xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 179dd8c0)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 #define IOT_RESOLUTION 4
29 
30 struct io_tracker {
31 	spinlock_t lock;
32 
33 	/*
34 	 * Sectors of in-flight IO.
35 	 */
36 	sector_t in_flight;
37 
38 	/*
39 	 * The time, in jiffies, when this device became idle (if it is
40 	 * indeed idle).
41 	 */
42 	unsigned long idle_time;
43 	unsigned long last_update_time;
44 };
45 
46 static void iot_init(struct io_tracker *iot)
47 {
48 	spin_lock_init(&iot->lock);
49 	iot->in_flight = 0ul;
50 	iot->idle_time = 0ul;
51 	iot->last_update_time = jiffies;
52 }
53 
54 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
55 {
56 	if (iot->in_flight)
57 		return false;
58 
59 	return time_after(jiffies, iot->idle_time + jifs);
60 }
61 
62 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
63 {
64 	bool r;
65 	unsigned long flags;
66 
67 	spin_lock_irqsave(&iot->lock, flags);
68 	r = __iot_idle_for(iot, jifs);
69 	spin_unlock_irqrestore(&iot->lock, flags);
70 
71 	return r;
72 }
73 
74 static void iot_io_begin(struct io_tracker *iot, sector_t len)
75 {
76 	unsigned long flags;
77 
78 	spin_lock_irqsave(&iot->lock, flags);
79 	iot->in_flight += len;
80 	spin_unlock_irqrestore(&iot->lock, flags);
81 }
82 
83 static void __iot_io_end(struct io_tracker *iot, sector_t len)
84 {
85 	iot->in_flight -= len;
86 	if (!iot->in_flight)
87 		iot->idle_time = jiffies;
88 }
89 
90 static void iot_io_end(struct io_tracker *iot, sector_t len)
91 {
92 	unsigned long flags;
93 
94 	spin_lock_irqsave(&iot->lock, flags);
95 	__iot_io_end(iot, len);
96 	spin_unlock_irqrestore(&iot->lock, flags);
97 }
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Glossary:
103  *
104  * oblock: index of an origin block
105  * cblock: index of a cache block
106  * promotion: movement of a block from origin to cache
107  * demotion: movement of a block from cache to origin
108  * migration: movement of a block between the origin and cache device,
109  *	      either direction
110  */
111 
112 /*----------------------------------------------------------------*/
113 
114 /*
115  * There are a couple of places where we let a bio run, but want to do some
116  * work before calling its endio function.  We do this by temporarily
117  * changing the endio fn.
118  */
119 struct dm_hook_info {
120 	bio_end_io_t *bi_end_io;
121 	void *bi_private;
122 };
123 
124 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
125 			bio_end_io_t *bi_end_io, void *bi_private)
126 {
127 	h->bi_end_io = bio->bi_end_io;
128 	h->bi_private = bio->bi_private;
129 
130 	bio->bi_end_io = bi_end_io;
131 	bio->bi_private = bi_private;
132 }
133 
134 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
135 {
136 	bio->bi_end_io = h->bi_end_io;
137 	bio->bi_private = h->bi_private;
138 }
139 
140 /*----------------------------------------------------------------*/
141 
142 #define MIGRATION_POOL_SIZE 128
143 #define COMMIT_PERIOD HZ
144 #define MIGRATION_COUNT_WINDOW 10
145 
146 /*
147  * The block size of the device holding cache data must be
148  * between 32KB and 1GB.
149  */
150 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
151 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
152 
153 enum cache_metadata_mode {
154 	CM_WRITE,		/* metadata may be changed */
155 	CM_READ_ONLY,		/* metadata may not be changed */
156 	CM_FAIL
157 };
158 
159 enum cache_io_mode {
160 	/*
161 	 * Data is written to cached blocks only.  These blocks are marked
162 	 * dirty.  If you lose the cache device you will lose data.
163 	 * Potential performance increase for both reads and writes.
164 	 */
165 	CM_IO_WRITEBACK,
166 
167 	/*
168 	 * Data is written to both cache and origin.  Blocks are never
169 	 * dirty.  Potential performance benfit for reads only.
170 	 */
171 	CM_IO_WRITETHROUGH,
172 
173 	/*
174 	 * A degraded mode useful for various cache coherency situations
175 	 * (eg, rolling back snapshots).  Reads and writes always go to the
176 	 * origin.  If a write goes to a cached oblock, then the cache
177 	 * block is invalidated.
178 	 */
179 	CM_IO_PASSTHROUGH
180 };
181 
182 struct cache_features {
183 	enum cache_metadata_mode mode;
184 	enum cache_io_mode io_mode;
185 };
186 
187 struct cache_stats {
188 	atomic_t read_hit;
189 	atomic_t read_miss;
190 	atomic_t write_hit;
191 	atomic_t write_miss;
192 	atomic_t demotion;
193 	atomic_t promotion;
194 	atomic_t copies_avoided;
195 	atomic_t cache_cell_clash;
196 	atomic_t commit_count;
197 	atomic_t discard_count;
198 };
199 
200 /*
201  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
202  * the one-past-the-end value.
203  */
204 struct cblock_range {
205 	dm_cblock_t begin;
206 	dm_cblock_t end;
207 };
208 
209 struct invalidation_request {
210 	struct list_head list;
211 	struct cblock_range *cblocks;
212 
213 	atomic_t complete;
214 	int err;
215 
216 	wait_queue_head_t result_wait;
217 };
218 
219 struct cache {
220 	struct dm_target *ti;
221 	struct dm_target_callbacks callbacks;
222 
223 	struct dm_cache_metadata *cmd;
224 
225 	/*
226 	 * Metadata is written to this device.
227 	 */
228 	struct dm_dev *metadata_dev;
229 
230 	/*
231 	 * The slower of the two data devices.  Typically a spindle.
232 	 */
233 	struct dm_dev *origin_dev;
234 
235 	/*
236 	 * The faster of the two data devices.  Typically an SSD.
237 	 */
238 	struct dm_dev *cache_dev;
239 
240 	/*
241 	 * Size of the origin device in _complete_ blocks and native sectors.
242 	 */
243 	dm_oblock_t origin_blocks;
244 	sector_t origin_sectors;
245 
246 	/*
247 	 * Size of the cache device in blocks.
248 	 */
249 	dm_cblock_t cache_size;
250 
251 	/*
252 	 * Fields for converting from sectors to blocks.
253 	 */
254 	uint32_t sectors_per_block;
255 	int sectors_per_block_shift;
256 
257 	spinlock_t lock;
258 	struct list_head deferred_cells;
259 	struct bio_list deferred_bios;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_writethrough_bios;
262 	struct list_head quiesced_migrations;
263 	struct list_head completed_migrations;
264 	struct list_head need_commit_migrations;
265 	sector_t migration_threshold;
266 	wait_queue_head_t migration_wait;
267 	atomic_t nr_allocated_migrations;
268 
269 	/*
270 	 * The number of in flight migrations that are performing
271 	 * background io. eg, promotion, writeback.
272 	 */
273 	atomic_t nr_io_migrations;
274 
275 	wait_queue_head_t quiescing_wait;
276 	atomic_t quiescing;
277 	atomic_t quiescing_ack;
278 
279 	/*
280 	 * cache_size entries, dirty if set
281 	 */
282 	atomic_t nr_dirty;
283 	unsigned long *dirty_bitset;
284 
285 	/*
286 	 * origin_blocks entries, discarded if set.
287 	 */
288 	dm_dblock_t discard_nr_blocks;
289 	unsigned long *discard_bitset;
290 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
291 
292 	/*
293 	 * Rather than reconstructing the table line for the status we just
294 	 * save it and regurgitate.
295 	 */
296 	unsigned nr_ctr_args;
297 	const char **ctr_args;
298 
299 	struct dm_kcopyd_client *copier;
300 	struct workqueue_struct *wq;
301 	struct work_struct worker;
302 
303 	struct delayed_work waker;
304 	unsigned long last_commit_jiffies;
305 
306 	struct dm_bio_prison *prison;
307 	struct dm_deferred_set *all_io_ds;
308 
309 	mempool_t *migration_pool;
310 
311 	struct dm_cache_policy *policy;
312 	unsigned policy_nr_args;
313 
314 	bool need_tick_bio:1;
315 	bool sized:1;
316 	bool invalidate:1;
317 	bool commit_requested:1;
318 	bool loaded_mappings:1;
319 	bool loaded_discards:1;
320 
321 	/*
322 	 * Cache features such as write-through.
323 	 */
324 	struct cache_features features;
325 
326 	struct cache_stats stats;
327 
328 	/*
329 	 * Invalidation fields.
330 	 */
331 	spinlock_t invalidation_lock;
332 	struct list_head invalidation_requests;
333 
334 	struct io_tracker origin_tracker;
335 };
336 
337 struct per_bio_data {
338 	bool tick:1;
339 	unsigned req_nr:2;
340 	struct dm_deferred_entry *all_io_entry;
341 	struct dm_hook_info hook_info;
342 	sector_t len;
343 
344 	/*
345 	 * writethrough fields.  These MUST remain at the end of this
346 	 * structure and the 'cache' member must be the first as it
347 	 * is used to determine the offset of the writethrough fields.
348 	 */
349 	struct cache *cache;
350 	dm_cblock_t cblock;
351 	struct dm_bio_details bio_details;
352 };
353 
354 struct dm_cache_migration {
355 	struct list_head list;
356 	struct cache *cache;
357 
358 	unsigned long start_jiffies;
359 	dm_oblock_t old_oblock;
360 	dm_oblock_t new_oblock;
361 	dm_cblock_t cblock;
362 
363 	bool err:1;
364 	bool discard:1;
365 	bool writeback:1;
366 	bool demote:1;
367 	bool promote:1;
368 	bool requeue_holder:1;
369 	bool invalidate:1;
370 
371 	struct dm_bio_prison_cell *old_ocell;
372 	struct dm_bio_prison_cell *new_ocell;
373 };
374 
375 /*
376  * Processing a bio in the worker thread may require these memory
377  * allocations.  We prealloc to avoid deadlocks (the same worker thread
378  * frees them back to the mempool).
379  */
380 struct prealloc {
381 	struct dm_cache_migration *mg;
382 	struct dm_bio_prison_cell *cell1;
383 	struct dm_bio_prison_cell *cell2;
384 };
385 
386 static enum cache_metadata_mode get_cache_mode(struct cache *cache);
387 
388 static void wake_worker(struct cache *cache)
389 {
390 	queue_work(cache->wq, &cache->worker);
391 }
392 
393 /*----------------------------------------------------------------*/
394 
395 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
396 {
397 	/* FIXME: change to use a local slab. */
398 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
399 }
400 
401 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
402 {
403 	dm_bio_prison_free_cell(cache->prison, cell);
404 }
405 
406 static struct dm_cache_migration *alloc_migration(struct cache *cache)
407 {
408 	struct dm_cache_migration *mg;
409 
410 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
411 	if (mg) {
412 		mg->cache = cache;
413 		atomic_inc(&mg->cache->nr_allocated_migrations);
414 	}
415 
416 	return mg;
417 }
418 
419 static void free_migration(struct dm_cache_migration *mg)
420 {
421 	struct cache *cache = mg->cache;
422 
423 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
424 		wake_up(&cache->migration_wait);
425 
426 	mempool_free(mg, cache->migration_pool);
427 	wake_worker(cache);
428 }
429 
430 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
431 {
432 	if (!p->mg) {
433 		p->mg = alloc_migration(cache);
434 		if (!p->mg)
435 			return -ENOMEM;
436 	}
437 
438 	if (!p->cell1) {
439 		p->cell1 = alloc_prison_cell(cache);
440 		if (!p->cell1)
441 			return -ENOMEM;
442 	}
443 
444 	if (!p->cell2) {
445 		p->cell2 = alloc_prison_cell(cache);
446 		if (!p->cell2)
447 			return -ENOMEM;
448 	}
449 
450 	return 0;
451 }
452 
453 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
454 {
455 	if (p->cell2)
456 		free_prison_cell(cache, p->cell2);
457 
458 	if (p->cell1)
459 		free_prison_cell(cache, p->cell1);
460 
461 	if (p->mg)
462 		free_migration(p->mg);
463 }
464 
465 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
466 {
467 	struct dm_cache_migration *mg = p->mg;
468 
469 	BUG_ON(!mg);
470 	p->mg = NULL;
471 
472 	return mg;
473 }
474 
475 /*
476  * You must have a cell within the prealloc struct to return.  If not this
477  * function will BUG() rather than returning NULL.
478  */
479 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
480 {
481 	struct dm_bio_prison_cell *r = NULL;
482 
483 	if (p->cell1) {
484 		r = p->cell1;
485 		p->cell1 = NULL;
486 
487 	} else if (p->cell2) {
488 		r = p->cell2;
489 		p->cell2 = NULL;
490 	} else
491 		BUG();
492 
493 	return r;
494 }
495 
496 /*
497  * You can't have more than two cells in a prealloc struct.  BUG() will be
498  * called if you try and overfill.
499  */
500 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
501 {
502 	if (!p->cell2)
503 		p->cell2 = cell;
504 
505 	else if (!p->cell1)
506 		p->cell1 = cell;
507 
508 	else
509 		BUG();
510 }
511 
512 /*----------------------------------------------------------------*/
513 
514 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
515 {
516 	key->virtual = 0;
517 	key->dev = 0;
518 	key->block_begin = from_oblock(begin);
519 	key->block_end = from_oblock(end);
520 }
521 
522 /*
523  * The caller hands in a preallocated cell, and a free function for it.
524  * The cell will be freed if there's an error, or if it wasn't used because
525  * a cell with that key already exists.
