1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Red Hat. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-cache-background-tracker.h" 9 #include "dm-cache-policy-internal.h" 10 #include "dm-cache-policy.h" 11 #include "dm.h" 12 13 #include <linux/hash.h> 14 #include <linux/jiffies.h> 15 #include <linux/module.h> 16 #include <linux/mutex.h> 17 #include <linux/vmalloc.h> 18 #include <linux/math64.h> 19 20 #define DM_MSG_PREFIX "cache-policy-smq" 21 22 /*----------------------------------------------------------------*/ 23 24 /* 25 * Safe division functions that return zero on divide by zero. 26 */ 27 static unsigned int safe_div(unsigned int n, unsigned int d) 28 { 29 return d ? n / d : 0u; 30 } 31 32 static unsigned int safe_mod(unsigned int n, unsigned int d) 33 { 34 return d ? n % d : 0u; 35 } 36 37 /*----------------------------------------------------------------*/ 38 39 struct entry { 40 unsigned int hash_next:28; 41 unsigned int prev:28; 42 unsigned int next:28; 43 unsigned int level:6; 44 bool dirty:1; 45 bool allocated:1; 46 bool sentinel:1; 47 bool pending_work:1; 48 49 dm_oblock_t oblock; 50 }; 51 52 /*----------------------------------------------------------------*/ 53 54 #define INDEXER_NULL ((1u << 28u) - 1u) 55 56 /* 57 * An entry_space manages a set of entries that we use for the queues. 58 * The clean and dirty queues share entries, so this object is separate 59 * from the queue itself. 60 */ 61 struct entry_space { 62 struct entry *begin; 63 struct entry *end; 64 }; 65 66 static int space_init(struct entry_space *es, unsigned int nr_entries) 67 { 68 if (!nr_entries) { 69 es->begin = es->end = NULL; 70 return 0; 71 } 72 73 es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry))); 74 if (!es->begin) 75 return -ENOMEM; 76 77 es->end = es->begin + nr_entries; 78 return 0; 79 } 80 81 static void space_exit(struct entry_space *es) 82 { 83 vfree(es->begin); 84 } 85 86 static struct entry *__get_entry(struct entry_space *es, unsigned int block) 87 { 88 struct entry *e; 89 90 e = es->begin + block; 91 BUG_ON(e >= es->end); 92 93 return e; 94 } 95 96 static unsigned int to_index(struct entry_space *es, struct entry *e) 97 { 98 BUG_ON(e < es->begin || e >= es->end); 99 return e - es->begin; 100 } 101 102 static struct entry *to_entry(struct entry_space *es, unsigned int block) 103 { 104 if (block == INDEXER_NULL) 105 return NULL; 106 107 return __get_entry(es, block); 108 } 109 110 /*----------------------------------------------------------------*/ 111 112 struct ilist { 113 unsigned int nr_elts; /* excluding sentinel entries */ 114 unsigned int head, tail; 115 }; 116 117 static void l_init(struct ilist *l) 118 { 119 l->nr_elts = 0; 120 l->head = l->tail = INDEXER_NULL; 121 } 122 123 static struct entry *l_head(struct entry_space *es, struct ilist *l) 124 { 125 return to_entry(es, l->head); 126 } 127 128 static struct entry *l_tail(struct entry_space *es, struct ilist *l) 129 { 130 return to_entry(es, l->tail); 131 } 132 133 static struct entry *l_next(struct entry_space *es, struct entry *e) 134 { 135 return to_entry(es, e->next); 136 } 137 138 static struct entry *l_prev(struct entry_space *es, struct entry *e) 139 { 140 return to_entry(es, e->prev); 141 } 142 143 static bool l_empty(struct ilist *l) 144 { 145 return l->head == INDEXER_NULL; 146 } 147 148 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) 149 { 150 struct entry *head = l_head(es, l); 151 152 e->next = l->head; 153 e->prev = INDEXER_NULL; 154 155 if (head) 156 head->prev = l->head = to_index(es, e); 157 else 158 l->head = l->tail = to_index(es, e); 159 160 if (!e->sentinel) 161 l->nr_elts++; 162 } 163 164 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) 165 { 166 struct entry *tail = l_tail(es, l); 167 168 e->next = INDEXER_NULL; 169 e->prev = l->tail; 170 171 if (tail) 172 tail->next = l->tail = to_index(es, e); 173 else 174 l->head = l->tail = to_index(es, e); 175 176 if (!e->sentinel) 177 l->nr_elts++; 178 } 179 180 static void l_add_before(struct entry_space *es, struct ilist *l, 181 struct entry *old, struct entry *e) 182 { 183 struct entry *prev = l_prev(es, old); 184 185 if (!prev) 186 l_add_head(es, l, e); 187 188 else { 189 e->prev = old->prev; 190 e->next = to_index(es, old); 191 prev->next = old->prev = to_index(es, e); 192 193 if (!e->sentinel) 194 l->nr_elts++; 195 } 196 } 197 198 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) 199 { 200 struct entry *prev = l_prev(es, e); 201 struct entry *next = l_next(es, e); 202 203 if (prev) 204 prev->next = e->next; 205 else 206 l->head = e->next; 207 208 if (next) 209 next->prev = e->prev; 210 else 211 l->tail = e->prev; 212 213 if (!e->sentinel) 214 l->nr_elts--; 215 } 216 217 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l) 218 { 219 struct entry *e; 220 221 for (e = l_head(es, l); e; e = l_next(es, e)) 222 if (!e->sentinel) { 223 l_del(es, l, e); 224 return e; 225 } 226 227 return NULL; 228 } 229 230 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) 231 { 232 struct entry *e; 233 234 for (e = l_tail(es, l); e; e = l_prev(es, e)) 235 if (!e->sentinel) { 236 l_del(es, l, e); 237 return e; 238 } 239 240 return NULL; 241 } 242 243 /*----------------------------------------------------------------*/ 244 245 /* 246 * The stochastic-multi-queue is a set of lru lists stacked into levels. 