1 /* 2 * Copyright (C) 2015 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-cache-policy.h" 8 #include "dm-cache-policy-internal.h" 9 #include "dm.h" 10 11 #include <linux/hash.h> 12 #include <linux/jiffies.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/vmalloc.h> 16 #include <linux/math64.h> 17 18 #define DM_MSG_PREFIX "cache-policy-smq" 19 20 /*----------------------------------------------------------------*/ 21 22 /* 23 * Safe division functions that return zero on divide by zero. 24 */ 25 static unsigned safe_div(unsigned n, unsigned d) 26 { 27 return d ? n / d : 0u; 28 } 29 30 static unsigned safe_mod(unsigned n, unsigned d) 31 { 32 return d ? n % d : 0u; 33 } 34 35 /*----------------------------------------------------------------*/ 36 37 struct entry { 38 unsigned hash_next:28; 39 unsigned prev:28; 40 unsigned next:28; 41 unsigned level:7; 42 bool dirty:1; 43 bool allocated:1; 44 bool sentinel:1; 45 46 dm_oblock_t oblock; 47 }; 48 49 /*----------------------------------------------------------------*/ 50 51 #define INDEXER_NULL ((1u << 28u) - 1u) 52 53 /* 54 * An entry_space manages a set of entries that we use for the queues. 55 * The clean and dirty queues share entries, so this object is separate 56 * from the queue itself. 57 */ 58 struct entry_space { 59 struct entry *begin; 60 struct entry *end; 61 }; 62 63 static int space_init(struct entry_space *es, unsigned nr_entries) 64 { 65 if (!nr_entries) { 66 es->begin = es->end = NULL; 67 return 0; 68 } 69 70 es->begin = vzalloc(sizeof(struct entry) * nr_entries); 71 if (!es->begin) 72 return -ENOMEM; 73 74 es->end = es->begin + nr_entries; 75 return 0; 76 } 77 78 static void space_exit(struct entry_space *es) 79 { 80 vfree(es->begin); 81 } 82 83 static struct entry *__get_entry(struct entry_space *es, unsigned block) 84 { 85 struct entry *e; 86 87 e = es->begin + block; 88 BUG_ON(e >= es->end); 89 90 return e; 91 } 92 93 static unsigned to_index(struct entry_space *es, struct entry *e) 94 { 95 BUG_ON(e < es->begin || e >= es->end); 96 return e - es->begin; 97 } 98 99 static struct entry *to_entry(struct entry_space *es, unsigned block) 100 { 101 if (block == INDEXER_NULL) 102 return NULL; 103 104 return __get_entry(es, block); 105 } 106 107 /*----------------------------------------------------------------*/ 108 109 struct ilist { 110 unsigned nr_elts; /* excluding sentinel entries */ 111 unsigned head, tail; 112 }; 113 114 static void l_init(struct ilist *l) 115 { 116 l->nr_elts = 0; 117 l->head = l->tail = INDEXER_NULL; 118 } 119 120 static struct entry *l_head(struct entry_space *es, struct ilist *l) 121 { 122 return to_entry(es, l->head); 123 } 124 125 static struct entry *l_tail(struct entry_space *es, struct ilist *l) 126 { 127 return to_entry(es, l->tail); 128 } 129 130 static struct entry *l_next(struct entry_space *es, struct entry *e) 131 { 132 return to_entry(es, e->next); 133 } 134 135 static struct entry *l_prev(struct entry_space *es, struct entry *e) 136 { 137 return to_entry(es, e->prev); 138 } 139 140 static bool l_empty(struct ilist *l) 141 { 142 return l->head == INDEXER_NULL; 143 } 144 145 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) 146 { 147 struct entry *head = l_head(es, l); 148 149 e->next = l->head; 150 e->prev = INDEXER_NULL; 151 152 if (head) 153 head->prev = l->head = to_index(es, e); 154 else 155 l->head = l->tail = to_index(es, e); 156 157 if (!e->sentinel) 158 l->nr_elts++; 159 } 160 161 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) 162 { 163 struct entry *tail = l_tail(es, l); 164 165 e->next = INDEXER_NULL; 166 e->prev = l->tail; 167 168 if (tail) 169 tail->next = l->tail = to_index(es, e); 170 else 171 l->head = l->tail = to_index(es, e); 172 173 if (!e->sentinel) 174 l->nr_elts++; 175 } 176 177 static void l_add_before(struct entry_space *es, struct ilist *l, 178 struct entry *old, struct entry *e) 179 { 180 struct entry *prev = l_prev(es, old); 181 182 if (!prev) 183 l_add_head(es, l, e); 184 185 else { 186 e->prev = old->prev; 187 e->next = to_index(es, old); 188 prev->next = old->prev = to_index(es, e); 189 190 if (!e->sentinel) 191 l->nr_elts++; 192 } 193 } 194 195 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) 196 { 197 struct entry *prev = l_prev(es, e); 198 struct entry *next = l_next(es, e); 199 200 if (prev) 201 prev->next = e->next; 202 else 203 l->head = e->next; 204 205 if (next) 206 next->prev = e->prev; 207 else 208 l->tail = e->prev; 209 210 if (!e->sentinel) 211 l->nr_elts--; 212 } 213 214 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) 215 { 216 struct entry *e; 217 218 for (e = l_tail(es, l); e; e = l_prev(es, e)) 219 if (!e->sentinel) { 220 l_del(es, l, e); 221 return e; 222 } 223 224 return NULL; 225 } 226 227 /*----------------------------------------------------------------*/ 228 229 /* 230 * The stochastic-multi-queue is a set of lru lists stacked into levels. 231 * Entries are moved up levels when they are used, which loosely orders the 232 * most accessed entries in the top levels and least in the bottom. This 233 * structure is *much* better than a single lru list. 234 */ 235 #define MAX_LEVELS 64u 236 237 struct queue { 238 struct entry_space *es; 239 240 unsigned nr_elts; 241 unsigned nr_levels; 242 struct ilist qs[MAX_LEVELS]; 243 244 /* 245 * We maintain a count of the number of entries we would like in each 246 * level. 