526  */
527 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
528 
529 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
530 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
531 			    cell_free_fn free_fn, void *free_context,
532 			    struct dm_bio_prison_cell **cell_result)
533 {
534 	int r;
535 	struct dm_cell_key key;
536 
537 	build_key(oblock_begin, oblock_end, &key);
538 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
539 	if (r)
540 		free_fn(free_context, cell_prealloc);
541 
542 	return r;
543 }
544 
545 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
546 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
547 		      cell_free_fn free_fn, void *free_context,
548 		      struct dm_bio_prison_cell **cell_result)
549 {
550 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
551 	return bio_detain_range(cache, oblock, end, bio,
552 				cell_prealloc, free_fn, free_context, cell_result);
553 }
554 
555 static int get_cell(struct cache *cache,
556 		    dm_oblock_t oblock,
557 		    struct prealloc *structs,
558 		    struct dm_bio_prison_cell **cell_result)
559 {
560 	int r;
561 	struct dm_cell_key key;
562 	struct dm_bio_prison_cell *cell_prealloc;
563 
564 	cell_prealloc = prealloc_get_cell(structs);
565 
566 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
567 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
568 	if (r)
569 		prealloc_put_cell(structs, cell_prealloc);
570 
571 	return r;
572 }
573 
574 /*----------------------------------------------------------------*/
575 
576 static bool is_dirty(struct cache *cache, dm_cblock_t b)
577 {
578 	return test_bit(from_cblock(b), cache->dirty_bitset);
579 }
580 
581 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
582 {
583 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
584 		atomic_inc(&cache->nr_dirty);
585 		policy_set_dirty(cache->policy, oblock);
586 	}
587 }
588 
589 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
590 {
591 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
592 		policy_clear_dirty(cache->policy, oblock);
593 		if (atomic_dec_return(&cache->nr_dirty) == 0)
594 			dm_table_event(cache->ti->table);
595 	}
596 }
597 
598 /*----------------------------------------------------------------*/
599 
600 static bool block_size_is_power_of_two(struct cache *cache)
601 {
602 	return cache->sectors_per_block_shift >= 0;
603 }
604 
605 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
606 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
607 __always_inline
608 #endif
609 static dm_block_t block_div(dm_block_t b, uint32_t n)
610 {
611 	do_div(b, n);
612 
613 	return b;
614 }
615 
616 static dm_block_t oblocks_per_dblock(struct cache *cache)
617 {
618 	dm_block_t oblocks = cache->discard_block_size;
619 
620 	if (block_size_is_power_of_two(cache))
621 		oblocks >>= cache->sectors_per_block_shift;
622 	else
623 		oblocks = block_div(oblocks, cache->sectors_per_block);
624 
625 	return oblocks;
626 }
627 
628 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
629 {
630 	return to_dblock(block_div(from_oblock(oblock),
631 				   oblocks_per_dblock(cache)));
632 }
633 
634 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
635 {
636 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
637 }
638 
639 static void set_discard(struct cache *cache, dm_dblock_t b)
640 {
641 	unsigned long flags;
642 
643 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
644 	atomic_inc(&cache->stats.discard_count);
645 
646 	spin_lock_irqsave(&cache->lock, flags);
647 	set_bit(from_dblock(b), cache->discard_bitset);
648 	spin_unlock_irqrestore(&cache->lock, flags);
649 }
650 
651 static void clear_discard(struct cache *cache, dm_dblock_t b)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&cache->lock, flags);
656 	clear_bit(from_dblock(b), cache->discard_bitset);
657 	spin_unlock_irqrestore(&cache->lock, flags);
658 }
659 
660 static bool is_discarded(struct cache *cache, dm_dblock_t b)
661 {
662 	int r;
663 	unsigned long flags;
664 
665 	spin_lock_irqsave(&cache->lock, flags);
666 	r = test_bit(from_dblock(b), cache->discard_bitset);
667 	spin_unlock_irqrestore(&cache->lock, flags);
668 
669 	return r;
670 }
671 
672 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
673 {
674 	int r;
675 	unsigned long flags;
676 
677 	spin_lock_irqsave(&cache->lock, flags);
678 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
679 		     cache->discard_bitset);
680 	spin_unlock_irqrestore(&cache->lock, flags);
681 
682 	return r;
683 }
684 
685 /*----------------------------------------------------------------*/
686 
687 static void load_stats(struct cache *cache)
688 {
689 	struct dm_cache_statistics stats;
690 
691 	dm_cache_metadata_get_stats(cache->cmd, &stats);
692 	atomic_set(&cache->stats.read_hit, stats.read_hits);
693 	atomic_set(&cache->stats.read_miss, stats.read_misses);
694 	atomic_set(&cache->stats.write_hit, stats.write_hits);
695 	atomic_set(&cache->stats.write_miss, stats.write_misses);
696 }
697 
698 static void save_stats(struct cache *cache)
699 {
700 	struct dm_cache_statistics stats;
701 
702 	if (get_cache_mode(cache) >= CM_READ_ONLY)
703 		return;
704 
705 	stats.read_hits = atomic_read(&cache->stats.read_hit);
706 	stats.read_misses = atomic_read(&cache->stats.read_miss);
707 	stats.write_hits = atomic_read(&cache->stats.write_hit);
708 	stats.write_misses = atomic_read(&cache->stats.write_miss);
709 
710 	dm_cache_metadata_set_stats(cache->cmd, &stats);
711 }
712 
713 /*----------------------------------------------------------------
714  * Per bio data
715  *--------------------------------------------------------------*/
716 
717 /*
718  * If using writeback, leave out struct per_bio_data's writethrough fields.
719  */
720 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
721 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
722 
723 static bool writethrough_mode(struct cache_features *f)
724 {
725 	return f->io_mode == CM_IO_WRITETHROUGH;
726 }
727 
728 static bool writeback_mode(struct cache_features *f)
729 {
730 	return f->io_mode == CM_IO_WRITEBACK;
731 }
732 
733 static bool passthrough_mode(struct cache_features *f)
734 {
735 	return f->io_mode == CM_IO_PASSTHROUGH;
736 }
737 
738 static size_t get_per_bio_data_size(struct cache *cache)
739 {
740 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
741 }
742 
743 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
744 {
745 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
746 	BUG_ON(!pb);
747 	return pb;
748 }
749 
750 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
751 {
752 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
753 
754 	pb->tick = false;
755 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
756 	pb->all_io_entry = NULL;
757 	pb->len = 0;
758 
759 	return pb;
760 }
761 
762 /*----------------------------------------------------------------
763  * Remapping
764  *--------------------------------------------------------------*/
765 static void remap_to_origin(struct cache *cache, struct bio *bio)
766 {
767 	bio->bi_bdev = cache->origin_dev->bdev;
768 }
769 
770 static void remap_to_cache(struct cache *cache, struct bio *bio,
771 			   dm_cblock_t cblock)
772 {
773 	sector_t bi_sector = bio->bi_iter.bi_sector;
774 	sector_t block = from_cblock(cblock);
775 
776 	bio->bi_bdev = cache->cache_dev->bdev;
777 	if (!block_size_is_power_of_two(cache))
778 		bio->bi_iter.bi_sector =
779 			(block * cache->sectors_per_block) +
780 			sector_div(bi_sector, cache->sectors_per_block);
781 	else
782 		bio->bi_iter.bi_sector =
783 			(block << cache->sectors_per_block_shift) |
784 			(bi_sector & (cache->sectors_per_block - 1));
785 }
786 
787 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
788 {
789 	unsigned long flags;
790 	size_t pb_data_size = get_per_bio_data_size(cache);
791 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
792 
793 	spin_lock_irqsave(&cache->lock, flags);
794 	if (cache->need_tick_bio &&
795 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
796 		pb->tick = true;
797 		cache->need_tick_bio = false;
798 	}
799 	spin_unlock_irqrestore(&cache->lock, flags);
800 }
801 
802 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
803 				  dm_oblock_t oblock)
804 {
805 	check_if_tick_bio_needed(cache, bio);
806 	remap_to_origin(cache, bio);
807 	if (bio_data_dir(bio) == WRITE)
808 		clear_discard(cache, oblock_to_dblock(cache, oblock));
809 }
810 
811 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
812 				 dm_oblock_t oblock, dm_cblock_t cblock)
813 {
814 	check_if_tick_bio_needed(cache, bio);
815 	remap_to_cache(cache, bio, cblock);
816 	if (bio_data_dir(bio) == WRITE) {
817 		set_dirty(cache, oblock, cblock);
818 		clear_discard(cache, oblock_to_dblock(cache, oblock));
819 	}
820 }
821 
822 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
823 {
824 	sector_t block_nr = bio->bi_iter.bi_sector;
825 
826 	if (!block_size_is_power_of_two(cache))
827 		(void) sector_div(block_nr, cache->sectors_per_block);
828 	else
829 		block_nr >>= cache->sectors_per_block_shift;
830 
831 	return to_oblock(block_nr);
832 }
833 
834 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
835 {
836 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
837 }
838 
839 /*
840  * You must increment the deferred set whilst the prison cell is held.  To
841  * encourage this, we ask for 'cell' to be passed in.
842  */
843 static void inc_ds(struct cache *cache, struct bio *bio,
844 		   struct dm_bio_prison_cell *cell)
845 {
846 	size_t pb_data_size = get_per_bio_data_size(cache);
847 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
848 
849 	BUG_ON(!cell);
850 	BUG_ON(pb->all_io_entry);
851 
852 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
853 }
854 
855 static bool accountable_bio(struct cache *cache, struct bio *bio)
856 {
857 	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
858 		!(bio->bi_rw & REQ_DISCARD));
859 }
860 
861 static void accounted_begin(struct cache *cache, struct bio *bio)
862 {
863 	size_t pb_data_size = get_per_bio_data_size(cache);
864 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
865 
866 	if (accountable_bio(cache, bio)) {
867 		pb->len = bio_sectors(bio);
868 		iot_io_begin(&cache->origin_tracker, pb->len);
869 	}
870 }
871 
872 static void accounted_complete(struct cache *cache, struct bio *bio)
873 {
874 	size_t pb_data_size = get_per_bio_data_size(cache);
875 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
876 
877 	iot_io_end(&cache->origin_tracker, pb->len);
878 }
879 
880 static void accounted_request(struct cache *cache, struct bio *bio)
881 {
882 	accounted_begin(cache, bio);
883 	generic_make_request(bio);
884 }
885 
886 static void issue(struct cache *cache, struct bio *bio)
887 {
888 	unsigned long flags;
889 
890 	if (!bio_triggers_commit(cache, bio)) {
891 		accounted_request(cache, bio);
892 		return;
893 	}
894 
895 	/*
896 	 * Batch together any bios that trigger commits and then issue a
897 	 * single commit for them in do_worker().
898 	 */
899 	spin_lock_irqsave(&cache->lock, flags);
900 	cache->commit_requested = true;
901 	bio_list_add(&cache->deferred_flush_bios, bio);
902 	spin_unlock_irqrestore(&cache->lock, flags);
903 }
904 
905 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
906 {
907 	inc_ds(cache, bio, cell);
908 	issue(cache, bio);
909 }
910 
911 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
912 {
913 	unsigned long flags;
914 
915 	spin_lock_irqsave(&cache->lock, flags);
916 	bio_list_add(&cache->deferred_writethrough_bios, bio);
917 	spin_unlock_irqrestore(&cache->lock, flags);
918 
919 	wake_worker(cache);
920 }
921 
922 static void writethrough_endio(struct bio *bio, int err)
923 {
924 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
925 
926 	dm_unhook_bio(&pb->hook_info, bio);
927 
928 	if (err) {
929 		bio_endio(bio, err);
930 		return;
931 	}
932 
933 	dm_bio_restore(&pb->bio_details, bio);
934 	remap_to_cache(pb->cache, bio, pb->cblock);
935 
936 	/*
937 	 * We can't issue this bio directly, since we're in interrupt
938 	 * context.  So it gets put on a bio list for processing by the
939 	 * worker thread.
940 	 */
941 	defer_writethrough_bio(pb->cache, bio);
942 }
943 
944 /*
945  * When running in writethrough mode we need to send writes to clean blocks
946  * to both the cache and origin devices.  In future we'd like to clone the
947  * bio and send them in parallel, but for now we're doing them in
948  * series as this is easier.
949  */
950 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
951 				       dm_oblock_t oblock, dm_cblock_t cblock)
952 {
953 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
954 
955 	pb->cache = cache;
956 	pb->cblock = cblock;
957 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
958 	dm_bio_record(&pb->bio_details, bio);
959 
960 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
961 }
962 
963 /*----------------------------------------------------------------
964  * Failure modes
965  *--------------------------------------------------------------*/
966 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
967 {
968 	return cache->features.mode;
969 }
970 
971 static const char *cache_device_name(struct cache *cache)
972 {
973 	return dm_device_name(dm_table_get_md(cache->ti->table));
974 }
975 
976 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
977 {
978 	const char *descs[] = {
979 		"write",
980 		"read-only",
981 		"fail"
982 	};
983 
984 	dm_table_event(cache->ti->table);
985 	DMINFO("%s: switching cache to %s mode",
986 	       cache_device_name(cache), descs[(int)mode]);
987 }
988 
989 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
990 {
991 	bool needs_check = dm_cache_metadata_needs_check(cache->cmd);
992 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
993 
994 	if (new_mode == CM_WRITE && needs_check) {
995 		DMERR("%s: unable to switch cache to write mode until repaired.",
996 		      cache_device_name(cache));
997 		if (old_mode != new_mode)
998 			new_mode = old_mode;
999 		else
1000 			new_mode = CM_READ_ONLY;
1001 	}
1002 
1003 	/* Never move out of fail mode */
1004 	if (old_mode == CM_FAIL)
1005 		new_mode = CM_FAIL;
1006 
1007 	switch (new_mode) {
1008 	case CM_FAIL:
1009 	case CM_READ_ONLY:
1010 		dm_cache_metadata_set_read_only(cache->cmd);
1011 		break;
1012 
1013 	case CM_WRITE:
1014 		dm_cache_metadata_set_read_write(cache->cmd);
1015 		break;
1016 	}
1017 
1018 	cache->features.mode = new_mode;
1019 
1020 	if (new_mode != old_mode)
1021 		notify_mode_switch(cache, new_mode);
1022 }
1023 
1024 static void abort_transaction(struct cache *cache)
1025 {
1026 	const char *dev_name = cache_device_name(cache);
1027 
1028 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1029 		return;
1030 
1031 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1032 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1033 		set_cache_mode(cache, CM_FAIL);
1034 	}
1035 
1036 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1037 	if (dm_cache_metadata_abort(cache->cmd)) {
1038 		DMERR("%s: failed to abort metadata transaction", dev_name);
1039 		set_cache_mode(cache, CM_FAIL);
1040 	}
1041 }
1042 
1043 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1044 {
1045 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1046 		    cache_device_name(cache), op, r);
1047 	abort_transaction(cache);
1048 	set_cache_mode(cache, CM_READ_ONLY);
1049 }
1050 
1051 /*----------------------------------------------------------------
1052  * Migration processing
1053  *
1054  * Migration covers moving data from the origin device to the cache, or
1055  * vice versa.
