean blocks
898  * to both the cache and origin devices.  Clone the bio and send them in parallel.
899  */
900 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
901 				      dm_oblock_t oblock, dm_cblock_t cblock)
902 {
903 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
904 
905 	BUG_ON(!origin_bio);
906 
907 	bio_chain(origin_bio, bio);
908 	/*
909 	 * Passing false to __remap_to_origin_clear_discard() skips
910 	 * all code that might use per_bio_data (since clone doesn't have it)
911 	 */
912 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
913 	submit_bio(origin_bio);
914 
915 	remap_to_cache(cache, bio, cblock);
916 }
917 
918 /*----------------------------------------------------------------
919  * Failure modes
920  *--------------------------------------------------------------*/
921 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
922 {
923 	return cache->features.mode;
924 }
925 
926 static const char *cache_device_name(struct cache *cache)
927 {
928 	return dm_table_device_name(cache->ti->table);
929 }
930 
931 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
932 {
933 	const char *descs[] = {
934 		"write",
935 		"read-only",
936 		"fail"
937 	};
938 
939 	dm_table_event(cache->ti->table);
940 	DMINFO("%s: switching cache to %s mode",
941 	       cache_device_name(cache), descs[(int)mode]);
942 }
943 
944 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
945 {
946 	bool needs_check;
947 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
948 
949 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
950 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
951 		      cache_device_name(cache));
952 		new_mode = CM_FAIL;
953 	}
954 
955 	if (new_mode == CM_WRITE && needs_check) {
956 		DMERR("%s: unable to switch cache to write mode until repaired.",
957 		      cache_device_name(cache));
958 		if (old_mode != new_mode)
959 			new_mode = old_mode;
960 		else
961 			new_mode = CM_READ_ONLY;
962 	}
963 
964 	/* Never move out of fail mode */
965 	if (old_mode == CM_FAIL)
966 		new_mode = CM_FAIL;
967 
968 	switch (new_mode) {
969 	case CM_FAIL:
970 	case CM_READ_ONLY:
971 		dm_cache_metadata_set_read_only(cache->cmd);
972 		break;
973 
974 	case CM_WRITE:
975 		dm_cache_metadata_set_read_write(cache->cmd);
976 		break;
977 	}
978 
979 	cache->features.mode = new_mode;
980 
981 	if (new_mode != old_mode)
982 		notify_mode_switch(cache, new_mode);
983 }
984 
985 static void abort_transaction(struct cache *cache)
986 {
987 	const char *dev_name = cache_device_name(cache);
988 
989 	if (get_cache_mode(cache) >= CM_READ_ONLY)
990 		return;
991 
992 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
993 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
994 		set_cache_mode(cache, CM_FAIL);
995 	}
996 
997 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
998 	if (dm_cache_metadata_abort(cache->cmd)) {
999 		DMERR("%s: failed to abort metadata transaction", dev_name);
1000 		set_cache_mode(cache, CM_FAIL);
1001 	}
1002 }
1003 
1004 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1005 {
1006 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1007 		    cache_device_name(cache), op, r);
1008 	abort_transaction(cache);
1009 	set_cache_mode(cache, CM_READ_ONLY);
1010 }
1011 
1012 /*----------------------------------------------------------------*/
1013 
1014 static void load_stats(struct cache *cache)
1015 {
1016 	struct dm_cache_statistics stats;
1017 
1018 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1019 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1020 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1021 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1022 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1023 }
1024 
1025 static void save_stats(struct cache *cache)
1026 {
1027 	struct dm_cache_statistics stats;
1028 
1029 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030 		return;
1031 
1032 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1033 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1034 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1035 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1036 
1037 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1038 }
1039 
1040 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1041 {
1042 	switch (op) {
1043 	case POLICY_PROMOTE:
1044 		atomic_inc(&stats->promotion);
1045 		break;
1046 
1047 	case POLICY_DEMOTE:
1048 		atomic_inc(&stats->demotion);
1049 		break;
1050 
1051 	case POLICY_WRITEBACK:
1052 		atomic_inc(&stats->writeback);
1053 		break;
1054 	}
1055 }
1056 
1057 /*----------------------------------------------------------------
1058  * Migration processing
1059  *
1060  * Migration covers moving data from the origin device to the cache, or
1061  * vice versa.
1062  *--------------------------------------------------------------*/
1063 
1064 static void inc_io_migrations(struct cache *cache)
1065 {
1066 	atomic_inc(&cache->nr_io_migrations);
1067 }
1068 
1069 static void dec_io_migrations(struct cache *cache)
1070 {
1071 	atomic_dec(&cache->nr_io_migrations);
1072 }
1073 
1074 static bool discard_or_flush(struct bio *bio)
1075 {
1076 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1077 }
1078 
1079 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1080 				     dm_dblock_t *b, dm_dblock_t *e)
1081 {
1082 	sector_t sb = bio->bi_iter.bi_sector;
1083 	sector_t se = bio_end_sector(bio);
1084 
1085 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1086 
1087 	if (se - sb < cache->discard_block_size)
1088 		*e = *b;
1089 	else
1090 		*e = to_dblock(block_div(se, cache->discard_block_size));
1091 }
1092 
1093 /*----------------------------------------------------------------*/
1094 
1095 static void prevent_background_work(struct cache *cache)
1096 {
1097 	lockdep_off();
1098 	down_write(&cache->background_work_lock);
1099 	lockdep_on();
1100 }
1101 
1102 static void allow_background_work(struct cache *cache)
1103 {
1104 	lockdep_off();
1105 	up_write(&cache->background_work_lock);
1106 	lockdep_on();
1107 }
1108 
1109 static bool background_work_begin(struct cache *cache)
1110 {
1111 	bool r;
1112 
1113 	lockdep_off();
1114 	r = down_read_trylock(&cache->background_work_lock);
1115 	lockdep_on();
1116 
1117 	return r;
1118 }
1119 
1120 static void background_work_end(struct cache *cache)
1121 {
1122 	lockdep_off();
1123 	up_read(&cache->background_work_lock);
1124 	lockdep_on();
1125 }
1126 
1127 /*----------------------------------------------------------------*/
1128 
1129 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1130 {
1131 	return (bio_data_dir(bio) == WRITE) &&
1132 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1133 }
1134 
1135 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1136 {
1137 	return writeback_mode(cache) &&
1138 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1139 }
1140 
1141 static void quiesce(struct dm_cache_migration *mg,
1142 		    void (*continuation)(struct work_struct *))
1143 {
1144 	init_continuation(&mg->k, continuation);
1145 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1146 }
1147 
1148 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1149 {
1150 	struct continuation *k = container_of(ws, struct continuation, ws);
1151 	return container_of(k, struct dm_cache_migration, k);
1152 }
1153 
1154 static void copy_complete(int read_err, unsigned long write_err, void *context)
1155 {
1156 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1157 
1158 	if (read_err || write_err)
1159 		mg->k.input = BLK_STS_IOERR;
1160 
1161 	queue_continuation(mg->cache->wq, &mg->k);
1162 }
1163 
1164 static void copy(struct dm_cache_migration *mg, bool promote)
1165 {
1166 	struct dm_io_region o_region, c_region;
1167 	struct cache *cache = mg->cache;
1168 
1169 	o_region.bdev = cache->origin_dev->bdev;
1170 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1171 	o_region.count = cache->sectors_per_block;
1172 
1173 	c_region.bdev = cache->cache_dev->bdev;
1174 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1175 	c_region.count = cache->sectors_per_block;
1176 
1177 	if (promote)
1178 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1179 	else
1180 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1181 }
1182 
1183 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1184 {
1185 	struct per_bio_data *pb = get_per_bio_data(bio);
1186 
1187 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1188 		free_prison_cell(cache, pb->cell);
1189 	pb->cell = NULL;
1190 }
1191 
1192 static void overwrite_endio(struct bio *bio)
1193 {
1194 	struct dm_cache_migration *mg = bio->bi_private;
1195 	struct cache *cache = mg->cache;
1196 	struct per_bio_data *pb = get_per_bio_data(bio);
1197 
1198 	dm_unhook_bio(&pb->hook_info, bio);
1199 
1200 	if (bio->bi_status)
1201 		mg->k.input = bio->bi_status;
1202 
1203 	queue_continuation(cache->wq, &mg->k);
1204 }
1205 
1206 static void overwrite(struct dm_cache_migration *mg,
1207 		      void (*continuation)(struct work_struct *))
1208 {
1209 	struct bio *bio = mg->overwrite_bio;
1210 	struct per_bio_data *pb = get_per_bio_data(bio);
1211 
1212 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1213 
1214 	/*
1215 	 * The overwrite bio is part of the copy operation, as such it does
1216 	 * not set/clear discard or dirty flags.