247 */ 248 unsigned last_target_nr_elts; 249 unsigned nr_top_levels; 250 unsigned nr_in_top_levels; 251 unsigned target_count[MAX_LEVELS]; 252 }; 253 254 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) 255 { 256 unsigned i; 257 258 q->es = es; 259 q->nr_elts = 0; 260 q->nr_levels = nr_levels; 261 262 for (i = 0; i < q->nr_levels; i++) { 263 l_init(q->qs + i); 264 q->target_count[i] = 0u; 265 } 266 267 q->last_target_nr_elts = 0u; 268 q->nr_top_levels = 0u; 269 q->nr_in_top_levels = 0u; 270 } 271 272 static unsigned q_size(struct queue *q) 273 { 274 return q->nr_elts; 275 } 276 277 /* 278 * Insert an entry to the back of the given level. 279 */ 280 static void q_push(struct queue *q, struct entry *e) 281 { 282 if (!e->sentinel) 283 q->nr_elts++; 284 285 l_add_tail(q->es, q->qs + e->level, e); 286 } 287 288 static void q_push_before(struct queue *q, struct entry *old, struct entry *e) 289 { 290 if (!e->sentinel) 291 q->nr_elts++; 292 293 l_add_before(q->es, q->qs + e->level, old, e); 294 } 295 296 static void q_del(struct queue *q, struct entry *e) 297 { 298 l_del(q->es, q->qs + e->level, e); 299 if (!e->sentinel) 300 q->nr_elts--; 301 } 302 303 /* 304 * Return the oldest entry of the lowest populated level. 305 */ 306 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) 307 { 308 unsigned level; 309 struct entry *e; 310 311 max_level = min(max_level, q->nr_levels); 312 313 for (level = 0; level < max_level; level++) 314 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { 315 if (e->sentinel) { 316 if (can_cross_sentinel) 317 continue; 318 else 319 break; 320 } 321 322 return e; 323 } 324 325 return NULL; 326 } 327 328 static struct entry *q_pop(struct queue *q) 329 { 330 struct entry *e = q_peek(q, q->nr_levels, true); 331 332 if (e) 333 q_del(q, e); 334 335 return e; 336 } 337 338 /* 339 * Pops an entry from a level that is not past a sentinel. 340 */ 341 static struct entry *q_pop_old(struct queue *q, unsigned max_level) 342 { 343 struct entry *e = q_peek(q, max_level, false); 344 345 if (e) 346 q_del(q, e); 347 348 return e; 349 } 350 351 /* 352 * This function assumes there is a non-sentinel entry to pop. It's only 353 * used by redistribute, so we know this is true. It also doesn't adjust 354 * the q->nr_elts count. 355 */ 356 static struct entry *__redist_pop_from(struct queue *q, unsigned level) 357 { 358 struct entry *e; 359 360 for (; level < q->nr_levels; level++) 361 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) 362 if (!e->sentinel) { 363 l_del(q->es, q->qs + e->level, e); 364 return e; 365 } 366 367 return NULL; 368 } 369 370 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) 371 { 372 unsigned level, nr_levels, entries_per_level, remainder; 373 374 BUG_ON(lbegin > lend); 375 BUG_ON(lend > q->nr_levels); 376 nr_levels = lend - lbegin; 377 entries_per_level = safe_div(nr_elts, nr_levels); 378 remainder = safe_mod(nr_elts, nr_levels); 379 380 for (level = lbegin; level < lend; level++) 381 q->target_count[level] = 382 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; 383 } 384 385 /* 386 * Typically we have fewer elements in the top few levels which allows us 387 * to adjust the promote threshold nicely. 388 */ 389 static void q_set_targets(struct queue *q) 390 { 391 if (q->last_target_nr_elts == q->nr_elts) 392 return; 393 394 q->last_target_nr_elts = q->nr_elts; 395 396 if (q->nr_top_levels > q->nr_levels) 397 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); 398 399 else { 400 q_set_targets_subrange_(q, q->nr_in_top_levels, 401 q->nr_levels - q->nr_top_levels, q->nr_levels); 402 403 if (q->nr_in_top_levels < q->nr_elts) 404 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, 405 0, q->nr_levels - q->nr_top_levels); 406 else 407 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); 408 } 409 } 410 411 static void q_redistribute(struct queue *q) 412 { 413 unsigned target, level; 414 struct ilist *l, *l_above; 415 struct entry *e; 416 417 q_set_targets(q); 418 419 for (level = 0u; level < q->nr_levels - 1u; level++) { 420 l = q->qs + level; 421 target = q->target_count[level]; 422 423 /* 424 * Pull down some entries from the level above. 425 */ 426 while (l->nr_elts < target) { 427 e = __redist_pop_from(q, level + 1u); 428 if (!e) { 429 /* bug in nr_elts */ 430 break; 431 } 432 433 e->level = level; 434 l_add_tail(q->es, l, e); 435 } 436 437 /* 438 * Push some entries up. 439 */ 440 l_above = q->qs + level + 1u; 441 while (l->nr_elts > target) { 442 e = l_pop_tail(q->es, l); 443 444 if (!e) 445 /* bug in nr_elts */ 446 break; 447 448 e->level = level + 1u; 449 l_add_head(q->es, l_above, e); 450 } 451 } 452 } 453 454 static void q_requeue_before(struct queue *q, struct entry *dest, struct entry *e, unsigned extra_levels) 455 { 456 struct entry *de; 457 unsigned new_level; 458 459 q_del(q, e); 460 461 if (extra_levels && (e->level < q->nr_levels - 1u)) { 462 new_level = min(q->nr_levels - 1u, e->level + extra_levels); 463 for (de = l_head(q->es, q->qs + new_level); de; de = l_next(q->es, de)) { 464 if (de->sentinel) 465 continue; 466 467 q_del(q, de); 468 de->level = e->level; 469 470 if (dest) 471 q_push_before(q, dest, de); 472 else 473 q_push(q, de); 474 break; 475 } 476 477 e->level = new_level; 478 } 479 480 q_push(q, e); 481 } 482 483 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels) 484 { 485 q_requeue_before(q, NULL, e, extra_levels); 486 } 487 488 /*----------------------------------------------------------------*/ 489 490 #define FP_SHIFT 8 491 #define SIXTEENTH (1u << (FP_SHIFT - 4u)) 492 #define EIGHTH (1u << (FP_SHIFT - 3u)) 493 494 struct stats { 495 unsigned hit_threshold; 496 unsigned hits; 497 unsigned misses; 498 }; 499 500 enum performance { 501 Q_POOR, 502 Q_FAIR, 503 Q_WELL 504 }; 505 506 static void stats_init(struct stats *s, unsigned nr_levels) 507 { 508 s->hit_threshold = (nr_levels * 3u) / 4u; 509 s->hits = 0u; 510 s->misses = 0u; 511 } 512 513 static void stats_reset(struct stats *s) 514 { 515 s->hits = s->misses = 0u; 516 } 517 518 static void stats_level_accessed(struct stats *s, unsigned level) 519 { 520 if (level >= s->hit_threshold) 521 s->hits++; 522 else 523 s->misses++; 524 } 525 526 static void stats_miss(struct stats *s) 527 { 528 s->misses++; 529 } 530 531 /* 532 * There are times when we don't have any confidence in the hotspot queue. 