247 * Entries are moved up levels when they are used, which loosely orders the 248 * most accessed entries in the top levels and least in the bottom. This 249 * structure is *much* better than a single lru list. 250 */ 251 #define MAX_LEVELS 64u 252 253 struct queue { 254 struct entry_space *es; 255 256 unsigned int nr_elts; 257 unsigned int nr_levels; 258 struct ilist qs[MAX_LEVELS]; 259 260 /* 261 * We maintain a count of the number of entries we would like in each 262 * level. 263 */ 264 unsigned int last_target_nr_elts; 265 unsigned int nr_top_levels; 266 unsigned int nr_in_top_levels; 267 unsigned int target_count[MAX_LEVELS]; 268 }; 269 270 static void q_init(struct queue *q, struct entry_space *es, unsigned int nr_levels) 271 { 272 unsigned int i; 273 274 q->es = es; 275 q->nr_elts = 0; 276 q->nr_levels = nr_levels; 277 278 for (i = 0; i < q->nr_levels; i++) { 279 l_init(q->qs + i); 280 q->target_count[i] = 0u; 281 } 282 283 q->last_target_nr_elts = 0u; 284 q->nr_top_levels = 0u; 285 q->nr_in_top_levels = 0u; 286 } 287 288 static unsigned int q_size(struct queue *q) 289 { 290 return q->nr_elts; 291 } 292 293 /* 294 * Insert an entry to the back of the given level. 295 */ 296 static void q_push(struct queue *q, struct entry *e) 297 { 298 BUG_ON(e->pending_work); 299 300 if (!e->sentinel) 301 q->nr_elts++; 302 303 l_add_tail(q->es, q->qs + e->level, e); 304 } 305 306 static void q_push_front(struct queue *q, struct entry *e) 307 { 308 BUG_ON(e->pending_work); 309 310 if (!e->sentinel) 311 q->nr_elts++; 312 313 l_add_head(q->es, q->qs + e->level, e); 314 } 315 316 static void q_push_before(struct queue *q, struct entry *old, struct entry *e) 317 { 318 BUG_ON(e->pending_work); 319 320 if (!e->sentinel) 321 q->nr_elts++; 322 323 l_add_before(q->es, q->qs + e->level, old, e); 324 } 325 326 static void q_del(struct queue *q, struct entry *e) 327 { 328 l_del(q->es, q->qs + e->level, e); 329 if (!e->sentinel) 330 q->nr_elts--; 331 } 332 333 /* 334 * Return the oldest entry of the lowest populated level. 335 */ 336 static struct entry *q_peek(struct queue *q, unsigned int max_level, bool can_cross_sentinel) 337 { 338 unsigned int level; 339 struct entry *e; 340 341 max_level = min(max_level, q->nr_levels); 342 343 for (level = 0; level < max_level; level++) 344 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { 345 if (e->sentinel) { 346 if (can_cross_sentinel) 347 continue; 348 else 349 break; 350 } 351 352 return e; 353 } 354 355 return NULL; 356 } 357 358 static struct entry *q_pop(struct queue *q) 359 { 360 struct entry *e = q_peek(q, q->nr_levels, true); 361 362 if (e) 363 q_del(q, e); 364 365 return e; 366 } 367 368 /* 369 * This function assumes there is a non-sentinel entry to pop. It's only 370 * used by redistribute, so we know this is true. It also doesn't adjust 371 * the q->nr_elts count. 372 */ 373 static struct entry *__redist_pop_from(struct queue *q, unsigned int level) 374 { 375 struct entry *e; 376 377 for (; level < q->nr_levels; level++) 378 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) 379 if (!e->sentinel) { 380 l_del(q->es, q->qs + e->level, e); 381 return e; 382 } 383 384 return NULL; 385 } 386 387 static void q_set_targets_subrange_(struct queue *q, unsigned int nr_elts, 388 unsigned int lbegin, unsigned int lend) 389 { 390 unsigned int level, nr_levels, entries_per_level, remainder; 391 392 BUG_ON(lbegin > lend); 393 BUG_ON(lend > q->nr_levels); 394 nr_levels = lend - lbegin; 395 entries_per_level = safe_div(nr_elts, nr_levels); 396 remainder = safe_mod(nr_elts, nr_levels); 397 398 for (level = lbegin; level < lend; level++) 399 q->target_count[level] = 400 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; 401 } 402 403 /* 404 * Typically we have fewer elements in the top few levels which allows us 405 * to adjust the promote threshold nicely. 406 */ 407 static void q_set_targets(struct queue *q) 408 { 409 if (q->last_target_nr_elts == q->nr_elts) 410 return; 411 412 q->last_target_nr_elts = q->nr_elts; 413 414 if (q->nr_top_levels > q->nr_levels) 415 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); 416 417 else { 418 q_set_targets_subrange_(q, q->nr_in_top_levels, 419 q->nr_levels - q->nr_top_levels, q->nr_levels); 420 421 if (q->nr_in_top_levels < q->nr_elts) 422 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, 423 0, q->nr_levels - q->nr_top_levels); 424 else 425 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); 426 } 427 } 428 429 static void q_redistribute(struct queue *q) 430 { 431 unsigned int target, level; 432 struct ilist *l, *l_above; 433 struct entry *e; 434 435 q_set_targets(q); 436 437 for (level = 0u; level < q->nr_levels - 1u; level++) { 438 l = q->qs + level; 439 target = q->target_count[level]; 440 441 /* 442 * Pull down some entries from the level above. 