1217 	 */
1218 	if (mg->op->op == POLICY_PROMOTE)
1219 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1220 	else
1221 		remap_to_origin(mg->cache, bio);
1222 
1223 	init_continuation(&mg->k, continuation);
1224 	accounted_request(mg->cache, bio);
1225 }
1226 
1227 /*
1228  * Migration steps:
1229  *
1230  * 1) exclusive lock preventing WRITEs
1231  * 2) quiesce
1232  * 3) copy or issue overwrite bio
1233  * 4) upgrade to exclusive lock preventing READs and WRITEs
1234  * 5) quiesce
1235  * 6) update metadata and commit
1236  * 7) unlock
1237  */
1238 static void mg_complete(struct dm_cache_migration *mg, bool success)
1239 {
1240 	struct bio_list bios;
1241 	struct cache *cache = mg->cache;
1242 	struct policy_work *op = mg->op;
1243 	dm_cblock_t cblock = op->cblock;
1244 
1245 	if (success)
1246 		update_stats(&cache->stats, op->op);
1247 
1248 	switch (op->op) {
1249 	case POLICY_PROMOTE:
1250 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1251 		policy_complete_background_work(cache->policy, op, success);
1252 
1253 		if (mg->overwrite_bio) {
1254 			if (success)
1255 				force_set_dirty(cache, cblock);
1256 			else if (mg->k.input)
1257 				mg->overwrite_bio->bi_status = mg->k.input;
1258 			else
1259 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1260 			bio_endio(mg->overwrite_bio);
1261 		} else {
1262 			if (success)
1263 				force_clear_dirty(cache, cblock);
1264 			dec_io_migrations(cache);
1265 		}
1266 		break;
1267 
1268 	case POLICY_DEMOTE:
1269 		/*
1270 		 * We clear dirty here to update the nr_dirty counter.
1271 		 */
1272 		if (success)
1273 			force_clear_dirty(cache, cblock);
1274 		policy_complete_background_work(cache->policy, op, success);
1275 		dec_io_migrations(cache);
1276 		break;
1277 
1278 	case POLICY_WRITEBACK:
1279 		if (success)
1280 			force_clear_dirty(cache, cblock);
1281 		policy_complete_background_work(cache->policy, op, success);
1282 		dec_io_migrations(cache);
1283 		break;
1284 	}
1285 
1286 	bio_list_init(&bios);
1287 	if (mg->cell) {
1288 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1289 			free_prison_cell(cache, mg->cell);
1290 	}
1291 
1292 	free_migration(mg);
1293 	defer_bios(cache, &bios);
1294 	wake_migration_worker(cache);
1295 
1296 	background_work_end(cache);
1297 }
1298 
1299 static void mg_success(struct work_struct *ws)
1300 {
1301 	struct dm_cache_migration *mg = ws_to_mg(ws);
1302 	mg_complete(mg, mg->k.input == 0);
1303 }
1304 
1305 static void mg_update_metadata(struct work_struct *ws)
1306 {
1307 	int r;
1308 	struct dm_cache_migration *mg = ws_to_mg(ws);
1309 	struct cache *cache = mg->cache;
1310 	struct policy_work *op = mg->op;
1311 
1312 	switch (op->op) {
1313 	case POLICY_PROMOTE:
1314 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1315 		if (r) {
1316 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1317 				    cache_device_name(cache));
1318 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1319 
1320 			mg_complete(mg, false);
1321 			return;
1322 		}
1323 		mg_complete(mg, true);
1324 		break;
1325 
1326 	case POLICY_DEMOTE:
1327 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1328 		if (r) {
1329 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1330 				    cache_device_name(cache));
1331 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1332 
1333 			mg_complete(mg, false);
1334 			return;
1335 		}
1336 
1337 		/*
1338 		 * It would be nice if we only had to commit when a REQ_FLUSH
1339 		 * comes through.  But there's one scenario that we have to
1340 		 * look out for:
1341 		 *
1342 		 * - vblock x in a cache block
1343 		 * - domotion occurs
1344 		 * - cache block gets reallocated and over written
1345 		 * - crash
1346 		 *
1347 		 * When we recover, because there was no commit the cache will
1348 		 * rollback to having the data for vblock x in the cache block.
1349 		 * But the cache block has since been overwritten, so it'll end
1350 		 * up pointing to data that was never in 'x' during the history
1351 		 * of the device.
1352 		 *
1353 		 * To avoid this issue we require a commit as part of the
1354 		 * demotion operation.
1355 		 */
1356 		init_continuation(&mg->k, mg_success);
1357 		continue_after_commit(&cache->committer, &mg->k);
1358 		schedule_commit(&cache->committer);
1359 		break;
1360 
1361 	case POLICY_WRITEBACK:
1362 		mg_complete(mg, true);
1363 		break;
1364 	}
1365 }
1366 
1367 static void mg_update_metadata_after_copy(struct work_struct *ws)
1368 {
1369 	struct dm_cache_migration *mg = ws_to_mg(ws);
1370 
1371 	/*
1372 	 * Did the copy succeed?
1373 	 */
1374 	if (mg->k.input)
1375 		mg_complete(mg, false);
1376 	else
1377 		mg_update_metadata(ws);
1378 }
1379 
1380 static void mg_upgrade_lock(struct work_struct *ws)
1381 {
1382 	int r;
1383 	struct dm_cache_migration *mg = ws_to_mg(ws);
1384 
1385 	/*
1386 	 * Did the copy succeed?
1387 	 */
1388 	if (mg->k.input)
1389 		mg_complete(mg, false);
1390 
1391 	else {
1392 		/*
1393 		 * Now we want the lock to prevent both reads and writes.
1394 		 */
1395 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1396 					    READ_WRITE_LOCK_LEVEL);
1397 		if (r < 0)
1398 			mg_complete(mg, false);
1399 
1400 		else if (r)
1401 			quiesce(mg, mg_update_metadata);
1402 
1403 		else
1404 			mg_update_metadata(ws);
1405 	}
1406 }
1407 
1408 static void mg_full_copy(struct work_struct *ws)
1409 {
1410 	struct dm_cache_migration *mg = ws_to_mg(ws);
1411 	struct cache *cache = mg->cache;
1412 	struct policy_work *op = mg->op;
1413 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1414 
1415 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1416 	    is_discarded_oblock(cache, op->oblock)) {
1417 		mg_upgrade_lock(ws);
1418 		return;
1419 	}
1420 
1421 	init_continuation(&mg->k, mg_upgrade_lock);
1422 	copy(mg, is_policy_promote);
1423 }
1424 
1425 static void mg_copy(struct work_struct *ws)
1426 {
1427 	struct dm_cache_migration *mg = ws_to_mg(ws);
1428 
1429 	if (mg->overwrite_bio) {
1430 		/*
1431 		 * No exclusive lock was held when we last checked if the bio
1432 		 * was optimisable.  So we have to check again in case things
1433 		 * have changed (eg, the block may no longer be discarded).
1434 		 */
1435 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1436 			/*
1437 			 * Fallback to a real full copy after doing some tidying up.
1438 			 */
1439 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1440 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1441 			mg->overwrite_bio = NULL;
1442 			inc_io_migrations(mg->cache);
1443 			mg_full_copy(ws);
1444 			return;
1445 		}
1446 
1447 		/*
1448 		 * It's safe to do this here, even though it's new data
1449 		 * because all IO has been locked out of the block.
1450 		 *
1451 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1452 		 * so _not_ using mg_upgrade_lock() as continutation.
1453 		 */
1454 		overwrite(mg, mg_update_metadata_after_copy);
1455 
1456 	} else
1457 		mg_full_copy(ws);
1458 }
1459 
1460 static int mg_lock_writes(struct dm_cache_migration *mg)
1461 {
1462 	int r;
1463 	struct dm_cell_key_v2 key;
1464 	struct cache *cache = mg->cache;
1465 	struct dm_bio_prison_cell_v2 *prealloc;
1466 
1467 	prealloc = alloc_prison_cell(cache);
1468 
1469 	/*
1470 	 * Prevent writes to the block, but allow reads to continue.
1471 	 * Unless we're using an overwrite bio, in which case we lock
1472 	 * everything.
1473 	 */
1474 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1475 	r = dm_cell_lock_v2(cache->prison, &key,
1476 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1477 			    prealloc, &mg->cell);
1478 	if (r < 0) {
1479 		free_prison_cell(cache, prealloc);
1480 		mg_complete(mg, false);
1481 		return r;
1482 	}
1483 
1484 	if (mg->cell != prealloc)
1485 		free_prison_cell(cache, prealloc);
1486 
1487 	if (r == 0)
1488 		mg_copy(&mg->k.ws);
1489 	else
1490 		quiesce(mg, mg_copy);
1491 
1492 	return 0;
1493 }
1494 
1495 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1496 {
1497 	struct dm_cache_migration *mg;
1498 
1499 	if (!background_work_begin(cache)) {
1500 		policy_complete_background_work(cache->policy, op, false);
1501 		return -EPERM;
1502 	}
1503 
1504 	mg = alloc_migration(cache);
1505 
1506 	mg->op = op;
1507 	mg->overwrite_bio = bio;
1508 
1509 	if (!bio)
1510 		inc_io_migrations(cache);
1511 
1512 	return mg_lock_writes(mg);
1513 }
1514 
1515 /*----------------------------------------------------------------
1516  * invalidation processing
1517  *--------------------------------------------------------------*/
1518 
1519 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1520 {
1521 	struct bio_list bios;
1522 	struct cache *cache = mg->cache;
1523 
1524 	bio_list_init(&bios);
1525 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1526 		free_prison_cell(cache, mg->cell);
1527 
1528 	if (!success && mg->overwrite_bio)
1529 		bio_io_error(mg->overwrite_bio);
1530 
1531 	free_migration(mg);
1532 	defer_bios(cache, &bios);
1533 
1534 	background_work_end(cache);
1535 }
1536 
1537 static void invalidate_completed(struct work_struct *ws)
1538 {
1539 	struct dm_cache_migration *mg = ws_to_mg(ws);
1540 	invalidate_complete(mg, !mg->k.input);
1541 }
1542 
1543 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1544 {
1545 	int r = policy_invalidate_mapping(cache->policy, cblock);
1546 	if (!r) {
1547 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1548 		if (r) {
1549 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1550 				    cache_device_name(cache));
1551 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1552 		}
1553 
1554 	} else if (r == -ENODATA) {
1555 		/*
1556 		 * Harmless, already unmapped.