533 * Such as when a fresh cache is created and the blocks have been spread 534 * out across the levels, or if an io load changes. We detect this by 535 * seeing how often a lookup is in the top levels of the hotspot queue. 536 */ 537 static enum performance stats_assess(struct stats *s) 538 { 539 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); 540 541 if (confidence < SIXTEENTH) 542 return Q_POOR; 543 544 else if (confidence < EIGHTH) 545 return Q_FAIR; 546 547 else 548 return Q_WELL; 549 } 550 551 /*----------------------------------------------------------------*/ 552 553 struct hash_table { 554 struct entry_space *es; 555 unsigned long long hash_bits; 556 unsigned *buckets; 557 }; 558 559 /* 560 * All cache entries are stored in a chained hash table. To save space we 561 * use indexing again, and only store indexes to the next entry. 562 */ 563 static int h_init(struct hash_table *ht, struct entry_space *es, unsigned nr_entries) 564 { 565 unsigned i, nr_buckets; 566 567 ht->es = es; 568 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); 569 ht->hash_bits = __ffs(nr_buckets); 570 571 ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets); 572 if (!ht->buckets) 573 return -ENOMEM; 574 575 for (i = 0; i < nr_buckets; i++) 576 ht->buckets[i] = INDEXER_NULL; 577 578 return 0; 579 } 580 581 static void h_exit(struct hash_table *ht) 582 { 583 vfree(ht->buckets); 584 } 585 586 static struct entry *h_head(struct hash_table *ht, unsigned bucket) 587 { 588 return to_entry(ht->es, ht->buckets[bucket]); 589 } 590 591 static struct entry *h_next(struct hash_table *ht, struct entry *e) 592 { 593 return to_entry(ht->es, e->hash_next); 594 } 595 596 static void __h_insert(struct hash_table *ht, unsigned bucket, struct entry *e) 597 { 598 e->hash_next = ht->buckets[bucket]; 599 ht->buckets[bucket] = to_index(ht->es, e); 600 } 601 602 static void h_insert(struct hash_table *ht, struct entry *e) 603 { 604 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 605 __h_insert(ht, h, e); 606 } 607 608 static struct entry *__h_lookup(struct hash_table *ht, unsigned h, dm_oblock_t oblock, 609 struct entry **prev) 610 { 611 struct entry *e; 612 613 *prev = NULL; 614 for (e = h_head(ht, h); e; e = h_next(ht, e)) { 615 if (e->oblock == oblock) 616 return e; 617 618 *prev = e; 619 } 620 621 return NULL; 622 } 623 624 static void __h_unlink(struct hash_table *ht, unsigned h, 625 struct entry *e, struct entry *prev) 626 { 627 if (prev) 628 prev->hash_next = e->hash_next; 629 else 630 ht->buckets[h] = e->hash_next; 631 } 632 633 /* 634 * Also moves each entry to the front of the bucket. 635 */ 636 static struct entry *h_lookup(struct hash_table *ht, dm_oblock_t oblock) 637 { 638 struct entry *e, *prev; 639 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); 640 641 e = __h_lookup(ht, h, oblock, &prev); 642 if (e && prev) { 643 /* 644 * Move to the front because this entry is likely 645 * to be hit again. 646 */ 647 __h_unlink(ht, h, e, prev); 648 __h_insert(ht, h, e); 649 } 650 651 return e; 652 } 653 654 static void h_remove(struct hash_table *ht, struct entry *e) 655 { 656 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 657 struct entry *prev; 658 659 /* 660 * The down side of using a singly linked list is we have to 661 * iterate the bucket to remove an item. 662 */ 663 e = __h_lookup(ht, h, e->oblock, &prev); 664 if (e) 665 __h_unlink(ht, h, e, prev); 666 } 667 668 /*----------------------------------------------------------------*/ 669 670 struct entry_alloc { 671 struct entry_space *es; 672 unsigned begin; 673 674 unsigned nr_allocated; 675 struct ilist free; 676 }; 677 678 static void init_allocator(struct entry_alloc *ea, struct entry_space *es, 679 unsigned begin, unsigned end) 680 { 681 unsigned i; 682 683 ea->es = es; 684 ea->nr_allocated = 0u; 685 ea->begin = begin; 686 687 l_init(&ea->free); 688 for (i = begin; i != end; i++) 689 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); 690 } 691 692 static void init_entry(struct entry *e) 693 { 694 /* 695 * We can't memset because that would clear the hotspot and 696 * sentinel bits which remain constant. 697 */ 698 e->hash_next = INDEXER_NULL; 699 e->next = INDEXER_NULL; 700 e->prev = INDEXER_NULL; 701 e->level = 0u; 702 e->allocated = true; 703 } 704 705 static struct entry *alloc_entry(struct entry_alloc *ea) 706 { 707 struct entry *e; 708 709 if (l_empty(&ea->free)) 710 return NULL; 711 712 e = l_pop_tail(ea->es, &ea->free); 713 init_entry(e); 714 ea->nr_allocated++; 715 716 return e; 717 } 718 719 /* 720 * This assumes the cblock hasn't already been allocated. 