xref: /openbmc/linux/drivers/md/dm-cache-target.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21 
22 #define DM_MSG_PREFIX "cache"
23 
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 	"A percentage of time allocated for copying to and/or from cache");
26 
27 /*----------------------------------------------------------------*/
28 
29 /*
30  * Glossary:
31  *
32  * oblock: index of an origin block
33  * cblock: index of a cache block
34  * promotion: movement of a block from origin to cache
35  * demotion: movement of a block from cache to origin
36  * migration: movement of a block between the origin and cache device,
37  *	      either direction
38  */
39 
40 /*----------------------------------------------------------------*/
41 
42 struct io_tracker {
43 	spinlock_t lock;
44 
45 	/*
46 	 * Sectors of in-flight IO.
47 	 */
48 	sector_t in_flight;
49 
50 	/*
51 	 * The time, in jiffies, when this device became idle (if it is
52 	 * indeed idle).
53 	 */
54 	unsigned long idle_time;
55 	unsigned long last_update_time;
56 };
57 
58 static void iot_init(struct io_tracker *iot)
59 {
60 	spin_lock_init(&iot->lock);
61 	iot->in_flight = 0ul;
62 	iot->idle_time = 0ul;
63 	iot->last_update_time = jiffies;
64 }
65 
66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 	if (iot->in_flight)
69 		return false;
70 
71 	return time_after(jiffies, iot->idle_time + jifs);
72 }
73 
74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 	bool r;
77 	unsigned long flags;
78 
79 	spin_lock_irqsave(&iot->lock, flags);
80 	r = __iot_idle_for(iot, jifs);
81 	spin_unlock_irqrestore(&iot->lock, flags);
82 
83 	return r;
84 }
85 
86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 	unsigned long flags;
89 
90 	spin_lock_irqsave(&iot->lock, flags);
91 	iot->in_flight += len;
92 	spin_unlock_irqrestore(&iot->lock, flags);
93 }
94 
95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 	if (!len)
98 		return;
99 
100 	iot->in_flight -= len;
101 	if (!iot->in_flight)
102 		iot->idle_time = jiffies;
103 }
104 
105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 	unsigned long flags;
108 
109 	spin_lock_irqsave(&iot->lock, flags);
110 	__iot_io_end(iot, len);
111 	spin_unlock_irqrestore(&iot->lock, flags);
112 }
113 
114 /*----------------------------------------------------------------*/
115 
116 /*
117  * Represents a chunk of future work.  'input' allows continuations to pass
118  * values between themselves, typically error values.
119  */
120 struct continuation {
121 	struct work_struct ws;
122 	blk_status_t input;
123 };
124 
125 static inline void init_continuation(struct continuation *k,
126 				     void (*fn)(struct work_struct *))
127 {
128 	INIT_WORK(&k->ws, fn);
129 	k->input = 0;
130 }
131 
132 static inline void queue_continuation(struct workqueue_struct *wq,
133 				      struct continuation *k)
134 {
135 	queue_work(wq, &k->ws);
136 }
137 
138 /*----------------------------------------------------------------*/
139 
140 /*
141  * The batcher collects together pieces of work that need a particular
142  * operation to occur before they can proceed (typically a commit).
143  */
144 struct batcher {
145 	/*
146 	 * The operation that everyone is waiting for.
147 	 */
148 	blk_status_t (*commit_op)(void *context);
149 	void *commit_context;
150 
151 	/*
152 	 * This is how bios should be issued once the commit op is complete
153 	 * (accounted_request).
154 	 */
155 	void (*issue_op)(struct bio *bio, void *context);
156 	void *issue_context;
157 
158 	/*
159 	 * Queued work gets put on here after commit.
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	spinlock_t lock;
164 	struct list_head work_items;
165 	struct bio_list bios;
166 	struct work_struct commit_work;
167 
168 	bool commit_scheduled;
169 };
170 
171 static void __commit(struct work_struct *_ws)
172 {
173 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 	blk_status_t r;
175 	unsigned long flags;
176 	struct list_head work_items;
177 	struct work_struct *ws, *tmp;
178 	struct continuation *k;
179 	struct bio *bio;
180 	struct bio_list bios;
181 
182 	INIT_LIST_HEAD(&work_items);
183 	bio_list_init(&bios);
184 
185 	/*
186 	 * We have to grab these before the commit_op to avoid a race
187 	 * condition.
188 	 */
189 	spin_lock_irqsave(&b->lock, flags);
190 	list_splice_init(&b->work_items, &work_items);
191 	bio_list_merge(&bios, &b->bios);
192 	bio_list_init(&b->bios);
193 	b->commit_scheduled = false;
194 	spin_unlock_irqrestore(&b->lock, flags);
195 
196 	r = b->commit_op(b->commit_context);
197 
198 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 		k = container_of(ws, struct continuation, ws);
200 		k->input = r;
201 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 		queue_work(b->wq, ws);
203 	}
204 
205 	while ((bio = bio_list_pop(&bios))) {
206 		if (r) {
207 			bio->bi_status = r;
208 			bio_endio(bio);
209 		} else
210 			b->issue_op(bio, b->issue_context);
211 	}
212 }
213 
214 static void batcher_init(struct batcher *b,
215 			 blk_status_t (*commit_op)(void *),
216 			 void *commit_context,
217 			 void (*issue_op)(struct bio *bio, void *),
218 			 void *issue_context,
219 			 struct workqueue_struct *wq)
220 {
221 	b->commit_op = commit_op;
222 	b->commit_context = commit_context;
223 	b->issue_op = issue_op;
224 	b->issue_context = issue_context;
225 	b->wq = wq;
226 
227 	spin_lock_init(&b->lock);
228 	INIT_LIST_HEAD(&b->work_items);
229 	bio_list_init(&b->bios);
230 	INIT_WORK(&b->commit_work, __commit);
231 	b->commit_scheduled = false;
232 }
233 
234 static void async_commit(struct batcher *b)
235 {
236 	queue_work(b->wq, &b->commit_work);
237 }
238 
239 static void continue_after_commit(struct batcher *b, struct continuation *k)
240 {
241 	unsigned long flags;
242 	bool commit_scheduled;
243 
244 	spin_lock_irqsave(&b->lock, flags);
245 	commit_scheduled = b->commit_scheduled;
246 	list_add_tail(&k->ws.entry, &b->work_items);
247 	spin_unlock_irqrestore(&b->lock, flags);
248 
249 	if (commit_scheduled)
250 		async_commit(b);
251 }
252 
253 /*
254  * Bios are errored if commit failed.
255  */
256 static void issue_after_commit(struct batcher *b, struct bio *bio)
257 {
258        unsigned long flags;
259        bool commit_scheduled;
260 
261        spin_lock_irqsave(&b->lock, flags);
262        commit_scheduled = b->commit_scheduled;
263        bio_list_add(&b->bios, bio);
264        spin_unlock_irqrestore(&b->lock, flags);
265 
266        if (commit_scheduled)
267 	       async_commit(b);
268 }
269 
270 /*
271  * Call this if some urgent work is waiting for the commit to complete.
272  */
273 static void schedule_commit(struct batcher *b)
274 {
275 	bool immediate;
276 	unsigned long flags;
277 
278 	spin_lock_irqsave(&b->lock, flags);
279 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 	b->commit_scheduled = true;
281 	spin_unlock_irqrestore(&b->lock, flags);
282 
283 	if (immediate)
284 		async_commit(b);
285 }
286 
287 /*
288  * There are a couple of places where we let a bio run, but want to do some
289  * work before calling its endio function.  We do this by temporarily
290  * changing the endio fn.
291  */
292 struct dm_hook_info {
293 	bio_end_io_t *bi_end_io;
294 };
295 
296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 			bio_end_io_t *bi_end_io, void *bi_private)
298 {
299 	h->bi_end_io = bio->bi_end_io;
300 
301 	bio->bi_end_io = bi_end_io;
302 	bio->bi_private = bi_private;
303 }
304 
305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306 {
307 	bio->bi_end_io = h->bi_end_io;
308 }
309 
310 /*----------------------------------------------------------------*/
311 
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
315 
316 /*
317  * The block size of the device holding cache data must be
318  * between 32KB and 1GB.
319  */
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322 
323 enum cache_metadata_mode {
324 	CM_WRITE,		/* metadata may be changed */
325 	CM_READ_ONLY,		/* metadata may not be changed */
326 	CM_FAIL
327 };
328 
329 enum cache_io_mode {
330 	/*
331 	 * Data is written to cached blocks only.  These blocks are marked
332 	 * dirty.  If you lose the cache device you will lose data.
333 	 * Potential performance increase for both reads and writes.
334 	 */
335 	CM_IO_WRITEBACK,
336 
337 	/*
338 	 * Data is written to both cache and origin.  Blocks are never
339 	 * dirty.  Potential performance benfit for reads only.
340 	 */
341 	CM_IO_WRITETHROUGH,
342 
343 	/*
344 	 * A degraded mode useful for various cache coherency situations
345 	 * (eg, rolling back snapshots).  Reads and writes always go to the
346 	 * origin.  If a write goes to a cached oblock, then the cache
347 	 * block is invalidated.
348 	 */
349 	CM_IO_PASSTHROUGH
350 };
351 
352 struct cache_features {
353 	enum cache_metadata_mode mode;
354 	enum cache_io_mode io_mode;
355 	unsigned metadata_version;
356 	bool discard_passdown:1;
357 };
358 
359 struct cache_stats {
360 	atomic_t read_hit;
361 	atomic_t read_miss;
362 	atomic_t write_hit;
363 	atomic_t write_miss;
364 	atomic_t demotion;
365 	atomic_t promotion;
366 	atomic_t writeback;
367 	atomic_t copies_avoided;
368 	atomic_t cache_cell_clash;
369 	atomic_t commit_count;
370 	atomic_t discard_count;
371 };
372 
373 struct cache {
374 	struct dm_target *ti;
375 	spinlock_t lock;
376 
377 	/*
378 	 * Fields for converting from sectors to blocks.
379 	 */
380 	int sectors_per_block_shift;
381 	sector_t sectors_per_block;
382 
383 	struct dm_cache_metadata *cmd;
384 
385 	/*
386 	 * Metadata is written to this device.
387 	 */
388 	struct dm_dev *metadata_dev;
389 
390 	/*
391 	 * The slower of the two data devices.  Typically a spindle.
392 	 */
393 	struct dm_dev *origin_dev;
394 
395 	/*
396 	 * The faster of the two data devices.  Typically an SSD.
397 	 */
398 	struct dm_dev *cache_dev;
399 
400 	/*
401 	 * Size of the origin device in _complete_ blocks and native sectors.
402 	 */
403 	dm_oblock_t origin_blocks;
404 	sector_t origin_sectors;
405 
406 	/*
407 	 * Size of the cache device in blocks.
408 	 */
409 	dm_cblock_t cache_size;
410 
411 	/*
412 	 * Invalidation fields.
413 	 */
414 	spinlock_t invalidation_lock;
415 	struct list_head invalidation_requests;
416 
417 	sector_t migration_threshold;
418 	wait_queue_head_t migration_wait;
419 	atomic_t nr_allocated_migrations;
420 
421 	/*
422 	 * The number of in flight migrations that are performing
423 	 * background io. eg, promotion, writeback.
424 	 */
425 	atomic_t nr_io_migrations;
426 
427 	struct bio_list deferred_bios;
428 
429 	struct rw_semaphore quiesce_lock;
430 
431 	struct dm_target_callbacks callbacks;
432 
433 	/*
434 	 * origin_blocks entries, discarded if set.
435 	 */
436 	dm_dblock_t discard_nr_blocks;
437 	unsigned long *discard_bitset;
438 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
439 
440 	/*
441 	 * Rather than reconstructing the table line for the status we just
442 	 * save it and regurgitate.
443 	 */
444 	unsigned nr_ctr_args;
445 	const char **ctr_args;
446 
447 	struct dm_kcopyd_client *copier;
448 	struct work_struct deferred_bio_worker;
449 	struct work_struct migration_worker;
450 	struct workqueue_struct *wq;
451 	struct delayed_work waker;
452 	struct dm_bio_prison_v2 *prison;
453 
454 	/*
455 	 * cache_size entries, dirty if set
456 	 */
457 	unsigned long *dirty_bitset;
458 	atomic_t nr_dirty;
459 
460 	unsigned policy_nr_args;
461 	struct dm_cache_policy *policy;
462 
463 	/*
464 	 * Cache features such as write-through.