1557 		 */
1558 		r = 0;
1559 
1560 	} else
1561 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1562 
1563 	return r;
1564 }
1565 
1566 static void invalidate_remove(struct work_struct *ws)
1567 {
1568 	int r;
1569 	struct dm_cache_migration *mg = ws_to_mg(ws);
1570 	struct cache *cache = mg->cache;
1571 
1572 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1573 	if (r) {
1574 		invalidate_complete(mg, false);
1575 		return;
1576 	}
1577 
1578 	init_continuation(&mg->k, invalidate_completed);
1579 	continue_after_commit(&cache->committer, &mg->k);
1580 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1581 	mg->overwrite_bio = NULL;
1582 	schedule_commit(&cache->committer);
1583 }
1584 
1585 static int invalidate_lock(struct dm_cache_migration *mg)
1586 {
1587 	int r;
1588 	struct dm_cell_key_v2 key;
1589 	struct cache *cache = mg->cache;
1590 	struct dm_bio_prison_cell_v2 *prealloc;
1591 
1592 	prealloc = alloc_prison_cell(cache);
1593 
1594 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1595 	r = dm_cell_lock_v2(cache->prison, &key,
1596 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1597 	if (r < 0) {
1598 		free_prison_cell(cache, prealloc);
1599 		invalidate_complete(mg, false);
1600 		return r;
1601 	}
1602 
1603 	if (mg->cell != prealloc)
1604 		free_prison_cell(cache, prealloc);
1605 
1606 	if (r)
1607 		quiesce(mg, invalidate_remove);
1608 
1609 	else {
1610 		/*
1611 		 * We can't call invalidate_remove() directly here because we
1612 		 * might still be in request context.
1613 		 */
1614 		init_continuation(&mg->k, invalidate_remove);
1615 		queue_work(cache->wq, &mg->k.ws);
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1622 			    dm_oblock_t oblock, struct bio *bio)
1623 {
1624 	struct dm_cache_migration *mg;
1625 
1626 	if (!background_work_begin(cache))
1627 		return -EPERM;
1628 
1629 	mg = alloc_migration(cache);
1630 
1631 	mg->overwrite_bio = bio;
1632 	mg->invalidate_cblock = cblock;
1633 	mg->invalidate_oblock = oblock;
1634 
1635 	return invalidate_lock(mg);
1636 }
1637 
1638 /*----------------------------------------------------------------
1639  * bio processing
1640  *--------------------------------------------------------------*/
1641 
1642 enum busy {
1643 	IDLE,
1644 	BUSY
1645 };
1646 
1647 static enum busy spare_migration_bandwidth(struct cache *cache)
1648 {
1649 	bool idle = iot_idle_for(&cache->tracker, HZ);
1650 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651 		cache->sectors_per_block;
1652 
1653 	if (idle && current_volume <= cache->migration_threshold)
1654 		return IDLE;
1655 	else
1656 		return BUSY;
1657 }
1658 
1659 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1660 {
1661 	atomic_inc(bio_data_dir(bio) == READ ?
1662 		   &cache->stats.read_hit : &cache->stats.write_hit);
1663 }
1664 
1665 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1666 {
1667 	atomic_inc(bio_data_dir(bio) == READ ?
1668 		   &cache->stats.read_miss : &cache->stats.write_miss);
1669 }
1670 
1671 /*----------------------------------------------------------------*/
1672 
1673 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1674 		   bool *commit_needed)
1675 {
1676 	int r, data_dir;
1677 	bool rb, background_queued;
1678 	dm_cblock_t cblock;
1679 
1680 	*commit_needed = false;
1681 
1682 	rb = bio_detain_shared(cache, block, bio);
1683 	if (!rb) {
1684 		/*
1685 		 * An exclusive lock is held for this block, so we have to
1686 		 * wait.  We set the commit_needed flag so the current
1687 		 * transaction will be committed asap, allowing this lock
1688 		 * to be dropped.
1689 		 */
1690 		*commit_needed = true;
1691 		return DM_MAPIO_SUBMITTED;
1692 	}
1693 
1694 	data_dir = bio_data_dir(bio);
1695 
1696 	if (optimisable_bio(cache, bio, block)) {
1697 		struct policy_work *op = NULL;
1698 
1699 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1700 		if (unlikely(r && r != -ENOENT)) {
1701 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1702 				    cache_device_name(cache), r);
1703 			bio_io_error(bio);
1704 			return DM_MAPIO_SUBMITTED;
1705 		}
1706 
1707 		if (r == -ENOENT && op) {
1708 			bio_drop_shared_lock(cache, bio);
1709 			BUG_ON(op->op != POLICY_PROMOTE);
1710 			mg_start(cache, op, bio);
1711 			return DM_MAPIO_SUBMITTED;
1712 		}
1713 	} else {
1714 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1715 		if (unlikely(r && r != -ENOENT)) {
1716 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1717 				    cache_device_name(cache), r);
1718 			bio_io_error(bio);
1719 			return DM_MAPIO_SUBMITTED;
1720 		}
1721 
1722 		if (background_queued)
1723 			wake_migration_worker(cache);
1724 	}
1725 
1726 	if (r == -ENOENT) {
1727 		struct per_bio_data *pb = get_per_bio_data(bio);
1728 
1729 		/*
1730 		 * Miss.
1731 		 */
1732 		inc_miss_counter(cache, bio);
1733 		if (pb->req_nr == 0) {
1734 			accounted_begin(cache, bio);
1735 			remap_to_origin_clear_discard(cache, bio, block);
1736 		} else {
1737 			/*
1738 			 * This is a duplicate writethrough io that is no
1739 			 * longer needed because the block has been demoted.
1740 			 */
1741 			bio_endio(bio);
1742 			return DM_MAPIO_SUBMITTED;
1743 		}
1744 	} else {
1745 		/*
1746 		 * Hit.
1747 		 */
1748 		inc_hit_counter(cache, bio);
1749 
1750 		/*
1751 		 * Passthrough always maps to the origin, invalidating any
1752 		 * cache blocks that are written to.
1753 		 */
1754 		if (passthrough_mode(cache)) {
1755 			if (bio_data_dir(bio) == WRITE) {
1756 				bio_drop_shared_lock(cache, bio);
1757 				atomic_inc(&cache->stats.demotion);
1758 				invalidate_start(cache, cblock, block, bio);
1759 			} else
1760 				remap_to_origin_clear_discard(cache, bio, block);
1761 		} else {
1762 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1763 			    !is_dirty(cache, cblock)) {
1764 				remap_to_origin_and_cache(cache, bio, block, cblock);
1765 				accounted_begin(cache, bio);
1766 			} else
1767 				remap_to_cache_dirty(cache, bio, block, cblock);
1768 		}
1769 	}
1770 
1771 	/*
1772 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1773 	 */
1774 	if (bio->bi_opf & REQ_FUA) {
1775 		/*
1776 		 * issue_after_commit will call accounted_begin a second time.  So
1777 		 * we call accounted_complete() to avoid double accounting.
1778 		 */
1779 		accounted_complete(cache, bio);
1780 		issue_after_commit(&cache->committer, bio);
1781 		*commit_needed = true;
1782 		return DM_MAPIO_SUBMITTED;
1783 	}
1784 
1785 	return DM_MAPIO_REMAPPED;
1786 }
1787 
1788 static bool process_bio(struct cache *cache, struct bio *bio)
1789 {
1790 	bool commit_needed;
1791 
1792 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1793 		submit_bio_noacct(bio);
1794 
1795 	return commit_needed;
1796 }
1797 
1798 /*
1799  * A non-zero return indicates read_only or fail_io mode.
1800  */
1801 static int commit(struct cache *cache, bool clean_shutdown)
1802 {
1803 	int r;
1804 
1805 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1806 		return -EINVAL;
1807 
1808 	atomic_inc(&cache->stats.commit_count);
1809 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1810 	if (r)
1811 		metadata_operation_failed(cache, "dm_cache_commit", r);
1812 
1813 	return r;
1814 }
1815 
1816 /*
1817  * Used by the batcher.
1818  */
1819 static blk_status_t commit_op(void *context)
1820 {
1821 	struct cache *cache = context;
1822 
1823 	if (dm_cache_changed_this_transaction(cache->cmd))
1824 		return errno_to_blk_status(commit(cache, false));
1825 
1826 	return 0;
1827 }
1828 
1829 /*----------------------------------------------------------------*/
1830 
1831 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1832 {
1833 	struct per_bio_data *pb = get_per_bio_data(bio);
1834 
1835 	if (!pb->req_nr)
1836 		remap_to_origin(cache, bio);
1837 	else
1838 		remap_to_cache(cache, bio, 0);
1839 
1840 	issue_after_commit(&cache->committer, bio);
1841 	return true;
1842 }
1843 
1844 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1845 {
1846 	dm_dblock_t b, e;
1847 
1848 	// FIXME: do we need to lock the region?  Or can we just assume the
1849 	// user wont be so foolish as to issue discard concurrently with
1850 	// other IO?