443 */ 444 while (l->nr_elts < target) { 445 e = __redist_pop_from(q, level + 1u); 446 if (!e) { 447 /* bug in nr_elts */ 448 break; 449 } 450 451 e->level = level; 452 l_add_tail(q->es, l, e); 453 } 454 455 /* 456 * Push some entries up. 457 */ 458 l_above = q->qs + level + 1u; 459 while (l->nr_elts > target) { 460 e = l_pop_tail(q->es, l); 461 462 if (!e) 463 /* bug in nr_elts */ 464 break; 465 466 e->level = level + 1u; 467 l_add_tail(q->es, l_above, e); 468 } 469 } 470 } 471 472 static void q_requeue(struct queue *q, struct entry *e, unsigned int extra_levels, 473 struct entry *s1, struct entry *s2) 474 { 475 struct entry *de; 476 unsigned int sentinels_passed = 0; 477 unsigned int new_level = min(q->nr_levels - 1u, e->level + extra_levels); 478 479 /* try and find an entry to swap with */ 480 if (extra_levels && (e->level < q->nr_levels - 1u)) { 481 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de)) 482 sentinels_passed++; 483 484 if (de) { 485 q_del(q, de); 486 de->level = e->level; 487 if (s1) { 488 switch (sentinels_passed) { 489 case 0: 490 q_push_before(q, s1, de); 491 break; 492 493 case 1: 494 q_push_before(q, s2, de); 495 break; 496 497 default: 498 q_push(q, de); 499 } 500 } else 501 q_push(q, de); 502 } 503 } 504 505 q_del(q, e); 506 e->level = new_level; 507 q_push(q, e); 508 } 509 510 /*----------------------------------------------------------------*/ 511 512 #define FP_SHIFT 8 513 #define SIXTEENTH (1u << (FP_SHIFT - 4u)) 514 #define EIGHTH (1u << (FP_SHIFT - 3u)) 515 516 struct stats { 517 unsigned int hit_threshold; 518 unsigned int hits; 519 unsigned int misses; 520 }; 521 522 enum performance { 523 Q_POOR, 524 Q_FAIR, 525 Q_WELL 526 }; 527 528 static void stats_init(struct stats *s, unsigned int nr_levels) 529 { 530 s->hit_threshold = (nr_levels * 3u) / 4u; 531 s->hits = 0u; 532 s->misses = 0u; 533 } 534 535 static void stats_reset(struct stats *s) 536 { 537 s->hits = s->misses = 0u; 538 } 539 540 static void stats_level_accessed(struct stats *s, unsigned int level) 541 { 542 if (level >= s->hit_threshold) 543 s->hits++; 544 else 545 s->misses++; 546 } 547 548 static void stats_miss(struct stats *s) 549 { 550 s->misses++; 551 } 552 553 /* 554 * There are times when we don't have any confidence in the hotspot queue. 555 * Such as when a fresh cache is created and the blocks have been spread 556 * out across the levels, or if an io load changes. We detect this by 557 * seeing how often a lookup is in the top levels of the hotspot queue. 558 */ 559 static enum performance stats_assess(struct stats *s) 560 { 561 unsigned int confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); 562 563 if (confidence < SIXTEENTH) 564 return Q_POOR; 565 566 else if (confidence < EIGHTH) 567 return Q_FAIR; 568 569 else 570 return Q_WELL; 571 } 572 573 /*----------------------------------------------------------------*/ 574 575 struct smq_hash_table { 576 struct entry_space *es; 577 unsigned long long hash_bits; 578 unsigned int *buckets; 579 }; 580 581 /* 582 * All cache entries are stored in a chained hash table. To save space we 583 * use indexing again, and only store indexes to the next entry. 584 */ 585 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned int nr_entries) 586 { 587 unsigned int i, nr_buckets; 588 589 ht->es = es; 590 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); 591 ht->hash_bits = __ffs(nr_buckets); 592 593 ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets))); 594 if (!ht->buckets) 595 return -ENOMEM; 596 597 for (i = 0; i < nr_buckets; i++) 598 ht->buckets[i] = INDEXER_NULL; 599 600 return 0; 601 } 602 603 static void h_exit(struct smq_hash_table *ht) 604 { 605 vfree(ht->buckets); 606 } 607 608 static struct entry *h_head(struct smq_hash_table *ht, unsigned int bucket) 609 { 610 return to_entry(ht->es, ht->buckets[bucket]); 611 } 612 613 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e) 614 { 615 return to_entry(ht->es, e->hash_next); 616 } 617 618 static void __h_insert(struct smq_hash_table *ht, unsigned int bucket, struct entry *e) 619 { 620 e->hash_next = ht->buckets[bucket]; 621 ht->buckets[bucket] = to_index(ht->es, e); 622 } 623 624 static void h_insert(struct smq_hash_table *ht, struct entry *e) 625 { 626 unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits); 627 628 __h_insert(ht, h, e); 629 } 630 631 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned int h, dm_oblock_t oblock, 632 struct entry **prev) 633 { 634 struct entry *e; 635 636 *prev = NULL; 637 for (e = h_head(ht, h); e; e = h_next(ht, e)) { 638 if (e->oblock == oblock) 639 return e; 640 641 *prev = e; 642 } 643 644 return NULL; 645 } 646 647 static void __h_unlink(struct smq_hash_table *ht, unsigned int h, 648 struct entry *e, struct entry *prev) 649 { 650 if (prev) 651 prev->hash_next = e->hash_next; 652 else 653 ht->buckets[h] = e->hash_next; 654 } 655 656 /* 657 * Also moves each entry to the front of the bucket. 658 */ 659 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock) 660 { 661 struct entry *e, *prev; 662 unsigned int h = hash_64(from_oblock(oblock), ht->hash_bits); 663 664 e = __h_lookup(ht, h, oblock, &prev); 665 if (e && prev) { 666 /* 667 * Move to the front because this entry is likely 668 * to be hit again. 