721 */ 722 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) 723 { 724 struct entry *e = __get_entry(ea->es, ea->begin + i); 725 726 BUG_ON(e->allocated); 727 728 l_del(ea->es, &ea->free, e); 729 init_entry(e); 730 ea->nr_allocated++; 731 732 return e; 733 } 734 735 static void free_entry(struct entry_alloc *ea, struct entry *e) 736 { 737 BUG_ON(!ea->nr_allocated); 738 BUG_ON(!e->allocated); 739 740 ea->nr_allocated--; 741 e->allocated = false; 742 l_add_tail(ea->es, &ea->free, e); 743 } 744 745 static bool allocator_empty(struct entry_alloc *ea) 746 { 747 return l_empty(&ea->free); 748 } 749 750 static unsigned get_index(struct entry_alloc *ea, struct entry *e) 751 { 752 return to_index(ea->es, e) - ea->begin; 753 } 754 755 static struct entry *get_entry(struct entry_alloc *ea, unsigned index) 756 { 757 return __get_entry(ea->es, ea->begin + index); 758 } 759 760 /*----------------------------------------------------------------*/ 761 762 #define NR_HOTSPOT_LEVELS 64u 763 #define NR_CACHE_LEVELS 64u 764 765 #define WRITEBACK_PERIOD (10 * HZ) 766 #define DEMOTE_PERIOD (60 * HZ) 767 768 #define HOTSPOT_UPDATE_PERIOD (HZ) 769 #define CACHE_UPDATE_PERIOD (10u * HZ) 770 771 struct smq_policy { 772 struct dm_cache_policy policy; 773 774 /* protects everything */ 775 spinlock_t lock; 776 dm_cblock_t cache_size; 777 sector_t cache_block_size; 778 779 sector_t hotspot_block_size; 780 unsigned nr_hotspot_blocks; 781 unsigned cache_blocks_per_hotspot_block; 782 unsigned hotspot_level_jump; 783 784 struct entry_space es; 785 struct entry_alloc writeback_sentinel_alloc; 786 struct entry_alloc demote_sentinel_alloc; 787 struct entry_alloc hotspot_alloc; 788 struct entry_alloc cache_alloc; 789 790 unsigned long *hotspot_hit_bits; 791 unsigned long *cache_hit_bits; 792 793 /* 794 * We maintain three queues of entries. The cache proper, 795 * consisting of a clean and dirty queue, containing the currently 796 * active mappings. The hotspot queue uses a larger block size to 797 * track blocks that are being hit frequently and potential 798 * candidates for promotion to the cache. 799 */ 800 struct queue hotspot; 801 struct queue clean; 802 struct queue dirty; 803 804 struct stats hotspot_stats; 805 struct stats cache_stats; 806 807 /* 808 * Keeps track of time, incremented by the core. We use this to 809 * avoid attributing multiple hits within the same tick. 810 */ 811 unsigned tick; 812 813 /* 814 * The hash tables allows us to quickly find an entry by origin 815 * block. 816 */ 817 struct hash_table table; 818 struct hash_table hotspot_table; 819 820 bool current_writeback_sentinels; 821 unsigned long next_writeback_period; 822 823 bool current_demote_sentinels; 824 unsigned long next_demote_period; 825 826 unsigned write_promote_level; 827 unsigned read_promote_level; 828 829 unsigned long next_hotspot_period; 830 unsigned long next_cache_period; 831 }; 832 833 /*----------------------------------------------------------------*/ 834 835 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) 836 { 837 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); 838 } 839 840 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) 841 { 842 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); 843 } 844 845 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) 846 { 847 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); 848 } 849 850 static void __update_writeback_sentinels(struct smq_policy *mq) 851 { 852 unsigned level; 853 struct queue *q = &mq->dirty; 854 struct entry *sentinel; 855 856 for (level = 0; level < q->nr_levels; level++) { 857 sentinel = writeback_sentinel(mq, level); 858 q_del(q, sentinel); 859 q_push(q, sentinel); 860 } 861 } 862 863 static void __update_demote_sentinels(struct smq_policy *mq) 864 { 865 unsigned level; 866 struct queue *q = &mq->clean; 867 struct entry *sentinel; 868 869 for (level = 0; level < q->nr_levels; level++) { 870 sentinel = demote_sentinel(mq, level); 871 q_del(q, sentinel); 872 q_push(q, sentinel); 873 } 874 } 875 876 static void update_sentinels(struct smq_policy *mq) 877 { 878 if (time_after(jiffies, mq->next_writeback_period)) { 879 __update_writeback_sentinels(mq); 880 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 881 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 882 } 883 884 if (time_after(jiffies, mq->next_demote_period)) { 885 __update_demote_sentinels(mq); 886 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 887 mq->current_demote_sentinels = !mq->current_demote_sentinels; 888 } 889 } 890 891 static void __sentinels_init(struct smq_policy *mq) 892 { 893 unsigned level; 894 struct entry *sentinel; 895 896 for (level = 0; level < NR_CACHE_LEVELS; level++) { 897 sentinel = writeback_sentinel(mq, level); 898 sentinel->level = level; 899 q_push(&mq->dirty, sentinel); 900 901 sentinel = demote_sentinel(mq, level); 902 sentinel->level = level; 903 q_push(&mq->clean, sentinel); 904 } 905 } 906 907 static void sentinels_init(struct smq_policy *mq) 908 { 909 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 910 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 911 912 mq->current_writeback_sentinels = false; 913 mq->current_demote_sentinels = false; 914 __sentinels_init(mq); 915 916 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 917 mq->current_demote_sentinels = !mq->current_demote_sentinels; 918 __sentinels_init(mq); 919 } 920 921 /*----------------------------------------------------------------*/ 922 923 /* 924 * These methods tie together the dirty queue, clean queue and hash table. 925 */ 926 static void push_new(struct smq_policy *mq, struct entry *e) 927 { 928 struct queue *q = e->dirty ? &mq->dirty : &mq->clean; 929 h_insert(&mq->table, e); 930 q_push(q, e); 931 } 932 933 static void push(struct smq_policy *mq, struct entry *e) 934 { 935 struct entry *sentinel; 936 937 h_insert(&mq->table, e); 938 939 /* 940 * Punch this into the queue just in front of the sentinel, to 941 * ensure it's cleaned straight away. 942 */ 943 if (e->dirty) { 944 sentinel = writeback_sentinel(mq, e->level); 945 q_push_before(&mq->dirty, sentinel, e); 946 } else { 947 sentinel = demote_sentinel(mq, e->level); 948 q_push_before(&mq->clean, sentinel, e); 949 } 950 } 951 952 /* 953 * Removes an entry from cache. Removes from the hash table. 