1851 	calc_discard_block_range(cache, bio, &b, &e);
1852 	while (b != e) {
1853 		set_discard(cache, b);
1854 		b = to_dblock(from_dblock(b) + 1);
1855 	}
1856 
1857 	if (cache->features.discard_passdown) {
1858 		remap_to_origin(cache, bio);
1859 		submit_bio_noacct(bio);
1860 	} else
1861 		bio_endio(bio);
1862 
1863 	return false;
1864 }
1865 
1866 static void process_deferred_bios(struct work_struct *ws)
1867 {
1868 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1869 
1870 	bool commit_needed = false;
1871 	struct bio_list bios;
1872 	struct bio *bio;
1873 
1874 	bio_list_init(&bios);
1875 
1876 	spin_lock_irq(&cache->lock);
1877 	bio_list_merge(&bios, &cache->deferred_bios);
1878 	bio_list_init(&cache->deferred_bios);
1879 	spin_unlock_irq(&cache->lock);
1880 
1881 	while ((bio = bio_list_pop(&bios))) {
1882 		if (bio->bi_opf & REQ_PREFLUSH)
1883 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1884 
1885 		else if (bio_op(bio) == REQ_OP_DISCARD)
1886 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1887 
1888 		else
1889 			commit_needed = process_bio(cache, bio) || commit_needed;
1890 	}
1891 
1892 	if (commit_needed)
1893 		schedule_commit(&cache->committer);
1894 }
1895 
1896 /*----------------------------------------------------------------
1897  * Main worker loop
1898  *--------------------------------------------------------------*/
1899 
1900 static void requeue_deferred_bios(struct cache *cache)
1901 {
1902 	struct bio *bio;
1903 	struct bio_list bios;
1904 
1905 	bio_list_init(&bios);
1906 	bio_list_merge(&bios, &cache->deferred_bios);
1907 	bio_list_init(&cache->deferred_bios);
1908 
1909 	while ((bio = bio_list_pop(&bios))) {
1910 		bio->bi_status = BLK_STS_DM_REQUEUE;
1911 		bio_endio(bio);
1912 	}
1913 }
1914 
1915 /*
1916  * We want to commit periodically so that not too much
1917  * unwritten metadata builds up.
1918  */
1919 static void do_waker(struct work_struct *ws)
1920 {
1921 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1922 
1923 	policy_tick(cache->policy, true);
1924 	wake_migration_worker(cache);
1925 	schedule_commit(&cache->committer);
1926 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1927 }
1928 
1929 static void check_migrations(struct work_struct *ws)
1930 {
1931 	int r;
1932 	struct policy_work *op;
1933 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1934 	enum busy b;
1935 
1936 	for (;;) {
1937 		b = spare_migration_bandwidth(cache);
1938 
1939 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1940 		if (r == -ENODATA)
1941 			break;
1942 
1943 		if (r) {
1944 			DMERR_LIMIT("%s: policy_background_work failed",
1945 				    cache_device_name(cache));
1946 			break;
1947 		}
1948 
1949 		r = mg_start(cache, op, NULL);
1950 		if (r)
1951 			break;
1952 	}
1953 }
1954 
1955 /*----------------------------------------------------------------
1956  * Target methods
1957  *--------------------------------------------------------------*/
1958 
1959 /*
1960  * This function gets called on the error paths of the constructor, so we
1961  * have to cope with a partially initialised struct.
1962  */
1963 static void destroy(struct cache *cache)
1964 {
1965 	unsigned i;
1966 
1967 	mempool_exit(&cache->migration_pool);
1968 
1969 	if (cache->prison)
1970 		dm_bio_prison_destroy_v2(cache->prison);
1971 
1972 	if (cache->wq)
1973 		destroy_workqueue(cache->wq);
1974 
1975 	if (cache->dirty_bitset)
1976 		free_bitset(cache->dirty_bitset);
1977 
1978 	if (cache->discard_bitset)
1979 		free_bitset(cache->discard_bitset);
1980 
1981 	if (cache->copier)
1982 		dm_kcopyd_client_destroy(cache->copier);
1983 
1984 	if (cache->cmd)
1985 		dm_cache_metadata_close(cache->cmd);
1986 
1987 	if (cache->metadata_dev)
1988 		dm_put_device(cache->ti, cache->metadata_dev);
1989 
1990 	if (cache->origin_dev)
1991 		dm_put_device(cache->ti, cache->origin_dev);
1992 
1993 	if (cache->cache_dev)
1994 		dm_put_device(cache->ti, cache->cache_dev);
1995 
1996 	if (cache->policy)
1997 		dm_cache_policy_destroy(cache->policy);
1998 
1999 	for (i = 0; i < cache->nr_ctr_args ; i++)
2000 		kfree(cache->ctr_args[i]);
2001 	kfree(cache->ctr_args);
2002 
2003 	bioset_exit(&cache->bs);
2004 
2005 	kfree(cache);
2006 }
2007 
2008 static void cache_dtr(struct dm_target *ti)
2009 {
2010 	struct cache *cache = ti->private;
2011 
2012 	destroy(cache);
2013 }
2014 
2015 static sector_t get_dev_size(struct dm_dev *dev)
2016 {
2017 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2018 }
2019 
2020 /*----------------------------------------------------------------*/
2021 
2022 /*
2023  * Construct a cache device mapping.
2024  *
2025  * cache <metadata dev> <cache dev> <origin dev> <block size>
2026  *       <#feature args> [<feature arg>]*
2027  *       <policy> <#policy args> [<policy arg>]*
2028  *
2029  * metadata dev    : fast device holding the persistent metadata
2030  * cache dev	   : fast device holding cached data blocks
2031  * origin dev	   : slow device holding original data blocks
2032  * block size	   : cache unit size in sectors
2033  *
2034  * #feature args   : number of feature arguments passed
2035  * feature args    : writethrough.  (The default is writeback.)
2036  *
2037  * policy	   : the replacement policy to use
2038  * #policy args    : an even number of policy arguments corresponding
2039  *		     to key/value pairs passed to the policy
2040  * policy args	   : key/value pairs passed to the policy
2041  *		     E.g. 'sequential_threshold 1024'
2042  *		     See cache-policies.txt for details.
2043  *
2044  * Optional feature arguments are:
2045  *   writethrough  : write through caching that prohibits cache block
2046  *		     content from being different from origin block content.
2047  *		     Without this argument, the default behaviour is to write
2048  *		     back cache block contents later for performance reasons,
2049  *		     so they may differ from the corresponding origin blocks.
2050  */
2051 struct cache_args {
2052 	struct dm_target *ti;
2053 
2054 	struct dm_dev *metadata_dev;
2055 
2056 	struct dm_dev *cache_dev;
2057 	sector_t cache_sectors;
2058 
2059 	struct dm_dev *origin_dev;
2060 	sector_t origin_sectors;
2061 
2062 	uint32_t block_size;
2063 
2064 	const char *policy_name;
2065 	int policy_argc;
2066 	const char **policy_argv;
2067 
2068 	struct cache_features features;
2069 };
2070 
2071 static void destroy_cache_args(struct cache_args *ca)
2072 {
2073 	if (ca->metadata_dev)
2074 		dm_put_device(ca->ti, ca->metadata_dev);
2075 
2076 	if (ca->cache_dev)
2077 		dm_put_device(ca->ti, ca->cache_dev);
2078 
2079 	if (ca->origin_dev)
2080 		dm_put_device(ca->ti, ca->origin_dev);
2081 
2082 	kfree(ca);
2083 }
2084 
2085 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2086 {
2087 	if (!as->argc) {
2088 		*error = "Insufficient args";
2089 		return false;
2090 	}
2091 
2092 	return true;
2093 }
2094 
2095 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2096 			      char **error)
2097 {
2098 	int r;
2099 	sector_t metadata_dev_size;
2100 	char b[BDEVNAME_SIZE];
2101 
2102 	if (!at_least_one_arg(as, error))
2103 		return -EINVAL;
2104 
2105 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2106 			  &ca->metadata_dev);
2107 	if (r) {
2108 		*error = "Error opening metadata device";
2109 		return r;
2110 	}
2111 
2112 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2113 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2114 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2115 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2116 
2117 	return 0;
2118 }
2119 
2120 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2121 			   char **error)
2122 {
2123 	int r;
2124 
2125 	if (!at_least_one_arg(as, error))
2126 		return -EINVAL;
2127 
2128 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129 			  &ca->cache_dev);
2130 	if (r) {
2131 		*error = "Error opening cache device";
2132 		return r;
2133 	}
2134 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2135 
2136 	return 0;
2137 }
2138 
2139 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2140 			    char **error)
2141 {
2142 	int r;
2143 
2144 	if (!at_least_one_arg(as, error))
2145 		return -EINVAL;
2146 
2147 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148 			  &ca->origin_dev);
2149 	if (r) {
2150 		*error = "Error opening origin device";
2151 		return r;
2152 	}
2153 
2154 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2155 	if (ca->ti->len > ca->origin_sectors) {
2156 		*error = "Device size larger than cached device";
2157 		return -EINVAL;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2164 			    char **error)
2165 {
2166 	unsigned long block_size;
2167 
2168 	if (!at_least_one_arg(as, error))
2169 		return -EINVAL;
2170 
2171 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2172 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2173 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2174 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2175 		*error = "Invalid data block size";