669 */ 670 __h_unlink(ht, h, e, prev); 671 __h_insert(ht, h, e); 672 } 673 674 return e; 675 } 676 677 static void h_remove(struct smq_hash_table *ht, struct entry *e) 678 { 679 unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits); 680 struct entry *prev; 681 682 /* 683 * The down side of using a singly linked list is we have to 684 * iterate the bucket to remove an item. 685 */ 686 e = __h_lookup(ht, h, e->oblock, &prev); 687 if (e) 688 __h_unlink(ht, h, e, prev); 689 } 690 691 /*----------------------------------------------------------------*/ 692 693 struct entry_alloc { 694 struct entry_space *es; 695 unsigned int begin; 696 697 unsigned int nr_allocated; 698 struct ilist free; 699 }; 700 701 static void init_allocator(struct entry_alloc *ea, struct entry_space *es, 702 unsigned int begin, unsigned int end) 703 { 704 unsigned int i; 705 706 ea->es = es; 707 ea->nr_allocated = 0u; 708 ea->begin = begin; 709 710 l_init(&ea->free); 711 for (i = begin; i != end; i++) 712 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); 713 } 714 715 static void init_entry(struct entry *e) 716 { 717 /* 718 * We can't memset because that would clear the hotspot and 719 * sentinel bits which remain constant. 720 */ 721 e->hash_next = INDEXER_NULL; 722 e->next = INDEXER_NULL; 723 e->prev = INDEXER_NULL; 724 e->level = 0u; 725 e->dirty = true; /* FIXME: audit */ 726 e->allocated = true; 727 e->sentinel = false; 728 e->pending_work = false; 729 } 730 731 static struct entry *alloc_entry(struct entry_alloc *ea) 732 { 733 struct entry *e; 734 735 if (l_empty(&ea->free)) 736 return NULL; 737 738 e = l_pop_head(ea->es, &ea->free); 739 init_entry(e); 740 ea->nr_allocated++; 741 742 return e; 743 } 744 745 /* 746 * This assumes the cblock hasn't already been allocated. 747 */ 748 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned int i) 749 { 750 struct entry *e = __get_entry(ea->es, ea->begin + i); 751 752 BUG_ON(e->allocated); 753 754 l_del(ea->es, &ea->free, e); 755 init_entry(e); 756 ea->nr_allocated++; 757 758 return e; 759 } 760 761 static void free_entry(struct entry_alloc *ea, struct entry *e) 762 { 763 BUG_ON(!ea->nr_allocated); 764 BUG_ON(!e->allocated); 765 766 ea->nr_allocated--; 767 e->allocated = false; 768 l_add_tail(ea->es, &ea->free, e); 769 } 770 771 static bool allocator_empty(struct entry_alloc *ea) 772 { 773 return l_empty(&ea->free); 774 } 775 776 static unsigned int get_index(struct entry_alloc *ea, struct entry *e) 777 { 778 return to_index(ea->es, e) - ea->begin; 779 } 780 781 static struct entry *get_entry(struct entry_alloc *ea, unsigned int index) 782 { 783 return __get_entry(ea->es, ea->begin + index); 784 } 785 786 /*----------------------------------------------------------------*/ 787 788 #define NR_HOTSPOT_LEVELS 64u 789 #define NR_CACHE_LEVELS 64u 790 791 #define WRITEBACK_PERIOD (10ul * HZ) 792 #define DEMOTE_PERIOD (60ul * HZ) 793 794 #define HOTSPOT_UPDATE_PERIOD (HZ) 795 #define CACHE_UPDATE_PERIOD (60ul * HZ) 796 797 struct smq_policy { 798 struct dm_cache_policy policy; 799 800 /* protects everything */ 801 spinlock_t lock; 802 dm_cblock_t cache_size; 803 sector_t cache_block_size; 804 805 sector_t hotspot_block_size; 806 unsigned int nr_hotspot_blocks; 807 unsigned int cache_blocks_per_hotspot_block; 808 unsigned int hotspot_level_jump; 809 810 struct entry_space es; 811 struct entry_alloc writeback_sentinel_alloc; 812 struct entry_alloc demote_sentinel_alloc; 813 struct entry_alloc hotspot_alloc; 814 struct entry_alloc cache_alloc; 815 816 unsigned long *hotspot_hit_bits; 817 unsigned long *cache_hit_bits; 818 819 /* 820 * We maintain three queues of entries. The cache proper, 821 * consisting of a clean and dirty queue, containing the currently 822 * active mappings. The hotspot queue uses a larger block size to 823 * track blocks that are being hit frequently and potential 824 * candidates for promotion to the cache. 825 */ 826 struct queue hotspot; 827 struct queue clean; 828 struct queue dirty; 829 830 struct stats hotspot_stats; 831 struct stats cache_stats; 832 833 /* 834 * Keeps track of time, incremented by the core. We use this to 835 * avoid attributing multiple hits within the same tick. 836 */ 837 unsigned int tick; 838 839 /* 840 * The hash tables allows us to quickly find an entry by origin 841 * block. 842 */ 843 struct smq_hash_table table; 844 struct smq_hash_table hotspot_table; 845 846 bool current_writeback_sentinels; 847 unsigned long next_writeback_period; 848 849 bool current_demote_sentinels; 850 unsigned long next_demote_period; 851 852 unsigned int write_promote_level; 853 unsigned int read_promote_level; 854 855 unsigned long next_hotspot_period; 856 unsigned long next_cache_period; 857 858 struct background_tracker *bg_work; 859 860 bool migrations_allowed; 861 }; 862 863 /*----------------------------------------------------------------*/ 864 865 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned int level, bool which) 866 { 867 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); 868 } 869 870 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned int level) 871 { 872 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); 873 } 874 875 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned int level) 876 { 877 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); 878 } 879 880 static void __update_writeback_sentinels(struct smq_policy *mq) 881 { 882 unsigned int level; 883 struct queue *q = &mq->dirty; 884 struct entry *sentinel; 885 886 for (level = 0; level < q->nr_levels; level++) { 887 sentinel = writeback_sentinel(mq, level); 888 q_del(q, sentinel); 889 q_push(q, sentinel); 890 } 891 } 892 893 static void __update_demote_sentinels(struct smq_policy *mq) 894 { 895 unsigned int level; 