1056  *--------------------------------------------------------------*/
1057 static void inc_io_migrations(struct cache *cache)
1058 {
1059 	atomic_inc(&cache->nr_io_migrations);
1060 }
1061 
1062 static void dec_io_migrations(struct cache *cache)
1063 {
1064 	atomic_dec(&cache->nr_io_migrations);
1065 }
1066 
1067 static void __cell_release(struct cache *cache, struct dm_bio_prison_cell *cell,
1068 			   bool holder, struct bio_list *bios)
1069 {
1070 	(holder ? dm_cell_release : dm_cell_release_no_holder)
1071 		(cache->prison, cell, bios);
1072 	free_prison_cell(cache, cell);
1073 }
1074 
1075 static bool discard_or_flush(struct bio *bio)
1076 {
1077 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1078 }
1079 
1080 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1081 {
1082 	if (discard_or_flush(cell->holder))
1083 		/*
1084 		 * We have to handle these bios
1085 		 * individually.
1086 		 */
1087 		__cell_release(cache, cell, true, &cache->deferred_bios);
1088 
1089 	else
1090 		list_add_tail(&cell->user_list, &cache->deferred_cells);
1091 }
1092 
1093 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
1094 {
1095 	unsigned long flags;
1096 
1097 	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1098 		/*
1099 		 * There was no prisoner to promote to holder, the
1100 		 * cell has been released.
1101 		 */
1102 		free_prison_cell(cache, cell);
1103 		return;
1104 	}
1105 
1106 	spin_lock_irqsave(&cache->lock, flags);
1107 	__cell_defer(cache, cell);
1108 	spin_unlock_irqrestore(&cache->lock, flags);
1109 
1110 	wake_worker(cache);
1111 }
1112 
1113 static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1114 {
1115 	dm_cell_error(cache->prison, cell, err);
1116 	dm_bio_prison_free_cell(cache->prison, cell);
1117 }
1118 
1119 static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1120 {
1121 	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1122 }
1123 
1124 static void free_io_migration(struct dm_cache_migration *mg)
1125 {
1126 	dec_io_migrations(mg->cache);
1127 	free_migration(mg);
1128 }
1129 
1130 static void migration_failure(struct dm_cache_migration *mg)
1131 {
1132 	struct cache *cache = mg->cache;
1133 	const char *dev_name = cache_device_name(cache);
1134 
1135 	if (mg->writeback) {
1136 		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1137 		set_dirty(cache, mg->old_oblock, mg->cblock);
1138 		cell_defer(cache, mg->old_ocell, false);
1139 
1140 	} else if (mg->demote) {
1141 		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1142 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1143 
1144 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1145 		if (mg->promote)
1146 			cell_defer(cache, mg->new_ocell, true);
1147 	} else {
1148 		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1149 		policy_remove_mapping(cache->policy, mg->new_oblock);
1150 		cell_defer(cache, mg->new_ocell, true);
1151 	}
1152 
1153 	free_io_migration(mg);
1154 }
1155 
1156 static void migration_success_pre_commit(struct dm_cache_migration *mg)
1157 {
1158 	int r;
1159 	unsigned long flags;
1160 	struct cache *cache = mg->cache;
1161 
1162 	if (mg->writeback) {
1163 		clear_dirty(cache, mg->old_oblock, mg->cblock);
1164 		cell_defer(cache, mg->old_ocell, false);
1165 		free_io_migration(mg);
1166 		return;
1167 
1168 	} else if (mg->demote) {
1169 		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1170 		if (r) {
1171 			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1172 				    cache_device_name(cache));
1173 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1174 			policy_force_mapping(cache->policy, mg->new_oblock,
1175 					     mg->old_oblock);
1176 			if (mg->promote)
1177 				cell_defer(cache, mg->new_ocell, true);
1178 			free_io_migration(mg);
1179 			return;
1180 		}
1181 	} else {
1182 		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1183 		if (r) {
1184 			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1185 				    cache_device_name(cache));
1186 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1187 			policy_remove_mapping(cache->policy, mg->new_oblock);
1188 			free_io_migration(mg);
1189 			return;
1190 		}
1191 	}
1192 
1193 	spin_lock_irqsave(&cache->lock, flags);
1194 	list_add_tail(&mg->list, &cache->need_commit_migrations);
1195 	cache->commit_requested = true;
1196 	spin_unlock_irqrestore(&cache->lock, flags);
1197 }
1198 
1199 static void migration_success_post_commit(struct dm_cache_migration *mg)
1200 {
1201 	unsigned long flags;
1202 	struct cache *cache = mg->cache;
1203 
1204 	if (mg->writeback) {
1205 		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1206 			     cache_device_name(cache));
1207 		return;
1208 
1209 	} else if (mg->demote) {
1210 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1211 
1212 		if (mg->promote) {
1213 			mg->demote = false;
1214 
1215 			spin_lock_irqsave(&cache->lock, flags);
1216 			list_add_tail(&mg->list, &cache->quiesced_migrations);
1217 			spin_unlock_irqrestore(&cache->lock, flags);
1218 
1219 		} else {
1220 			if (mg->invalidate)
1221 				policy_remove_mapping(cache->policy, mg->old_oblock);
1222 			free_io_migration(mg);
1223 		}
1224 
1225 	} else {
1226 		if (mg->requeue_holder) {
1227 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1228 			cell_defer(cache, mg->new_ocell, true);
1229 		} else {
1230 			/*
1231 			 * The block was promoted via an overwrite, so it's dirty.
1232 			 */
1233 			set_dirty(cache, mg->new_oblock, mg->cblock);
1234 			bio_endio(mg->new_ocell->holder, 0);
1235 			cell_defer(cache, mg->new_ocell, false);
1236 		}
1237 		free_io_migration(mg);
1238 	}
1239 }
1240 
1241 static void copy_complete(int read_err, unsigned long write_err, void *context)
1242 {
1243 	unsigned long flags;
1244 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1245 	struct cache *cache = mg->cache;
1246 
1247 	if (read_err || write_err)
1248 		mg->err = true;
1249 
1250 	spin_lock_irqsave(&cache->lock, flags);
1251 	list_add_tail(&mg->list, &cache->completed_migrations);
1252 	spin_unlock_irqrestore(&cache->lock, flags);
1253 
1254 	wake_worker(cache);
1255 }
1256 
1257 static void issue_copy(struct dm_cache_migration *mg)
1258 {
1259 	int r;
1260 	struct dm_io_region o_region, c_region;
1261 	struct cache *cache = mg->cache;
1262 	sector_t cblock = from_cblock(mg->cblock);
1263 
1264 	o_region.bdev = cache->origin_dev->bdev;
1265 	o_region.count = cache->sectors_per_block;
1266 
1267 	c_region.bdev = cache->cache_dev->bdev;
1268 	c_region.sector = cblock * cache->sectors_per_block;
1269 	c_region.count = cache->sectors_per_block;
1270 
1271 	if (mg->writeback || mg->demote) {
1272 		/* demote */
1273 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1274 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1275 	} else {
1276 		/* promote */
1277 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1278 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1279 	}
1280 
1281 	if (r < 0) {
1282 		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1283 		migration_failure(mg);
1284 	}
1285 }
1286 
1287 static void overwrite_endio(struct bio *bio, int err)
1288 {
1289 	struct dm_cache_migration *mg = bio->bi_private;
1290 	struct cache *cache = mg->cache;
1291 	size_t pb_data_size = get_per_bio_data_size(cache);
1292 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1293 	unsigned long flags;
1294 
1295 	dm_unhook_bio(&pb->hook_info, bio);
1296 
1297 	if (err)
1298 		mg->err = true;
1299 
1300 	mg->requeue_holder = false;
1301 
1302 	spin_lock_irqsave(&cache->lock, flags);
1303 	list_add_tail(&mg->list, &cache->completed_migrations);
1304 	spin_unlock_irqrestore(&cache->lock, flags);
1305 
1306 	wake_worker(cache);
1307 }
1308 
1309 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1310 {
1311 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1312 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1313 
1314 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1315 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1316 
1317 	/*
1318 	 * No need to inc_ds() here, since the cell will be held for the
1319 	 * duration of the io.
1320 	 */
1321 	accounted_request(mg->cache, bio);
1322 }
1323 
1324 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1325 {
1326 	return (bio_data_dir(bio) == WRITE) &&
1327 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1328 }
1329 
1330 static void avoid_copy(struct dm_cache_migration *mg)
1331 {
1332 	atomic_inc(&mg->cache->stats.copies_avoided);
1333 	migration_success_pre_commit(mg);
1334 }
1335 
1336 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1337 				     dm_dblock_t *b, dm_dblock_t *e)
1338 {
1339 	sector_t sb = bio->bi_iter.bi_sector;
1340 	sector_t se = bio_end_sector(bio);
1341 
1342 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1343 
1344 	if (se - sb < cache->discard_block_size)
1345 		*e = *b;
1346 	else
1347 		*e = to_dblock(block_div(se, cache->discard_block_size));
1348 }
1349 
1350 static void issue_discard(struct dm_cache_migration *mg)
1351 {
1352 	dm_dblock_t b, e;
1353 	struct bio *bio = mg->new_ocell->holder;
1354 
1355 	calc_discard_block_range(mg->cache, bio, &b, &e);
1356 	while (b != e) {
1357 		set_discard(mg->cache, b);
1358 		b = to_dblock(from_dblock(b) + 1);
1359 	}
1360 
1361 	bio_endio(bio, 0);
1362 	cell_defer(mg->cache, mg->new_ocell, false);
1363 	free_migration(mg);
1364 }
1365 
1366 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1367 {
1368 	bool avoid;
1369 	struct cache *cache = mg->cache;
1370 
1371 	if (mg->discard) {
1372 		issue_discard(mg);
1373 		return;
1374 	}
1375 
1376 	if (mg->writeback || mg->demote)
1377 		avoid = !is_dirty(cache, mg->cblock) ||
1378 			is_discarded_oblock(cache, mg->old_oblock);
1379 	else {
1380 		struct bio *bio = mg->new_ocell->holder;
1381 
1382 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1383 
1384 		if (writeback_mode(&cache->features) &&
1385 		    !avoid && bio_writes_complete_block(cache, bio)) {
1386 			issue_overwrite(mg, bio);
1387 			return;
1388 		}
1389 	}
1390 
1391 	avoid ? avoid_copy(mg) : issue_copy(mg);
1392 }
1393 
1394 static void complete_migration(struct dm_cache_migration *mg)
1395 {
1396 	if (mg->err)
1397 		migration_failure(mg);
1398 	else
1399 		migration_success_pre_commit(mg);
1400 }
1401 
1402 static void process_migrations(struct cache *cache, struct list_head *head,
1403 			       void (*fn)(struct dm_cache_migration *))
1404 {
1405 	unsigned long flags;
1406 	struct list_head list;
1407 	struct dm_cache_migration *mg, *tmp;
1408 
1409 	INIT_LIST_HEAD(&list);
1410 	spin_lock_irqsave(&cache->lock, flags);
1411 	list_splice_init(head, &list);
1412 	spin_unlock_irqrestore(&cache->lock, flags);
1413 
1414 	list_for_each_entry_safe(mg, tmp, &list, list)
1415 		fn(mg);
1416 }
1417 
1418 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1419 {
1420 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1421 }
1422 
1423 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1424 {
1425 	unsigned long flags;
1426 	struct cache *cache = mg->cache;
1427 
1428 	spin_lock_irqsave(&cache->lock, flags);
1429 	__queue_quiesced_migration(mg);
1430 	spin_unlock_irqrestore(&cache->lock, flags);
1431 
1432 	wake_worker(cache);
1433 }
1434 
1435 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1436 {
1437 	unsigned long flags;
1438 	struct dm_cache_migration *mg, *tmp;
1439 
1440 	spin_lock_irqsave(&cache->lock, flags);
1441 	list_for_each_entry_safe(mg, tmp, work, list)
1442 		__queue_quiesced_migration(mg);
1443 	spin_unlock_irqrestore(&cache->lock, flags);
1444 
1445 	wake_worker(cache);
1446 }
1447 
1448 static void check_for_quiesced_migrations(struct cache *cache,
1449 					  struct per_bio_data *pb)
1450 {
1451 	struct list_head work;
1452 
1453 	if (!pb->all_io_entry)
1454 		return;
1455 
1456 	INIT_LIST_HEAD(&work);
1457 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1458 
1459 	if (!list_empty(&work))
1460 		queue_quiesced_migrations(cache, &work);
1461 }
1462 
1463 static void quiesce_migration(struct dm_cache_migration *mg)
1464 {
1465 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1466 		queue_quiesced_migration(mg);
1467 }
1468 
1469 static void promote(struct cache *cache, struct prealloc *structs,
1470 		    dm_oblock_t oblock, dm_cblock_t cblock,
1471 		    struct dm_bio_prison_cell *cell)
1472 {
1473 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1474 
1475 	mg->err = false;
1476 	mg->discard = false;
1477 	mg->writeback = false;
1478 	mg->demote = false;
1479 	mg->promote = true;
1480 	mg->requeue_holder = true;
1481 	mg->invalidate = false;
1482 	mg->cache = cache;
1483 	mg->new_oblock = oblock;
1484 	mg->cblock = cblock;
1485 	mg->old_ocell = NULL;
1486 	mg->new_ocell = cell;
1487 	mg->start_jiffies = jiffies;
1488 
1489 	inc_io_migrations(cache);
1490 	quiesce_migration(mg);
1491 }
1492 
1493 static void writeback(struct cache *cache, struct prealloc *structs,
1494 		      dm_oblock_t oblock, dm_cblock_t cblock,
1495 		      struct dm_bio_prison_cell *cell)
1496 {
1497 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1498 
1499 	mg->err = false;
1500 	mg->discard = false;
1501 	mg->writeback = true;
1502 	mg->demote = false;
1503 	mg->promote = false;
1504 	mg->requeue_holder = true;
1505 	mg->invalidate = false;
1506 	mg->cache = cache;
1507 	mg->old_oblock = oblock;
1508 	mg->cblock = cblock;
1509 	mg->old_ocell = cell;
1510 	mg->new_ocell = NULL;
1511 	mg->start_jiffies = jiffies;
1512 
1513 	inc_io_migrations(cache);
1514 	quiesce_migration(mg);
1515 }
1516 
1517 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1518 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1519 				dm_cblock_t cblock,
1520 				struct dm_bio_prison_cell *old_ocell,
1521 				struct dm_bio_prison_cell *new_ocell)
1522 {
1523 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1524 
1525 	mg->err = false;
1526 	mg->discard = false;
1527 	mg->writeback = false;
1528 	mg->demote = true;
1529 	mg->promote = true;
1530 	mg->requeue_holder = true;
1531 	mg->invalidate = false;
1532 	mg->cache = cache;
1533 	mg->old_oblock = old_oblock;
1534 	mg->new_oblock = new_oblock;
1535 	mg->cblock = cblock;
1536 	mg->old_ocell = old_ocell;
1537 	mg->new_ocell = new_ocell;
1538 	mg->start_jiffies = jiffies;
1539 
1540 	inc_io_migrations(cache);
1541 	quiesce_migration(mg);
1542 }
1543 
1544 /*
1545  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1546  * block are thrown away.