954 */ 955 static void __del(struct smq_policy *mq, struct queue *q, struct entry *e) 956 { 957 q_del(q, e); 958 h_remove(&mq->table, e); 959 } 960 961 static void del(struct smq_policy *mq, struct entry *e) 962 { 963 __del(mq, e->dirty ? &mq->dirty : &mq->clean, e); 964 } 965 966 static struct entry *pop_old(struct smq_policy *mq, struct queue *q, unsigned max_level) 967 { 968 struct entry *e = q_pop_old(q, max_level); 969 if (e) 970 h_remove(&mq->table, e); 971 return e; 972 } 973 974 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) 975 { 976 return to_cblock(get_index(&mq->cache_alloc, e)); 977 } 978 979 static void requeue(struct smq_policy *mq, struct entry *e) 980 { 981 struct entry *sentinel; 982 983 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { 984 if (e->dirty) { 985 sentinel = writeback_sentinel(mq, e->level); 986 q_requeue_before(&mq->dirty, sentinel, e, 1u); 987 } else { 988 sentinel = demote_sentinel(mq, e->level); 989 q_requeue_before(&mq->clean, sentinel, e, 1u); 990 } 991 } 992 } 993 994 static unsigned default_promote_level(struct smq_policy *mq) 995 { 996 /* 997 * The promote level depends on the current performance of the 998 * cache. 999 * 1000 * If the cache is performing badly, then we can't afford 1001 * to promote much without causing performance to drop below that 1002 * of the origin device. 1003 * 1004 * If the cache is performing well, then we don't need to promote 1005 * much. If it isn't broken, don't fix it. 1006 * 1007 * If the cache is middling then we promote more. 1008 * 1009 * This scheme reminds me of a graph of entropy vs probability of a 1010 * binary variable. 1011 */ 1012 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1}; 1013 1014 unsigned hits = mq->cache_stats.hits; 1015 unsigned misses = mq->cache_stats.misses; 1016 unsigned index = safe_div(hits << 4u, hits + misses); 1017 return table[index]; 1018 } 1019 1020 static void update_promote_levels(struct smq_policy *mq) 1021 { 1022 /* 1023 * If there are unused cache entries then we want to be really 1024 * eager to promote. 1025 */ 1026 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? 1027 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); 1028 1029 /* 1030 * If the hotspot queue is performing badly then we have little 1031 * confidence that we know which blocks to promote. So we cut down 1032 * the amount of promotions. 1033 */ 1034 switch (stats_assess(&mq->hotspot_stats)) { 1035 case Q_POOR: 1036 threshold_level /= 4u; 1037 break; 1038 1039 case Q_FAIR: 1040 threshold_level /= 2u; 1041 break; 1042 1043 case Q_WELL: 1044 break; 1045 } 1046 1047 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; 1048 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level) + 2u; 1049 } 1050 1051 /* 1052 * If the hotspot queue is performing badly, then we try and move entries 1053 * around more quickly. 1054 */ 1055 static void update_level_jump(struct smq_policy *mq) 1056 { 1057 switch (stats_assess(&mq->hotspot_stats)) { 1058 case Q_POOR: 1059 mq->hotspot_level_jump = 4u; 1060 break; 1061 1062 case Q_FAIR: 1063 mq->hotspot_level_jump = 2u; 1064 break; 1065 1066 case Q_WELL: 1067 mq->hotspot_level_jump = 1u; 1068 break; 1069 } 1070 } 1071 1072 static void end_hotspot_period(struct smq_policy *mq) 1073 { 1074 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1075 update_promote_levels(mq); 1076 1077 if (time_after(jiffies, mq->next_hotspot_period)) { 1078 update_level_jump(mq); 1079 q_redistribute(&mq->hotspot); 1080 stats_reset(&mq->hotspot_stats); 1081 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; 1082 } 1083 } 1084 1085 static void end_cache_period(struct smq_policy *mq) 1086 { 1087 if (time_after(jiffies, mq->next_cache_period)) { 1088 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1089 1090 q_redistribute(&mq->dirty); 1091 q_redistribute(&mq->clean); 1092 stats_reset(&mq->cache_stats); 1093 1094 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; 1095 } 1096 } 1097 1098 static int demote_cblock(struct smq_policy *mq, 1099 struct policy_locker *locker, 1100 dm_oblock_t *oblock) 1101 { 1102 struct entry *demoted = q_peek(&mq->clean, mq->clean.nr_levels, false); 1103 if (!demoted) 1104 /* 1105 * We could get a block from mq->dirty, but that 1106 * would add extra latency to the triggering bio as it 1107 * waits for the writeback. Better to not promote this 1108 * time and hope there's a clean block next time this block 1109 * is hit. 1110 */ 1111 return -ENOSPC; 1112 1113 if (locker->fn(locker, demoted->oblock)) 1114 /* 1115 * We couldn't lock this block. 1116 */ 1117 return -EBUSY; 1118 1119 del(mq, demoted); 1120 *oblock = demoted->oblock; 1121 free_entry(&mq->cache_alloc, demoted); 1122 1123 return 0; 1124 } 1125 1126 enum promote_result { 1127 PROMOTE_NOT, 1128 PROMOTE_TEMPORARY, 1129 PROMOTE_PERMANENT 1130 }; 1131 1132 /* 1133 * Converts a boolean into a promote result. 