2176 		return -EINVAL;
2177 	}
2178 
2179 	if (block_size > ca->cache_sectors) {
2180 		*error = "Data block size is larger than the cache device";
2181 		return -EINVAL;
2182 	}
2183 
2184 	ca->block_size = block_size;
2185 
2186 	return 0;
2187 }
2188 
2189 static void init_features(struct cache_features *cf)
2190 {
2191 	cf->mode = CM_WRITE;
2192 	cf->io_mode = CM_IO_WRITEBACK;
2193 	cf->metadata_version = 1;
2194 	cf->discard_passdown = true;
2195 }
2196 
2197 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2198 			  char **error)
2199 {
2200 	static const struct dm_arg _args[] = {
2201 		{0, 3, "Invalid number of cache feature arguments"},
2202 	};
2203 
2204 	int r, mode_ctr = 0;
2205 	unsigned argc;
2206 	const char *arg;
2207 	struct cache_features *cf = &ca->features;
2208 
2209 	init_features(cf);
2210 
2211 	r = dm_read_arg_group(_args, as, &argc, error);
2212 	if (r)
2213 		return -EINVAL;
2214 
2215 	while (argc--) {
2216 		arg = dm_shift_arg(as);
2217 
2218 		if (!strcasecmp(arg, "writeback")) {
2219 			cf->io_mode = CM_IO_WRITEBACK;
2220 			mode_ctr++;
2221 		}
2222 
2223 		else if (!strcasecmp(arg, "writethrough")) {
2224 			cf->io_mode = CM_IO_WRITETHROUGH;
2225 			mode_ctr++;
2226 		}
2227 
2228 		else if (!strcasecmp(arg, "passthrough")) {
2229 			cf->io_mode = CM_IO_PASSTHROUGH;
2230 			mode_ctr++;
2231 		}
2232 
2233 		else if (!strcasecmp(arg, "metadata2"))
2234 			cf->metadata_version = 2;
2235 
2236 		else if (!strcasecmp(arg, "no_discard_passdown"))
2237 			cf->discard_passdown = false;
2238 
2239 		else {
2240 			*error = "Unrecognised cache feature requested";
2241 			return -EINVAL;
2242 		}
2243 	}
2244 
2245 	if (mode_ctr > 1) {
2246 		*error = "Duplicate cache io_mode features requested";
2247 		return -EINVAL;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2254 			char **error)
2255 {
2256 	static const struct dm_arg _args[] = {
2257 		{0, 1024, "Invalid number of policy arguments"},
2258 	};
2259 
2260 	int r;
2261 
2262 	if (!at_least_one_arg(as, error))
2263 		return -EINVAL;
2264 
2265 	ca->policy_name = dm_shift_arg(as);
2266 
2267 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2268 	if (r)
2269 		return -EINVAL;
2270 
2271 	ca->policy_argv = (const char **)as->argv;
2272 	dm_consume_args(as, ca->policy_argc);
2273 
2274 	return 0;
2275 }
2276 
2277 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2278 			    char **error)
2279 {
2280 	int r;
2281 	struct dm_arg_set as;
2282 
2283 	as.argc = argc;
2284 	as.argv = argv;
2285 
2286 	r = parse_metadata_dev(ca, &as, error);
2287 	if (r)
2288 		return r;
2289 
2290 	r = parse_cache_dev(ca, &as, error);
2291 	if (r)
2292 		return r;
2293 
2294 	r = parse_origin_dev(ca, &as, error);
2295 	if (r)
2296 		return r;
2297 
2298 	r = parse_block_size(ca, &as, error);
2299 	if (r)
2300 		return r;
2301 
2302 	r = parse_features(ca, &as, error);
2303 	if (r)
2304 		return r;
2305 
2306 	r = parse_policy(ca, &as, error);
2307 	if (r)
2308 		return r;
2309 
2310 	return 0;
2311 }
2312 
2313 /*----------------------------------------------------------------*/
2314 
2315 static struct kmem_cache *migration_cache;
2316 
2317 #define NOT_CORE_OPTION 1
2318 
2319 static int process_config_option(struct cache *cache, const char *key, const char *value)
2320 {
2321 	unsigned long tmp;
2322 
2323 	if (!strcasecmp(key, "migration_threshold")) {
2324 		if (kstrtoul(value, 10, &tmp))
2325 			return -EINVAL;
2326 
2327 		cache->migration_threshold = tmp;
2328 		return 0;
2329 	}
2330 
2331 	return NOT_CORE_OPTION;
2332 }
2333 
2334 static int set_config_value(struct cache *cache, const char *key, const char *value)
2335 {
2336 	int r = process_config_option(cache, key, value);
2337 
2338 	if (r == NOT_CORE_OPTION)
2339 		r = policy_set_config_value(cache->policy, key, value);
2340 
2341 	if (r)
2342 		DMWARN("bad config value for %s: %s", key, value);
2343 
2344 	return r;
2345 }
2346 
2347 static int set_config_values(struct cache *cache, int argc, const char **argv)
2348 {
2349 	int r = 0;
2350 
2351 	if (argc & 1) {
2352 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2353 		return -EINVAL;
2354 	}
2355 
2356 	while (argc) {
2357 		r = set_config_value(cache, argv[0], argv[1]);
2358 		if (r)
2359 			break;
2360 
2361 		argc -= 2;
2362 		argv += 2;
2363 	}
2364 
2365 	return r;
2366 }
2367 
2368 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2369 			       char **error)
2370 {
2371 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2372 							   cache->cache_size,
2373 							   cache->origin_sectors,
2374 							   cache->sectors_per_block);
2375 	if (IS_ERR(p)) {
2376 		*error = "Error creating cache's policy";
2377 		return PTR_ERR(p);
2378 	}
2379 	cache->policy = p;
2380 	BUG_ON(!cache->policy);
2381 
2382 	return 0;
2383 }
2384 
2385 /*
2386  * We want the discard block size to be at least the size of the cache
2387  * block size and have no more than 2^14 discard blocks across the origin.
2388  */
2389 #define MAX_DISCARD_BLOCKS (1 << 14)
2390 
2391 static bool too_many_discard_blocks(sector_t discard_block_size,
2392 				    sector_t origin_size)
2393 {
2394 	(void) sector_div(origin_size, discard_block_size);
2395 
2396 	return origin_size > MAX_DISCARD_BLOCKS;
2397 }
2398 
2399 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2400 					     sector_t origin_size)
2401 {
2402 	sector_t discard_block_size = cache_block_size;
2403 
2404 	if (origin_size)
2405 		while (too_many_discard_blocks(discard_block_size, origin_size))
2406 			discard_block_size *= 2;
2407 
2408 	return discard_block_size;
2409 }
2410 
2411 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2412 {
2413 	dm_block_t nr_blocks = from_cblock(size);
2414 
2415 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2416 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2417 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2418 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2419 			     (unsigned long long) nr_blocks);
2420 
2421 	cache->cache_size = size;
2422 }
2423 
2424 #define DEFAULT_MIGRATION_THRESHOLD 2048
2425 
2426 static int cache_create(struct cache_args *ca, struct cache **result)
2427 {
2428 	int r = 0;
2429 	char **error = &ca->ti->error;
2430 	struct cache *cache;
2431 	struct dm_target *ti = ca->ti;
2432 	dm_block_t origin_blocks;
2433 	struct dm_cache_metadata *cmd;
2434 	bool may_format = ca->features.mode == CM_WRITE;
2435 
2436 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2437 	if (!cache)
2438 		return -ENOMEM;
2439 
2440 	cache->ti = ca->ti;
2441 	ti->private = cache;
2442 	ti->num_flush_bios = 2;
2443 	ti->flush_supported = true;
2444 
2445 	ti->num_discard_bios = 1;
2446 	ti->discards_supported = true;
2447 
2448 	ti->per_io_data_size = sizeof(struct per_bio_data);
2449 
2450 	cache->features = ca->features;
2451 	if (writethrough_mode(cache)) {
2452 		/* Create bioset for writethrough bios issued to origin */
2453 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2454 		if (r)
2455 			goto bad;
2456 	}
2457 
2458 	cache->metadata_dev = ca->metadata_dev;
2459 	cache->origin_dev = ca->origin_dev;
2460 	cache->cache_dev = ca->cache_dev;
2461 
2462 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2463 
2464 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2465 	origin_blocks = block_div(origin_blocks, ca->block_size);
2466 	cache->origin_blocks = to_oblock(origin_blocks);
2467 
2468 	cache->sectors_per_block = ca->block_size;
2469 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2470 		r = -EINVAL;
2471 		goto bad;
2472 	}
2473 
2474 	if (ca->block_size & (ca->block_size - 1)) {
2475 		dm_block_t cache_size = ca->cache_sectors;
2476 
2477 		cache->sectors_per_block_shift = -1;
2478 		cache_size = block_div(cache_size, ca->block_size);
2479 		set_cache_size(cache, to_cblock(cache_size));
2480 	} else {
2481 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2482 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2483 	}
2484 
2485 	r = create_cache_policy(cache, ca, error);
2486 	if (r)
2487 		goto bad;
2488 
2489 	cache->policy_nr_args = ca->policy_argc;
2490 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2491 
2492 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2493 	if (r) {
2494 		*error = "Error setting cache policy's config values";
2495 		goto bad;
2496 	}
2497 
2498 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2499 				     ca->block_size, may_format,
2500 				     dm_cache_policy_get_hint_size(cache->policy),
2501 				     ca->features.metadata_version);
2502 	if (IS_ERR(cmd)) {
2503 		*error = "Error creating metadata object";
2504 		r = PTR_ERR(cmd);
2505 		goto bad;
2506 	}
2507 	cache->cmd = cmd;
2508 	set_cache_mode(cache, CM_WRITE);
2509 	if (get_cache_mode(cache) != CM_WRITE) {
2510 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2511 		r = -EINVAL;