1547  */
1548 static void invalidate(struct cache *cache, struct prealloc *structs,
1549 		       dm_oblock_t oblock, dm_cblock_t cblock,
1550 		       struct dm_bio_prison_cell *cell)
1551 {
1552 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1553 
1554 	mg->err = false;
1555 	mg->discard = false;
1556 	mg->writeback = false;
1557 	mg->demote = true;
1558 	mg->promote = false;
1559 	mg->requeue_holder = true;
1560 	mg->invalidate = true;
1561 	mg->cache = cache;
1562 	mg->old_oblock = oblock;
1563 	mg->cblock = cblock;
1564 	mg->old_ocell = cell;
1565 	mg->new_ocell = NULL;
1566 	mg->start_jiffies = jiffies;
1567 
1568 	inc_io_migrations(cache);
1569 	quiesce_migration(mg);
1570 }
1571 
1572 static void discard(struct cache *cache, struct prealloc *structs,
1573 		    struct dm_bio_prison_cell *cell)
1574 {
1575 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1576 
1577 	mg->err = false;
1578 	mg->discard = true;
1579 	mg->writeback = false;
1580 	mg->demote = false;
1581 	mg->promote = false;
1582 	mg->requeue_holder = false;
1583 	mg->invalidate = false;
1584 	mg->cache = cache;
1585 	mg->old_ocell = NULL;
1586 	mg->new_ocell = cell;
1587 	mg->start_jiffies = jiffies;
1588 
1589 	quiesce_migration(mg);
1590 }
1591 
1592 /*----------------------------------------------------------------
1593  * bio processing
1594  *--------------------------------------------------------------*/
1595 static void defer_bio(struct cache *cache, struct bio *bio)
1596 {
1597 	unsigned long flags;
1598 
1599 	spin_lock_irqsave(&cache->lock, flags);
1600 	bio_list_add(&cache->deferred_bios, bio);
1601 	spin_unlock_irqrestore(&cache->lock, flags);
1602 
1603 	wake_worker(cache);
1604 }
1605 
1606 static void process_flush_bio(struct cache *cache, struct bio *bio)
1607 {
1608 	size_t pb_data_size = get_per_bio_data_size(cache);
1609 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1610 
1611 	BUG_ON(bio->bi_iter.bi_size);
1612 	if (!pb->req_nr)
1613 		remap_to_origin(cache, bio);
1614 	else
1615 		remap_to_cache(cache, bio, 0);
1616 
1617 	/*
1618 	 * REQ_FLUSH is not directed at any particular block so we don't
1619 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1620 	 * by dm-core.
1621 	 */
1622 	issue(cache, bio);
1623 }
1624 
1625 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1626 				struct bio *bio)
1627 {
1628 	int r;
1629 	dm_dblock_t b, e;
1630 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1631 
1632 	calc_discard_block_range(cache, bio, &b, &e);
1633 	if (b == e) {
1634 		bio_endio(bio, 0);
1635 		return;
1636 	}
1637 
1638 	cell_prealloc = prealloc_get_cell(structs);
1639 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1640 			     (cell_free_fn) prealloc_put_cell,
1641 			     structs, &new_ocell);
1642 	if (r > 0)
1643 		return;
1644 
1645 	discard(cache, structs, new_ocell);
1646 }
1647 
1648 static bool spare_migration_bandwidth(struct cache *cache)
1649 {
1650 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651 		cache->sectors_per_block;
1652 	return current_volume < cache->migration_threshold;
1653 }
1654 
1655 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656 {
1657 	atomic_inc(bio_data_dir(bio) == READ ?
1658 		   &cache->stats.read_hit : &cache->stats.write_hit);
1659 }
1660 
1661 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662 {
1663 	atomic_inc(bio_data_dir(bio) == READ ?
1664 		   &cache->stats.read_miss : &cache->stats.write_miss);
1665 }
1666 
1667 /*----------------------------------------------------------------*/
1668 
1669 struct inc_detail {
1670 	struct cache *cache;
1671 	struct bio_list bios_for_issue;
1672 	struct bio_list unhandled_bios;
1673 	bool any_writes;
1674 };
1675 
1676 static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1677 {
1678 	struct bio *bio;
1679 	struct inc_detail *detail = context;
1680 	struct cache *cache = detail->cache;
1681 
1682 	inc_ds(cache, cell->holder, cell);
1683 	if (bio_data_dir(cell->holder) == WRITE)
1684 		detail->any_writes = true;
1685 
1686 	while ((bio = bio_list_pop(&cell->bios))) {
1687 		if (discard_or_flush(bio)) {
1688 			bio_list_add(&detail->unhandled_bios, bio);
1689 			continue;
1690 		}
1691 
1692 		if (bio_data_dir(bio) == WRITE)
1693 			detail->any_writes = true;
1694 
1695 		bio_list_add(&detail->bios_for_issue, bio);
1696 		inc_ds(cache, bio, cell);
1697 	}
1698 }
1699 
1700 // FIXME: refactor these two
1701 static void remap_cell_to_origin_clear_discard(struct cache *cache,
1702 					       struct dm_bio_prison_cell *cell,
1703 					       dm_oblock_t oblock, bool issue_holder)
1704 {
1705 	struct bio *bio;
1706 	unsigned long flags;
1707 	struct inc_detail detail;
1708 
1709 	detail.cache = cache;
1710 	bio_list_init(&detail.bios_for_issue);
1711 	bio_list_init(&detail.unhandled_bios);
1712 	detail.any_writes = false;
1713 
1714 	spin_lock_irqsave(&cache->lock, flags);
1715 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1716 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1717 	spin_unlock_irqrestore(&cache->lock, flags);
1718 
1719 	remap_to_origin(cache, cell->holder);
1720 	if (issue_holder)
1721 		issue(cache, cell->holder);
1722 	else
1723 		accounted_begin(cache, cell->holder);
1724 
1725 	if (detail.any_writes)
1726 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1727 
1728 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1729 		remap_to_origin(cache, bio);
1730 		issue(cache, bio);
1731 	}
1732 }
1733 
1734 static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1735 				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1736 {
1737 	struct bio *bio;
1738 	unsigned long flags;
1739 	struct inc_detail detail;
1740 
1741 	detail.cache = cache;
1742 	bio_list_init(&detail.bios_for_issue);
1743 	bio_list_init(&detail.unhandled_bios);
1744 	detail.any_writes = false;
1745 
1746 	spin_lock_irqsave(&cache->lock, flags);
1747 	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1748 	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1749 	spin_unlock_irqrestore(&cache->lock, flags);
1750 
1751 	remap_to_cache(cache, cell->holder, cblock);
1752 	if (issue_holder)
1753 		issue(cache, cell->holder);
1754 	else
1755 		accounted_begin(cache, cell->holder);
1756 
1757 	if (detail.any_writes) {
1758 		set_dirty(cache, oblock, cblock);
1759 		clear_discard(cache, oblock_to_dblock(cache, oblock));
1760 	}
1761 
1762 	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1763 		remap_to_cache(cache, bio, cblock);
1764 		issue(cache, bio);
1765 	}
1766 }
1767 
1768 /*----------------------------------------------------------------*/
1769 
1770 struct old_oblock_lock {
1771 	struct policy_locker locker;
1772 	struct cache *cache;
1773 	struct prealloc *structs;
1774 	struct dm_bio_prison_cell *cell;
1775 };
1776 
1777 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1778 {
1779 	/* This should never be called */
1780 	BUG();
1781 	return 0;
1782 }
1783 
1784 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1785 {
1786 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1787 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1788 
1789 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1790 			  (cell_free_fn) prealloc_put_cell,
1791 			  l->structs, &l->cell);
1792 }
1793 
1794 static void process_cell(struct cache *cache, struct prealloc *structs,
1795 			 struct dm_bio_prison_cell *new_ocell)
1796 {
1797 	int r;
1798 	bool release_cell = true;
1799 	struct bio *bio = new_ocell->holder;
1800 	dm_oblock_t block = get_bio_block(cache, bio);
1801 	struct policy_result lookup_result;
1802 	bool passthrough = passthrough_mode(&cache->features);
1803 	bool fast_promotion, can_migrate;
1804 	struct old_oblock_lock ool;
1805 
1806 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1807 	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1808 
1809 	ool.locker.fn = cell_locker;
1810 	ool.cache = cache;
1811 	ool.structs = structs;
1812 	ool.cell = NULL;
1813 	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1814 		       bio, &ool.locker, &lookup_result);
1815 
1816 	if (r == -EWOULDBLOCK)
1817 		/* migration has been denied */
1818 		lookup_result.op = POLICY_MISS;
1819 
1820 	switch (lookup_result.op) {
1821 	case POLICY_HIT:
1822 		if (passthrough) {
1823 			inc_miss_counter(cache, bio);
1824 
1825 			/*
1826 			 * Passthrough always maps to the origin,
1827 			 * invalidating any cache blocks that are written
1828 			 * to.
1829 			 */
1830 
1831 			if (bio_data_dir(bio) == WRITE) {
1832 				atomic_inc(&cache->stats.demotion);
1833 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1834 				release_cell = false;
1835 
1836 			} else {
1837 				/* FIXME: factor out issue_origin() */
1838 				remap_to_origin_clear_discard(cache, bio, block);
1839 				inc_and_issue(cache, bio, new_ocell);
1840 			}
1841 		} else {
1842 			inc_hit_counter(cache, bio);
1843 
1844 			if (bio_data_dir(bio) == WRITE &&
1845 			    writethrough_mode(&cache->features) &&
1846 			    !is_dirty(cache, lookup_result.cblock)) {
1847 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1848 				inc_and_issue(cache, bio, new_ocell);
1849 
1850 			} else {
1851 				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1852 				release_cell = false;
1853 			}
1854 		}
1855 
1856 		break;
1857 
1858 	case POLICY_MISS:
1859 		inc_miss_counter(cache, bio);
1860 		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1861 		release_cell = false;
1862 		break;
1863 
1864 	case POLICY_NEW:
1865 		atomic_inc(&cache->stats.promotion);
1866 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1867 		release_cell = false;
1868 		break;
1869 
1870 	case POLICY_REPLACE:
1871 		atomic_inc(&cache->stats.demotion);
1872 		atomic_inc(&cache->stats.promotion);
1873 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1874 				    block, lookup_result.cblock,
1875 				    ool.cell, new_ocell);
1876 		release_cell = false;
1877 		break;
1878 
1879 	default:
1880 		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1881 			    cache_device_name(cache), __func__,
1882 			    (unsigned) lookup_result.op);
1883 		bio_io_error(bio);
1884 	}
1885 
1886 	if (release_cell)
1887 		cell_defer(cache, new_ocell, false);
1888 }
1889 
1890 static void process_bio(struct cache *cache, struct prealloc *structs,
1891 			struct bio *bio)
1892 {
1893 	int r;
1894 	dm_oblock_t block = get_bio_block(cache, bio);
1895 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1896 
1897 	/*
1898 	 * Check to see if that block is currently migrating.
1899 	 */
1900 	cell_prealloc = prealloc_get_cell(structs);
1901 	r = bio_detain(cache, block, bio, cell_prealloc,
1902 		       (cell_free_fn) prealloc_put_cell,
1903 		       structs, &new_ocell);
1904 	if (r > 0)
1905 		return;
1906 
1907 	process_cell(cache, structs, new_ocell);
1908 }
1909 
1910 static int need_commit_due_to_time(struct cache *cache)
1911 {
1912 	return jiffies < cache->last_commit_jiffies ||
1913 	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1914 }
1915 
1916 /*
1917  * A non-zero return indicates read_only or fail_io mode.
1918  */
1919 static int commit(struct cache *cache, bool clean_shutdown)
1920 {
1921 	int r;
1922 
1923 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1924 		return -EINVAL;
1925 
1926 	atomic_inc(&cache->stats.commit_count);
1927 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1928 	if (r)
1929 		metadata_operation_failed(cache, "dm_cache_commit", r);
1930 
1931 	return r;
1932 }
1933 
1934 static int commit_if_needed(struct cache *cache)
1935 {
1936 	int r = 0;
1937 
1938 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1939 	    dm_cache_changed_this_transaction(cache->cmd)) {
1940 		r = commit(cache, false);
1941 		cache->commit_requested = false;
1942 		cache->last_commit_jiffies = jiffies;
1943 	}
1944 
1945 	return r;
1946 }
1947 
1948 static void process_deferred_bios(struct cache *cache)
1949 {
1950 	unsigned long flags;
1951 	struct bio_list bios;
1952 	struct bio *bio;
1953 	struct prealloc structs;
1954 
1955 	memset(&structs, 0, sizeof(structs));
1956 	bio_list_init(&bios);
1957 
1958 	spin_lock_irqsave(&cache->lock, flags);
1959 	bio_list_merge(&bios, &cache->deferred_bios);
1960 	bio_list_init(&cache->deferred_bios);
1961 	spin_unlock_irqrestore(&cache->lock, flags);
1962 
1963 	while (!bio_list_empty(&bios)) {
1964 		/*
1965 		 * If we've got no free migration structs, and processing
1966 		 * this bio might require one, we pause until there are some
1967 		 * prepared mappings to process.