896 struct queue *q = &mq->clean; 897 struct entry *sentinel; 898 899 for (level = 0; level < q->nr_levels; level++) { 900 sentinel = demote_sentinel(mq, level); 901 q_del(q, sentinel); 902 q_push(q, sentinel); 903 } 904 } 905 906 static void update_sentinels(struct smq_policy *mq) 907 { 908 if (time_after(jiffies, mq->next_writeback_period)) { 909 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 910 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 911 __update_writeback_sentinels(mq); 912 } 913 914 if (time_after(jiffies, mq->next_demote_period)) { 915 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 916 mq->current_demote_sentinels = !mq->current_demote_sentinels; 917 __update_demote_sentinels(mq); 918 } 919 } 920 921 static void __sentinels_init(struct smq_policy *mq) 922 { 923 unsigned int level; 924 struct entry *sentinel; 925 926 for (level = 0; level < NR_CACHE_LEVELS; level++) { 927 sentinel = writeback_sentinel(mq, level); 928 sentinel->level = level; 929 q_push(&mq->dirty, sentinel); 930 931 sentinel = demote_sentinel(mq, level); 932 sentinel->level = level; 933 q_push(&mq->clean, sentinel); 934 } 935 } 936 937 static void sentinels_init(struct smq_policy *mq) 938 { 939 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 940 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 941 942 mq->current_writeback_sentinels = false; 943 mq->current_demote_sentinels = false; 944 __sentinels_init(mq); 945 946 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 947 mq->current_demote_sentinels = !mq->current_demote_sentinels; 948 __sentinels_init(mq); 949 } 950 951 /*----------------------------------------------------------------*/ 952 953 static void del_queue(struct smq_policy *mq, struct entry *e) 954 { 955 q_del(e->dirty ? &mq->dirty : &mq->clean, e); 956 } 957 958 static void push_queue(struct smq_policy *mq, struct entry *e) 959 { 960 if (e->dirty) 961 q_push(&mq->dirty, e); 962 else 963 q_push(&mq->clean, e); 964 } 965 966 // !h, !q, a -> h, q, a 967 static void push(struct smq_policy *mq, struct entry *e) 968 { 969 h_insert(&mq->table, e); 970 if (!e->pending_work) 971 push_queue(mq, e); 972 } 973 974 static void push_queue_front(struct smq_policy *mq, struct entry *e) 975 { 976 if (e->dirty) 977 q_push_front(&mq->dirty, e); 978 else 979 q_push_front(&mq->clean, e); 980 } 981 982 static void push_front(struct smq_policy *mq, struct entry *e) 983 { 984 h_insert(&mq->table, e); 985 if (!e->pending_work) 986 push_queue_front(mq, e); 987 } 988 989 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) 990 { 991 return to_cblock(get_index(&mq->cache_alloc, e)); 992 } 993 994 static void requeue(struct smq_policy *mq, struct entry *e) 995 { 996 /* 997 * Pending work has temporarily been taken out of the queues. 998 */ 999 if (e->pending_work) 1000 return; 1001 1002 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { 1003 if (!e->dirty) { 1004 q_requeue(&mq->clean, e, 1u, NULL, NULL); 1005 return; 1006 } 1007 1008 q_requeue(&mq->dirty, e, 1u, 1009 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels), 1010 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels)); 1011 } 1012 } 1013 1014 static unsigned int default_promote_level(struct smq_policy *mq) 1015 { 1016 /* 1017 * The promote level depends on the current performance of the 1018 * cache. 1019 * 1020 * If the cache is performing badly, then we can't afford 1021 * to promote much without causing performance to drop below that 1022 * of the origin device. 1023 * 1024 * If the cache is performing well, then we don't need to promote 1025 * much. If it isn't broken, don't fix it. 1026 * 1027 * If the cache is middling then we promote more. 1028 * 1029 * This scheme reminds me of a graph of entropy vs probability of a 1030 * binary variable. 1031 */ 1032 static const unsigned int table[] = { 1033 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1 1034 }; 1035 1036 unsigned int hits = mq->cache_stats.hits; 1037 unsigned int misses = mq->cache_stats.misses; 1038 unsigned int index = safe_div(hits << 4u, hits + misses); 1039 return table[index]; 1040 } 1041 1042 static void update_promote_levels(struct smq_policy *mq) 1043 { 1044 /* 1045 * If there are unused cache entries then we want to be really 1046 * eager to promote. 1047 */ 1048 unsigned int threshold_level = allocator_empty(&mq->cache_alloc) ? 1049 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); 1050 1051 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS); 1052 1053 /* 1054 * If the hotspot queue is performing badly then we have little 1055 * confidence that we know which blocks to promote. So we cut down 1056 * the amount of promotions. 1057 */ 1058 switch (stats_assess(&mq->hotspot_stats)) { 1059 case Q_POOR: 1060 threshold_level /= 4u; 1061 break; 1062 1063 case Q_FAIR: 1064 threshold_level /= 2u; 1065 break; 1066 1067 case Q_WELL: 1068 break; 1069 } 1070 1071 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; 1072 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level); 1073 } 1074 1075 /* 1076 * If the hotspot queue is performing badly, then we try and move entries 1077 * around more quickly. 