2512 		goto bad;
2513 	}
2514 
2515 	if (passthrough_mode(cache)) {
2516 		bool all_clean;
2517 
2518 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2519 		if (r) {
2520 			*error = "dm_cache_metadata_all_clean() failed";
2521 			goto bad;
2522 		}
2523 
2524 		if (!all_clean) {
2525 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2526 			r = -EINVAL;
2527 			goto bad;
2528 		}
2529 
2530 		policy_allow_migrations(cache->policy, false);
2531 	}
2532 
2533 	spin_lock_init(&cache->lock);
2534 	bio_list_init(&cache->deferred_bios);
2535 	atomic_set(&cache->nr_allocated_migrations, 0);
2536 	atomic_set(&cache->nr_io_migrations, 0);
2537 	init_waitqueue_head(&cache->migration_wait);
2538 
2539 	r = -ENOMEM;
2540 	atomic_set(&cache->nr_dirty, 0);
2541 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2542 	if (!cache->dirty_bitset) {
2543 		*error = "could not allocate dirty bitset";
2544 		goto bad;
2545 	}
2546 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2547 
2548 	cache->discard_block_size =
2549 		calculate_discard_block_size(cache->sectors_per_block,
2550 					     cache->origin_sectors);
2551 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2552 							      cache->discard_block_size));
2553 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2554 	if (!cache->discard_bitset) {
2555 		*error = "could not allocate discard bitset";
2556 		goto bad;
2557 	}
2558 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2559 
2560 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2561 	if (IS_ERR(cache->copier)) {
2562 		*error = "could not create kcopyd client";
2563 		r = PTR_ERR(cache->copier);
2564 		goto bad;
2565 	}
2566 
2567 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2568 	if (!cache->wq) {
2569 		*error = "could not create workqueue for metadata object";
2570 		goto bad;
2571 	}
2572 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2573 	INIT_WORK(&cache->migration_worker, check_migrations);
2574 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2575 
2576 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2577 	if (!cache->prison) {
2578 		*error = "could not create bio prison";
2579 		goto bad;
2580 	}
2581 
2582 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2583 				   migration_cache);
2584 	if (r) {
2585 		*error = "Error creating cache's migration mempool";
2586 		goto bad;
2587 	}
2588 
2589 	cache->need_tick_bio = true;
2590 	cache->sized = false;
2591 	cache->invalidate = false;
2592 	cache->commit_requested = false;
2593 	cache->loaded_mappings = false;
2594 	cache->loaded_discards = false;
2595 
2596 	load_stats(cache);
2597 
2598 	atomic_set(&cache->stats.demotion, 0);
2599 	atomic_set(&cache->stats.promotion, 0);
2600 	atomic_set(&cache->stats.copies_avoided, 0);
2601 	atomic_set(&cache->stats.cache_cell_clash, 0);
2602 	atomic_set(&cache->stats.commit_count, 0);
2603 	atomic_set(&cache->stats.discard_count, 0);
2604 
2605 	spin_lock_init(&cache->invalidation_lock);
2606 	INIT_LIST_HEAD(&cache->invalidation_requests);
2607 
2608 	batcher_init(&cache->committer, commit_op, cache,
2609 		     issue_op, cache, cache->wq);
2610 	iot_init(&cache->tracker);
2611 
2612 	init_rwsem(&cache->background_work_lock);
2613 	prevent_background_work(cache);
2614 
2615 	*result = cache;
2616 	return 0;
2617 bad:
2618 	destroy(cache);
2619 	return r;
2620 }
2621 
2622 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2623 {
2624 	unsigned i;
2625 	const char **copy;
2626 
2627 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2628 	if (!copy)
2629 		return -ENOMEM;
2630 	for (i = 0; i < argc; i++) {
2631 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2632 		if (!copy[i]) {
2633 			while (i--)
2634 				kfree(copy[i]);
2635 			kfree(copy);
2636 			return -ENOMEM;
2637 		}
2638 	}
2639 
2640 	cache->nr_ctr_args = argc;
2641 	cache->ctr_args = copy;
2642 
2643 	return 0;
2644 }
2645 
2646 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2647 {
2648 	int r = -EINVAL;
2649 	struct cache_args *ca;
2650 	struct cache *cache = NULL;
2651 
2652 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2653 	if (!ca) {
2654 		ti->error = "Error allocating memory for cache";
2655 		return -ENOMEM;
2656 	}
2657 	ca->ti = ti;
2658 
2659 	r = parse_cache_args(ca, argc, argv, &ti->error);
2660 	if (r)
2661 		goto out;
2662 
2663 	r = cache_create(ca, &cache);
2664 	if (r)
2665 		goto out;
2666 
2667 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2668 	if (r) {
2669 		destroy(cache);
2670 		goto out;
2671 	}
2672 
2673 	ti->private = cache;
2674 out:
2675 	destroy_cache_args(ca);
2676 	return r;
2677 }
2678 
2679 /*----------------------------------------------------------------*/
2680 
2681 static int cache_map(struct dm_target *ti, struct bio *bio)
2682 {
2683 	struct cache *cache = ti->private;
2684 
2685 	int r;
2686 	bool commit_needed;
2687 	dm_oblock_t block = get_bio_block(cache, bio);
2688 
2689 	init_per_bio_data(bio);
2690 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2691 		/*
2692 		 * This can only occur if the io goes to a partial block at
2693 		 * the end of the origin device.  We don't cache these.
2694 		 * Just remap to the origin and carry on.
2695 		 */
2696 		remap_to_origin(cache, bio);
2697 		accounted_begin(cache, bio);
2698 		return DM_MAPIO_REMAPPED;
2699 	}
2700 
2701 	if (discard_or_flush(bio)) {
2702 		defer_bio(cache, bio);
2703 		return DM_MAPIO_SUBMITTED;
2704 	}
2705 
2706 	r = map_bio(cache, bio, block, &commit_needed);
2707 	if (commit_needed)
2708 		schedule_commit(&cache->committer);
2709 
2710 	return r;
2711 }
2712 
2713 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2714 {
2715 	struct cache *cache = ti->private;
2716 	unsigned long flags;
2717 	struct per_bio_data *pb = get_per_bio_data(bio);
2718 
2719 	if (pb->tick) {
2720 		policy_tick(cache->policy, false);
2721 
2722 		spin_lock_irqsave(&cache->lock, flags);
2723 		cache->need_tick_bio = true;
2724 		spin_unlock_irqrestore(&cache->lock, flags);
2725 	}
2726 
2727 	bio_drop_shared_lock(cache, bio);
2728 	accounted_complete(cache, bio);
2729 
2730 	return DM_ENDIO_DONE;
2731 }
2732 
2733 static int write_dirty_bitset(struct cache *cache)
2734 {
2735 	int r;
2736 
2737 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2738 		return -EINVAL;
2739 
2740 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2741 	if (r)
2742 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2743 
2744 	return r;
2745 }
2746 
2747 static int write_discard_bitset(struct cache *cache)
2748 {
2749 	unsigned i, r;
2750 
2751 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2752 		return -EINVAL;
2753 
2754 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2755 					   cache->discard_nr_blocks);
2756 	if (r) {
2757 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2758 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2759 		return r;
2760 	}
2761 
2762 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2763 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2764 					 is_discarded(cache, to_dblock(i)));
2765 		if (r) {
2766 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2767 			return r;
2768 		}
2769 	}
2770 
2771 	return 0;
2772 }
2773 
2774 static int write_hints(struct cache *cache)
2775 {
2776 	int r;
2777 
2778 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2779 		return -EINVAL;
2780 
2781 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2782 	if (r) {
2783 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2784 		return r;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 /*
2791  * returns true on success
2792  */
2793 static bool sync_metadata(struct cache *cache)
2794 {
2795 	int r1, r2, r3, r4;
2796 
2797 	r1 = write_dirty_bitset(cache);
2798 	if (r1)
2799 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2800 
2801 	r2 = write_discard_bitset(cache);
2802 	if (r2)
2803 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2804 
2805 	save_stats(cache);
2806 
2807 	r3 = write_hints(cache);
2808 	if (r3)
2809 		DMERR("%s: could not write hints", cache_device_name(cache));
2810 
2811 	/*
2812 	 * If writing the above metadata failed, we still commit, but don't
2813 	 * set the clean shutdown flag.  This will effectively force every
2814 	 * dirty bit to be set on reload.
2815 	 */
2816 	r4 = commit(cache, !r1 && !r2 && !r3);
2817 	if (r4)
2818 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2819 
2820 	return !r1 && !r2 && !r3 && !r4;
2821 }
2822 
2823 static void cache_postsuspend(struct dm_target *ti)
2824 {
2825 	struct cache *cache = ti->private;
2826 
2827 	prevent_background_work(cache);
2828 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2829 
2830 	cancel_delayed_work_sync(&cache->waker);
2831 	drain_workqueue(cache->wq);
2832 	WARN_ON(cache->tracker.in_flight);
2833 
2834 	/*
2835 	 * If it's a flush suspend there won't be any deferred bios, so this
2836 	 * call is harmless.