1134 */ 1135 static enum promote_result maybe_promote(bool promote) 1136 { 1137 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; 1138 } 1139 1140 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, struct bio *bio, 1141 bool fast_promote) 1142 { 1143 if (bio_data_dir(bio) == WRITE) { 1144 if (!allocator_empty(&mq->cache_alloc) && fast_promote) 1145 return PROMOTE_TEMPORARY; 1146 1147 else 1148 return maybe_promote(hs_e->level >= mq->write_promote_level); 1149 } else 1150 return maybe_promote(hs_e->level >= mq->read_promote_level); 1151 } 1152 1153 static void insert_in_cache(struct smq_policy *mq, dm_oblock_t oblock, 1154 struct policy_locker *locker, 1155 struct policy_result *result, enum promote_result pr) 1156 { 1157 int r; 1158 struct entry *e; 1159 1160 if (allocator_empty(&mq->cache_alloc)) { 1161 result->op = POLICY_REPLACE; 1162 r = demote_cblock(mq, locker, &result->old_oblock); 1163 if (r) { 1164 result->op = POLICY_MISS; 1165 return; 1166 } 1167 1168 } else 1169 result->op = POLICY_NEW; 1170 1171 e = alloc_entry(&mq->cache_alloc); 1172 BUG_ON(!e); 1173 e->oblock = oblock; 1174 1175 if (pr == PROMOTE_TEMPORARY) 1176 push(mq, e); 1177 else 1178 push_new(mq, e); 1179 1180 result->cblock = infer_cblock(mq, e); 1181 } 1182 1183 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) 1184 { 1185 sector_t r = from_oblock(b); 1186 (void) sector_div(r, mq->cache_blocks_per_hotspot_block); 1187 return to_oblock(r); 1188 } 1189 1190 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b, struct bio *bio) 1191 { 1192 unsigned hi; 1193 dm_oblock_t hb = to_hblock(mq, b); 1194 struct entry *e = h_lookup(&mq->hotspot_table, hb); 1195 1196 if (e) { 1197 stats_level_accessed(&mq->hotspot_stats, e->level); 1198 1199 hi = get_index(&mq->hotspot_alloc, e); 1200 q_requeue(&mq->hotspot, e, 1201 test_and_set_bit(hi, mq->hotspot_hit_bits) ? 1202 0u : mq->hotspot_level_jump); 1203 1204 } else { 1205 stats_miss(&mq->hotspot_stats); 1206 1207 e = alloc_entry(&mq->hotspot_alloc); 1208 if (!e) { 1209 e = q_pop(&mq->hotspot); 1210 if (e) { 1211 h_remove(&mq->hotspot_table, e); 1212 hi = get_index(&mq->hotspot_alloc, e); 1213 clear_bit(hi, mq->hotspot_hit_bits); 1214 } 1215 1216 } 1217 1218 if (e) { 1219 e->oblock = hb; 1220 q_push(&mq->hotspot, e); 1221 h_insert(&mq->hotspot_table, e); 1222 } 1223 } 1224 1225 return e; 1226 } 1227 1228 /* 1229 * Looks the oblock up in the hash table, then decides whether to put in 1230 * pre_cache, or cache etc. 1231 */ 1232 static int map(struct smq_policy *mq, struct bio *bio, dm_oblock_t oblock, 1233 bool can_migrate, bool fast_promote, 1234 struct policy_locker *locker, struct policy_result *result) 1235 { 1236 struct entry *e, *hs_e; 1237 enum promote_result pr; 1238 1239 hs_e = update_hotspot_queue(mq, oblock, bio); 1240 1241 e = h_lookup(&mq->table, oblock); 1242 if (e) { 1243 stats_level_accessed(&mq->cache_stats, e->level); 1244 1245 requeue(mq, e); 1246 result->op = POLICY_HIT; 1247 result->cblock = infer_cblock(mq, e); 1248 1249 } else { 1250 stats_miss(&mq->cache_stats); 1251 1252 pr = should_promote(mq, hs_e, bio, fast_promote); 1253 if (pr == PROMOTE_NOT) 1254 result->op = POLICY_MISS; 1255 1256 else { 1257 if (!can_migrate) { 1258 result->op = POLICY_MISS; 1259 return -EWOULDBLOCK; 1260 } 1261 1262 insert_in_cache(mq, oblock, locker, result, pr); 1263 } 1264 } 1265 1266 return 0; 1267 } 1268 1269 /*----------------------------------------------------------------*/ 1270 1271 /* 1272 * Public interface, via the policy struct. See dm-cache-policy.h for a 1273 * description of these. 1274 */ 1275 1276 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) 1277 { 1278 return container_of(p, struct smq_policy, policy); 1279 } 1280 1281 static void smq_destroy(struct dm_cache_policy *p) 1282 { 1283 struct smq_policy *mq = to_smq_policy(p); 1284 1285 h_exit(&mq->hotspot_table); 1286 h_exit(&mq->table); 1287 free_bitset(mq->hotspot_hit_bits); 1288 free_bitset(mq->cache_hit_bits); 1289 space_exit(&mq->es); 1290 kfree(mq); 1291 } 1292 1293 static int smq_map(struct dm_cache_policy *p, dm_oblock_t oblock, 1294 bool can_block, bool can_migrate, bool fast_promote, 1295 struct bio *bio, struct policy_locker *locker, 1296 struct policy_result *result) 1297 { 1298 int r; 1299 unsigned long flags; 1300 struct smq_policy *mq = to_smq_policy(p); 1301 1302 result->op = POLICY_MISS; 1303 1304 spin_lock_irqsave(&mq->lock, flags); 1305 r = map(mq, bio, oblock, can_migrate, fast_promote, locker, result); 1306 spin_unlock_irqrestore(&mq->lock, flags); 1307 1308 return r; 1309 } 1310 1311 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock) 1312 { 1313 int r; 1314 unsigned long flags; 1315 struct smq_policy *mq = to_smq_policy(p); 1316 struct entry *e; 1317 1318 spin_lock_irqsave(&mq->lock, flags); 1319 e = h_lookup(&mq->table, oblock); 1320 if (e) { 1321 *cblock = infer_cblock(mq, e); 1322 r = 0; 1323 } else 1324 r = -ENOENT; 1325 spin_unlock_irqrestore(&mq->lock, flags); 1326 1327 return r; 1328 } 1329 1330 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_oblock_t oblock, bool set) 1331 { 1332 struct entry *e; 1333 1334 e = h_lookup(&mq->table, oblock); 1335 BUG_ON(!e); 1336 1337 del(mq, e); 1338 e->dirty = set; 1339 push(mq, e); 1340 } 1341 1342 static void smq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) 1343 { 1344 unsigned long flags; 1345 struct smq_policy *mq = to_smq_policy(p); 1346 1347 spin_lock_irqsave(&mq->lock, flags); 1348 __smq_set_clear_dirty(mq, oblock, true); 1349 spin_unlock_irqrestore(&mq->lock, flags); 1350 } 1351 1352 static void smq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock) 1353 { 1354 struct smq_policy *mq = to_smq_policy(p); 1355 unsigned long flags; 1356 1357 spin_lock_irqsave(&mq->lock, flags); 1358 __smq_set_clear_dirty(mq, oblock, false); 1359 spin_unlock_irqrestore(&mq->lock, flags); 1360 } 1361 1362 static int smq_load_mapping(struct dm_cache_policy *p, 1363 dm_oblock_t oblock, dm_cblock_t cblock, 1364 uint32_t hint, bool hint_valid) 1365 { 1366 struct smq_policy *mq = to_smq_policy(p); 1367 struct entry *e; 1368 1369 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); 