1078 */ 1079 static void update_level_jump(struct smq_policy *mq) 1080 { 1081 switch (stats_assess(&mq->hotspot_stats)) { 1082 case Q_POOR: 1083 mq->hotspot_level_jump = 4u; 1084 break; 1085 1086 case Q_FAIR: 1087 mq->hotspot_level_jump = 2u; 1088 break; 1089 1090 case Q_WELL: 1091 mq->hotspot_level_jump = 1u; 1092 break; 1093 } 1094 } 1095 1096 static void end_hotspot_period(struct smq_policy *mq) 1097 { 1098 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1099 update_promote_levels(mq); 1100 1101 if (time_after(jiffies, mq->next_hotspot_period)) { 1102 update_level_jump(mq); 1103 q_redistribute(&mq->hotspot); 1104 stats_reset(&mq->hotspot_stats); 1105 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; 1106 } 1107 } 1108 1109 static void end_cache_period(struct smq_policy *mq) 1110 { 1111 if (time_after(jiffies, mq->next_cache_period)) { 1112 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1113 1114 q_redistribute(&mq->dirty); 1115 q_redistribute(&mq->clean); 1116 stats_reset(&mq->cache_stats); 1117 1118 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; 1119 } 1120 } 1121 1122 /*----------------------------------------------------------------*/ 1123 1124 /* 1125 * Targets are given as a percentage. 1126 */ 1127 #define CLEAN_TARGET 25u 1128 #define FREE_TARGET 25u 1129 1130 static unsigned int percent_to_target(struct smq_policy *mq, unsigned int p) 1131 { 1132 return from_cblock(mq->cache_size) * p / 100u; 1133 } 1134 1135 static bool clean_target_met(struct smq_policy *mq, bool idle) 1136 { 1137 /* 1138 * Cache entries may not be populated. So we cannot rely on the 1139 * size of the clean queue. 1140 */ 1141 if (idle) { 1142 /* 1143 * We'd like to clean everything. 1144 */ 1145 return q_size(&mq->dirty) == 0u; 1146 } 1147 1148 /* 1149 * If we're busy we don't worry about cleaning at all. 1150 */ 1151 return true; 1152 } 1153 1154 static bool free_target_met(struct smq_policy *mq) 1155 { 1156 unsigned int nr_free; 1157 1158 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated; 1159 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >= 1160 percent_to_target(mq, FREE_TARGET); 1161 } 1162 1163 /*----------------------------------------------------------------*/ 1164 1165 static void mark_pending(struct smq_policy *mq, struct entry *e) 1166 { 1167 BUG_ON(e->sentinel); 1168 BUG_ON(!e->allocated); 1169 BUG_ON(e->pending_work); 1170 e->pending_work = true; 1171 } 1172 1173 static void clear_pending(struct smq_policy *mq, struct entry *e) 1174 { 1175 BUG_ON(!e->pending_work); 1176 e->pending_work = false; 1177 } 1178 1179 static void queue_writeback(struct smq_policy *mq, bool idle) 1180 { 1181 int r; 1182 struct policy_work work; 1183 struct entry *e; 1184 1185 e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle); 1186 if (e) { 1187 mark_pending(mq, e); 1188 q_del(&mq->dirty, e); 1189 1190 work.op = POLICY_WRITEBACK; 1191 work.oblock = e->oblock; 1192 work.cblock = infer_cblock(mq, e); 1193 1194 r = btracker_queue(mq->bg_work, &work, NULL); 1195 if (r) { 1196 clear_pending(mq, e); 1197 q_push_front(&mq->dirty, e); 1198 } 1199 } 1200 } 1201 1202 static void queue_demotion(struct smq_policy *mq) 1203 { 1204 int r; 1205 struct policy_work work; 1206 struct entry *e; 1207 1208 if (WARN_ON_ONCE(!mq->migrations_allowed)) 1209 return; 1210 1211 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true); 1212 if (!e) { 1213 if (!clean_target_met(mq, true)) 1214 queue_writeback(mq, false); 1215 return; 1216 } 1217 1218 mark_pending(mq, e); 1219 q_del(&mq->clean, e); 1220 1221 work.op = POLICY_DEMOTE; 1222 work.oblock = e->oblock; 1223 work.cblock = infer_cblock(mq, e); 1224 r = btracker_queue(mq->bg_work, &work, NULL); 1225 if (r) { 1226 clear_pending(mq, e); 1227 q_push_front(&mq->clean, e); 1228 } 1229 } 1230 1231 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock, 1232 struct policy_work **workp) 1233 { 1234 int r; 1235 struct entry *e; 1236 struct policy_work work; 1237 1238 if (!mq->migrations_allowed) 1239 return; 1240 1241 if (allocator_empty(&mq->cache_alloc)) { 1242 /* 1243 * We always claim to be 'idle' to ensure some demotions happen 1244 * with continuous loads. 1245 */ 1246 if (!free_target_met(mq)) 1247 queue_demotion(mq); 1248 return; 1249 } 1250 1251 if (btracker_promotion_already_present(mq->bg_work, oblock)) 1252 return; 1253 1254 /* 1255 * We allocate the entry now to reserve the cblock. If the 1256 * background work is aborted we must remember to free it. 1257 */ 1258 e = alloc_entry(&mq->cache_alloc); 1259 BUG_ON(!e); 1260 e->pending_work = true; 1261 work.op = POLICY_PROMOTE; 1262 work.oblock = oblock; 1263 work.cblock = infer_cblock(mq, e); 1264 r = btracker_queue(mq->bg_work, &work, workp); 1265 if (r) 1266 free_entry(&mq->cache_alloc, e); 1267 } 1268 1269 /*----------------------------------------------------------------*/ 1270 1271 enum promote_result { 1272 PROMOTE_NOT, 1273 PROMOTE_TEMPORARY, 1274 PROMOTE_PERMANENT 1275 }; 1276 1277 /* 1278 * Converts a boolean into a promote result. 