465 	 */
466 	struct cache_features features;
467 
468 	struct cache_stats stats;
469 
470 	bool need_tick_bio:1;
471 	bool sized:1;
472 	bool invalidate:1;
473 	bool commit_requested:1;
474 	bool loaded_mappings:1;
475 	bool loaded_discards:1;
476 
477 	struct rw_semaphore background_work_lock;
478 
479 	struct batcher committer;
480 	struct work_struct commit_ws;
481 
482 	struct io_tracker tracker;
483 
484 	mempool_t migration_pool;
485 
486 	struct bio_set bs;
487 };
488 
489 struct per_bio_data {
490 	bool tick:1;
491 	unsigned req_nr:2;
492 	struct dm_bio_prison_cell_v2 *cell;
493 	struct dm_hook_info hook_info;
494 	sector_t len;
495 };
496 
497 struct dm_cache_migration {
498 	struct continuation k;
499 	struct cache *cache;
500 
501 	struct policy_work *op;
502 	struct bio *overwrite_bio;
503 	struct dm_bio_prison_cell_v2 *cell;
504 
505 	dm_cblock_t invalidate_cblock;
506 	dm_oblock_t invalidate_oblock;
507 };
508 
509 /*----------------------------------------------------------------*/
510 
511 static bool writethrough_mode(struct cache *cache)
512 {
513 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
514 }
515 
516 static bool writeback_mode(struct cache *cache)
517 {
518 	return cache->features.io_mode == CM_IO_WRITEBACK;
519 }
520 
521 static inline bool passthrough_mode(struct cache *cache)
522 {
523 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
524 }
525 
526 /*----------------------------------------------------------------*/
527 
528 static void wake_deferred_bio_worker(struct cache *cache)
529 {
530 	queue_work(cache->wq, &cache->deferred_bio_worker);
531 }
532 
533 static void wake_migration_worker(struct cache *cache)
534 {
535 	if (passthrough_mode(cache))
536 		return;
537 
538 	queue_work(cache->wq, &cache->migration_worker);
539 }
540 
541 /*----------------------------------------------------------------*/
542 
543 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
544 {
545 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
546 }
547 
548 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
549 {
550 	dm_bio_prison_free_cell_v2(cache->prison, cell);
551 }
552 
553 static struct dm_cache_migration *alloc_migration(struct cache *cache)
554 {
555 	struct dm_cache_migration *mg;
556 
557 	mg = mempool_alloc(&cache->migration_pool, GFP_NOWAIT);
558 	if (!mg)
559 		return NULL;
560 
561 	memset(mg, 0, sizeof(*mg));
562 
563 	mg->cache = cache;
564 	atomic_inc(&cache->nr_allocated_migrations);
565 
566 	return mg;
567 }
568 
569 static void free_migration(struct dm_cache_migration *mg)
570 {
571 	struct cache *cache = mg->cache;
572 
573 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
574 		wake_up(&cache->migration_wait);
575 
576 	mempool_free(mg, &cache->migration_pool);
577 }
578 
579 /*----------------------------------------------------------------*/
580 
581 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
582 {
583 	return to_oblock(from_oblock(b) + 1ull);
584 }
585 
586 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
587 {
588 	key->virtual = 0;
589 	key->dev = 0;
590 	key->block_begin = from_oblock(begin);
591 	key->block_end = from_oblock(end);
592 }
593 
594 /*
595  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
596  * level 1 which prevents *both* READs and WRITEs.
597  */
598 #define WRITE_LOCK_LEVEL 0
599 #define READ_WRITE_LOCK_LEVEL 1
600 
601 static unsigned lock_level(struct bio *bio)
602 {
603 	return bio_data_dir(bio) == WRITE ?
604 		WRITE_LOCK_LEVEL :
605 		READ_WRITE_LOCK_LEVEL;
606 }
607 
608 /*----------------------------------------------------------------
609  * Per bio data
610  *--------------------------------------------------------------*/
611 
612 static struct per_bio_data *get_per_bio_data(struct bio *bio)
613 {
614 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
615 	BUG_ON(!pb);
616 	return pb;
617 }
618 
619 static struct per_bio_data *init_per_bio_data(struct bio *bio)
620 {
621 	struct per_bio_data *pb = get_per_bio_data(bio);
622 
623 	pb->tick = false;
624 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
625 	pb->cell = NULL;
626 	pb->len = 0;
627 
628 	return pb;
629 }
630 
631 /*----------------------------------------------------------------*/
632 
633 static void defer_bio(struct cache *cache, struct bio *bio)
634 {
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&cache->lock, flags);
638 	bio_list_add(&cache->deferred_bios, bio);
639 	spin_unlock_irqrestore(&cache->lock, flags);
640 
641 	wake_deferred_bio_worker(cache);
642 }
643 
644 static void defer_bios(struct cache *cache, struct bio_list *bios)
645 {
646 	unsigned long flags;
647 
648 	spin_lock_irqsave(&cache->lock, flags);
649 	bio_list_merge(&cache->deferred_bios, bios);
650 	bio_list_init(bios);
651 	spin_unlock_irqrestore(&cache->lock, flags);
652 
653 	wake_deferred_bio_worker(cache);
654 }
655 
656 /*----------------------------------------------------------------*/
657 
658 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
659 {
660 	bool r;
661 	struct per_bio_data *pb;
662 	struct dm_cell_key_v2 key;
663 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
664 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
665 
666 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
667 	if (!cell_prealloc) {
668 		defer_bio(cache, bio);
669 		return false;
670 	}
671 
672 	build_key(oblock, end, &key);
673 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
674 	if (!r) {
675 		/*
676 		 * Failed to get the lock.
677 		 */
678 		free_prison_cell(cache, cell_prealloc);
679 		return r;
680 	}
681 
682 	if (cell != cell_prealloc)
683 		free_prison_cell(cache, cell_prealloc);
684 
685 	pb = get_per_bio_data(bio);
686 	pb->cell = cell;
687 
688 	return r;
689 }
690 
691 /*----------------------------------------------------------------*/
692 
693 static bool is_dirty(struct cache *cache, dm_cblock_t b)
694 {
695 	return test_bit(from_cblock(b), cache->dirty_bitset);
696 }
697 
698 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
699 {
700 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
701 		atomic_inc(&cache->nr_dirty);
702 		policy_set_dirty(cache->policy, cblock);
703 	}
704 }
705 
706 /*
707  * These two are called when setting after migrations to force the policy
708  * and dirty bitset to be in sync.
709  */
710 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
711 {
712 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
713 		atomic_inc(&cache->nr_dirty);
714 	policy_set_dirty(cache->policy, cblock);
715 }
716 
717 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
718 {
719 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
720 		if (atomic_dec_return(&cache->nr_dirty) == 0)
721 			dm_table_event(cache->ti->table);
722 	}
723 
724 	policy_clear_dirty(cache->policy, cblock);
725 }
726 
727 /*----------------------------------------------------------------*/
728 
729 static bool block_size_is_power_of_two(struct cache *cache)
730 {
731 	return cache->sectors_per_block_shift >= 0;
732 }
733 
734 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
735 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
736 __always_inline
737 #endif
738 static dm_block_t block_div(dm_block_t b, uint32_t n)
739 {
740 	do_div(b, n);
741 
742 	return b;
743 }
744 
745 static dm_block_t oblocks_per_dblock(struct cache *cache)
746 {
747 	dm_block_t oblocks = cache->discard_block_size;
748 
749 	if (block_size_is_power_of_two(cache))
750 		oblocks >>= cache->sectors_per_block_shift;
751 	else
752 		oblocks = block_div(oblocks, cache->sectors_per_block);
753 
754 	return oblocks;
755 }
756 
757 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
758 {
759 	return to_dblock(block_div(from_oblock(oblock),
760 				   oblocks_per_dblock(cache)));
761 }
762 
763 static void set_discard(struct cache *cache, dm_dblock_t b)
764 {
765 	unsigned long flags;
766 
767 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
768 	atomic_inc(&cache->stats.discard_count);
769 
770 	spin_lock_irqsave(&cache->lock, flags);
771 	set_bit(from_dblock(b), cache->discard_bitset);
772 	spin_unlock_irqrestore(&cache->lock, flags);
773 }
774 
775 static void clear_discard(struct cache *cache, dm_dblock_t b)
776 {
777 	unsigned long flags;
778 
779 	spin_lock_irqsave(&cache->lock, flags);
780 	clear_bit(from_dblock(b), cache->discard_bitset);
781 	spin_unlock_irqrestore(&cache->lock, flags);
782 }
783 
784 static bool is_discarded(struct cache *cache, dm_dblock_t b)
785 {
786 	int r;
787 	unsigned long flags;
788 
789 	spin_lock_irqsave(&cache->lock, flags);
790 	r = test_bit(from_dblock(b), cache->discard_bitset);
791 	spin_unlock_irqrestore(&cache->lock, flags);
792 
793 	return r;
794 }
795 
796 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
797 {
798 	int r;
799 	unsigned long flags;
800 
801 	spin_lock_irqsave(&cache->lock, flags);
802 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
803 		     cache->discard_bitset);
804 	spin_unlock_irqrestore(&cache->lock, flags);
805 
806 	return r;
807 }
808 
809 /*----------------------------------------------------------------
810  * Remapping
811  *--------------------------------------------------------------*/
812 static void remap_to_origin(struct cache *cache, struct bio *bio)
813 {
814 	bio_set_dev(bio, cache->origin_dev->bdev);
815 }
816 
817 static void remap_to_cache(struct cache *cache, struct bio *bio,
818 			   dm_cblock_t cblock)
819 {
820 	sector_t bi_sector = bio->bi_iter.bi_sector;
821 	sector_t block = from_cblock(cblock);
822 
823 	bio_set_dev(bio, cache->cache_dev->bdev);
824 	if (!block_size_is_power_of_two(cache))
825 		bio->bi_iter.bi_sector =
826 			(block * cache->sectors_per_block) +
827 			sector_div(bi_sector, cache->sectors_per_block);
828 	else
829 		bio->bi_iter.bi_sector =
830 			(block << cache->sectors_per_block_shift) |
831 			(bi_sector & (cache->sectors_per_block - 1));
832 }
833 
834 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
835 {
836 	unsigned long flags;
837 	struct per_bio_data *pb;
838 
839 	spin_lock_irqsave(&cache->lock, flags);
840 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
841 	    bio_op(bio) != REQ_OP_DISCARD) {
842 		pb = get_per_bio_data(bio);
843 		pb->tick = true;
844 		cache->need_tick_bio = false;
845 	}
846 	spin_unlock_irqrestore(&cache->lock, flags);
847 }
848 
849 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
850 					    dm_oblock_t oblock, bool bio_has_pbd)
851 {
852 	if (bio_has_pbd)
853 		check_if_tick_bio_needed(cache, bio);
854 	remap_to_origin(cache, bio);
855 	if (bio_data_dir(bio) == WRITE)
856 		clear_discard(cache, oblock_to_dblock(cache, oblock));
857 }
858 
859 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
860 					  dm_oblock_t oblock)
861 {
862 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
863 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
864 }
865 
866 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
867 				 dm_oblock_t oblock, dm_cblock_t cblock)
868 {
869 	check_if_tick_bio_needed(cache, bio);
870 	remap_to_cache(cache, bio, cblock);
871 	if (bio_data_dir(bio) == WRITE) {
872 		set_dirty(cache, cblock);
873 		clear_discard(cache, oblock_to_dblock(cache, oblock));
874 	}
875 }
876 
877 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
878 {
879 	sector_t block_nr = bio->bi_iter.bi_sector;
880 
881 	if (!block_size_is_power_of_two(cache))
882 		(void) sector_div(block_nr, cache->sectors_per_block);
883 	else
884 		block_nr >>= cache->sectors_per_block_shift;
885 
886 	return to_oblock(block_nr);
887 }
888 
889 static bool accountable_bio(struct cache *cache, struct bio *bio)
890 {
891 	return bio_op(bio) != REQ_OP_DISCARD;
892 }
893 
894 static void accounted_begin(struct cache *cache, struct bio *bio)
895 {
896 	struct per_bio_data *pb;
897 
898 	if (accountable_bio(cache, bio)) {
899 		pb = get_per_bio_data(bio);
900 		pb->len = bio_sectors(bio);
901 		iot_io_begin(&cache->tracker, pb->len);
902 	}
903 }
904 
905 static void accounted_complete(struct cache *cache, struct bio *bio)
906 {
907 	struct per_bio_data *pb = get_per_bio_data(bio);
908 
909 	iot_io_end(&cache->tracker, pb->len);
910 }
911 
912 static void accounted_request(struct cache *cache, struct bio *bio)
913 {
914 	accounted_begin(cache, bio);
915 	generic_make_request(bio);
916 }
917 
918 static void issue_op(struct bio *bio, void *context)
919 {
920 	struct cache *cache = context;
921 	accounted_request(cache, bio);
922 }
923 
924 /*
925  * When running in writethrough mode we need to send writes to clean blocks
926  * to both the cache and origin devices.  Clone the bio and send them in parallel.