1370 e->oblock = oblock; 1371 e->dirty = false; /* this gets corrected in a minute */ 1372 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : 1; 1373 push(mq, e); 1374 1375 return 0; 1376 } 1377 1378 static int smq_save_hints(struct smq_policy *mq, struct queue *q, 1379 policy_walk_fn fn, void *context) 1380 { 1381 int r; 1382 unsigned level; 1383 struct entry *e; 1384 1385 for (level = 0; level < q->nr_levels; level++) 1386 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { 1387 if (!e->sentinel) { 1388 r = fn(context, infer_cblock(mq, e), 1389 e->oblock, e->level); 1390 if (r) 1391 return r; 1392 } 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int smq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn, 1399 void *context) 1400 { 1401 struct smq_policy *mq = to_smq_policy(p); 1402 int r = 0; 1403 1404 /* 1405 * We don't need to lock here since this method is only called once 1406 * the IO has stopped. 1407 */ 1408 r = smq_save_hints(mq, &mq->clean, fn, context); 1409 if (!r) 1410 r = smq_save_hints(mq, &mq->dirty, fn, context); 1411 1412 return r; 1413 } 1414 1415 static void __remove_mapping(struct smq_policy *mq, dm_oblock_t oblock) 1416 { 1417 struct entry *e; 1418 1419 e = h_lookup(&mq->table, oblock); 1420 BUG_ON(!e); 1421 1422 del(mq, e); 1423 free_entry(&mq->cache_alloc, e); 1424 } 1425 1426 static void smq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock) 1427 { 1428 struct smq_policy *mq = to_smq_policy(p); 1429 unsigned long flags; 1430 1431 spin_lock_irqsave(&mq->lock, flags); 1432 __remove_mapping(mq, oblock); 1433 spin_unlock_irqrestore(&mq->lock, flags); 1434 } 1435 1436 static int __remove_cblock(struct smq_policy *mq, dm_cblock_t cblock) 1437 { 1438 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1439 1440 if (!e || !e->allocated) 1441 return -ENODATA; 1442 1443 del(mq, e); 1444 free_entry(&mq->cache_alloc, e); 1445 1446 return 0; 1447 } 1448 1449 static int smq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock) 1450 { 1451 int r; 1452 unsigned long flags; 1453 struct smq_policy *mq = to_smq_policy(p); 1454 1455 spin_lock_irqsave(&mq->lock, flags); 1456 r = __remove_cblock(mq, cblock); 1457 spin_unlock_irqrestore(&mq->lock, flags); 1458 1459 return r; 1460 } 1461 1462 1463 #define CLEAN_TARGET_CRITICAL 5u /* percent */ 1464 1465 static bool clean_target_met(struct smq_policy *mq, bool critical) 1466 { 1467 if (critical) { 1468 /* 1469 * Cache entries may not be populated. So we're cannot rely on the 1470 * size of the clean queue. 1471 */ 1472 unsigned nr_clean = from_cblock(mq->cache_size) - q_size(&mq->dirty); 1473 unsigned target = from_cblock(mq->cache_size) * CLEAN_TARGET_CRITICAL / 100u; 1474 1475 return nr_clean >= target; 1476 } else 1477 return !q_size(&mq->dirty); 1478 } 1479 1480 static int __smq_writeback_work(struct smq_policy *mq, dm_oblock_t *oblock, 1481 dm_cblock_t *cblock, bool critical_only) 1482 { 1483 struct entry *e = NULL; 1484 bool target_met = clean_target_met(mq, critical_only); 1485 1486 if (critical_only) 1487 /* 1488 * Always try and keep the bottom level clean. 1489 */ 1490 e = pop_old(mq, &mq->dirty, target_met ? 1u : mq->dirty.nr_levels); 1491 1492 else 1493 e = pop_old(mq, &mq->dirty, mq->dirty.nr_levels); 1494 1495 if (!e) 1496 return -ENODATA; 1497 1498 *oblock = e->oblock; 1499 *cblock = infer_cblock(mq, e); 1500 e->dirty = false; 1501 push_new(mq, e); 1502 1503 return 0; 1504 } 1505 1506 static int smq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock, 1507 dm_cblock_t *cblock, bool critical_only) 1508 { 1509 int r; 1510 unsigned long flags; 1511 struct smq_policy *mq = to_smq_policy(p); 1512 1513 spin_lock_irqsave(&mq->lock, flags); 1514 r = __smq_writeback_work(mq, oblock, cblock, critical_only); 1515 spin_unlock_irqrestore(&mq->lock, flags); 1516 1517 return r; 1518 } 1519 1520 static void __force_mapping(struct smq_policy *mq, 1521 dm_oblock_t current_oblock, dm_oblock_t new_oblock) 1522 { 1523 struct entry *e = h_lookup(&mq->table, current_oblock); 1524 1525 if (e) { 1526 del(mq, e); 1527 e->oblock = new_oblock; 1528 e->dirty = true; 1529 push(mq, e); 1530 } 1531 } 1532 1533 static void smq_force_mapping(struct dm_cache_policy *p, 1534 dm_oblock_t current_oblock, dm_oblock_t new_oblock) 1535 { 1536 unsigned long flags; 1537 struct smq_policy *mq = to_smq_policy(p); 1538 1539 spin_lock_irqsave(&mq->lock, flags); 1540 __force_mapping(mq, current_oblock, new_oblock); 1541 spin_unlock_irqrestore(&mq->lock, flags); 1542 } 1543 1544 static dm_cblock_t smq_residency(struct dm_cache_policy *p) 1545 { 1546 dm_cblock_t r; 1547 unsigned long flags; 1548 struct smq_policy *mq = to_smq_policy(p); 1549 1550 spin_lock_irqsave(&mq->lock, flags); 1551 r = to_cblock(mq->cache_alloc.nr_allocated); 1552 spin_unlock_irqrestore(&mq->lock, flags); 1553 1554 return r; 1555 } 1556 1557 static void smq_tick(struct dm_cache_policy *p, bool can_block) 1558 { 1559 struct smq_policy *mq = to_smq_policy(p); 1560 unsigned long flags; 1561 1562 spin_lock_irqsave(&mq->lock, flags); 1563 mq->tick++; 1564 update_sentinels(mq); 1565 end_hotspot_period(mq); 1566 end_cache_period(mq); 1567 spin_unlock_irqrestore(&mq->lock, flags); 1568 } 1569 1570 /* Init the policy plugin interface function pointers. */ 1571 static void init_policy_functions(struct smq_policy *mq) 1572 { 1573 mq->policy.destroy = smq_destroy; 1574 mq->policy.map = smq_map; 1575 mq->policy.lookup = smq_lookup; 1576 mq->policy.set_dirty = smq_set_dirty; 1577 mq->policy.clear_dirty = smq_clear_dirty; 1578 mq->policy.load_mapping = smq_load_mapping; 1579 mq->policy.walk_mappings = smq_walk_mappings; 1580 mq->policy.remove_mapping = smq_remove_mapping; 1581 mq->policy.remove_cblock = smq_remove_cblock; 1582 mq->policy.writeback_work = smq_writeback_work; 1583 mq->policy.force_mapping = smq_force_mapping; 1584 mq->policy.residency = smq_residency; 1585 mq->policy.tick = smq_tick; 1586 } 1587 1588 static bool too_many_hotspot_blocks(sector_t origin_size, 1589 sector_t hotspot_block_size, 1590 unsigned nr_hotspot_blocks) 1591 { 1592 return (hotspot_block_size * nr_hotspot_blocks) > origin_size; 1593 } 1594 1595 static void calc_hotspot_params(sector_t origin_size, 1596 sector_t cache_block_size, 1597 unsigned nr_cache_blocks, 1598 sector_t *hotspot_block_size, 1599 unsigned *nr_hotspot_blocks) 1600 { 1601 *hotspot_block_size = cache_block_size * 16u; 1602 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); 1603 1604 while ((*hotspot_block_size > cache_block_size) && 1605 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) 1606 *hotspot_block_size /= 2u; 1607 } 1608 1609 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, 1610 sector_t origin_size, 1611 sector_t cache_block_size) 1612 { 1613 unsigned i; 1614 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; 1615 unsigned total_sentinels = 2u * nr_sentinels_per_queue; 1616 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); 1617 1618 if (!mq) 1619 return NULL; 1620 1621 init_policy_functions(mq); 1622 mq->cache_size = cache_size; 1623 mq->cache_block_size = cache_block_size; 1624 1625 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), 1626 &mq->hotspot_block_size, &mq->nr_hotspot_blocks); 1627 1628 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); 1629 mq->hotspot_level_jump = 1u; 1630 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { 1631 DMERR("couldn't initialize entry space"); 1632 goto bad_pool_init; 1633 } 1634 1635 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); 1636 for (i = 0; i < nr_sentinels_per_queue; i++) 1637 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; 1638 1639 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); 1640 for (i = 0; i < nr_sentinels_per_queue; i++) 1641 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; 1642 1643 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, 1644 total_sentinels + mq->nr_hotspot_blocks); 1645 1646 init_allocator(&mq->cache_alloc, &mq->es, 1647 total_sentinels + mq->nr_hotspot_blocks, 1648 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); 1649 1650 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); 1651 if (!mq->hotspot_hit_bits) { 1652 DMERR("couldn't allocate hotspot hit bitset"); 1653 goto bad_hotspot_hit_bits; 1654 } 1655 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1656 1657 if (from_cblock(cache_size)) { 1658 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); 1659 if (!mq->cache_hit_bits) { 1660 DMERR("couldn't allocate cache hit bitset"); 1661 goto bad_cache_hit_bits; 1662 } 1663 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1664 } else 1665 mq->cache_hit_bits = NULL; 1666 1667 mq->tick = 0; 1668 spin_lock_init(&mq->lock); 1669 1670 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); 1671 mq->hotspot.nr_top_levels = 8; 1672 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, 1673 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); 1674 1675 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); 1676 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); 1677 1678 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); 1679 stats_init(&mq->cache_stats, NR_CACHE_LEVELS); 1680 1681 if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) 1682 goto bad_alloc_table; 1683 1684 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) 1685 goto bad_alloc_hotspot_table; 1686 1687 sentinels_init(mq); 1688 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; 1689 1690 mq->next_hotspot_period = jiffies; 1691 mq->next_cache_period = jiffies; 1692 1693 return &mq->policy; 1694 1695 bad_alloc_hotspot_table: 1696 h_exit(&mq->table); 1697 bad_alloc_table: 1698 free_bitset(mq->cache_hit_bits); 1699 bad_cache_hit_bits: 1700 free_bitset(mq->hotspot_hit_bits); 1701 bad_hotspot_hit_bits: 1702 space_exit(&mq->es); 1703 bad_pool_init: 1704 kfree(mq); 1705 1706 return NULL; 1707 } 1708 1709 /*----------------------------------------------------------------*/ 1710 1711 static struct dm_cache_policy_type smq_policy_type = { 1712 .name = "smq", 1713 .version = {1, 0, 0}, 1714 .hint_size = 4, 1715 .owner = THIS_MODULE, 1716 .create = smq_create 1717 }; 1718 1719 static struct dm_cache_policy_type default_policy_type = { 1720 .name = "default", 1721 .version = {1, 4, 0}, 1722 .hint_size = 4, 1723 .owner = THIS_MODULE, 1724 .create = smq_create, 1725 .real = &smq_policy_type 1726 }; 1727 1728 static int __init smq_init(void) 1729 { 1730 int r; 1731 1732 r = dm_cache_policy_register(&smq_policy_type); 1733 if (r) { 1734 DMERR("register failed %d", r); 1735 return -ENOMEM; 1736 } 1737 1738 r = dm_cache_policy_register(&default_policy_type); 1739 if (r) { 1740 DMERR("register failed (as default) %d", r); 1741 dm_cache_policy_unregister(&smq_policy_type); 1742 return -ENOMEM; 1743 } 1744 1745 return 0; 1746 } 1747 1748 static void __exit smq_exit(void) 1749 { 1750 dm_cache_policy_unregister(&smq_policy_type); 1751 dm_cache_policy_unregister(&default_policy_type); 1752 } 1753 1754 module_init(smq_init); 1755 module_exit(smq_exit); 1756 1757 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1758 MODULE_LICENSE("GPL"); 1759 MODULE_DESCRIPTION("smq cache policy"); 1760 1761 MODULE_ALIAS("dm-cache-default"); 1762