1279 */ 1280 static enum promote_result maybe_promote(bool promote) 1281 { 1282 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; 1283 } 1284 1285 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, 1286 int data_dir, bool fast_promote) 1287 { 1288 if (data_dir == WRITE) { 1289 if (!allocator_empty(&mq->cache_alloc) && fast_promote) 1290 return PROMOTE_TEMPORARY; 1291 1292 return maybe_promote(hs_e->level >= mq->write_promote_level); 1293 } else 1294 return maybe_promote(hs_e->level >= mq->read_promote_level); 1295 } 1296 1297 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) 1298 { 1299 sector_t r = from_oblock(b); 1300 (void) sector_div(r, mq->cache_blocks_per_hotspot_block); 1301 return to_oblock(r); 1302 } 1303 1304 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b) 1305 { 1306 unsigned int hi; 1307 dm_oblock_t hb = to_hblock(mq, b); 1308 struct entry *e = h_lookup(&mq->hotspot_table, hb); 1309 1310 if (e) { 1311 stats_level_accessed(&mq->hotspot_stats, e->level); 1312 1313 hi = get_index(&mq->hotspot_alloc, e); 1314 q_requeue(&mq->hotspot, e, 1315 test_and_set_bit(hi, mq->hotspot_hit_bits) ? 1316 0u : mq->hotspot_level_jump, 1317 NULL, NULL); 1318 1319 } else { 1320 stats_miss(&mq->hotspot_stats); 1321 1322 e = alloc_entry(&mq->hotspot_alloc); 1323 if (!e) { 1324 e = q_pop(&mq->hotspot); 1325 if (e) { 1326 h_remove(&mq->hotspot_table, e); 1327 hi = get_index(&mq->hotspot_alloc, e); 1328 clear_bit(hi, mq->hotspot_hit_bits); 1329 } 1330 1331 } 1332 1333 if (e) { 1334 e->oblock = hb; 1335 q_push(&mq->hotspot, e); 1336 h_insert(&mq->hotspot_table, e); 1337 } 1338 } 1339 1340 return e; 1341 } 1342 1343 /*----------------------------------------------------------------*/ 1344 1345 /* 1346 * Public interface, via the policy struct. See dm-cache-policy.h for a 1347 * description of these. 1348 */ 1349 1350 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) 1351 { 1352 return container_of(p, struct smq_policy, policy); 1353 } 1354 1355 static void smq_destroy(struct dm_cache_policy *p) 1356 { 1357 struct smq_policy *mq = to_smq_policy(p); 1358 1359 btracker_destroy(mq->bg_work); 1360 h_exit(&mq->hotspot_table); 1361 h_exit(&mq->table); 1362 free_bitset(mq->hotspot_hit_bits); 1363 free_bitset(mq->cache_hit_bits); 1364 space_exit(&mq->es); 1365 kfree(mq); 1366 } 1367 1368 /*----------------------------------------------------------------*/ 1369 1370 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock, 1371 int data_dir, bool fast_copy, 1372 struct policy_work **work, bool *background_work) 1373 { 1374 struct entry *e, *hs_e; 1375 enum promote_result pr; 1376 1377 *background_work = false; 1378 1379 e = h_lookup(&mq->table, oblock); 1380 if (e) { 1381 stats_level_accessed(&mq->cache_stats, e->level); 1382 1383 requeue(mq, e); 1384 *cblock = infer_cblock(mq, e); 1385 return 0; 1386 1387 } else { 1388 stats_miss(&mq->cache_stats); 1389 1390 /* 1391 * The hotspot queue only gets updated with misses. 1392 */ 1393 hs_e = update_hotspot_queue(mq, oblock); 1394 1395 pr = should_promote(mq, hs_e, data_dir, fast_copy); 1396 if (pr != PROMOTE_NOT) { 1397 queue_promotion(mq, oblock, work); 1398 *background_work = true; 1399 } 1400 1401 return -ENOENT; 1402 } 1403 } 1404 1405 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock, 1406 int data_dir, bool fast_copy, 1407 bool *background_work) 1408 { 1409 int r; 1410 unsigned long flags; 1411 struct smq_policy *mq = to_smq_policy(p); 1412 1413 spin_lock_irqsave(&mq->lock, flags); 1414 r = __lookup(mq, oblock, cblock, 1415 data_dir, fast_copy, 1416 NULL, background_work); 1417 spin_unlock_irqrestore(&mq->lock, flags); 1418 1419 return r; 1420 } 1421 1422 static int smq_lookup_with_work(struct dm_cache_policy *p, 1423 dm_oblock_t oblock, dm_cblock_t *cblock, 1424 int data_dir, bool fast_copy, 1425 struct policy_work **work) 1426 { 1427 int r; 1428 bool background_queued; 1429 unsigned long flags; 1430 struct smq_policy *mq = to_smq_policy(p); 1431 1432 spin_lock_irqsave(&mq->lock, flags); 1433 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued); 1434 spin_unlock_irqrestore(&mq->lock, flags); 1435 1436 return r; 1437 } 1438 1439 static int smq_get_background_work(struct dm_cache_policy *p, bool idle, 1440 struct policy_work **result) 1441 { 1442 int r; 1443 unsigned long flags; 1444 struct smq_policy *mq = to_smq_policy(p); 1445 1446 spin_lock_irqsave(&mq->lock, flags); 1447 r = btracker_issue(mq->bg_work, result); 1448 if (r == -ENODATA) { 1449 if (!clean_target_met(mq, idle)) { 1450 queue_writeback(mq, idle); 1451 r = btracker_issue(mq->bg_work, result); 1452 } 1453 } 1454 spin_unlock_irqrestore(&mq->lock, flags); 1455 1456 return r; 1457 } 1458 1459 /* 1460 * We need to clear any pending work flags that have been set, and in the 1461 * case of promotion free the entry for the destination cblock. 1462 */ 1463 static void __complete_background_work(struct smq_policy *mq, 1464 struct policy_work *work, 1465 bool success) 1466 { 1467 struct entry *e = get_entry(&mq->cache_alloc, 1468 from_cblock(work->cblock)); 1469 1470 switch (work->op) { 1471 case POLICY_PROMOTE: 1472 // !h, !q, a 1473 clear_pending(mq, e); 1474 if (success) { 1475 e->oblock = work->oblock; 1476 e->level = NR_CACHE_LEVELS - 1; 1477 push(mq, e); 1478 // h, q, a 1479 } else { 1480 free_entry(&mq->cache_alloc, e); 1481 // !h, !q, !a 1482 } 1483 break; 1484 1485 case POLICY_DEMOTE: 1486 // h, !q, a 1487 if (success) { 1488 h_remove(&mq->table, e); 1489 free_entry(&mq->cache_alloc, e); 1490 // !h, !q, !a 1491 } else { 1492 clear_pending(mq, e); 1493 push_queue(mq, e); 1494 // h, q, a 1495 } 1496 break; 1497 1498 case POLICY_WRITEBACK: 1499 // h, !q, a 1500 clear_pending(mq, e); 1501 push_queue(mq, e); 