927  */
928 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
929 				      dm_oblock_t oblock, dm_cblock_t cblock)
930 {
931 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
932 
933 	BUG_ON(!origin_bio);
934 
935 	bio_chain(origin_bio, bio);
936 	/*
937 	 * Passing false to __remap_to_origin_clear_discard() skips
938 	 * all code that might use per_bio_data (since clone doesn't have it)
939 	 */
940 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
941 	submit_bio(origin_bio);
942 
943 	remap_to_cache(cache, bio, cblock);
944 }
945 
946 /*----------------------------------------------------------------
947  * Failure modes
948  *--------------------------------------------------------------*/
949 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
950 {
951 	return cache->features.mode;
952 }
953 
954 static const char *cache_device_name(struct cache *cache)
955 {
956 	return dm_device_name(dm_table_get_md(cache->ti->table));
957 }
958 
959 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
960 {
961 	const char *descs[] = {
962 		"write",
963 		"read-only",
964 		"fail"
965 	};
966 
967 	dm_table_event(cache->ti->table);
968 	DMINFO("%s: switching cache to %s mode",
969 	       cache_device_name(cache), descs[(int)mode]);
970 }
971 
972 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
973 {
974 	bool needs_check;
975 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
976 
977 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
978 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
979 		      cache_device_name(cache));
980 		new_mode = CM_FAIL;
981 	}
982 
983 	if (new_mode == CM_WRITE && needs_check) {
984 		DMERR("%s: unable to switch cache to write mode until repaired.",
985 		      cache_device_name(cache));
986 		if (old_mode != new_mode)
987 			new_mode = old_mode;
988 		else
989 			new_mode = CM_READ_ONLY;
990 	}
991 
992 	/* Never move out of fail mode */
993 	if (old_mode == CM_FAIL)
994 		new_mode = CM_FAIL;
995 
996 	switch (new_mode) {
997 	case CM_FAIL:
998 	case CM_READ_ONLY:
999 		dm_cache_metadata_set_read_only(cache->cmd);
1000 		break;
1001 
1002 	case CM_WRITE:
1003 		dm_cache_metadata_set_read_write(cache->cmd);
1004 		break;
1005 	}
1006 
1007 	cache->features.mode = new_mode;
1008 
1009 	if (new_mode != old_mode)
1010 		notify_mode_switch(cache, new_mode);
1011 }
1012 
1013 static void abort_transaction(struct cache *cache)
1014 {
1015 	const char *dev_name = cache_device_name(cache);
1016 
1017 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1018 		return;
1019 
1020 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1021 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1022 		set_cache_mode(cache, CM_FAIL);
1023 	}
1024 
1025 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1026 	if (dm_cache_metadata_abort(cache->cmd)) {
1027 		DMERR("%s: failed to abort metadata transaction", dev_name);
1028 		set_cache_mode(cache, CM_FAIL);
1029 	}
1030 }
1031 
1032 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1033 {
1034 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1035 		    cache_device_name(cache), op, r);
1036 	abort_transaction(cache);
1037 	set_cache_mode(cache, CM_READ_ONLY);
1038 }
1039 
1040 /*----------------------------------------------------------------*/
1041 
1042 static void load_stats(struct cache *cache)
1043 {
1044 	struct dm_cache_statistics stats;
1045 
1046 	dm_cache_metadata_get_stats(cache->cmd, &stats);
1047 	atomic_set(&cache->stats.read_hit, stats.read_hits);
1048 	atomic_set(&cache->stats.read_miss, stats.read_misses);
1049 	atomic_set(&cache->stats.write_hit, stats.write_hits);
1050 	atomic_set(&cache->stats.write_miss, stats.write_misses);
1051 }
1052 
1053 static void save_stats(struct cache *cache)
1054 {
1055 	struct dm_cache_statistics stats;
1056 
1057 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1058 		return;
1059 
1060 	stats.read_hits = atomic_read(&cache->stats.read_hit);
1061 	stats.read_misses = atomic_read(&cache->stats.read_miss);
1062 	stats.write_hits = atomic_read(&cache->stats.write_hit);
1063 	stats.write_misses = atomic_read(&cache->stats.write_miss);
1064 
1065 	dm_cache_metadata_set_stats(cache->cmd, &stats);
1066 }
1067 
1068 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1069 {
1070 	switch (op) {
1071 	case POLICY_PROMOTE:
1072 		atomic_inc(&stats->promotion);
1073 		break;
1074 
1075 	case POLICY_DEMOTE:
1076 		atomic_inc(&stats->demotion);
1077 		break;
1078 
1079 	case POLICY_WRITEBACK:
1080 		atomic_inc(&stats->writeback);
1081 		break;
1082 	}
1083 }
1084 
1085 /*----------------------------------------------------------------
1086  * Migration processing
1087  *
1088  * Migration covers moving data from the origin device to the cache, or
1089  * vice versa.
1090  *--------------------------------------------------------------*/
1091 
1092 static void inc_io_migrations(struct cache *cache)
1093 {
1094 	atomic_inc(&cache->nr_io_migrations);
1095 }
1096 
1097 static void dec_io_migrations(struct cache *cache)
1098 {
1099 	atomic_dec(&cache->nr_io_migrations);
1100 }
1101 
1102 static bool discard_or_flush(struct bio *bio)
1103 {
1104 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1105 }
1106 
1107 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1108 				     dm_dblock_t *b, dm_dblock_t *e)
1109 {
1110 	sector_t sb = bio->bi_iter.bi_sector;
1111 	sector_t se = bio_end_sector(bio);
1112 
1113 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1114 
1115 	if (se - sb < cache->discard_block_size)
1116 		*e = *b;
1117 	else
1118 		*e = to_dblock(block_div(se, cache->discard_block_size));
1119 }
1120 
1121 /*----------------------------------------------------------------*/
1122 
1123 static void prevent_background_work(struct cache *cache)
1124 {
1125 	lockdep_off();
1126 	down_write(&cache->background_work_lock);
1127 	lockdep_on();
1128 }
1129 
1130 static void allow_background_work(struct cache *cache)
1131 {
1132 	lockdep_off();
1133 	up_write(&cache->background_work_lock);
1134 	lockdep_on();
1135 }
1136 
1137 static bool background_work_begin(struct cache *cache)
1138 {
1139 	bool r;
1140 
1141 	lockdep_off();
1142 	r = down_read_trylock(&cache->background_work_lock);
1143 	lockdep_on();
1144 
1145 	return r;
1146 }
1147 
1148 static void background_work_end(struct cache *cache)
1149 {
1150 	lockdep_off();
1151 	up_read(&cache->background_work_lock);
1152 	lockdep_on();
1153 }
1154 
1155 /*----------------------------------------------------------------*/
1156 
1157 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1158 {
1159 	return (bio_data_dir(bio) == WRITE) &&
1160 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1161 }
1162 
1163 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1164 {
1165 	return writeback_mode(cache) &&
1166 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1167 }
1168 
1169 static void quiesce(struct dm_cache_migration *mg,
1170 		    void (*continuation)(struct work_struct *))
1171 {
1172 	init_continuation(&mg->k, continuation);
1173 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1174 }
1175 
1176 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1177 {
1178 	struct continuation *k = container_of(ws, struct continuation, ws);
1179 	return container_of(k, struct dm_cache_migration, k);
1180 }
1181 
1182 static void copy_complete(int read_err, unsigned long write_err, void *context)
1183 {
1184 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1185 
1186 	if (read_err || write_err)
1187 		mg->k.input = BLK_STS_IOERR;
1188 
1189 	queue_continuation(mg->cache->wq, &mg->k);
1190 }
1191 
1192 static void copy(struct dm_cache_migration *mg, bool promote)
1193 {
1194 	struct dm_io_region o_region, c_region;
1195 	struct cache *cache = mg->cache;
1196 
1197 	o_region.bdev = cache->origin_dev->bdev;
1198 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1199 	o_region.count = cache->sectors_per_block;
1200 
1201 	c_region.bdev = cache->cache_dev->bdev;
1202 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1203 	c_region.count = cache->sectors_per_block;
1204 
1205 	if (promote)
1206 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1207 	else
1208 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1209 }
1210 
1211 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1212 {
1213 	struct per_bio_data *pb = get_per_bio_data(bio);
1214 
1215 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1216 		free_prison_cell(cache, pb->cell);
1217 	pb->cell = NULL;
1218 }
1219 
1220 static void overwrite_endio(struct bio *bio)
1221 {
1222 	struct dm_cache_migration *mg = bio->bi_private;
1223 	struct cache *cache = mg->cache;
1224 	struct per_bio_data *pb = get_per_bio_data(bio);
1225 
1226 	dm_unhook_bio(&pb->hook_info, bio);
1227 
1228 	if (bio->bi_status)
1229 		mg->k.input = bio->bi_status;
1230 
1231 	queue_continuation(cache->wq, &mg->k);
1232 }
1233 
1234 static void overwrite(struct dm_cache_migration *mg,
1235 		      void (*continuation)(struct work_struct *))
1236 {
1237 	struct bio *bio = mg->overwrite_bio;
1238 	struct per_bio_data *pb = get_per_bio_data(bio);
1239 
1240 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1241 
1242 	/*
1243 	 * The overwrite bio is part of the copy operation, as such it does
1244 	 * not set/clear discard or dirty flags.
1245 	 */
1246 	if (mg->op->op == POLICY_PROMOTE)
1247 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1248 	else
1249 		remap_to_origin(mg->cache, bio);
1250 
1251 	init_continuation(&mg->k, continuation);
1252 	accounted_request(mg->cache, bio);
1253 }
1254 
1255 /*
1256  * Migration steps:
1257  *
1258  * 1) exclusive lock preventing WRITEs
1259  * 2) quiesce
1260  * 3) copy or issue overwrite bio
1261  * 4) upgrade to exclusive lock preventing READs and WRITEs
1262  * 5) quiesce
1263  * 6) update metadata and commit
1264  * 7) unlock
1265  */
1266 static void mg_complete(struct dm_cache_migration *mg, bool success)
1267 {
1268 	struct bio_list bios;
1269 	struct cache *cache = mg->cache;
1270 	struct policy_work *op = mg->op;
1271 	dm_cblock_t cblock = op->cblock;
1272 
1273 	if (success)
1274 		update_stats(&cache->stats, op->op);
1275 
1276 	switch (op->op) {
1277 	case POLICY_PROMOTE:
1278 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1279 		policy_complete_background_work(cache->policy, op, success);
1280 
1281 		if (mg->overwrite_bio) {
1282 			if (success)
1283 				force_set_dirty(cache, cblock);
1284 			else if (mg->k.input)
1285 				mg->overwrite_bio->bi_status = mg->k.input;
1286 			else
1287 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1288 			bio_endio(mg->overwrite_bio);
1289 		} else {
1290 			if (success)
1291 				force_clear_dirty(cache, cblock);
1292 			dec_io_migrations(cache);
1293 		}
1294 		break;
1295 
1296 	case POLICY_DEMOTE:
1297 		/*
1298 		 * We clear dirty here to update the nr_dirty counter.
1299 		 */
1300 		if (success)
1301 			force_clear_dirty(cache, cblock);
1302 		policy_complete_background_work(cache->policy, op, success);
1303 		dec_io_migrations(cache);
1304 		break;
1305 
1306 	case POLICY_WRITEBACK:
1307 		if (success)
1308 			force_clear_dirty(cache, cblock);
1309 		policy_complete_background_work(cache->policy, op, success);
1310 		dec_io_migrations(cache);
1311 		break;
1312 	}
1313 
1314 	bio_list_init(&bios);
1315 	if (mg->cell) {
1316 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1317 			free_prison_cell(cache, mg->cell);
1318 	}
1319 
1320 	free_migration(mg);
1321 	defer_bios(cache, &bios);
1322 	wake_migration_worker(cache);
1323 
1324 	background_work_end(cache);
1325 }
1326 
1327 static void mg_success(struct work_struct *ws)
1328 {
1329 	struct dm_cache_migration *mg = ws_to_mg(ws);
1330 	mg_complete(mg, mg->k.input == 0);
1331 }
1332 
1333 static void mg_update_metadata(struct work_struct *ws)
1334 {
1335 	int r;
1336 	struct dm_cache_migration *mg = ws_to_mg(ws);
1337 	struct cache *cache = mg->cache;
1338 	struct policy_work *op = mg->op;
1339 
1340 	switch (op->op) {
1341 	case POLICY_PROMOTE:
1342 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1343 		if (r) {
1344 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1345 				    cache_device_name(cache));
1346 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1347 
1348 			mg_complete(mg, false);
1349 			return;
1350 		}
1351 		mg_complete(mg, true);
1352 		break;
1353 
1354 	case POLICY_DEMOTE:
1355 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1356 		if (r) {
1357 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1358 				    cache_device_name(cache));
1359 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1360 
1361 			mg_complete(mg, false);
1362 			return;
1363 		}
1364 
1365 		/*
1366 		 * It would be nice if we only had to commit when a REQ_FLUSH
1367 		 * comes through.  But there's one scenario that we have to
1368 		 * look out for:
1369 		 *
1370 		 * - vblock x in a cache block
1371 		 * - domotion occurs
1372 		 * - cache block gets reallocated and over written
1373 		 * - crash
1374 		 *
1375 		 * When we recover, because there was no commit the cache will
1376 		 * rollback to having the data for vblock x in the cache block.