1968 		 */
1969 		if (prealloc_data_structs(cache, &structs)) {
1970 			spin_lock_irqsave(&cache->lock, flags);
1971 			bio_list_merge(&cache->deferred_bios, &bios);
1972 			spin_unlock_irqrestore(&cache->lock, flags);
1973 			break;
1974 		}
1975 
1976 		bio = bio_list_pop(&bios);
1977 
1978 		if (bio->bi_rw & REQ_FLUSH)
1979 			process_flush_bio(cache, bio);
1980 		else if (bio->bi_rw & REQ_DISCARD)
1981 			process_discard_bio(cache, &structs, bio);
1982 		else
1983 			process_bio(cache, &structs, bio);
1984 	}
1985 
1986 	prealloc_free_structs(cache, &structs);
1987 }
1988 
1989 static void process_deferred_cells(struct cache *cache)
1990 {
1991 	unsigned long flags;
1992 	struct dm_bio_prison_cell *cell, *tmp;
1993 	struct list_head cells;
1994 	struct prealloc structs;
1995 
1996 	memset(&structs, 0, sizeof(structs));
1997 
1998 	INIT_LIST_HEAD(&cells);
1999 
2000 	spin_lock_irqsave(&cache->lock, flags);
2001 	list_splice_init(&cache->deferred_cells, &cells);
2002 	spin_unlock_irqrestore(&cache->lock, flags);
2003 
2004 	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2005 		/*
2006 		 * If we've got no free migration structs, and processing
2007 		 * this bio might require one, we pause until there are some
2008 		 * prepared mappings to process.
2009 		 */
2010 		if (prealloc_data_structs(cache, &structs)) {
2011 			spin_lock_irqsave(&cache->lock, flags);
2012 			list_splice(&cells, &cache->deferred_cells);
2013 			spin_unlock_irqrestore(&cache->lock, flags);
2014 			break;
2015 		}
2016 
2017 		process_cell(cache, &structs, cell);
2018 	}
2019 
2020 	prealloc_free_structs(cache, &structs);
2021 }
2022 
2023 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2024 {
2025 	unsigned long flags;
2026 	struct bio_list bios;
2027 	struct bio *bio;
2028 
2029 	bio_list_init(&bios);
2030 
2031 	spin_lock_irqsave(&cache->lock, flags);
2032 	bio_list_merge(&bios, &cache->deferred_flush_bios);
2033 	bio_list_init(&cache->deferred_flush_bios);
2034 	spin_unlock_irqrestore(&cache->lock, flags);
2035 
2036 	/*
2037 	 * These bios have already been through inc_ds()
2038 	 */
2039 	while ((bio = bio_list_pop(&bios)))
2040 		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2041 }
2042 
2043 static void process_deferred_writethrough_bios(struct cache *cache)
2044 {
2045 	unsigned long flags;
2046 	struct bio_list bios;
2047 	struct bio *bio;
2048 
2049 	bio_list_init(&bios);
2050 
2051 	spin_lock_irqsave(&cache->lock, flags);
2052 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2053 	bio_list_init(&cache->deferred_writethrough_bios);
2054 	spin_unlock_irqrestore(&cache->lock, flags);
2055 
2056 	/*
2057 	 * These bios have already been through inc_ds()
2058 	 */
2059 	while ((bio = bio_list_pop(&bios)))
2060 		accounted_request(cache, bio);
2061 }
2062 
2063 static void writeback_some_dirty_blocks(struct cache *cache)
2064 {
2065 	int r = 0;
2066 	dm_oblock_t oblock;
2067 	dm_cblock_t cblock;
2068 	struct prealloc structs;
2069 	struct dm_bio_prison_cell *old_ocell;
2070 	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2071 
2072 	memset(&structs, 0, sizeof(structs));
2073 
2074 	while (spare_migration_bandwidth(cache)) {
2075 		if (prealloc_data_structs(cache, &structs))
2076 			break;
2077 
2078 		r = policy_writeback_work(cache->policy, &oblock, &cblock, busy);
2079 		if (r)
2080 			break;
2081 
2082 		r = get_cell(cache, oblock, &structs, &old_ocell);
2083 		if (r) {
2084 			policy_set_dirty(cache->policy, oblock);
2085 			break;
2086 		}
2087 
2088 		writeback(cache, &structs, oblock, cblock, old_ocell);
2089 	}
2090 
2091 	prealloc_free_structs(cache, &structs);
2092 }
2093 
2094 /*----------------------------------------------------------------
2095  * Invalidations.
2096  * Dropping something from the cache *without* writing back.
2097  *--------------------------------------------------------------*/
2098 
2099 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2100 {
2101 	int r = 0;
2102 	uint64_t begin = from_cblock(req->cblocks->begin);
2103 	uint64_t end = from_cblock(req->cblocks->end);
2104 
2105 	while (begin != end) {
2106 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2107 		if (!r) {
2108 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2109 			if (r) {
2110 				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2111 				break;
2112 			}
2113 
2114 		} else if (r == -ENODATA) {
2115 			/* harmless, already unmapped */
2116 			r = 0;
2117 
2118 		} else {
2119 			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2120 			break;
2121 		}
2122 
2123 		begin++;
2124         }
2125 
2126 	cache->commit_requested = true;
2127 
2128 	req->err = r;
2129 	atomic_set(&req->complete, 1);
2130 
2131 	wake_up(&req->result_wait);
2132 }
2133 
2134 static void process_invalidation_requests(struct cache *cache)
2135 {
2136 	struct list_head list;
2137 	struct invalidation_request *req, *tmp;
2138 
2139 	INIT_LIST_HEAD(&list);
2140 	spin_lock(&cache->invalidation_lock);
2141 	list_splice_init(&cache->invalidation_requests, &list);
2142 	spin_unlock(&cache->invalidation_lock);
2143 
2144 	list_for_each_entry_safe (req, tmp, &list, list)
2145 		process_invalidation_request(cache, req);
2146 }
2147 
2148 /*----------------------------------------------------------------
2149  * Main worker loop
2150  *--------------------------------------------------------------*/
2151 static bool is_quiescing(struct cache *cache)
2152 {
2153 	return atomic_read(&cache->quiescing);
2154 }
2155 
2156 static void ack_quiescing(struct cache *cache)
2157 {
2158 	if (is_quiescing(cache)) {
2159 		atomic_inc(&cache->quiescing_ack);
2160 		wake_up(&cache->quiescing_wait);
2161 	}
2162 }
2163 
2164 static void wait_for_quiescing_ack(struct cache *cache)
2165 {
2166 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2167 }
2168 
2169 static void start_quiescing(struct cache *cache)
2170 {
2171 	atomic_inc(&cache->quiescing);
2172 	wait_for_quiescing_ack(cache);
2173 }
2174 
2175 static void stop_quiescing(struct cache *cache)
2176 {
2177 	atomic_set(&cache->quiescing, 0);
2178 	atomic_set(&cache->quiescing_ack, 0);
2179 }
2180 
2181 static void wait_for_migrations(struct cache *cache)
2182 {
2183 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2184 }
2185 
2186 static void stop_worker(struct cache *cache)
2187 {
2188 	cancel_delayed_work(&cache->waker);
2189 	flush_workqueue(cache->wq);
2190 }
2191 
2192 static void requeue_deferred_cells(struct cache *cache)
2193 {
2194 	unsigned long flags;
2195 	struct list_head cells;
2196 	struct dm_bio_prison_cell *cell, *tmp;
2197 
2198 	INIT_LIST_HEAD(&cells);
2199 	spin_lock_irqsave(&cache->lock, flags);
2200 	list_splice_init(&cache->deferred_cells, &cells);
2201 	spin_unlock_irqrestore(&cache->lock, flags);
2202 
2203 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2204 		cell_requeue(cache, cell);
2205 }
2206 
2207 static void requeue_deferred_bios(struct cache *cache)
2208 {
2209 	struct bio *bio;
2210 	struct bio_list bios;
2211 
2212 	bio_list_init(&bios);
2213 	bio_list_merge(&bios, &cache->deferred_bios);
2214 	bio_list_init(&cache->deferred_bios);
2215 
2216 	while ((bio = bio_list_pop(&bios)))
2217 		bio_endio(bio, DM_ENDIO_REQUEUE);
2218 }
2219 
2220 static int more_work(struct cache *cache)
2221 {
2222 	if (is_quiescing(cache))
2223 		return !list_empty(&cache->quiesced_migrations) ||
2224 			!list_empty(&cache->completed_migrations) ||
2225 			!list_empty(&cache->need_commit_migrations);
2226 	else
2227 		return !bio_list_empty(&cache->deferred_bios) ||
2228 			!list_empty(&cache->deferred_cells) ||
2229 			!bio_list_empty(&cache->deferred_flush_bios) ||
2230 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2231 			!list_empty(&cache->quiesced_migrations) ||
2232 			!list_empty(&cache->completed_migrations) ||
2233 			!list_empty(&cache->need_commit_migrations) ||
2234 			cache->invalidate;
2235 }
2236 
2237 static void do_worker(struct work_struct *ws)
2238 {
2239 	struct cache *cache = container_of(ws, struct cache, worker);
2240 
2241 	do {
2242 		if (!is_quiescing(cache)) {
2243 			writeback_some_dirty_blocks(cache);
2244 			process_deferred_writethrough_bios(cache);
2245 			process_deferred_bios(cache);
2246 			process_deferred_cells(cache);
2247 			process_invalidation_requests(cache);
2248 		}
2249 
2250 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2251 		process_migrations(cache, &cache->completed_migrations, complete_migration);
2252 
2253 		if (commit_if_needed(cache)) {
2254 			process_deferred_flush_bios(cache, false);
2255 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2256 		} else {
2257 			process_deferred_flush_bios(cache, true);
2258 			process_migrations(cache, &cache->need_commit_migrations,
2259 					   migration_success_post_commit);
2260 		}
2261 
2262 		ack_quiescing(cache);
2263 
2264 	} while (more_work(cache));
2265 }
2266 
2267 /*
2268  * We want to commit periodically so that not too much
2269  * unwritten metadata builds up.
2270  */
2271 static void do_waker(struct work_struct *ws)
2272 {
2273 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2274 	policy_tick(cache->policy, true);
2275 	wake_worker(cache);
2276 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2277 }
2278 
2279 /*----------------------------------------------------------------*/
2280 
2281 static int is_congested(struct dm_dev *dev, int bdi_bits)
2282 {
2283 	struct request_queue *q = bdev_get_queue(dev->bdev);
2284 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2285 }
2286 
2287 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2288 {
2289 	struct cache *cache = container_of(cb, struct cache, callbacks);
2290 
2291 	return is_congested(cache->origin_dev, bdi_bits) ||
2292 		is_congested(cache->cache_dev, bdi_bits);
2293 }
2294 
2295 /*----------------------------------------------------------------
2296  * Target methods
2297  *--------------------------------------------------------------*/
2298 
2299 /*
2300  * This function gets called on the error paths of the constructor, so we
2301  * have to cope with a partially initialised struct.
2302  */
2303 static void destroy(struct cache *cache)
2304 {
2305 	unsigned i;
2306 
2307 	if (cache->migration_pool)
2308 		mempool_destroy(cache->migration_pool);
2309 
2310 	if (cache->all_io_ds)
2311 		dm_deferred_set_destroy(cache->all_io_ds);
2312 
2313 	if (cache->prison)
2314 		dm_bio_prison_destroy(cache->prison);
2315 
2316 	if (cache->wq)
2317 		destroy_workqueue(cache->wq);
2318 
2319 	if (cache->dirty_bitset)
2320 		free_bitset(cache->dirty_bitset);
2321 
2322 	if (cache->discard_bitset)
2323 		free_bitset(cache->discard_bitset);
2324 
2325 	if (cache->copier)
2326 		dm_kcopyd_client_destroy(cache->copier);
2327 
2328 	if (cache->cmd)
2329 		dm_cache_metadata_close(cache->cmd);
2330 
2331 	if (cache->metadata_dev)
2332 		dm_put_device(cache->ti, cache->metadata_dev);
2333 
2334 	if (cache->origin_dev)
2335 		dm_put_device(cache->ti, cache->origin_dev);
2336 
2337 	if (cache->cache_dev)
2338 		dm_put_device(cache->ti, cache->cache_dev);
2339 
2340 	if (cache->policy)
2341 		dm_cache_policy_destroy(cache->policy);
2342 
2343 	for (i = 0; i < cache->nr_ctr_args ; i++)
2344 		kfree(cache->ctr_args[i]);
2345 	kfree(cache->ctr_args);
2346 
2347 	kfree(cache);
2348 }
2349 
2350 static void cache_dtr(struct dm_target *ti)
2351 {
2352 	struct cache *cache = ti->private;
2353 
2354 	destroy(cache);
2355 }
2356 
2357 static sector_t get_dev_size(struct dm_dev *dev)
2358 {
2359 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2360 }
2361 
2362 /*----------------------------------------------------------------*/
2363 
2364 /*
2365  * Construct a cache device mapping.
2366  *
2367  * cache <metadata dev> <cache dev> <origin dev> <block size>
2368  *       <#feature args> [<feature arg>]*
2369  *       <policy> <#policy args> [<policy arg>]*
2370  *
2371  * metadata dev    : fast device holding the persistent metadata
2372  * cache dev	   : fast device holding cached data blocks
2373  * origin dev	   : slow device holding original data blocks
2374  * block size	   : cache unit size in sectors
2375  *
2376  * #feature args   : number of feature arguments passed
2377  * feature args    : writethrough.  (The default is writeback.)