2837 	 */
2838 	requeue_deferred_bios(cache);
2839 
2840 	if (get_cache_mode(cache) == CM_WRITE)
2841 		(void) sync_metadata(cache);
2842 }
2843 
2844 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2845 			bool dirty, uint32_t hint, bool hint_valid)
2846 {
2847 	int r;
2848 	struct cache *cache = context;
2849 
2850 	if (dirty) {
2851 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2852 		atomic_inc(&cache->nr_dirty);
2853 	} else
2854 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2855 
2856 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2857 	if (r)
2858 		return r;
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * The discard block size in the on disk metadata is not
2865  * neccessarily the same as we're currently using.  So we have to
2866  * be careful to only set the discarded attribute if we know it
2867  * covers a complete block of the new size.
2868  */
2869 struct discard_load_info {
2870 	struct cache *cache;
2871 
2872 	/*
2873 	 * These blocks are sized using the on disk dblock size, rather
2874 	 * than the current one.
2875 	 */
2876 	dm_block_t block_size;
2877 	dm_block_t discard_begin, discard_end;
2878 };
2879 
2880 static void discard_load_info_init(struct cache *cache,
2881 				   struct discard_load_info *li)
2882 {
2883 	li->cache = cache;
2884 	li->discard_begin = li->discard_end = 0;
2885 }
2886 
2887 static void set_discard_range(struct discard_load_info *li)
2888 {
2889 	sector_t b, e;
2890 
2891 	if (li->discard_begin == li->discard_end)
2892 		return;
2893 
2894 	/*
2895 	 * Convert to sectors.
2896 	 */
2897 	b = li->discard_begin * li->block_size;
2898 	e = li->discard_end * li->block_size;
2899 
2900 	/*
2901 	 * Then convert back to the current dblock size.
2902 	 */
2903 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2904 	sector_div(e, li->cache->discard_block_size);
2905 
2906 	/*
2907 	 * The origin may have shrunk, so we need to check we're still in
2908 	 * bounds.
2909 	 */
2910 	if (e > from_dblock(li->cache->discard_nr_blocks))
2911 		e = from_dblock(li->cache->discard_nr_blocks);
2912 
2913 	for (; b < e; b++)
2914 		set_discard(li->cache, to_dblock(b));
2915 }
2916 
2917 static int load_discard(void *context, sector_t discard_block_size,
2918 			dm_dblock_t dblock, bool discard)
2919 {
2920 	struct discard_load_info *li = context;
2921 
2922 	li->block_size = discard_block_size;
2923 
2924 	if (discard) {
2925 		if (from_dblock(dblock) == li->discard_end)
2926 			/*
2927 			 * We're already in a discard range, just extend it.
2928 			 */
2929 			li->discard_end = li->discard_end + 1ULL;
2930 
2931 		else {
2932 			/*
2933 			 * Emit the old range and start a new one.
2934 			 */
2935 			set_discard_range(li);
2936 			li->discard_begin = from_dblock(dblock);
2937 			li->discard_end = li->discard_begin + 1ULL;
2938 		}
2939 	} else {
2940 		set_discard_range(li);
2941 		li->discard_begin = li->discard_end = 0;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2948 {
2949 	sector_t size = get_dev_size(cache->cache_dev);
2950 	(void) sector_div(size, cache->sectors_per_block);
2951 	return to_cblock(size);
2952 }
2953 
2954 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2955 {
2956 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2957 		if (cache->sized) {
2958 			DMERR("%s: unable to extend cache due to missing cache table reload",
2959 			      cache_device_name(cache));
2960 			return false;
2961 		}
2962 	}
2963 
2964 	/*
2965 	 * We can't drop a dirty block when shrinking the cache.
2966 	 */
2967 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2968 		new_size = to_cblock(from_cblock(new_size) + 1);
2969 		if (is_dirty(cache, new_size)) {
2970 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2971 			      cache_device_name(cache),
2972 			      (unsigned long long) from_cblock(new_size));
2973 			return false;
2974 		}
2975 	}
2976 
2977 	return true;
2978 }
2979 
2980 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2981 {
2982 	int r;
2983 
2984 	r = dm_cache_resize(cache->cmd, new_size);
2985 	if (r) {
2986 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2987 		metadata_operation_failed(cache, "dm_cache_resize", r);
2988 		return r;
2989 	}
2990 
2991 	set_cache_size(cache, new_size);
2992 
2993 	return 0;
2994 }
2995 
2996 static int cache_preresume(struct dm_target *ti)
2997 {
2998 	int r = 0;
2999 	struct cache *cache = ti->private;
3000 	dm_cblock_t csize = get_cache_dev_size(cache);
3001 
3002 	/*
3003 	 * Check to see if the cache has resized.
3004 	 */
3005 	if (!cache->sized) {
3006 		r = resize_cache_dev(cache, csize);
3007 		if (r)
3008 			return r;
3009 
3010 		cache->sized = true;
3011 
3012 	} else if (csize != cache->cache_size) {
3013 		if (!can_resize(cache, csize))
3014 			return -EINVAL;
3015 
3016 		r = resize_cache_dev(cache, csize);
3017 		if (r)
3018 			return r;
3019 	}
3020 
3021 	if (!cache->loaded_mappings) {
3022 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3023 					   load_mapping, cache);
3024 		if (r) {
3025 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3026 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3027 			return r;
3028 		}
3029 
3030 		cache->loaded_mappings = true;
3031 	}
3032 
3033 	if (!cache->loaded_discards) {
3034 		struct discard_load_info li;
3035 
3036 		/*
3037 		 * The discard bitset could have been resized, or the
3038 		 * discard block size changed.  To be safe we start by
3039 		 * setting every dblock to not discarded.
3040 		 */
3041 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3042 
3043 		discard_load_info_init(cache, &li);
3044 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3045 		if (r) {
3046 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3047 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3048 			return r;
3049 		}
3050 		set_discard_range(&li);
3051 
3052 		cache->loaded_discards = true;
3053 	}
3054 
3055 	return r;
3056 }
3057 
3058 static void cache_resume(struct dm_target *ti)
3059 {
3060 	struct cache *cache = ti->private;
3061 
3062 	cache->need_tick_bio = true;
3063 	allow_background_work(cache);
3064 	do_waker(&cache->waker.work);
3065 }
3066 
3067 static void emit_flags(struct cache *cache, char *result,
3068 		       unsigned maxlen, ssize_t *sz_ptr)
3069 {
3070 	ssize_t sz = *sz_ptr;
3071 	struct cache_features *cf = &cache->features;
3072 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3073 
3074 	DMEMIT("%u ", count);
3075 
3076 	if (cf->metadata_version == 2)
3077 		DMEMIT("metadata2 ");
3078 
3079 	if (writethrough_mode(cache))
3080 		DMEMIT("writethrough ");
3081 
3082 	else if (passthrough_mode(cache))
3083 		DMEMIT("passthrough ");
3084 
3085 	else if (writeback_mode(cache))
3086 		DMEMIT("writeback ");
3087 
3088 	else {
3089 		DMEMIT("unknown ");
3090 		DMERR("%s: internal error: unknown io mode: %d",
3091 		      cache_device_name(cache), (int) cf->io_mode);
3092 	}
3093 
3094 	if (!cf->discard_passdown)
3095 		DMEMIT("no_discard_passdown ");
3096 
3097 	*sz_ptr = sz;
3098 }
3099 
3100 /*
3101  * Status format:
3102  *
3103  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3104  * <cache block size> <#used cache blocks>/<#total cache blocks>
3105  * <#read hits> <#read misses> <#write hits> <#write misses>
3106  * <#demotions> <#promotions> <#dirty>
3107  * <#features> <features>*
3108  * <#core args> <core args>
3109  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3110  */
3111 static void cache_status(struct dm_target *ti, status_type_t type,
3112 			 unsigned status_flags, char *result, unsigned maxlen)
3113 {
3114 	int r = 0;
3115 	unsigned i;
3116 	ssize_t sz = 0;
3117 	dm_block_t nr_free_blocks_metadata = 0;
3118 	dm_block_t nr_blocks_metadata = 0;
3119 	char buf[BDEVNAME_SIZE];
3120 	struct cache *cache = ti->private;
3121 	dm_cblock_t residency;
3122 	bool needs_check;
3123 
3124 	switch (type) {
3125 	case STATUSTYPE_INFO:
3126 		if (get_cache_mode(cache) == CM_FAIL) {
3127 			DMEMIT("Fail");
3128 			break;
3129 		}
3130 
3131 		/* Commit to ensure statistics aren't out-of-date */
3132 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3133 			(void) commit(cache, false);
3134 
3135 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3136 		if (r) {
3137 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3138 			      cache_device_name(cache), r);
3139 			goto err;
3140 		}
3141 
3142 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3143 		if (r) {
3144 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3145 			      cache_device_name(cache), r);
3146 			goto err;
3147 		}
3148 
3149 		residency = policy_residency(cache->policy);
3150 
3151 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3152 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3153 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3154 		       (unsigned long long)nr_blocks_metadata,
3155 		       (unsigned long long)cache->sectors_per_block,
3156 		       (unsigned long long) from_cblock(residency),
3157 		       (unsigned long long) from_cblock(cache->cache_size),
3158 		       (unsigned) atomic_read(&cache->stats.read_hit),
3159 		       (unsigned) atomic_read(&cache->stats.read_miss),
3160 		       (unsigned) atomic_read(&cache->stats.write_hit),
3161 		       (unsigned) atomic_read(&cache->stats.write_miss),
3162 		       (unsigned) atomic_read(&cache->stats.demotion),
3163 		       (unsigned) atomic_read(&cache->stats.promotion),
3164 		       (unsigned long) atomic_read(&cache->nr_dirty));
3165 
3166 		emit_flags(cache, result, maxlen, &sz);
3167 
3168 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3169 
3170 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3171 		if (sz < maxlen) {
3172 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3173 			if (r)
3174 				DMERR("%s: policy_emit_config_values returned %d",
3175 				      cache_device_name(cache), r);
3176 		}
3177 
3178 		if (get_cache_mode(cache) == CM_READ_ONLY)
3179 			DMEMIT("ro ");
3180 		else
3181 			DMEMIT("rw ");
3182 
3183 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3184 
3185 		if (r || needs_check)
3186 			DMEMIT("needs_check ");
3187 		else
3188 			DMEMIT("- ");
3189 
3190 		break;
3191 
3192 	case STATUSTYPE_TABLE:
3193 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3194 		DMEMIT("%s ", buf);
3195 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3196 		DMEMIT("%s ", buf);
3197 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3198 		DMEMIT("%s", buf);
3199 
3200 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3201 			DMEMIT(" %s", cache->ctr_args[i]);
3202 		if (cache->nr_ctr_args)
3203 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3204 	}
3205 
3206 	return;
3207 
3208 err:
3209 	DMEMIT("Error");
3210 }
3211 
3212 /*
3213  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3214  * the one-past-the-end value.