1377 		 * But the cache block has since been overwritten, so it'll end
1378 		 * up pointing to data that was never in 'x' during the history
1379 		 * of the device.
1380 		 *
1381 		 * To avoid this issue we require a commit as part of the
1382 		 * demotion operation.
1383 		 */
1384 		init_continuation(&mg->k, mg_success);
1385 		continue_after_commit(&cache->committer, &mg->k);
1386 		schedule_commit(&cache->committer);
1387 		break;
1388 
1389 	case POLICY_WRITEBACK:
1390 		mg_complete(mg, true);
1391 		break;
1392 	}
1393 }
1394 
1395 static void mg_update_metadata_after_copy(struct work_struct *ws)
1396 {
1397 	struct dm_cache_migration *mg = ws_to_mg(ws);
1398 
1399 	/*
1400 	 * Did the copy succeed?
1401 	 */
1402 	if (mg->k.input)
1403 		mg_complete(mg, false);
1404 	else
1405 		mg_update_metadata(ws);
1406 }
1407 
1408 static void mg_upgrade_lock(struct work_struct *ws)
1409 {
1410 	int r;
1411 	struct dm_cache_migration *mg = ws_to_mg(ws);
1412 
1413 	/*
1414 	 * Did the copy succeed?
1415 	 */
1416 	if (mg->k.input)
1417 		mg_complete(mg, false);
1418 
1419 	else {
1420 		/*
1421 		 * Now we want the lock to prevent both reads and writes.
1422 		 */
1423 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1424 					    READ_WRITE_LOCK_LEVEL);
1425 		if (r < 0)
1426 			mg_complete(mg, false);
1427 
1428 		else if (r)
1429 			quiesce(mg, mg_update_metadata);
1430 
1431 		else
1432 			mg_update_metadata(ws);
1433 	}
1434 }
1435 
1436 static void mg_full_copy(struct work_struct *ws)
1437 {
1438 	struct dm_cache_migration *mg = ws_to_mg(ws);
1439 	struct cache *cache = mg->cache;
1440 	struct policy_work *op = mg->op;
1441 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1442 
1443 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1444 	    is_discarded_oblock(cache, op->oblock)) {
1445 		mg_upgrade_lock(ws);
1446 		return;
1447 	}
1448 
1449 	init_continuation(&mg->k, mg_upgrade_lock);
1450 	copy(mg, is_policy_promote);
1451 }
1452 
1453 static void mg_copy(struct work_struct *ws)
1454 {
1455 	struct dm_cache_migration *mg = ws_to_mg(ws);
1456 
1457 	if (mg->overwrite_bio) {
1458 		/*
1459 		 * No exclusive lock was held when we last checked if the bio
1460 		 * was optimisable.  So we have to check again in case things
1461 		 * have changed (eg, the block may no longer be discarded).
1462 		 */
1463 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1464 			/*
1465 			 * Fallback to a real full copy after doing some tidying up.
1466 			 */
1467 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1468 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1469 			mg->overwrite_bio = NULL;
1470 			inc_io_migrations(mg->cache);
1471 			mg_full_copy(ws);
1472 			return;
1473 		}
1474 
1475 		/*
1476 		 * It's safe to do this here, even though it's new data
1477 		 * because all IO has been locked out of the block.
1478 		 *
1479 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1480 		 * so _not_ using mg_upgrade_lock() as continutation.
1481 		 */
1482 		overwrite(mg, mg_update_metadata_after_copy);
1483 
1484 	} else
1485 		mg_full_copy(ws);
1486 }
1487 
1488 static int mg_lock_writes(struct dm_cache_migration *mg)
1489 {
1490 	int r;
1491 	struct dm_cell_key_v2 key;
1492 	struct cache *cache = mg->cache;
1493 	struct dm_bio_prison_cell_v2 *prealloc;
1494 
1495 	prealloc = alloc_prison_cell(cache);
1496 	if (!prealloc) {
1497 		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1498 		mg_complete(mg, false);
1499 		return -ENOMEM;
1500 	}
1501 
1502 	/*
1503 	 * Prevent writes to the block, but allow reads to continue.
1504 	 * Unless we're using an overwrite bio, in which case we lock
1505 	 * everything.
1506 	 */
1507 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1508 	r = dm_cell_lock_v2(cache->prison, &key,
1509 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1510 			    prealloc, &mg->cell);
1511 	if (r < 0) {
1512 		free_prison_cell(cache, prealloc);
1513 		mg_complete(mg, false);
1514 		return r;
1515 	}
1516 
1517 	if (mg->cell != prealloc)
1518 		free_prison_cell(cache, prealloc);
1519 
1520 	if (r == 0)
1521 		mg_copy(&mg->k.ws);
1522 	else
1523 		quiesce(mg, mg_copy);
1524 
1525 	return 0;
1526 }
1527 
1528 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1529 {
1530 	struct dm_cache_migration *mg;
1531 
1532 	if (!background_work_begin(cache)) {
1533 		policy_complete_background_work(cache->policy, op, false);
1534 		return -EPERM;
1535 	}
1536 
1537 	mg = alloc_migration(cache);
1538 	if (!mg) {
1539 		policy_complete_background_work(cache->policy, op, false);
1540 		background_work_end(cache);
1541 		return -ENOMEM;
1542 	}
1543 
1544 	mg->op = op;
1545 	mg->overwrite_bio = bio;
1546 
1547 	if (!bio)
1548 		inc_io_migrations(cache);
1549 
1550 	return mg_lock_writes(mg);
1551 }
1552 
1553 /*----------------------------------------------------------------
1554  * invalidation processing
1555  *--------------------------------------------------------------*/
1556 
1557 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1558 {
1559 	struct bio_list bios;
1560 	struct cache *cache = mg->cache;
1561 
1562 	bio_list_init(&bios);
1563 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1564 		free_prison_cell(cache, mg->cell);
1565 
1566 	if (!success && mg->overwrite_bio)
1567 		bio_io_error(mg->overwrite_bio);
1568 
1569 	free_migration(mg);
1570 	defer_bios(cache, &bios);
1571 
1572 	background_work_end(cache);
1573 }
1574 
1575 static void invalidate_completed(struct work_struct *ws)
1576 {
1577 	struct dm_cache_migration *mg = ws_to_mg(ws);
1578 	invalidate_complete(mg, !mg->k.input);
1579 }
1580 
1581 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1582 {
1583 	int r = policy_invalidate_mapping(cache->policy, cblock);
1584 	if (!r) {
1585 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1586 		if (r) {
1587 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1588 				    cache_device_name(cache));
1589 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1590 		}
1591 
1592 	} else if (r == -ENODATA) {
1593 		/*
1594 		 * Harmless, already unmapped.
1595 		 */
1596 		r = 0;
1597 
1598 	} else
1599 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1600 
1601 	return r;
1602 }
1603 
1604 static void invalidate_remove(struct work_struct *ws)
1605 {
1606 	int r;
1607 	struct dm_cache_migration *mg = ws_to_mg(ws);
1608 	struct cache *cache = mg->cache;
1609 
1610 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1611 	if (r) {
1612 		invalidate_complete(mg, false);
1613 		return;
1614 	}
1615 
1616 	init_continuation(&mg->k, invalidate_completed);
1617 	continue_after_commit(&cache->committer, &mg->k);
1618 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1619 	mg->overwrite_bio = NULL;
1620 	schedule_commit(&cache->committer);
1621 }
1622 
1623 static int invalidate_lock(struct dm_cache_migration *mg)
1624 {
1625 	int r;
1626 	struct dm_cell_key_v2 key;
1627 	struct cache *cache = mg->cache;
1628 	struct dm_bio_prison_cell_v2 *prealloc;
1629 
1630 	prealloc = alloc_prison_cell(cache);
1631 	if (!prealloc) {
1632 		invalidate_complete(mg, false);
1633 		return -ENOMEM;
1634 	}
1635 
1636 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1637 	r = dm_cell_lock_v2(cache->prison, &key,
1638 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1639 	if (r < 0) {
1640 		free_prison_cell(cache, prealloc);
1641 		invalidate_complete(mg, false);
1642 		return r;
1643 	}
1644 
1645 	if (mg->cell != prealloc)
1646 		free_prison_cell(cache, prealloc);
1647 
1648 	if (r)
1649 		quiesce(mg, invalidate_remove);
1650 
1651 	else {
1652 		/*
1653 		 * We can't call invalidate_remove() directly here because we
1654 		 * might still be in request context.
1655 		 */
1656 		init_continuation(&mg->k, invalidate_remove);
1657 		queue_work(cache->wq, &mg->k.ws);
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1664 			    dm_oblock_t oblock, struct bio *bio)
1665 {
1666 	struct dm_cache_migration *mg;
1667 
1668 	if (!background_work_begin(cache))
1669 		return -EPERM;
1670 
1671 	mg = alloc_migration(cache);
1672 	if (!mg) {
1673 		background_work_end(cache);
1674 		return -ENOMEM;
1675 	}
1676 
1677 	mg->overwrite_bio = bio;
1678 	mg->invalidate_cblock = cblock;
1679 	mg->invalidate_oblock = oblock;
1680 
1681 	return invalidate_lock(mg);
1682 }
1683 
1684 /*----------------------------------------------------------------
1685  * bio processing
1686  *--------------------------------------------------------------*/
1687 
1688 enum busy {
1689 	IDLE,
1690 	BUSY
1691 };
1692 
1693 static enum busy spare_migration_bandwidth(struct cache *cache)
1694 {
1695 	bool idle = iot_idle_for(&cache->tracker, HZ);
1696 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1697 		cache->sectors_per_block;
1698 
1699 	if (idle && current_volume <= cache->migration_threshold)
1700 		return IDLE;
1701 	else
1702 		return BUSY;
1703 }
1704 
1705 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1706 {
1707 	atomic_inc(bio_data_dir(bio) == READ ?
1708 		   &cache->stats.read_hit : &cache->stats.write_hit);
1709 }
1710 
1711 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1712 {
1713 	atomic_inc(bio_data_dir(bio) == READ ?
1714 		   &cache->stats.read_miss : &cache->stats.write_miss);
1715 }
1716 
1717 /*----------------------------------------------------------------*/
1718 
1719 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1720 		   bool *commit_needed)
1721 {
1722 	int r, data_dir;
1723 	bool rb, background_queued;
1724 	dm_cblock_t cblock;
1725 
1726 	*commit_needed = false;
1727 
1728 	rb = bio_detain_shared(cache, block, bio);
1729 	if (!rb) {
1730 		/*
1731 		 * An exclusive lock is held for this block, so we have to
1732 		 * wait.  We set the commit_needed flag so the current
1733 		 * transaction will be committed asap, allowing this lock
1734 		 * to be dropped.
1735 		 */
1736 		*commit_needed = true;
1737 		return DM_MAPIO_SUBMITTED;
1738 	}
1739 
1740 	data_dir = bio_data_dir(bio);
1741 
1742 	if (optimisable_bio(cache, bio, block)) {
1743 		struct policy_work *op = NULL;
1744 
1745 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1746 		if (unlikely(r && r != -ENOENT)) {
1747 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1748 				    cache_device_name(cache), r);
1749 			bio_io_error(bio);
1750 			return DM_MAPIO_SUBMITTED;
1751 		}
1752 
1753 		if (r == -ENOENT && op) {
1754 			bio_drop_shared_lock(cache, bio);
1755 			BUG_ON(op->op != POLICY_PROMOTE);
1756 			mg_start(cache, op, bio);
1757 			return DM_MAPIO_SUBMITTED;
1758 		}
1759 	} else {
1760 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1761 		if (unlikely(r && r != -ENOENT)) {
1762 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1763 				    cache_device_name(cache), r);
1764 			bio_io_error(bio);
1765 			return DM_MAPIO_SUBMITTED;
1766 		}
1767 
1768 		if (background_queued)
1769 			wake_migration_worker(cache);
1770 	}
1771 
1772 	if (r == -ENOENT) {
1773 		struct per_bio_data *pb = get_per_bio_data(bio);
1774 
1775 		/*
1776 		 * Miss.
1777 		 */
1778 		inc_miss_counter(cache, bio);
1779 		if (pb->req_nr == 0) {
1780 			accounted_begin(cache, bio);
1781 			remap_to_origin_clear_discard(cache, bio, block);
1782 		} else {
1783 			/*
1784 			 * This is a duplicate writethrough io that is no
1785 			 * longer needed because the block has been demoted.