2378  *
2379  * policy	   : the replacement policy to use
2380  * #policy args    : an even number of policy arguments corresponding
2381  *		     to key/value pairs passed to the policy
2382  * policy args	   : key/value pairs passed to the policy
2383  *		     E.g. 'sequential_threshold 1024'
2384  *		     See cache-policies.txt for details.
2385  *
2386  * Optional feature arguments are:
2387  *   writethrough  : write through caching that prohibits cache block
2388  *		     content from being different from origin block content.
2389  *		     Without this argument, the default behaviour is to write
2390  *		     back cache block contents later for performance reasons,
2391  *		     so they may differ from the corresponding origin blocks.
2392  */
2393 struct cache_args {
2394 	struct dm_target *ti;
2395 
2396 	struct dm_dev *metadata_dev;
2397 
2398 	struct dm_dev *cache_dev;
2399 	sector_t cache_sectors;
2400 
2401 	struct dm_dev *origin_dev;
2402 	sector_t origin_sectors;
2403 
2404 	uint32_t block_size;
2405 
2406 	const char *policy_name;
2407 	int policy_argc;
2408 	const char **policy_argv;
2409 
2410 	struct cache_features features;
2411 };
2412 
2413 static void destroy_cache_args(struct cache_args *ca)
2414 {
2415 	if (ca->metadata_dev)
2416 		dm_put_device(ca->ti, ca->metadata_dev);
2417 
2418 	if (ca->cache_dev)
2419 		dm_put_device(ca->ti, ca->cache_dev);
2420 
2421 	if (ca->origin_dev)
2422 		dm_put_device(ca->ti, ca->origin_dev);
2423 
2424 	kfree(ca);
2425 }
2426 
2427 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2428 {
2429 	if (!as->argc) {
2430 		*error = "Insufficient args";
2431 		return false;
2432 	}
2433 
2434 	return true;
2435 }
2436 
2437 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2438 			      char **error)
2439 {
2440 	int r;
2441 	sector_t metadata_dev_size;
2442 	char b[BDEVNAME_SIZE];
2443 
2444 	if (!at_least_one_arg(as, error))
2445 		return -EINVAL;
2446 
2447 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2448 			  &ca->metadata_dev);
2449 	if (r) {
2450 		*error = "Error opening metadata device";
2451 		return r;
2452 	}
2453 
2454 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2455 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2456 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2457 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2458 
2459 	return 0;
2460 }
2461 
2462 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2463 			   char **error)
2464 {
2465 	int r;
2466 
2467 	if (!at_least_one_arg(as, error))
2468 		return -EINVAL;
2469 
2470 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2471 			  &ca->cache_dev);
2472 	if (r) {
2473 		*error = "Error opening cache device";
2474 		return r;
2475 	}
2476 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2477 
2478 	return 0;
2479 }
2480 
2481 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2482 			    char **error)
2483 {
2484 	int r;
2485 
2486 	if (!at_least_one_arg(as, error))
2487 		return -EINVAL;
2488 
2489 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2490 			  &ca->origin_dev);
2491 	if (r) {
2492 		*error = "Error opening origin device";
2493 		return r;
2494 	}
2495 
2496 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2497 	if (ca->ti->len > ca->origin_sectors) {
2498 		*error = "Device size larger than cached device";
2499 		return -EINVAL;
2500 	}
2501 
2502 	return 0;
2503 }
2504 
2505 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2506 			    char **error)
2507 {
2508 	unsigned long block_size;
2509 
2510 	if (!at_least_one_arg(as, error))
2511 		return -EINVAL;
2512 
2513 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2514 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2515 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2516 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2517 		*error = "Invalid data block size";
2518 		return -EINVAL;
2519 	}
2520 
2521 	if (block_size > ca->cache_sectors) {
2522 		*error = "Data block size is larger than the cache device";
2523 		return -EINVAL;
2524 	}
2525 
2526 	ca->block_size = block_size;
2527 
2528 	return 0;
2529 }
2530 
2531 static void init_features(struct cache_features *cf)
2532 {
2533 	cf->mode = CM_WRITE;
2534 	cf->io_mode = CM_IO_WRITEBACK;
2535 }
2536 
2537 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2538 			  char **error)
2539 {
2540 	static struct dm_arg _args[] = {
2541 		{0, 1, "Invalid number of cache feature arguments"},
2542 	};
2543 
2544 	int r;
2545 	unsigned argc;
2546 	const char *arg;
2547 	struct cache_features *cf = &ca->features;
2548 
2549 	init_features(cf);
2550 
2551 	r = dm_read_arg_group(_args, as, &argc, error);
2552 	if (r)
2553 		return -EINVAL;
2554 
2555 	while (argc--) {
2556 		arg = dm_shift_arg(as);
2557 
2558 		if (!strcasecmp(arg, "writeback"))
2559 			cf->io_mode = CM_IO_WRITEBACK;
2560 
2561 		else if (!strcasecmp(arg, "writethrough"))
2562 			cf->io_mode = CM_IO_WRITETHROUGH;
2563 
2564 		else if (!strcasecmp(arg, "passthrough"))
2565 			cf->io_mode = CM_IO_PASSTHROUGH;
2566 
2567 		else {
2568 			*error = "Unrecognised cache feature requested";
2569 			return -EINVAL;
2570 		}
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2577 			char **error)
2578 {
2579 	static struct dm_arg _args[] = {
2580 		{0, 1024, "Invalid number of policy arguments"},
2581 	};
2582 
2583 	int r;
2584 
2585 	if (!at_least_one_arg(as, error))
2586 		return -EINVAL;
2587 
2588 	ca->policy_name = dm_shift_arg(as);
2589 
2590 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2591 	if (r)
2592 		return -EINVAL;
2593 
2594 	ca->policy_argv = (const char **)as->argv;
2595 	dm_consume_args(as, ca->policy_argc);
2596 
2597 	return 0;
2598 }
2599 
2600 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2601 			    char **error)
2602 {
2603 	int r;
2604 	struct dm_arg_set as;
2605 
2606 	as.argc = argc;
2607 	as.argv = argv;
2608 
2609 	r = parse_metadata_dev(ca, &as, error);
2610 	if (r)
2611 		return r;
2612 
2613 	r = parse_cache_dev(ca, &as, error);
2614 	if (r)
2615 		return r;
2616 
2617 	r = parse_origin_dev(ca, &as, error);
2618 	if (r)
2619 		return r;
2620 
2621 	r = parse_block_size(ca, &as, error);
2622 	if (r)
2623 		return r;
2624 
2625 	r = parse_features(ca, &as, error);
2626 	if (r)
2627 		return r;
2628 
2629 	r = parse_policy(ca, &as, error);
2630 	if (r)
2631 		return r;
2632 
2633 	return 0;
2634 }
2635 
2636 /*----------------------------------------------------------------*/
2637 
2638 static struct kmem_cache *migration_cache;
2639 
2640 #define NOT_CORE_OPTION 1
2641 
2642 static int process_config_option(struct cache *cache, const char *key, const char *value)
2643 {
2644 	unsigned long tmp;
2645 
2646 	if (!strcasecmp(key, "migration_threshold")) {
2647 		if (kstrtoul(value, 10, &tmp))
2648 			return -EINVAL;
2649 
2650 		cache->migration_threshold = tmp;
2651 		return 0;
2652 	}
2653 
2654 	return NOT_CORE_OPTION;
2655 }
2656 
2657 static int set_config_value(struct cache *cache, const char *key, const char *value)
2658 {
2659 	int r = process_config_option(cache, key, value);
2660 
2661 	if (r == NOT_CORE_OPTION)
2662 		r = policy_set_config_value(cache->policy, key, value);
2663 
2664 	if (r)
2665 		DMWARN("bad config value for %s: %s", key, value);
2666 
2667 	return r;
2668 }
2669 
2670 static int set_config_values(struct cache *cache, int argc, const char **argv)
2671 {
2672 	int r = 0;
2673 
2674 	if (argc & 1) {
2675 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2676 		return -EINVAL;
2677 	}
2678 
2679 	while (argc) {
2680 		r = set_config_value(cache, argv[0], argv[1]);
2681 		if (r)
2682 			break;
2683 
2684 		argc -= 2;
2685 		argv += 2;
2686 	}
2687 
2688 	return r;
2689 }
2690 
2691 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2692 			       char **error)
2693 {
2694 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2695 							   cache->cache_size,
2696 							   cache->origin_sectors,
2697 							   cache->sectors_per_block);
2698 	if (IS_ERR(p)) {
2699 		*error = "Error creating cache's policy";
2700 		return PTR_ERR(p);
2701 	}
2702 	cache->policy = p;
2703 
2704 	return 0;
2705 }
2706 
2707 /*
2708  * We want the discard block size to be at least the size of the cache
2709  * block size and have no more than 2^14 discard blocks across the origin.
2710  */
2711 #define MAX_DISCARD_BLOCKS (1 << 14)
2712 
2713 static bool too_many_discard_blocks(sector_t discard_block_size,
2714 				    sector_t origin_size)
2715 {
2716 	(void) sector_div(origin_size, discard_block_size);
2717 
2718 	return origin_size > MAX_DISCARD_BLOCKS;
2719 }
2720 
2721 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2722 					     sector_t origin_size)
2723 {
2724 	sector_t discard_block_size = cache_block_size;
2725 
2726 	if (origin_size)
2727 		while (too_many_discard_blocks(discard_block_size, origin_size))
2728 			discard_block_size *= 2;
2729 
2730 	return discard_block_size;
2731 }
2732 
2733 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2734 {
2735 	dm_block_t nr_blocks = from_cblock(size);
2736 
2737 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2738 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2739 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2740 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2741 			     (unsigned long long) nr_blocks);
2742 
2743 	cache->cache_size = size;
2744 }
2745 
2746 #define DEFAULT_MIGRATION_THRESHOLD 2048
2747 
2748 static int cache_create(struct cache_args *ca, struct cache **result)
2749 {
2750 	int r = 0;
2751 	char **error = &ca->ti->error;
2752 	struct cache *cache;
2753 	struct dm_target *ti = ca->ti;
2754 	dm_block_t origin_blocks;
2755 	struct dm_cache_metadata *cmd;
2756 	bool may_format = ca->features.mode == CM_WRITE;
2757 
2758 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2759 	if (!cache)
2760 		return -ENOMEM;
2761 
2762 	cache->ti = ca->ti;
2763 	ti->private = cache;
2764 	ti->num_flush_bios = 2;
2765 	ti->flush_supported = true;
2766 
2767 	ti->num_discard_bios = 1;
2768 	ti->discards_supported = true;
2769 	ti->discard_zeroes_data_unsupported = true;
2770 	ti->split_discard_bios = false;
2771 
2772 	cache->features = ca->features;
2773 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2774 
2775 	cache->callbacks.congested_fn = cache_is_congested;
2776 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2777 
2778 	cache->metadata_dev = ca->metadata_dev;
2779 	cache->origin_dev = ca->origin_dev;
2780 	cache->cache_dev = ca->cache_dev;
2781 
2782 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2783 
2784 	/* FIXME: factor out this whole section */
2785 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2786 	origin_blocks = block_div(origin_blocks, ca->block_size);
2787 	cache->origin_blocks = to_oblock(origin_blocks);
2788 
2789 	cache->sectors_per_block = ca->block_size;
2790 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2791 		r = -EINVAL;
2792 		goto bad;
2793 	}
2794 
2795 	if (ca->block_size & (ca->block_size - 1)) {
2796 		dm_block_t cache_size = ca->cache_sectors;
2797 
2798 		cache->sectors_per_block_shift = -1;
2799 		cache_size = block_div(cache_size, ca->block_size);
2800 		set_cache_size(cache, to_cblock(cache_size));
2801 	} else {
2802 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2803 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2804 	}
2805 
2806 	r = create_cache_policy(cache, ca, error);
2807 	if (r)
2808 		goto bad;
2809 
2810 	cache->policy_nr_args = ca->policy_argc;
2811 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2812 
2813 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2814 	if (r) {
2815 		*error = "Error setting cache policy's config values";
2816 		goto bad;
2817 	}
2818 
2819 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2820 				     ca->block_size, may_format,
2821 				     dm_cache_policy_get_hint_size(cache->policy));
2822 	if (IS_ERR(cmd)) {
2823 		*error = "Error creating metadata object";
2824 		r = PTR_ERR(cmd);
2825 		goto bad;
2826 	}
2827 	cache->cmd = cmd;
2828 	set_cache_mode(cache, CM_WRITE);
2829 	if (get_cache_mode(cache) != CM_WRITE) {
2830 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2831 		r = -EINVAL;
2832 		goto bad;
2833 	}
2834 
2835 	if (passthrough_mode(&cache->features)) {
2836 		bool all_clean;
2837 
2838 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2839 		if (r) {
2840 			*error = "dm_cache_metadata_all_clean() failed";
2841 			goto bad;
2842 		}
2843 
2844 		if (!all_clean) {
2845 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2846 			r = -EINVAL;
2847 			goto bad;
2848 		}
2849 	}
2850 
2851 	spin_lock_init(&cache->lock);
2852 	INIT_LIST_HEAD(&cache->deferred_cells);
2853 	bio_list_init(&cache->deferred_bios);
2854 	bio_list_init(&cache->deferred_flush_bios);
2855 	bio_list_init(&cache->deferred_writethrough_bios);
2856 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2857 	INIT_LIST_HEAD(&cache->completed_migrations);
2858 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2859 	atomic_set(&cache->nr_allocated_migrations, 0);
2860 	atomic_set(&cache->nr_io_migrations, 0);
2861 	init_waitqueue_head(&cache->migration_wait);
2862 
2863 	init_waitqueue_head(&cache->quiescing_wait);
2864 	atomic_set(&cache->quiescing, 0);
2865 	atomic_set(&cache->quiescing_ack, 0);
2866 
2867 	r = -ENOMEM;
2868 	atomic_set(&cache->nr_dirty, 0);
2869 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2870 	if (!cache->dirty_bitset) {
2871 		*error = "could not allocate dirty bitset";
2872 		goto bad;
2873 	}
2874 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2875 