3215  */
3216 struct cblock_range {
3217 	dm_cblock_t begin;
3218 	dm_cblock_t end;
3219 };
3220 
3221 /*
3222  * A cache block range can take two forms:
3223  *
3224  * i) A single cblock, eg. '3456'
3225  * ii) A begin and end cblock with a dash between, eg. 123-234
3226  */
3227 static int parse_cblock_range(struct cache *cache, const char *str,
3228 			      struct cblock_range *result)
3229 {
3230 	char dummy;
3231 	uint64_t b, e;
3232 	int r;
3233 
3234 	/*
3235 	 * Try and parse form (ii) first.
3236 	 */
3237 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3238 	if (r < 0)
3239 		return r;
3240 
3241 	if (r == 2) {
3242 		result->begin = to_cblock(b);
3243 		result->end = to_cblock(e);
3244 		return 0;
3245 	}
3246 
3247 	/*
3248 	 * That didn't work, try form (i).
3249 	 */
3250 	r = sscanf(str, "%llu%c", &b, &dummy);
3251 	if (r < 0)
3252 		return r;
3253 
3254 	if (r == 1) {
3255 		result->begin = to_cblock(b);
3256 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3257 		return 0;
3258 	}
3259 
3260 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3261 	return -EINVAL;
3262 }
3263 
3264 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3265 {
3266 	uint64_t b = from_cblock(range->begin);
3267 	uint64_t e = from_cblock(range->end);
3268 	uint64_t n = from_cblock(cache->cache_size);
3269 
3270 	if (b >= n) {
3271 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3272 		      cache_device_name(cache), b, n);
3273 		return -EINVAL;
3274 	}
3275 
3276 	if (e > n) {
3277 		DMERR("%s: end cblock out of range: %llu > %llu",
3278 		      cache_device_name(cache), e, n);
3279 		return -EINVAL;
3280 	}
3281 
3282 	if (b >= e) {
3283 		DMERR("%s: invalid cblock range: %llu >= %llu",
3284 		      cache_device_name(cache), b, e);
3285 		return -EINVAL;
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3292 {
3293 	return to_cblock(from_cblock(b) + 1);
3294 }
3295 
3296 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3297 {
3298 	int r = 0;
3299 
3300 	/*
3301 	 * We don't need to do any locking here because we know we're in
3302 	 * passthrough mode.  There's is potential for a race between an
3303 	 * invalidation triggered by an io and an invalidation message.  This
3304 	 * is harmless, we must not worry if the policy call fails.
3305 	 */
3306 	while (range->begin != range->end) {
3307 		r = invalidate_cblock(cache, range->begin);
3308 		if (r)
3309 			return r;
3310 
3311 		range->begin = cblock_succ(range->begin);
3312 	}
3313 
3314 	cache->commit_requested = true;
3315 	return r;
3316 }
3317 
3318 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3319 					      const char **cblock_ranges)
3320 {
3321 	int r = 0;
3322 	unsigned i;
3323 	struct cblock_range range;
3324 
3325 	if (!passthrough_mode(cache)) {
3326 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3327 		      cache_device_name(cache));
3328 		return -EPERM;
3329 	}
3330 
3331 	for (i = 0; i < count; i++) {
3332 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3333 		if (r)
3334 			break;
3335 
3336 		r = validate_cblock_range(cache, &range);
3337 		if (r)
3338 			break;
3339 
3340 		/*
3341 		 * Pass begin and end origin blocks to the worker and wake it.
3342 		 */
3343 		r = request_invalidation(cache, &range);
3344 		if (r)
3345 			break;
3346 	}
3347 
3348 	return r;
3349 }
3350 
3351 /*
3352  * Supports
3353  *	"<key> <value>"
3354  * and
3355  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3356  *
3357  * The key migration_threshold is supported by the cache target core.
3358  */
3359 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3360 			 char *result, unsigned maxlen)
3361 {
3362 	struct cache *cache = ti->private;
3363 
3364 	if (!argc)
3365 		return -EINVAL;
3366 
3367 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3368 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3369 		      cache_device_name(cache));
3370 		return -EOPNOTSUPP;
3371 	}
3372 
3373 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3374 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3375 
3376 	if (argc != 2)
3377 		return -EINVAL;
3378 
3379 	return set_config_value(cache, argv[0], argv[1]);
3380 }
3381 
3382 static int cache_iterate_devices(struct dm_target *ti,
3383 				 iterate_devices_callout_fn fn, void *data)
3384 {
3385 	int r = 0;
3386 	struct cache *cache = ti->private;
3387 
3388 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3389 	if (!r)
3390 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3391 
3392 	return r;
3393 }
3394 
3395 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3396 {
3397 	struct request_queue *q = bdev_get_queue(origin_bdev);
3398 
3399 	return q && blk_queue_discard(q);
3400 }
3401 
3402 /*
3403  * If discard_passdown was enabled verify that the origin device
3404  * supports discards.  Disable discard_passdown if not.
3405  */
3406 static void disable_passdown_if_not_supported(struct cache *cache)
3407 {
3408 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3409 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3410 	const char *reason = NULL;
3411 	char buf[BDEVNAME_SIZE];
3412 
3413 	if (!cache->features.discard_passdown)
3414 		return;
3415 
3416 	if (!origin_dev_supports_discard(origin_bdev))
3417 		reason = "discard unsupported";
3418 
3419 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3420 		reason = "max discard sectors smaller than a block";
3421 
3422 	if (reason) {
3423 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3424 		       bdevname(origin_bdev, buf), reason);
3425 		cache->features.discard_passdown = false;
3426 	}
3427 }
3428 
3429 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3430 {
3431 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3432 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3433 
3434 	if (!cache->features.discard_passdown) {
3435 		/* No passdown is done so setting own virtual limits */
3436 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3437 						    cache->origin_sectors);
3438 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3439 		return;
3440 	}
3441 
3442 	/*
3443 	 * cache_iterate_devices() is stacking both origin and fast device limits
3444 	 * but discards aren't passed to fast device, so inherit origin's limits.
3445 	 */
3446 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3447 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3448 	limits->discard_granularity = origin_limits->discard_granularity;
3449 	limits->discard_alignment = origin_limits->discard_alignment;
3450 	limits->discard_misaligned = origin_limits->discard_misaligned;
3451 }
3452 
3453 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3454 {
3455 	struct cache *cache = ti->private;
3456 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3457 
3458 	/*
3459 	 * If the system-determined stacked limits are compatible with the
3460 	 * cache's blocksize (io_opt is a factor) do not override them.
3461 	 */
3462 	if (io_opt_sectors < cache->sectors_per_block ||
3463 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3464 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3465 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3466 	}
3467 
3468 	disable_passdown_if_not_supported(cache);
3469 	set_discard_limits(cache, limits);
3470 }
3471 
3472 /*----------------------------------------------------------------*/
3473 
3474 static struct target_type cache_target = {
3475 	.name = "cache",
3476 	.version = {2, 2, 0},
3477 	.module = THIS_MODULE,
3478 	.ctr = cache_ctr,
3479 	.dtr = cache_dtr,
3480 	.map = cache_map,
3481 	.end_io = cache_end_io,
3482 	.postsuspend = cache_postsuspend,
3483 	.preresume = cache_preresume,
3484 	.resume = cache_resume,
3485 	.status = cache_status,
3486 	.message = cache_message,
3487 	.iterate_devices = cache_iterate_devices,
3488 	.io_hints = cache_io_hints,
3489 };
3490 
3491 static int __init dm_cache_init(void)
3492 {
3493 	int r;
3494 
3495 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3496 	if (!migration_cache)
3497 		return -ENOMEM;
3498 
3499 	r = dm_register_target(&cache_target);
3500 	if (r) {
3501 		DMERR("cache target registration failed: %d", r);
3502 		kmem_cache_destroy(migration_cache);
3503 		return r;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static void __exit dm_cache_exit(void)
3510 {
3511 	dm_unregister_target(&cache_target);
3512 	kmem_cache_destroy(migration_cache);
3513 }
3514 
3515 module_init(dm_cache_init);
3516 module_exit(dm_cache_exit);
3517 
3518 MODULE_DESCRIPTION(DM_NAME " cache target");
3519 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3520 MODULE_LICENSE("GPL");
3521