1786 			 */
1787 			bio_endio(bio);
1788 			return DM_MAPIO_SUBMITTED;
1789 		}
1790 	} else {
1791 		/*
1792 		 * Hit.
1793 		 */
1794 		inc_hit_counter(cache, bio);
1795 
1796 		/*
1797 		 * Passthrough always maps to the origin, invalidating any
1798 		 * cache blocks that are written to.
1799 		 */
1800 		if (passthrough_mode(cache)) {
1801 			if (bio_data_dir(bio) == WRITE) {
1802 				bio_drop_shared_lock(cache, bio);
1803 				atomic_inc(&cache->stats.demotion);
1804 				invalidate_start(cache, cblock, block, bio);
1805 			} else
1806 				remap_to_origin_clear_discard(cache, bio, block);
1807 		} else {
1808 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1809 			    !is_dirty(cache, cblock)) {
1810 				remap_to_origin_and_cache(cache, bio, block, cblock);
1811 				accounted_begin(cache, bio);
1812 			} else
1813 				remap_to_cache_dirty(cache, bio, block, cblock);
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1819 	 */
1820 	if (bio->bi_opf & REQ_FUA) {
1821 		/*
1822 		 * issue_after_commit will call accounted_begin a second time.  So
1823 		 * we call accounted_complete() to avoid double accounting.
1824 		 */
1825 		accounted_complete(cache, bio);
1826 		issue_after_commit(&cache->committer, bio);
1827 		*commit_needed = true;
1828 		return DM_MAPIO_SUBMITTED;
1829 	}
1830 
1831 	return DM_MAPIO_REMAPPED;
1832 }
1833 
1834 static bool process_bio(struct cache *cache, struct bio *bio)
1835 {
1836 	bool commit_needed;
1837 
1838 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1839 		generic_make_request(bio);
1840 
1841 	return commit_needed;
1842 }
1843 
1844 /*
1845  * A non-zero return indicates read_only or fail_io mode.
1846  */
1847 static int commit(struct cache *cache, bool clean_shutdown)
1848 {
1849 	int r;
1850 
1851 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1852 		return -EINVAL;
1853 
1854 	atomic_inc(&cache->stats.commit_count);
1855 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1856 	if (r)
1857 		metadata_operation_failed(cache, "dm_cache_commit", r);
1858 
1859 	return r;
1860 }
1861 
1862 /*
1863  * Used by the batcher.
1864  */
1865 static blk_status_t commit_op(void *context)
1866 {
1867 	struct cache *cache = context;
1868 
1869 	if (dm_cache_changed_this_transaction(cache->cmd))
1870 		return errno_to_blk_status(commit(cache, false));
1871 
1872 	return 0;
1873 }
1874 
1875 /*----------------------------------------------------------------*/
1876 
1877 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1878 {
1879 	struct per_bio_data *pb = get_per_bio_data(bio);
1880 
1881 	if (!pb->req_nr)
1882 		remap_to_origin(cache, bio);
1883 	else
1884 		remap_to_cache(cache, bio, 0);
1885 
1886 	issue_after_commit(&cache->committer, bio);
1887 	return true;
1888 }
1889 
1890 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1891 {
1892 	dm_dblock_t b, e;
1893 
1894 	// FIXME: do we need to lock the region?  Or can we just assume the
1895 	// user wont be so foolish as to issue discard concurrently with
1896 	// other IO?
1897 	calc_discard_block_range(cache, bio, &b, &e);
1898 	while (b != e) {
1899 		set_discard(cache, b);
1900 		b = to_dblock(from_dblock(b) + 1);
1901 	}
1902 
1903 	if (cache->features.discard_passdown) {
1904 		remap_to_origin(cache, bio);
1905 		generic_make_request(bio);
1906 	} else
1907 		bio_endio(bio);
1908 
1909 	return false;
1910 }
1911 
1912 static void process_deferred_bios(struct work_struct *ws)
1913 {
1914 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1915 
1916 	unsigned long flags;
1917 	bool commit_needed = false;
1918 	struct bio_list bios;
1919 	struct bio *bio;
1920 
1921 	bio_list_init(&bios);
1922 
1923 	spin_lock_irqsave(&cache->lock, flags);
1924 	bio_list_merge(&bios, &cache->deferred_bios);
1925 	bio_list_init(&cache->deferred_bios);
1926 	spin_unlock_irqrestore(&cache->lock, flags);
1927 
1928 	while ((bio = bio_list_pop(&bios))) {
1929 		if (bio->bi_opf & REQ_PREFLUSH)
1930 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1931 
1932 		else if (bio_op(bio) == REQ_OP_DISCARD)
1933 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1934 
1935 		else
1936 			commit_needed = process_bio(cache, bio) || commit_needed;
1937 	}
1938 
1939 	if (commit_needed)
1940 		schedule_commit(&cache->committer);
1941 }
1942 
1943 /*----------------------------------------------------------------
1944  * Main worker loop
1945  *--------------------------------------------------------------*/
1946 
1947 static void requeue_deferred_bios(struct cache *cache)
1948 {
1949 	struct bio *bio;
1950 	struct bio_list bios;
1951 
1952 	bio_list_init(&bios);
1953 	bio_list_merge(&bios, &cache->deferred_bios);
1954 	bio_list_init(&cache->deferred_bios);
1955 
1956 	while ((bio = bio_list_pop(&bios))) {
1957 		bio->bi_status = BLK_STS_DM_REQUEUE;
1958 		bio_endio(bio);
1959 	}
1960 }
1961 
1962 /*
1963  * We want to commit periodically so that not too much
1964  * unwritten metadata builds up.
1965  */
1966 static void do_waker(struct work_struct *ws)
1967 {
1968 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1969 
1970 	policy_tick(cache->policy, true);
1971 	wake_migration_worker(cache);
1972 	schedule_commit(&cache->committer);
1973 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1974 }
1975 
1976 static void check_migrations(struct work_struct *ws)
1977 {
1978 	int r;
1979 	struct policy_work *op;
1980 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1981 	enum busy b;
1982 
1983 	for (;;) {
1984 		b = spare_migration_bandwidth(cache);
1985 
1986 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1987 		if (r == -ENODATA)
1988 			break;
1989 
1990 		if (r) {
1991 			DMERR_LIMIT("%s: policy_background_work failed",
1992 				    cache_device_name(cache));
1993 			break;
1994 		}
1995 
1996 		r = mg_start(cache, op, NULL);
1997 		if (r)
1998 			break;
1999 	}
2000 }
2001 
2002 /*----------------------------------------------------------------
2003  * Target methods
2004  *--------------------------------------------------------------*/
2005 
2006 /*
2007  * This function gets called on the error paths of the constructor, so we
2008  * have to cope with a partially initialised struct.
2009  */
2010 static void destroy(struct cache *cache)
2011 {
2012 	unsigned i;
2013 
2014 	mempool_exit(&cache->migration_pool);
2015 
2016 	if (cache->prison)
2017 		dm_bio_prison_destroy_v2(cache->prison);
2018 
2019 	if (cache->wq)
2020 		destroy_workqueue(cache->wq);
2021 
2022 	if (cache->dirty_bitset)
2023 		free_bitset(cache->dirty_bitset);
2024 
2025 	if (cache->discard_bitset)
2026 		free_bitset(cache->discard_bitset);
2027 
2028 	if (cache->copier)
2029 		dm_kcopyd_client_destroy(cache->copier);
2030 
2031 	if (cache->cmd)
2032 		dm_cache_metadata_close(cache->cmd);
2033 
2034 	if (cache->metadata_dev)
2035 		dm_put_device(cache->ti, cache->metadata_dev);
2036 
2037 	if (cache->origin_dev)
2038 		dm_put_device(cache->ti, cache->origin_dev);
2039 
2040 	if (cache->cache_dev)
2041 		dm_put_device(cache->ti, cache->cache_dev);
2042 
2043 	if (cache->policy)
2044 		dm_cache_policy_destroy(cache->policy);
2045 
2046 	for (i = 0; i < cache->nr_ctr_args ; i++)
2047 		kfree(cache->ctr_args[i]);
2048 	kfree(cache->ctr_args);
2049 
2050 	bioset_exit(&cache->bs);
2051 
2052 	kfree(cache);
2053 }
2054 
2055 static void cache_dtr(struct dm_target *ti)
2056 {
2057 	struct cache *cache = ti->private;
2058 
2059 	destroy(cache);
2060 }
2061 
2062 static sector_t get_dev_size(struct dm_dev *dev)
2063 {
2064 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2065 }
2066 
2067 /*----------------------------------------------------------------*/
2068 
2069 /*
2070  * Construct a cache device mapping.
2071  *
2072  * cache <metadata dev> <cache dev> <origin dev> <block size>
2073  *       <#feature args> [<feature arg>]*
2074  *       <policy> <#policy args> [<policy arg>]*
2075  *
2076  * metadata dev    : fast device holding the persistent metadata
2077  * cache dev	   : fast device holding cached data blocks
2078  * origin dev	   : slow device holding original data blocks
2079  * block size	   : cache unit size in sectors
2080  *
2081  * #feature args   : number of feature arguments passed
2082  * feature args    : writethrough.  (The default is writeback.)
2083  *
2084  * policy	   : the replacement policy to use
2085  * #policy args    : an even number of policy arguments corresponding
2086  *		     to key/value pairs passed to the policy
2087  * policy args	   : key/value pairs passed to the policy
2088  *		     E.g. 'sequential_threshold 1024'
2089  *		     See cache-policies.txt for details.
2090  *
2091  * Optional feature arguments are:
2092  *   writethrough  : write through caching that prohibits cache block
2093  *		     content from being different from origin block content.
2094  *		     Without this argument, the default behaviour is to write
2095  *		     back cache block contents later for performance reasons,
2096  *		     so they may differ from the corresponding origin blocks.