2876 	cache->discard_block_size =
2877 		calculate_discard_block_size(cache->sectors_per_block,
2878 					     cache->origin_sectors);
2879 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2880 							      cache->discard_block_size));
2881 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2882 	if (!cache->discard_bitset) {
2883 		*error = "could not allocate discard bitset";
2884 		goto bad;
2885 	}
2886 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2887 
2888 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2889 	if (IS_ERR(cache->copier)) {
2890 		*error = "could not create kcopyd client";
2891 		r = PTR_ERR(cache->copier);
2892 		goto bad;
2893 	}
2894 
2895 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2896 	if (!cache->wq) {
2897 		*error = "could not create workqueue for metadata object";
2898 		goto bad;
2899 	}
2900 	INIT_WORK(&cache->worker, do_worker);
2901 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2902 	cache->last_commit_jiffies = jiffies;
2903 
2904 	cache->prison = dm_bio_prison_create();
2905 	if (!cache->prison) {
2906 		*error = "could not create bio prison";
2907 		goto bad;
2908 	}
2909 
2910 	cache->all_io_ds = dm_deferred_set_create();
2911 	if (!cache->all_io_ds) {
2912 		*error = "could not create all_io deferred set";
2913 		goto bad;
2914 	}
2915 
2916 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2917 							 migration_cache);
2918 	if (!cache->migration_pool) {
2919 		*error = "Error creating cache's migration mempool";
2920 		goto bad;
2921 	}
2922 
2923 	cache->need_tick_bio = true;
2924 	cache->sized = false;
2925 	cache->invalidate = false;
2926 	cache->commit_requested = false;
2927 	cache->loaded_mappings = false;
2928 	cache->loaded_discards = false;
2929 
2930 	load_stats(cache);
2931 
2932 	atomic_set(&cache->stats.demotion, 0);
2933 	atomic_set(&cache->stats.promotion, 0);
2934 	atomic_set(&cache->stats.copies_avoided, 0);
2935 	atomic_set(&cache->stats.cache_cell_clash, 0);
2936 	atomic_set(&cache->stats.commit_count, 0);
2937 	atomic_set(&cache->stats.discard_count, 0);
2938 
2939 	spin_lock_init(&cache->invalidation_lock);
2940 	INIT_LIST_HEAD(&cache->invalidation_requests);
2941 
2942 	iot_init(&cache->origin_tracker);
2943 
2944 	*result = cache;
2945 	return 0;
2946 
2947 bad:
2948 	destroy(cache);
2949 	return r;
2950 }
2951 
2952 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2953 {
2954 	unsigned i;
2955 	const char **copy;
2956 
2957 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2958 	if (!copy)
2959 		return -ENOMEM;
2960 	for (i = 0; i < argc; i++) {
2961 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2962 		if (!copy[i]) {
2963 			while (i--)
2964 				kfree(copy[i]);
2965 			kfree(copy);
2966 			return -ENOMEM;
2967 		}
2968 	}
2969 
2970 	cache->nr_ctr_args = argc;
2971 	cache->ctr_args = copy;
2972 
2973 	return 0;
2974 }
2975 
2976 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2977 {
2978 	int r = -EINVAL;
2979 	struct cache_args *ca;
2980 	struct cache *cache = NULL;
2981 
2982 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2983 	if (!ca) {
2984 		ti->error = "Error allocating memory for cache";
2985 		return -ENOMEM;
2986 	}
2987 	ca->ti = ti;
2988 
2989 	r = parse_cache_args(ca, argc, argv, &ti->error);
2990 	if (r)
2991 		goto out;
2992 
2993 	r = cache_create(ca, &cache);
2994 	if (r)
2995 		goto out;
2996 
2997 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2998 	if (r) {
2999 		destroy(cache);
3000 		goto out;
3001 	}
3002 
3003 	ti->private = cache;
3004 
3005 out:
3006 	destroy_cache_args(ca);
3007 	return r;
3008 }
3009 
3010 /*----------------------------------------------------------------*/
3011 
3012 static int cache_map(struct dm_target *ti, struct bio *bio)
3013 {
3014 	struct cache *cache = ti->private;
3015 
3016 	int r;
3017 	struct dm_bio_prison_cell *cell = NULL;
3018 	dm_oblock_t block = get_bio_block(cache, bio);
3019 	size_t pb_data_size = get_per_bio_data_size(cache);
3020 	bool can_migrate = false;
3021 	bool fast_promotion;
3022 	struct policy_result lookup_result;
3023 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3024 	struct old_oblock_lock ool;
3025 
3026 	ool.locker.fn = null_locker;
3027 
3028 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3029 		/*
3030 		 * This can only occur if the io goes to a partial block at
3031 		 * the end of the origin device.  We don't cache these.
3032 		 * Just remap to the origin and carry on.
3033 		 */
3034 		remap_to_origin(cache, bio);
3035 		accounted_begin(cache, bio);
3036 		return DM_MAPIO_REMAPPED;
3037 	}
3038 
3039 	if (discard_or_flush(bio)) {
3040 		defer_bio(cache, bio);
3041 		return DM_MAPIO_SUBMITTED;
3042 	}
3043 
3044 	/*
3045 	 * Check to see if that block is currently migrating.
3046 	 */
3047 	cell = alloc_prison_cell(cache);
3048 	if (!cell) {
3049 		defer_bio(cache, bio);
3050 		return DM_MAPIO_SUBMITTED;
3051 	}
3052 
3053 	r = bio_detain(cache, block, bio, cell,
3054 		       (cell_free_fn) free_prison_cell,
3055 		       cache, &cell);
3056 	if (r) {
3057 		if (r < 0)
3058 			defer_bio(cache, bio);
3059 
3060 		return DM_MAPIO_SUBMITTED;
3061 	}
3062 
3063 	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3064 
3065 	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3066 		       bio, &ool.locker, &lookup_result);
3067 	if (r == -EWOULDBLOCK) {
3068 		cell_defer(cache, cell, true);
3069 		return DM_MAPIO_SUBMITTED;
3070 
3071 	} else if (r) {
3072 		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3073 			    cache_device_name(cache), r);
3074 		cell_defer(cache, cell, false);
3075 		bio_io_error(bio);
3076 		return DM_MAPIO_SUBMITTED;
3077 	}
3078 
3079 	r = DM_MAPIO_REMAPPED;
3080 	switch (lookup_result.op) {
3081 	case POLICY_HIT:
3082 		if (passthrough_mode(&cache->features)) {
3083 			if (bio_data_dir(bio) == WRITE) {
3084 				/*
3085 				 * We need to invalidate this block, so
3086 				 * defer for the worker thread.
3087 				 */
3088 				cell_defer(cache, cell, true);
3089 				r = DM_MAPIO_SUBMITTED;
3090 
3091 			} else {
3092 				inc_miss_counter(cache, bio);
3093 				remap_to_origin_clear_discard(cache, bio, block);
3094 				accounted_begin(cache, bio);
3095 				inc_ds(cache, bio, cell);
3096 				// FIXME: we want to remap hits or misses straight
3097 				// away rather than passing over to the worker.
3098 				cell_defer(cache, cell, false);
3099 			}
3100 
3101 		} else {
3102 			inc_hit_counter(cache, bio);
3103 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3104 			    !is_dirty(cache, lookup_result.cblock)) {
3105 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3106 				accounted_begin(cache, bio);
3107 				inc_ds(cache, bio, cell);
3108 				cell_defer(cache, cell, false);
3109 
3110 			} else
3111 				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3112 		}
3113 		break;
3114 
3115 	case POLICY_MISS:
3116 		inc_miss_counter(cache, bio);
3117 		if (pb->req_nr != 0) {
3118 			/*
3119 			 * This is a duplicate writethrough io that is no
3120 			 * longer needed because the block has been demoted.
3121 			 */
3122 			bio_endio(bio, 0);
3123 			// FIXME: remap everything as a miss
3124 			cell_defer(cache, cell, false);
3125 			r = DM_MAPIO_SUBMITTED;
3126 
3127 		} else
3128 			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3129 		break;
3130 
3131 	default:
3132 		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3133 			    cache_device_name(cache), __func__,
3134 			    (unsigned) lookup_result.op);
3135 		cell_defer(cache, cell, false);
3136 		bio_io_error(bio);
3137 		r = DM_MAPIO_SUBMITTED;
3138 	}
3139 
3140 	return r;
3141 }
3142 
3143 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3144 {
3145 	struct cache *cache = ti->private;
3146 	unsigned long flags;
3147 	size_t pb_data_size = get_per_bio_data_size(cache);
3148 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3149 
3150 	if (pb->tick) {
3151 		policy_tick(cache->policy, false);
3152 
3153 		spin_lock_irqsave(&cache->lock, flags);
3154 		cache->need_tick_bio = true;
3155 		spin_unlock_irqrestore(&cache->lock, flags);
3156 	}
3157 
3158 	check_for_quiesced_migrations(cache, pb);
3159 	accounted_complete(cache, bio);
3160 
3161 	return 0;
3162 }
3163 
3164 static int write_dirty_bitset(struct cache *cache)
3165 {
3166 	unsigned i, r;
3167 
3168 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3169 		return -EINVAL;
3170 
3171 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3172 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3173 				       is_dirty(cache, to_cblock(i)));
3174 		if (r) {
3175 			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3176 			return r;
3177 		}
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static int write_discard_bitset(struct cache *cache)
3184 {
3185 	unsigned i, r;
3186 
3187 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3188 		return -EINVAL;
3189 
3190 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3191 					   cache->discard_nr_blocks);
3192 	if (r) {
3193 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3194 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3195 		return r;
3196 	}
3197 
3198 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3199 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3200 					 is_discarded(cache, to_dblock(i)));
3201 		if (r) {
3202 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3203 			return r;
3204 		}
3205 	}
3206 
3207 	return 0;
3208 }
3209 
3210 static int write_hints(struct cache *cache)
3211 {
3212 	int r;
3213 
3214 	if (get_cache_mode(cache) >= CM_READ_ONLY)
3215 		return -EINVAL;
3216 
3217 	r = dm_cache_write_hints(cache->cmd, cache->policy);
3218 	if (r) {
3219 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3220 		return r;
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * returns true on success
3228  */
3229 static bool sync_metadata(struct cache *cache)
3230 {
3231 	int r1, r2, r3, r4;
3232 
3233 	r1 = write_dirty_bitset(cache);
3234 	if (r1)
3235 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3236 
3237 	r2 = write_discard_bitset(cache);
3238 	if (r2)
3239 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3240 
3241 	save_stats(cache);
3242 
3243 	r3 = write_hints(cache);
3244 	if (r3)
3245 		DMERR("%s: could not write hints", cache_device_name(cache));
3246 
3247 	/*
3248 	 * If writing the above metadata failed, we still commit, but don't
3249 	 * set the clean shutdown flag.  This will effectively force every
3250 	 * dirty bit to be set on reload.
3251 	 */
3252 	r4 = commit(cache, !r1 && !r2 && !r3);
3253 	if (r4)
3254 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3255 
3256 	return !r1 && !r2 && !r3 && !r4;
3257 }
3258 
3259 static void cache_postsuspend(struct dm_target *ti)
3260 {
3261 	struct cache *cache = ti->private;
3262 
3263 	start_quiescing(cache);
3264 	wait_for_migrations(cache);
3265 	stop_worker(cache);
3266 	requeue_deferred_bios(cache);
3267 	requeue_deferred_cells(cache);
3268 	stop_quiescing(cache);
3269 
3270 	if (get_cache_mode(cache) == CM_WRITE)
3271 		(void) sync_metadata(cache);
3272 }
3273 
3274 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3275 			bool dirty, uint32_t hint, bool hint_valid)
3276 {
3277 	int r;
3278 	struct cache *cache = context;
3279 
3280 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3281 	if (r)
3282 		return r;
3283 
3284 	if (dirty)
3285 		set_dirty(cache, oblock, cblock);
3286 	else
3287 		clear_dirty(cache, oblock, cblock);
3288 
3289 	return 0;
3290 }
3291 
3292 /*
3293  * The discard block size in the on disk metadata is not
3294  * neccessarily the same as we're currently using.  So we have to
3295  * be careful to only set the discarded attribute if we know it
3296  * covers a complete block of the new size.
3297  */
3298 struct discard_load_info {
3299 	struct cache *cache;
3300 
3301 	/*
3302 	 * These blocks are sized using the on disk dblock size, rather
3303 	 * than the current one.
3304 	 */
3305 	dm_block_t block_size;
3306 	dm_block_t discard_begin, discard_end;
3307 };
3308 
3309 static void discard_load_info_init(struct cache *cache,
3310 				   struct discard_load_info *li)
3311 {
3312 	li->cache = cache;
3313 	li->discard_begin = li->discard_end = 0;
3314 }
3315 
3316 static void set_discard_range(struct discard_load_info *li)
3317 {
3318 	sector_t b, e;
3319 
3320 	if (li->discard_begin == li->discard_end)
3321 		return;
3322 
3323 	/*
3324 	 * Convert to sectors.
3325 	 */
3326 	b = li->discard_begin * li->block_size;
3327 	e = li->discard_end * li->block_size;
3328 
3329 	/*
3330 	 * Then convert back to the current dblock size.
3331 	 */
3332 	b = dm_sector_div_up(b, li->cache->discard_block_size);
3333 	sector_div(e, li->cache->discard_block_size);
3334 
3335 	/*
3336 	 * The origin may have shrunk, so we need to check we're still in
3337 	 * bounds.
3338 	 */
3339 	if (e > from_dblock(li->cache->discard_nr_blocks))
3340 		e = from_dblock(li->cache->discard_nr_blocks);
3341 
3342 	for (; b < e; b++)
3343 		set_discard(li->cache, to_dblock(b));
3344 }
3345 
3346 static int load_discard(void *context, sector_t discard_block_size,
3347 			dm_dblock_t dblock, bool discard)
3348 {
3349 	struct discard_load_info *li = context;
3350 
3351 	li->block_size = discard_block_size;
3352 
3353 	if (discard) {
3354 		if (from_dblock(dblock) == li->discard_end)
3355 			/*
3356 			 * We're already in a discard range, just extend it.
3357 			 */
3358 			li->discard_end = li->discard_end + 1ULL;
3359 
3360 		else {
3361 			/*
3362 			 * Emit the old range and start a new one.