2097  */
2098 struct cache_args {
2099 	struct dm_target *ti;
2100 
2101 	struct dm_dev *metadata_dev;
2102 
2103 	struct dm_dev *cache_dev;
2104 	sector_t cache_sectors;
2105 
2106 	struct dm_dev *origin_dev;
2107 	sector_t origin_sectors;
2108 
2109 	uint32_t block_size;
2110 
2111 	const char *policy_name;
2112 	int policy_argc;
2113 	const char **policy_argv;
2114 
2115 	struct cache_features features;
2116 };
2117 
2118 static void destroy_cache_args(struct cache_args *ca)
2119 {
2120 	if (ca->metadata_dev)
2121 		dm_put_device(ca->ti, ca->metadata_dev);
2122 
2123 	if (ca->cache_dev)
2124 		dm_put_device(ca->ti, ca->cache_dev);
2125 
2126 	if (ca->origin_dev)
2127 		dm_put_device(ca->ti, ca->origin_dev);
2128 
2129 	kfree(ca);
2130 }
2131 
2132 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2133 {
2134 	if (!as->argc) {
2135 		*error = "Insufficient args";
2136 		return false;
2137 	}
2138 
2139 	return true;
2140 }
2141 
2142 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2143 			      char **error)
2144 {
2145 	int r;
2146 	sector_t metadata_dev_size;
2147 	char b[BDEVNAME_SIZE];
2148 
2149 	if (!at_least_one_arg(as, error))
2150 		return -EINVAL;
2151 
2152 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2153 			  &ca->metadata_dev);
2154 	if (r) {
2155 		*error = "Error opening metadata device";
2156 		return r;
2157 	}
2158 
2159 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2160 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2161 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2162 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2163 
2164 	return 0;
2165 }
2166 
2167 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2168 			   char **error)
2169 {
2170 	int r;
2171 
2172 	if (!at_least_one_arg(as, error))
2173 		return -EINVAL;
2174 
2175 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2176 			  &ca->cache_dev);
2177 	if (r) {
2178 		*error = "Error opening cache device";
2179 		return r;
2180 	}
2181 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2182 
2183 	return 0;
2184 }
2185 
2186 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2187 			    char **error)
2188 {
2189 	int r;
2190 
2191 	if (!at_least_one_arg(as, error))
2192 		return -EINVAL;
2193 
2194 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2195 			  &ca->origin_dev);
2196 	if (r) {
2197 		*error = "Error opening origin device";
2198 		return r;
2199 	}
2200 
2201 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2202 	if (ca->ti->len > ca->origin_sectors) {
2203 		*error = "Device size larger than cached device";
2204 		return -EINVAL;
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2211 			    char **error)
2212 {
2213 	unsigned long block_size;
2214 
2215 	if (!at_least_one_arg(as, error))
2216 		return -EINVAL;
2217 
2218 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2219 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2220 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2221 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2222 		*error = "Invalid data block size";
2223 		return -EINVAL;
2224 	}
2225 
2226 	if (block_size > ca->cache_sectors) {
2227 		*error = "Data block size is larger than the cache device";
2228 		return -EINVAL;
2229 	}
2230 
2231 	ca->block_size = block_size;
2232 
2233 	return 0;
2234 }
2235 
2236 static void init_features(struct cache_features *cf)
2237 {
2238 	cf->mode = CM_WRITE;
2239 	cf->io_mode = CM_IO_WRITEBACK;
2240 	cf->metadata_version = 1;
2241 	cf->discard_passdown = true;
2242 }
2243 
2244 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2245 			  char **error)
2246 {
2247 	static const struct dm_arg _args[] = {
2248 		{0, 3, "Invalid number of cache feature arguments"},
2249 	};
2250 
2251 	int r, mode_ctr = 0;
2252 	unsigned argc;
2253 	const char *arg;
2254 	struct cache_features *cf = &ca->features;
2255 
2256 	init_features(cf);
2257 
2258 	r = dm_read_arg_group(_args, as, &argc, error);
2259 	if (r)
2260 		return -EINVAL;
2261 
2262 	while (argc--) {
2263 		arg = dm_shift_arg(as);
2264 
2265 		if (!strcasecmp(arg, "writeback")) {
2266 			cf->io_mode = CM_IO_WRITEBACK;
2267 			mode_ctr++;
2268 		}
2269 
2270 		else if (!strcasecmp(arg, "writethrough")) {
2271 			cf->io_mode = CM_IO_WRITETHROUGH;
2272 			mode_ctr++;
2273 		}
2274 
2275 		else if (!strcasecmp(arg, "passthrough")) {
2276 			cf->io_mode = CM_IO_PASSTHROUGH;
2277 			mode_ctr++;
2278 		}
2279 
2280 		else if (!strcasecmp(arg, "metadata2"))
2281 			cf->metadata_version = 2;
2282 
2283 		else if (!strcasecmp(arg, "no_discard_passdown"))
2284 			cf->discard_passdown = false;
2285 
2286 		else {
2287 			*error = "Unrecognised cache feature requested";
2288 			return -EINVAL;
2289 		}
2290 	}
2291 
2292 	if (mode_ctr > 1) {
2293 		*error = "Duplicate cache io_mode features requested";
2294 		return -EINVAL;
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2301 			char **error)
2302 {
2303 	static const struct dm_arg _args[] = {
2304 		{0, 1024, "Invalid number of policy arguments"},
2305 	};
2306 
2307 	int r;
2308 
2309 	if (!at_least_one_arg(as, error))
2310 		return -EINVAL;
2311 
2312 	ca->policy_name = dm_shift_arg(as);
2313 
2314 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2315 	if (r)
2316 		return -EINVAL;
2317 
2318 	ca->policy_argv = (const char **)as->argv;
2319 	dm_consume_args(as, ca->policy_argc);
2320 
2321 	return 0;
2322 }
2323 
2324 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2325 			    char **error)
2326 {
2327 	int r;
2328 	struct dm_arg_set as;
2329 
2330 	as.argc = argc;
2331 	as.argv = argv;
2332 
2333 	r = parse_metadata_dev(ca, &as, error);
2334 	if (r)
2335 		return r;
2336 
2337 	r = parse_cache_dev(ca, &as, error);
2338 	if (r)
2339 		return r;
2340 
2341 	r = parse_origin_dev(ca, &as, error);
2342 	if (r)
2343 		return r;
2344 
2345 	r = parse_block_size(ca, &as, error);
2346 	if (r)
2347 		return r;
2348 
2349 	r = parse_features(ca, &as, error);
2350 	if (r)
2351 		return r;
2352 
2353 	r = parse_policy(ca, &as, error);
2354 	if (r)
2355 		return r;
2356 
2357 	return 0;
2358 }
2359 
2360 /*----------------------------------------------------------------*/
2361 
2362 static struct kmem_cache *migration_cache;
2363 
2364 #define NOT_CORE_OPTION 1
2365 
2366 static int process_config_option(struct cache *cache, const char *key, const char *value)
2367 {
2368 	unsigned long tmp;
2369 
2370 	if (!strcasecmp(key, "migration_threshold")) {
2371 		if (kstrtoul(value, 10, &tmp))
2372 			return -EINVAL;
2373 
2374 		cache->migration_threshold = tmp;
2375 		return 0;
2376 	}
2377 
2378 	return NOT_CORE_OPTION;
2379 }
2380 
2381 static int set_config_value(struct cache *cache, const char *key, const char *value)
2382 {
2383 	int r = process_config_option(cache, key, value);
2384 
2385 	if (r == NOT_CORE_OPTION)
2386 		r = policy_set_config_value(cache->policy, key, value);
2387 
2388 	if (r)
2389 		DMWARN("bad config value for %s: %s", key, value);
2390 
2391 	return r;
2392 }
2393 
2394 static int set_config_values(struct cache *cache, int argc, const char **argv)
2395 {
2396 	int r = 0;
2397 
2398 	if (argc & 1) {
2399 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2400 		return -EINVAL;
2401 	}
2402 
2403 	while (argc) {
2404 		r = set_config_value(cache, argv[0], argv[1]);
2405 		if (r)
2406 			break;
2407 
2408 		argc -= 2;
2409 		argv += 2;
2410 	}
2411 
2412 	return r;
2413 }
2414 
2415 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2416 			       char **error)
2417 {
2418 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2419 							   cache->cache_size,
2420 							   cache->origin_sectors,
2421 							   cache->sectors_per_block);
2422 	if (IS_ERR(p)) {
2423 		*error = "Error creating cache's policy";
2424 		return PTR_ERR(p);
2425 	}
2426 	cache->policy = p;
2427 	BUG_ON(!cache->policy);
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * We want the discard block size to be at least the size of the cache
2434  * block size and have no more than 2^14 discard blocks across the origin.
2435  */
2436 #define MAX_DISCARD_BLOCKS (1 << 14)
2437 
2438 static bool too_many_discard_blocks(sector_t discard_block_size,
2439 				    sector_t origin_size)
2440 {
2441 	(void) sector_div(origin_size, discard_block_size);
2442 
2443 	return origin_size > MAX_DISCARD_BLOCKS;
2444 }
2445 
2446 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2447 					     sector_t origin_size)
2448 {
2449 	sector_t discard_block_size = cache_block_size;
2450 
2451 	if (origin_size)
2452 		while (too_many_discard_blocks(discard_block_size, origin_size))
2453 			discard_block_size *= 2;
2454 
2455 	return discard_block_size;
2456 }
2457 
2458 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2459 {
2460 	dm_block_t nr_blocks = from_cblock(size);
2461 
2462 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2463 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2464 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2465 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2466 			     (unsigned long long) nr_blocks);
2467 
2468 	cache->cache_size = size;
2469 }
2470 
2471 static int is_congested(struct dm_dev *dev, int bdi_bits)
2472 {
2473 	struct request_queue *q = bdev_get_queue(dev->bdev);
2474 	return bdi_congested(q->backing_dev_info, bdi_bits);
2475 }
2476 
2477 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2478 {
2479 	struct cache *cache = container_of(cb, struct cache, callbacks);
2480 
2481 	return is_congested(cache->origin_dev, bdi_bits) ||
2482 		is_congested(cache->cache_dev, bdi_bits);
2483 }
2484 
2485 #define DEFAULT_MIGRATION_THRESHOLD 2048
2486 
2487 static int cache_create(struct cache_args *ca, struct cache **result)
2488 {
2489 	int r = 0;
2490 	char **error = &ca->ti->error;
2491 	struct cache *cache;
2492 	struct dm_target *ti = ca->ti;
2493 	dm_block_t origin_blocks;
2494 	struct dm_cache_metadata *cmd;
2495 	bool may_format = ca->features.mode == CM_WRITE;
2496 
2497 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2498 	if (!cache)
2499 		return -ENOMEM;
2500 
2501 	cache->ti = ca->ti;
2502 	ti->private = cache;
2503 	ti->num_flush_bios = 2;
2504 	ti->flush_supported = true;
2505 
2506 	ti->num_discard_bios = 1;
2507 	ti->discards_supported = true;
2508 
2509 	ti->per_io_data_size = sizeof(struct per_bio_data);
2510 
2511 	cache->features = ca->features;
2512 	if (writethrough_mode(cache)) {
2513 		/* Create bioset for writethrough bios issued to origin */
2514 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2515 		if (r)
2516 			goto bad;
2517 	}
2518 
2519 	cache->callbacks.congested_fn = cache_is_congested;
2520 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2521 
2522 	cache->metadata_dev = ca->metadata_dev;
2523 	cache->origin_dev = ca->origin_dev;
2524 	cache->cache_dev = ca->cache_dev;
2525 
2526 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2527 
2528 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2529 	origin_blocks = block_div(origin_blocks, ca->block_size);
2530 	cache->origin_blocks = to_oblock(origin_blocks);
2531 
2532 	cache->sectors_per_block = ca->block_size;
2533 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2534 		r = -EINVAL;
2535 		goto bad;
2536 	}
2537 
2538 	if (ca->block_size & (ca->block_size - 1)) {
2539 		dm_block_t cache_size = ca->cache_sectors;
2540 
2541 		cache->sectors_per_block_shift = -1;
2542 		cache_size = block_div(cache_size, ca->block_size);
2543 		set_cache_size(cache, to_cblock(cache_size));
2544 	} else {
2545 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2546 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2547 	}
2548 
2549 	r = create_cache_policy(cache, ca, error);
2550 	if (r)
2551 		goto bad;
2552 
2553 	cache->policy_nr_args = ca->policy_argc;
2554 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2555 
2556 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2557 	if (r) {
2558 		*error = "Error setting cache policy's config values";
2559 		goto bad;
2560 	}
2561 
2562 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2563 				     ca->block_size, may_format,
2564 				     dm_cache_policy_get_hint_size(cache->policy),
2565 				     ca->features.metadata_version);
2566 	if (IS_ERR(cmd)) {
2567 		*error = "Error creating metadata object";
2568 		r = PTR_ERR(cmd);
2569 		goto bad;
2570 	}
2571 	cache->cmd = cmd;
2572 	set_cache_mode(cache, CM_WRITE);
2573 	if (get_cache_mode(cache) != CM_WRITE) {
2574 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2575 		r = -EINVAL;
2576 		goto bad;
2577 	}
2578 
2579 	if (passthrough_mode(cache)) {
2580 		bool all_clean;
2581 
2582 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2583 		if (r) {
2584 			*error = "dm_cache_metadata_all_clean() failed";
2585 			goto bad;
2586 		}
2587 
2588 		if (!all_clean) {
2589 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2590 			r = -EINVAL;
2591 			goto bad;
2592 		}
2593 
2594 		policy_allow_migrations(cache->policy, false);
2595 	}
2596 
2597 	spin_lock_init(&cache->lock);
2598 	bio_list_init(&cache->deferred_bios);
2599 	atomic_set(&cache->nr_allocated_migrations, 0);
2600 	atomic_set(&cache->nr_io_migrations, 0);
2601 	init_waitqueue_head(&cache->migration_wait);
2602 
2603 	r = -ENOMEM;
2604 	atomic_set(&cache->nr_dirty, 0);
2605 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2606 	if (!cache->dirty_bitset) {
2607 		*error = "could not allocate dirty bitset";
2608 		goto bad;
2609 	}
2610 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2611 
2612 	cache->discard_block_size =
2613 		calculate_discard_block_size(cache->sectors_per_block,
2614 					     cache->origin_sectors);
2615 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2616 							      cache->discard_block_size));
2617 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2618 	if (!cache->discard_bitset) {
2619 		*error = "could not allocate discard bitset";
2620 		goto bad;
2621 	}
2622 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2623 
2624 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2625 	if (IS_ERR(cache->copier)) {
2626 		*error = "could not create kcopyd client";
2627 		r = PTR_ERR(cache->copier);
2628 		goto bad;
2629 	}
2630 
2631 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2632 	if (!cache->wq) {
2633 		*error = "could not create workqueue for metadata object";
2634 		goto bad;
2635 	}
2636 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2637 	INIT_WORK(&cache->migration_worker, check_migrations);
2638 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2639 
2640 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2641 	if (!cache->prison) {
2642 		*error = "could not create bio prison";
2643 		goto bad;
2644 	}
2645 
2646 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2647 				   migration_cache);
2648 	if (r) {
2649 		*error = "Error creating cache's migration mempool";
2650 		goto bad;
2651 	}
2652 
2653 	cache->need_tick_bio = true;
2654 	cache->sized = false;
2655 	cache->invalidate = false;
2656 	cache->commit_requested = false;
2657 	cache->loaded_mappings = false;
2658 	cache->loaded_discards = false;
2659 
2660 	load_stats(cache);
2661 
2662 	atomic_set(&cache->stats.demotion, 0);
2663 	atomic_set(&cache->stats.promotion, 0);
2664 	atomic_set(&cache->stats.copies_avoided, 0);
2665 	atomic_set(&cache->stats.cache_cell_clash, 0);
2666 	atomic_set(&cache->stats.commit_count, 0);
2667 	atomic_set(&cache->stats.discard_count, 0);
2668 
2669 	spin_lock_init(&cache->invalidation_lock);
2670 	INIT_LIST_HEAD(&cache->invalidation_requests);
2671 
2672 	batcher_init(&cache->committer, commit_op, cache,
2673 		     issue_op, cache, cache->wq);
2674 	iot_init(&cache->tracker);
2675 
2676 	init_rwsem(&cache->background_work_lock);
2677 	prevent_background_work(cache);
2678 
2679 	*result = cache;
2680 	return 0;
2681 bad:
2682 	destroy(cache);
2683 	return r;
2684 }
2685 
2686 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2687 {
2688 	unsigned i;
2689 	const char **copy;
2690 
2691 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2692 	if (!copy)
2693 		return -ENOMEM;
2694 	for (i = 0; i < argc; i++) {
2695 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2696 		if (!copy[i]) {
2697 			while (i--)
2698 				kfree(copy[i]);
2699 			kfree(copy);
2700 			return -ENOMEM;
2701 		}
2702 	}
2703 
2704 	cache->nr_ctr_args = argc;
2705 	cache->ctr_args = copy;
2706 
2707 	return 0;
2708 }
2709 
2710 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2711 {
2712 	int r = -EINVAL;
2713 	struct cache_args *ca;
2714 	struct cache *cache = NULL;
2715 
2716 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2717 	if (!ca) {
2718 		ti->error = "Error allocating memory for cache";
2719 		return -ENOMEM;
2720 	}
2721 	ca->ti = ti;
2722 
2723 	r = parse_cache_args(ca, argc, argv, &ti->error);
2724 	if (r)
2725 		goto out;
2726 
2727 	r = cache_create(ca, &cache);
2728 	if (r)
2729 		goto out;
2730 
2731 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2732 	if (r) {
2733 		destroy(cache);
2734 		goto out;
2735 	}
2736 
2737 	ti->private = cache;
2738 out:
2739 	destroy_cache_args(ca);
2740 	return r;
2741 }
2742 
2743 /*----------------------------------------------------------------*/
2744 
2745 static int cache_map(struct dm_target *ti, struct bio *bio)
2746 {
2747 	struct cache *cache = ti->private;
2748 
2749 	int r;
2750 	bool commit_needed;
2751 	dm_oblock_t block = get_bio_block(cache, bio);
2752 
2753 	init_per_bio_data(bio);
2754 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2755 		/*
2756 		 * This can only occur if the io goes to a partial block at
2757 		 * the end of the origin device.  We don't cache these.
2758 		 * Just remap to the origin and carry on.
2759 		 */
2760 		remap_to_origin(cache, bio);
2761 		accounted_begin(cache, bio);
2762 		return DM_MAPIO_REMAPPED;
2763 	}
2764 
2765 	if (discard_or_flush(bio)) {
2766 		defer_bio(cache, bio);
2767 		return DM_MAPIO_SUBMITTED;
2768 	}
2769 
2770 	r = map_bio(cache, bio, block, &commit_needed);
2771 	if (commit_needed)
2772 		schedule_commit(&cache->committer);
2773 
2774 	return r;
2775 }
2776 
2777 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2778 {
2779 	struct cache *cache = ti->private;
2780 	unsigned long flags;
2781 	struct per_bio_data *pb = get_per_bio_data(bio);
2782 
2783 	if (pb->tick) {
2784 		policy_tick(cache->policy, false);
2785 
2786 		spin_lock_irqsave(&cache->lock, flags);
2787 		cache->need_tick_bio = true;
2788 		spin_unlock_irqrestore(&cache->lock, flags);
2789 	}
2790 
2791 	bio_drop_shared_lock(cache, bio);
2792 	accounted_complete(cache, bio);
2793 
2794 	return DM_ENDIO_DONE;
2795 }
2796 
2797 static int write_dirty_bitset(struct cache *cache)
2798 {
2799 	int r;
2800 
2801 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2802 		return -EINVAL;
2803 
2804 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2805 	if (r)
2806 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2807 
2808 	return r;
2809 }
2810 
2811 static int write_discard_bitset(struct cache *cache)
2812 {
2813 	unsigned i, r;
2814 
2815 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2816 		return -EINVAL;
2817 
2818 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2819 					   cache->discard_nr_blocks);
2820 	if (r) {
2821 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2822 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2823 		return r;
2824 	}
2825 
2826 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2827 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2828 					 is_discarded(cache, to_dblock(i)));
2829 		if (r) {
2830 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2831 			return r;
2832 		}
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static int write_hints(struct cache *cache)
2839 {
2840 	int r;
2841 
2842 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2843 		return -EINVAL;
2844 
2845 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2846 	if (r) {
2847 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2848 		return r;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  * returns true on success
2856  */
2857 static bool sync_metadata(struct cache *cache)
2858 {
2859 	int r1, r2, r3, r4;
2860 
2861 	r1 = write_dirty_bitset(cache);
2862 	if (r1)
2863 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2864 
2865 	r2 = write_discard_bitset(cache);
2866 	if (r2)
2867 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2868 
2869 	save_stats(cache);
2870 
2871 	r3 = write_hints(cache);
2872 	if (r3)
2873 		DMERR("%s: could not write hints", cache_device_name(cache));
2874 
2875 	/*
2876 	 * If writing the above metadata failed, we still commit, but don't
2877 	 * set the clean shutdown flag.  This will effectively force every
2878 	 * dirty bit to be set on reload.
2879 	 */
2880 	r4 = commit(cache, !r1 && !r2 && !r3);
2881 	if (r4)
2882 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2883 
2884 	return !r1 && !r2 && !r3 && !r4;
2885 }
2886 
2887 static void cache_postsuspend(struct dm_target *ti)
2888 {
2889 	struct cache *cache = ti->private;
2890 
2891 	prevent_background_work(cache);
2892 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2893 
2894 	cancel_delayed_work(&cache->waker);
2895 	flush_workqueue(cache->wq);
2896 	WARN_ON(cache->tracker.in_flight);
2897 
2898 	/*
2899 	 * If it's a flush suspend there won't be any deferred bios, so this
2900 	 * call is harmless.
2901 	 */
2902 	requeue_deferred_bios(cache);
2903 
2904 	if (get_cache_mode(cache) == CM_WRITE)
2905 		(void) sync_metadata(cache);
2906 }
2907 
2908 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2909 			bool dirty, uint32_t hint, bool hint_valid)
2910 {
2911 	int r;
2912 	struct cache *cache = context;
2913 
2914 	if (dirty) {
2915 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2916 		atomic_inc(&cache->nr_dirty);
2917 	} else
2918 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2919 
2920 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2921 	if (r)
2922 		return r;
2923 
2924 	return 0;
2925 }
2926 
2927 /*
2928  * The discard block size in the on disk metadata is not
2929  * neccessarily the same as we're currently using.  So we have to
2930  * be careful to only set the discarded attribute if we know it
2931  * covers a complete block of the new size.
2932  */
2933 struct discard_load_info {
2934 	struct cache *cache;
2935 
2936 	/*
2937 	 * These blocks are sized using the on disk dblock size, rather
2938 	 * than the current one.
2939 	 */
2940 	dm_block_t block_size;
2941 	dm_block_t discard_begin, discard_end;
2942 };
2943 
2944 static void discard_load_info_init(struct cache *cache,
2945 				   struct discard_load_info *li)
2946 {
2947 	li->cache = cache;
2948 	li->discard_begin = li->discard_end = 0;
2949 }
2950 
2951 static void set_discard_range(struct discard_load_info *li)
2952 {
2953 	sector_t b, e;
2954 
2955 	if (li->discard_begin == li->discard_end)
2956 		return;
2957 
2958 	/*
2959 	 * Convert to sectors.
2960 	 */
2961 	b = li->discard_begin * li->block_size;
2962 	e = li->discard_end * li->block_size;
2963 
2964 	/*
2965 	 * Then convert back to the current dblock size.
2966 	 */
2967 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2968 	sector_div(e, li->cache->discard_block_size);
2969 
2970 	/*
2971 	 * The origin may have shrunk, so we need to check we're still in
2972 	 * bounds.
2973 	 */
2974 	if (e > from_dblock(li->cache->discard_nr_blocks))
2975 		e = from_dblock(li->cache->discard_nr_blocks);
2976 
2977 	for (; b < e; b++)
2978 		set_discard(li->cache, to_dblock(b));
2979 }
2980 
2981 static int load_discard(void *context, sector_t discard_block_size,
2982 			dm_dblock_t dblock, bool discard)
2983 {
2984 	struct discard_load_info *li = context;
2985 
2986 	li->block_size = discard_block_size;
2987 
2988 	if (discard) {
2989 		if (from_dblock(dblock) == li->discard_end)
2990 			/*
2991 			 * We're already in a discard range, just extend it.
2992 			 */
2993 			li->discard_end = li->discard_end + 1ULL;
2994 
2995 		else {
2996 			/*
2997 			 * Emit the old range and start a new one.
2998 			 */
2999 			set_discard_range(li);
3000 			li->discard_begin = from_dblock(dblock);
3001 			li->discard_end = li->discard_begin + 1ULL;
3002 		}
3003 	} else {
3004 		set_discard_range(li);
3005 		li->discard_begin = li->discard_end = 0;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3012 {
3013 	sector_t size = get_dev_size(cache->cache_dev);
3014 	(void) sector_div(size, cache->sectors_per_block);
3015 	return to_cblock(size);
3016 }
3017 
3018 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3019 {
3020 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
3021 		if (cache->sized) {
3022 			DMERR("%s: unable to extend cache due to missing cache table reload",
3023 			      cache_device_name(cache));
3024 			return false;
3025 		}
3026 	}
3027 
3028 	/*
3029 	 * We can't drop a dirty block when shrinking the cache.
3030 	 */
3031 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3032 		new_size = to_cblock(from_cblock(new_size) + 1);
3033 		if (is_dirty(cache, new_size)) {
3034 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3035 			      cache_device_name(cache),
3036 			      (unsigned long long) from_cblock(new_size));
3037 			return false;
3038 		}
3039 	}
3040 
3041 	return true;
3042 }
3043 
3044 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3045 {
3046 	int r;
3047 
3048 	r = dm_cache_resize(cache->cmd, new_size);
3049 	if (r) {
3050 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3051 		metadata_operation_failed(cache, "dm_cache_resize", r);
3052 		return r;
3053 	}
3054 
3055 	set_cache_size(cache, new_size);
3056 
3057 	return 0;
3058 }
3059 
3060 static int cache_preresume(struct dm_target *ti)
3061 {
3062 	int r = 0;
3063 	struct cache *cache = ti->private;
3064 	dm_cblock_t csize = get_cache_dev_size(cache);
3065 
3066 	/*
3067 	 * Check to see if the cache has resized.
3068 	 */
3069 	if (!cache->sized) {
3070 		r = resize_cache_dev(cache, csize);
3071 		if (r)
3072 			return r;
3073 
3074 		cache->sized = true;
3075 
3076 	} else if (csize != cache->cache_size) {
3077 		if (!can_resize(cache, csize))
3078 			return -EINVAL;
3079 
3080 		r = resize_cache_dev(cache, csize);
3081 		if (r)
3082 			return r;
3083 	}
3084 
3085 	if (!cache->loaded_mappings) {
3086 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3087 					   load_mapping, cache);
3088 		if (r) {
3089 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3090 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3091 			return r;
3092 		}
3093 
3094 		cache->loaded_mappings = true;
3095 	}
3096 
3097 	if (!cache->loaded_discards) {
3098 		struct discard_load_info li;
3099 
3100 		/*
3101 		 * The discard bitset could have been resized, or the
3102 		 * discard block size changed.  To be safe we start by
3103 		 * setting every dblock to not discarded.