3363 			 */
3364 			set_discard_range(li);
3365 			li->discard_begin = from_dblock(dblock);
3366 			li->discard_end = li->discard_begin + 1ULL;
3367 		}
3368 	} else {
3369 		set_discard_range(li);
3370 		li->discard_begin = li->discard_end = 0;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3377 {
3378 	sector_t size = get_dev_size(cache->cache_dev);
3379 	(void) sector_div(size, cache->sectors_per_block);
3380 	return to_cblock(size);
3381 }
3382 
3383 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3384 {
3385 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3386 		return true;
3387 
3388 	/*
3389 	 * We can't drop a dirty block when shrinking the cache.
3390 	 */
3391 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3392 		new_size = to_cblock(from_cblock(new_size) + 1);
3393 		if (is_dirty(cache, new_size)) {
3394 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3395 			      cache_device_name(cache),
3396 			      (unsigned long long) from_cblock(new_size));
3397 			return false;
3398 		}
3399 	}
3400 
3401 	return true;
3402 }
3403 
3404 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3405 {
3406 	int r;
3407 
3408 	r = dm_cache_resize(cache->cmd, new_size);
3409 	if (r) {
3410 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3411 		metadata_operation_failed(cache, "dm_cache_resize", r);
3412 		return r;
3413 	}
3414 
3415 	set_cache_size(cache, new_size);
3416 
3417 	return 0;
3418 }
3419 
3420 static int cache_preresume(struct dm_target *ti)
3421 {
3422 	int r = 0;
3423 	struct cache *cache = ti->private;
3424 	dm_cblock_t csize = get_cache_dev_size(cache);
3425 
3426 	/*
3427 	 * Check to see if the cache has resized.
3428 	 */
3429 	if (!cache->sized) {
3430 		r = resize_cache_dev(cache, csize);
3431 		if (r)
3432 			return r;
3433 
3434 		cache->sized = true;
3435 
3436 	} else if (csize != cache->cache_size) {
3437 		if (!can_resize(cache, csize))
3438 			return -EINVAL;
3439 
3440 		r = resize_cache_dev(cache, csize);
3441 		if (r)
3442 			return r;
3443 	}
3444 
3445 	if (!cache->loaded_mappings) {
3446 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3447 					   load_mapping, cache);
3448 		if (r) {
3449 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3450 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3451 			return r;
3452 		}
3453 
3454 		cache->loaded_mappings = true;
3455 	}
3456 
3457 	if (!cache->loaded_discards) {
3458 		struct discard_load_info li;
3459 
3460 		/*
3461 		 * The discard bitset could have been resized, or the
3462 		 * discard block size changed.  To be safe we start by
3463 		 * setting every dblock to not discarded.
3464 		 */
3465 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3466 
3467 		discard_load_info_init(cache, &li);
3468 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3469 		if (r) {
3470 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3471 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3472 			return r;
3473 		}
3474 		set_discard_range(&li);
3475 
3476 		cache->loaded_discards = true;
3477 	}
3478 
3479 	return r;
3480 }
3481 
3482 static void cache_resume(struct dm_target *ti)
3483 {
3484 	struct cache *cache = ti->private;
3485 
3486 	cache->need_tick_bio = true;
3487 	do_waker(&cache->waker.work);
3488 }
3489 
3490 /*
3491  * Status format:
3492  *
3493  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3494  * <cache block size> <#used cache blocks>/<#total cache blocks>
3495  * <#read hits> <#read misses> <#write hits> <#write misses>
3496  * <#demotions> <#promotions> <#dirty>
3497  * <#features> <features>*
3498  * <#core args> <core args>
3499  * <policy name> <#policy args> <policy args>* <cache metadata mode>
3500  */
3501 static void cache_status(struct dm_target *ti, status_type_t type,
3502 			 unsigned status_flags, char *result, unsigned maxlen)
3503 {
3504 	int r = 0;
3505 	unsigned i;
3506 	ssize_t sz = 0;
3507 	dm_block_t nr_free_blocks_metadata = 0;
3508 	dm_block_t nr_blocks_metadata = 0;
3509 	char buf[BDEVNAME_SIZE];
3510 	struct cache *cache = ti->private;
3511 	dm_cblock_t residency;
3512 
3513 	switch (type) {
3514 	case STATUSTYPE_INFO:
3515 		if (get_cache_mode(cache) == CM_FAIL) {
3516 			DMEMIT("Fail");
3517 			break;
3518 		}
3519 
3520 		/* Commit to ensure statistics aren't out-of-date */
3521 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3522 			(void) commit(cache, false);
3523 
3524 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3525 		if (r) {
3526 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3527 			      cache_device_name(cache), r);
3528 			goto err;
3529 		}
3530 
3531 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3532 		if (r) {
3533 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3534 			      cache_device_name(cache), r);
3535 			goto err;
3536 		}
3537 
3538 		residency = policy_residency(cache->policy);
3539 
3540 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3541 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3542 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3543 		       (unsigned long long)nr_blocks_metadata,
3544 		       cache->sectors_per_block,
3545 		       (unsigned long long) from_cblock(residency),
3546 		       (unsigned long long) from_cblock(cache->cache_size),
3547 		       (unsigned) atomic_read(&cache->stats.read_hit),
3548 		       (unsigned) atomic_read(&cache->stats.read_miss),
3549 		       (unsigned) atomic_read(&cache->stats.write_hit),
3550 		       (unsigned) atomic_read(&cache->stats.write_miss),
3551 		       (unsigned) atomic_read(&cache->stats.demotion),
3552 		       (unsigned) atomic_read(&cache->stats.promotion),
3553 		       (unsigned long) atomic_read(&cache->nr_dirty));
3554 
3555 		if (writethrough_mode(&cache->features))
3556 			DMEMIT("1 writethrough ");
3557 
3558 		else if (passthrough_mode(&cache->features))
3559 			DMEMIT("1 passthrough ");
3560 
3561 		else if (writeback_mode(&cache->features))
3562 			DMEMIT("1 writeback ");
3563 
3564 		else {
3565 			DMERR("%s: internal error: unknown io mode: %d",
3566 			      cache_device_name(cache), (int) cache->features.io_mode);
3567 			goto err;
3568 		}
3569 
3570 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3571 
3572 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3573 		if (sz < maxlen) {
3574 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3575 			if (r)
3576 				DMERR("%s: policy_emit_config_values returned %d",
3577 				      cache_device_name(cache), r);
3578 		}
3579 
3580 		if (get_cache_mode(cache) == CM_READ_ONLY)
3581 			DMEMIT("ro ");
3582 		else
3583 			DMEMIT("rw ");
3584 
3585 		break;
3586 
3587 	case STATUSTYPE_TABLE:
3588 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3589 		DMEMIT("%s ", buf);
3590 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3591 		DMEMIT("%s ", buf);
3592 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3593 		DMEMIT("%s", buf);
3594 
3595 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3596 			DMEMIT(" %s", cache->ctr_args[i]);
3597 		if (cache->nr_ctr_args)
3598 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3599 	}
3600 
3601 	return;
3602 
3603 err:
3604 	DMEMIT("Error");
3605 }
3606 
3607 /*
3608  * A cache block range can take two forms:
3609  *
3610  * i) A single cblock, eg. '3456'
3611  * ii) A begin and end cblock with dots between, eg. 123-234
3612  */
3613 static int parse_cblock_range(struct cache *cache, const char *str,
3614 			      struct cblock_range *result)
3615 {
3616 	char dummy;
3617 	uint64_t b, e;
3618 	int r;
3619 
3620 	/*
3621 	 * Try and parse form (ii) first.
3622 	 */
3623 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3624 	if (r < 0)
3625 		return r;
3626 
3627 	if (r == 2) {
3628 		result->begin = to_cblock(b);
3629 		result->end = to_cblock(e);
3630 		return 0;
3631 	}
3632 
3633 	/*
3634 	 * That didn't work, try form (i).
3635 	 */
3636 	r = sscanf(str, "%llu%c", &b, &dummy);
3637 	if (r < 0)
3638 		return r;
3639 
3640 	if (r == 1) {
3641 		result->begin = to_cblock(b);
3642 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3643 		return 0;
3644 	}
3645 
3646 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3647 	return -EINVAL;
3648 }
3649 
3650 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3651 {
3652 	uint64_t b = from_cblock(range->begin);
3653 	uint64_t e = from_cblock(range->end);
3654 	uint64_t n = from_cblock(cache->cache_size);
3655 
3656 	if (b >= n) {
3657 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3658 		      cache_device_name(cache), b, n);
3659 		return -EINVAL;
3660 	}
3661 
3662 	if (e > n) {
3663 		DMERR("%s: end cblock out of range: %llu > %llu",
3664 		      cache_device_name(cache), e, n);
3665 		return -EINVAL;
3666 	}
3667 
3668 	if (b >= e) {
3669 		DMERR("%s: invalid cblock range: %llu >= %llu",
3670 		      cache_device_name(cache), b, e);
3671 		return -EINVAL;
3672 	}
3673 
3674 	return 0;
3675 }
3676 
3677 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3678 {
3679 	struct invalidation_request req;
3680 
3681 	INIT_LIST_HEAD(&req.list);
3682 	req.cblocks = range;
3683 	atomic_set(&req.complete, 0);
3684 	req.err = 0;
3685 	init_waitqueue_head(&req.result_wait);
3686 
3687 	spin_lock(&cache->invalidation_lock);
3688 	list_add(&req.list, &cache->invalidation_requests);
3689 	spin_unlock(&cache->invalidation_lock);
3690 	wake_worker(cache);
3691 
3692 	wait_event(req.result_wait, atomic_read(&req.complete));
3693 	return req.err;
3694 }
3695 
3696 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3697 					      const char **cblock_ranges)
3698 {
3699 	int r = 0;
3700 	unsigned i;
3701 	struct cblock_range range;
3702 
3703 	if (!passthrough_mode(&cache->features)) {
3704 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3705 		      cache_device_name(cache));
3706 		return -EPERM;
3707 	}
3708 
3709 	for (i = 0; i < count; i++) {
3710 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3711 		if (r)
3712 			break;
3713 
3714 		r = validate_cblock_range(cache, &range);
3715 		if (r)
3716 			break;
3717 
3718 		/*
3719 		 * Pass begin and end origin blocks to the worker and wake it.
3720 		 */
3721 		r = request_invalidation(cache, &range);
3722 		if (r)
3723 			break;
3724 	}
3725 
3726 	return r;
3727 }
3728 
3729 /*
3730  * Supports
3731  *	"<key> <value>"
3732  * and
3733  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3734  *
3735  * The key migration_threshold is supported by the cache target core.
3736  */
3737 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3738 {
3739 	struct cache *cache = ti->private;
3740 
3741 	if (!argc)
3742 		return -EINVAL;
3743 
3744 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3745 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3746 		      cache_device_name(cache));
3747 		return -EOPNOTSUPP;
3748 	}
3749 
3750 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3751 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3752 
3753 	if (argc != 2)
3754 		return -EINVAL;
3755 
3756 	return set_config_value(cache, argv[0], argv[1]);
3757 }
3758 
3759 static int cache_iterate_devices(struct dm_target *ti,
3760 				 iterate_devices_callout_fn fn, void *data)
3761 {
3762 	int r = 0;
3763 	struct cache *cache = ti->private;
3764 
3765 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3766 	if (!r)
3767 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3768 
3769 	return r;
3770 }
3771 
3772 /*
3773  * We assume I/O is going to the origin (which is the volume
3774  * more likely to have restrictions e.g. by being striped).
3775  * (Looking up the exact location of the data would be expensive
3776  * and could always be out of date by the time the bio is submitted.)
3777  */
3778 static int cache_bvec_merge(struct dm_target *ti,
3779 			    struct bvec_merge_data *bvm,
3780 			    struct bio_vec *biovec, int max_size)
3781 {
3782 	struct cache *cache = ti->private;
3783 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3784 
3785 	if (!q->merge_bvec_fn)
3786 		return max_size;
3787 
3788 	bvm->bi_bdev = cache->origin_dev->bdev;
3789 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3790 }
3791 
3792 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3793 {
3794 	/*
3795 	 * FIXME: these limits may be incompatible with the cache device
3796 	 */
3797 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3798 					    cache->origin_sectors);
3799 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3800 }
3801 
3802 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3803 {
3804 	struct cache *cache = ti->private;
3805 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3806 
3807 	/*
3808 	 * If the system-determined stacked limits are compatible with the
3809 	 * cache's blocksize (io_opt is a factor) do not override them.
3810 	 */
3811 	if (io_opt_sectors < cache->sectors_per_block ||
3812 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3813 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3814 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3815 	}
3816 	set_discard_limits(cache, limits);
3817 }
3818 
3819 /*----------------------------------------------------------------*/
3820 
3821 static struct target_type cache_target = {
3822 	.name = "cache",
3823 	.version = {1, 7, 0},
3824 	.module = THIS_MODULE,
3825 	.ctr = cache_ctr,
3826 	.dtr = cache_dtr,
3827 	.map = cache_map,
3828 	.end_io = cache_end_io,
3829 	.postsuspend = cache_postsuspend,
3830 	.preresume = cache_preresume,
3831 	.resume = cache_resume,
3832 	.status = cache_status,
3833 	.message = cache_message,
3834 	.iterate_devices = cache_iterate_devices,
3835 	.merge = cache_bvec_merge,
3836 	.io_hints = cache_io_hints,
3837 };
3838 
3839 static int __init dm_cache_init(void)
3840 {
3841 	int r;
3842 
3843 	r = dm_register_target(&cache_target);
3844 	if (r) {
3845 		DMERR("cache target registration failed: %d", r);
3846 		return r;
3847 	}
3848 
3849 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3850 	if (!migration_cache) {
3851 		dm_unregister_target(&cache_target);
3852 		return -ENOMEM;
3853 	}
3854 
3855 	return 0;
3856 }
3857 
3858 static void __exit dm_cache_exit(void)
3859 {
3860 	dm_unregister_target(&cache_target);
3861 	kmem_cache_destroy(migration_cache);
3862 }
3863 
3864 module_init(dm_cache_init);
3865 module_exit(dm_cache_exit);
3866 
3867 MODULE_DESCRIPTION(DM_NAME " cache target");
3868 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3869 MODULE_LICENSE("GPL");
3870