3104 		 */
3105 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3106 
3107 		discard_load_info_init(cache, &li);
3108 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3109 		if (r) {
3110 			DMERR("%s: could not load origin discards", cache_device_name(cache));
3111 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3112 			return r;
3113 		}
3114 		set_discard_range(&li);
3115 
3116 		cache->loaded_discards = true;
3117 	}
3118 
3119 	return r;
3120 }
3121 
3122 static void cache_resume(struct dm_target *ti)
3123 {
3124 	struct cache *cache = ti->private;
3125 
3126 	cache->need_tick_bio = true;
3127 	allow_background_work(cache);
3128 	do_waker(&cache->waker.work);
3129 }
3130 
3131 static void emit_flags(struct cache *cache, char *result,
3132 		       unsigned maxlen, ssize_t *sz_ptr)
3133 {
3134 	ssize_t sz = *sz_ptr;
3135 	struct cache_features *cf = &cache->features;
3136 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3137 
3138 	DMEMIT("%u ", count);
3139 
3140 	if (cf->metadata_version == 2)
3141 		DMEMIT("metadata2 ");
3142 
3143 	if (writethrough_mode(cache))
3144 		DMEMIT("writethrough ");
3145 
3146 	else if (passthrough_mode(cache))
3147 		DMEMIT("passthrough ");
3148 
3149 	else if (writeback_mode(cache))
3150 		DMEMIT("writeback ");
3151 
3152 	else {
3153 		DMEMIT("unknown ");
3154 		DMERR("%s: internal error: unknown io mode: %d",
3155 		      cache_device_name(cache), (int) cf->io_mode);
3156 	}
3157 
3158 	if (!cf->discard_passdown)
3159 		DMEMIT("no_discard_passdown ");
3160 
3161 	*sz_ptr = sz;
3162 }
3163 
3164 /*
3165  * Status format:
3166  *
3167  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3168  * <cache block size> <#used cache blocks>/<#total cache blocks>
3169  * <#read hits> <#read misses> <#write hits> <#write misses>
3170  * <#demotions> <#promotions> <#dirty>
3171  * <#features> <features>*
3172  * <#core args> <core args>
3173  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3174  */
3175 static void cache_status(struct dm_target *ti, status_type_t type,
3176 			 unsigned status_flags, char *result, unsigned maxlen)
3177 {
3178 	int r = 0;
3179 	unsigned i;
3180 	ssize_t sz = 0;
3181 	dm_block_t nr_free_blocks_metadata = 0;
3182 	dm_block_t nr_blocks_metadata = 0;
3183 	char buf[BDEVNAME_SIZE];
3184 	struct cache *cache = ti->private;
3185 	dm_cblock_t residency;
3186 	bool needs_check;
3187 
3188 	switch (type) {
3189 	case STATUSTYPE_INFO:
3190 		if (get_cache_mode(cache) == CM_FAIL) {
3191 			DMEMIT("Fail");
3192 			break;
3193 		}
3194 
3195 		/* Commit to ensure statistics aren't out-of-date */
3196 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3197 			(void) commit(cache, false);
3198 
3199 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3200 		if (r) {
3201 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3202 			      cache_device_name(cache), r);
3203 			goto err;
3204 		}
3205 
3206 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3207 		if (r) {
3208 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3209 			      cache_device_name(cache), r);
3210 			goto err;
3211 		}
3212 
3213 		residency = policy_residency(cache->policy);
3214 
3215 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3216 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3217 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3218 		       (unsigned long long)nr_blocks_metadata,
3219 		       (unsigned long long)cache->sectors_per_block,
3220 		       (unsigned long long) from_cblock(residency),
3221 		       (unsigned long long) from_cblock(cache->cache_size),
3222 		       (unsigned) atomic_read(&cache->stats.read_hit),
3223 		       (unsigned) atomic_read(&cache->stats.read_miss),
3224 		       (unsigned) atomic_read(&cache->stats.write_hit),
3225 		       (unsigned) atomic_read(&cache->stats.write_miss),
3226 		       (unsigned) atomic_read(&cache->stats.demotion),
3227 		       (unsigned) atomic_read(&cache->stats.promotion),
3228 		       (unsigned long) atomic_read(&cache->nr_dirty));
3229 
3230 		emit_flags(cache, result, maxlen, &sz);
3231 
3232 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3233 
3234 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3235 		if (sz < maxlen) {
3236 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3237 			if (r)
3238 				DMERR("%s: policy_emit_config_values returned %d",
3239 				      cache_device_name(cache), r);
3240 		}
3241 
3242 		if (get_cache_mode(cache) == CM_READ_ONLY)
3243 			DMEMIT("ro ");
3244 		else
3245 			DMEMIT("rw ");
3246 
3247 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3248 
3249 		if (r || needs_check)
3250 			DMEMIT("needs_check ");
3251 		else
3252 			DMEMIT("- ");
3253 
3254 		break;
3255 
3256 	case STATUSTYPE_TABLE:
3257 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3258 		DMEMIT("%s ", buf);
3259 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3260 		DMEMIT("%s ", buf);
3261 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3262 		DMEMIT("%s", buf);
3263 
3264 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3265 			DMEMIT(" %s", cache->ctr_args[i]);
3266 		if (cache->nr_ctr_args)
3267 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3268 	}
3269 
3270 	return;
3271 
3272 err:
3273 	DMEMIT("Error");
3274 }
3275 
3276 /*
3277  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3278  * the one-past-the-end value.
3279  */
3280 struct cblock_range {
3281 	dm_cblock_t begin;
3282 	dm_cblock_t end;
3283 };
3284 
3285 /*
3286  * A cache block range can take two forms:
3287  *
3288  * i) A single cblock, eg. '3456'
3289  * ii) A begin and end cblock with a dash between, eg. 123-234
3290  */
3291 static int parse_cblock_range(struct cache *cache, const char *str,
3292 			      struct cblock_range *result)
3293 {
3294 	char dummy;
3295 	uint64_t b, e;
3296 	int r;
3297 
3298 	/*
3299 	 * Try and parse form (ii) first.
3300 	 */
3301 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3302 	if (r < 0)
3303 		return r;
3304 
3305 	if (r == 2) {
3306 		result->begin = to_cblock(b);
3307 		result->end = to_cblock(e);
3308 		return 0;
3309 	}
3310 
3311 	/*
3312 	 * That didn't work, try form (i).
3313 	 */
3314 	r = sscanf(str, "%llu%c", &b, &dummy);
3315 	if (r < 0)
3316 		return r;
3317 
3318 	if (r == 1) {
3319 		result->begin = to_cblock(b);
3320 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3321 		return 0;
3322 	}
3323 
3324 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3325 	return -EINVAL;
3326 }
3327 
3328 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3329 {
3330 	uint64_t b = from_cblock(range->begin);
3331 	uint64_t e = from_cblock(range->end);
3332 	uint64_t n = from_cblock(cache->cache_size);
3333 
3334 	if (b >= n) {
3335 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3336 		      cache_device_name(cache), b, n);
3337 		return -EINVAL;
3338 	}
3339 
3340 	if (e > n) {
3341 		DMERR("%s: end cblock out of range: %llu > %llu",
3342 		      cache_device_name(cache), e, n);
3343 		return -EINVAL;
3344 	}
3345 
3346 	if (b >= e) {
3347 		DMERR("%s: invalid cblock range: %llu >= %llu",
3348 		      cache_device_name(cache), b, e);
3349 		return -EINVAL;
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3356 {
3357 	return to_cblock(from_cblock(b) + 1);
3358 }
3359 
3360 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3361 {
3362 	int r = 0;
3363 
3364 	/*
3365 	 * We don't need to do any locking here because we know we're in
3366 	 * passthrough mode.  There's is potential for a race between an
3367 	 * invalidation triggered by an io and an invalidation message.  This
3368 	 * is harmless, we must not worry if the policy call fails.
3369 	 */
3370 	while (range->begin != range->end) {
3371 		r = invalidate_cblock(cache, range->begin);
3372 		if (r)
3373 			return r;
3374 
3375 		range->begin = cblock_succ(range->begin);
3376 	}
3377 
3378 	cache->commit_requested = true;
3379 	return r;
3380 }
3381 
3382 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3383 					      const char **cblock_ranges)
3384 {
3385 	int r = 0;
3386 	unsigned i;
3387 	struct cblock_range range;
3388 
3389 	if (!passthrough_mode(cache)) {
3390 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3391 		      cache_device_name(cache));
3392 		return -EPERM;
3393 	}
3394 
3395 	for (i = 0; i < count; i++) {
3396 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3397 		if (r)
3398 			break;
3399 
3400 		r = validate_cblock_range(cache, &range);
3401 		if (r)
3402 			break;
3403 
3404 		/*
3405 		 * Pass begin and end origin blocks to the worker and wake it.
3406 		 */
3407 		r = request_invalidation(cache, &range);
3408 		if (r)
3409 			break;
3410 	}
3411 
3412 	return r;
3413 }
3414 
3415 /*
3416  * Supports
3417  *	"<key> <value>"
3418  * and
3419  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3420  *
3421  * The key migration_threshold is supported by the cache target core.
3422  */
3423 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3424 			 char *result, unsigned maxlen)
3425 {
3426 	struct cache *cache = ti->private;
3427 
3428 	if (!argc)
3429 		return -EINVAL;
3430 
3431 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3432 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3433 		      cache_device_name(cache));
3434 		return -EOPNOTSUPP;
3435 	}
3436 
3437 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3438 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3439 
3440 	if (argc != 2)
3441 		return -EINVAL;
3442 
3443 	return set_config_value(cache, argv[0], argv[1]);
3444 }
3445 
3446 static int cache_iterate_devices(struct dm_target *ti,
3447 				 iterate_devices_callout_fn fn, void *data)
3448 {
3449 	int r = 0;
3450 	struct cache *cache = ti->private;
3451 
3452 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3453 	if (!r)
3454 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3455 
3456 	return r;
3457 }
3458 
3459 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3460 {
3461 	struct request_queue *q = bdev_get_queue(origin_bdev);
3462 
3463 	return q && blk_queue_discard(q);
3464 }
3465 
3466 /*
3467  * If discard_passdown was enabled verify that the origin device
3468  * supports discards.  Disable discard_passdown if not.
3469  */
3470 static void disable_passdown_if_not_supported(struct cache *cache)
3471 {
3472 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3473 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3474 	const char *reason = NULL;
3475 	char buf[BDEVNAME_SIZE];
3476 
3477 	if (!cache->features.discard_passdown)
3478 		return;
3479 
3480 	if (!origin_dev_supports_discard(origin_bdev))
3481 		reason = "discard unsupported";
3482 
3483 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3484 		reason = "max discard sectors smaller than a block";
3485 
3486 	if (reason) {
3487 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3488 		       bdevname(origin_bdev, buf), reason);
3489 		cache->features.discard_passdown = false;
3490 	}
3491 }
3492 
3493 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3494 {
3495 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3496 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3497 
3498 	if (!cache->features.discard_passdown) {
3499 		/* No passdown is done so setting own virtual limits */
3500 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3501 						    cache->origin_sectors);
3502 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3503 		return;
3504 	}
3505 
3506 	/*
3507 	 * cache_iterate_devices() is stacking both origin and fast device limits
3508 	 * but discards aren't passed to fast device, so inherit origin's limits.
3509 	 */
3510 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3511 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3512 	limits->discard_granularity = origin_limits->discard_granularity;
3513 	limits->discard_alignment = origin_limits->discard_alignment;
3514 	limits->discard_misaligned = origin_limits->discard_misaligned;
3515 }
3516 
3517 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3518 {
3519 	struct cache *cache = ti->private;
3520 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3521 
3522 	/*
3523 	 * If the system-determined stacked limits are compatible with the
3524 	 * cache's blocksize (io_opt is a factor) do not override them.
3525 	 */
3526 	if (io_opt_sectors < cache->sectors_per_block ||
3527 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3528 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3529 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3530 	}
3531 
3532 	disable_passdown_if_not_supported(cache);
3533 	set_discard_limits(cache, limits);
3534 }
3535 
3536 /*----------------------------------------------------------------*/
3537 
3538 static struct target_type cache_target = {
3539 	.name = "cache",
3540 	.version = {2, 1, 0},
3541 	.module = THIS_MODULE,
3542 	.ctr = cache_ctr,
3543 	.dtr = cache_dtr,
3544 	.map = cache_map,
3545 	.end_io = cache_end_io,
3546 	.postsuspend = cache_postsuspend,
3547 	.preresume = cache_preresume,
3548 	.resume = cache_resume,
3549 	.status = cache_status,
3550 	.message = cache_message,
3551 	.iterate_devices = cache_iterate_devices,
3552 	.io_hints = cache_io_hints,
3553 };
3554 
3555 static int __init dm_cache_init(void)
3556 {
3557 	int r;
3558 
3559 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3560 	if (!migration_cache)
3561 		return -ENOMEM;
3562 
3563 	r = dm_register_target(&cache_target);
3564 	if (r) {
3565 		DMERR("cache target registration failed: %d", r);
3566 		kmem_cache_destroy(migration_cache);
3567 		return r;
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 static void __exit dm_cache_exit(void)
3574 {
3575 	dm_unregister_target(&cache_target);
3576 	kmem_cache_destroy(migration_cache);
3577 }
3578 
3579 module_init(dm_cache_init);
3580 module_exit(dm_cache_exit);
3581 
3582 MODULE_DESCRIPTION(DM_NAME " cache target");
3583 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3584 MODULE_LICENSE("GPL");
3585