1502 // h, q, a 1503 break; 1504 } 1505 1506 btracker_complete(mq->bg_work, work); 1507 } 1508 1509 static void smq_complete_background_work(struct dm_cache_policy *p, 1510 struct policy_work *work, 1511 bool success) 1512 { 1513 unsigned long flags; 1514 struct smq_policy *mq = to_smq_policy(p); 1515 1516 spin_lock_irqsave(&mq->lock, flags); 1517 __complete_background_work(mq, work, success); 1518 spin_unlock_irqrestore(&mq->lock, flags); 1519 } 1520 1521 // in_hash(oblock) -> in_hash(oblock) 1522 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set) 1523 { 1524 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1525 1526 if (e->pending_work) 1527 e->dirty = set; 1528 else { 1529 del_queue(mq, e); 1530 e->dirty = set; 1531 push_queue(mq, e); 1532 } 1533 } 1534 1535 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1536 { 1537 unsigned long flags; 1538 struct smq_policy *mq = to_smq_policy(p); 1539 1540 spin_lock_irqsave(&mq->lock, flags); 1541 __smq_set_clear_dirty(mq, cblock, true); 1542 spin_unlock_irqrestore(&mq->lock, flags); 1543 } 1544 1545 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1546 { 1547 struct smq_policy *mq = to_smq_policy(p); 1548 unsigned long flags; 1549 1550 spin_lock_irqsave(&mq->lock, flags); 1551 __smq_set_clear_dirty(mq, cblock, false); 1552 spin_unlock_irqrestore(&mq->lock, flags); 1553 } 1554 1555 static unsigned int random_level(dm_cblock_t cblock) 1556 { 1557 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1); 1558 } 1559 1560 static int smq_load_mapping(struct dm_cache_policy *p, 1561 dm_oblock_t oblock, dm_cblock_t cblock, 1562 bool dirty, uint32_t hint, bool hint_valid) 1563 { 1564 struct smq_policy *mq = to_smq_policy(p); 1565 struct entry *e; 1566 1567 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); 1568 e->oblock = oblock; 1569 e->dirty = dirty; 1570 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock); 1571 e->pending_work = false; 1572 1573 /* 1574 * When we load mappings we push ahead of both sentinels in order to 1575 * allow demotions and cleaning to occur immediately. 1576 */ 1577 push_front(mq, e); 1578 1579 return 0; 1580 } 1581 1582 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock) 1583 { 1584 struct smq_policy *mq = to_smq_policy(p); 1585 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1586 1587 if (!e->allocated) 1588 return -ENODATA; 1589 1590 // FIXME: what if this block has pending background work? 1591 del_queue(mq, e); 1592 h_remove(&mq->table, e); 1593 free_entry(&mq->cache_alloc, e); 1594 return 0; 1595 } 1596 1597 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock) 1598 { 1599 struct smq_policy *mq = to_smq_policy(p); 1600 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1601 1602 if (!e->allocated) 1603 return 0; 1604 1605 return e->level; 1606 } 1607 1608 static dm_cblock_t smq_residency(struct dm_cache_policy *p) 1609 { 1610 dm_cblock_t r; 1611 unsigned long flags; 1612 struct smq_policy *mq = to_smq_policy(p); 1613 1614 spin_lock_irqsave(&mq->lock, flags); 1615 r = to_cblock(mq->cache_alloc.nr_allocated); 1616 spin_unlock_irqrestore(&mq->lock, flags); 1617 1618 return r; 1619 } 1620 1621 static void smq_tick(struct dm_cache_policy *p, bool can_block) 1622 { 1623 struct smq_policy *mq = to_smq_policy(p); 1624 unsigned long flags; 1625 1626 spin_lock_irqsave(&mq->lock, flags); 1627 mq->tick++; 1628 update_sentinels(mq); 1629 end_hotspot_period(mq); 1630 end_cache_period(mq); 1631 spin_unlock_irqrestore(&mq->lock, flags); 1632 } 1633 1634 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow) 1635 { 1636 struct smq_policy *mq = to_smq_policy(p); 1637 1638 mq->migrations_allowed = allow; 1639 } 1640 1641 /* 1642 * smq has no config values, but the old mq policy did. To avoid breaking 1643 * software we continue to accept these configurables for the mq policy, 1644 * but they have no effect. 1645 */ 1646 static int mq_set_config_value(struct dm_cache_policy *p, 1647 const char *key, const char *value) 1648 { 1649 unsigned long tmp; 1650 1651 if (kstrtoul(value, 10, &tmp)) 1652 return -EINVAL; 1653 1654 if (!strcasecmp(key, "random_threshold") || 1655 !strcasecmp(key, "sequential_threshold") || 1656 !strcasecmp(key, "discard_promote_adjustment") || 1657 !strcasecmp(key, "read_promote_adjustment") || 1658 !strcasecmp(key, "write_promote_adjustment")) { 1659 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key); 1660 return 0; 1661 } 1662 1663 return -EINVAL; 1664 } 1665 1666 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, 1667 unsigned int maxlen, ssize_t *sz_ptr) 1668 { 1669 ssize_t sz = *sz_ptr; 1670 1671 DMEMIT("10 random_threshold 0 " 1672 "sequential_threshold 0 " 1673 "discard_promote_adjustment 0 " 1674 "read_promote_adjustment 0 " 1675 "write_promote_adjustment 0 "); 1676 1677 *sz_ptr = sz; 1678 return 0; 1679 } 1680 1681 /* Init the policy plugin interface function pointers. */ 1682 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq) 1683 { 1684 mq->policy.destroy = smq_destroy; 1685 mq->policy.lookup = smq_lookup; 1686 mq->policy.lookup_with_work = smq_lookup_with_work; 1687 mq->policy.get_background_work = smq_get_background_work; 1688 mq->policy.complete_background_work = smq_complete_background_work; 1689 mq->policy.set_dirty = smq_set_dirty; 1690 mq->policy.clear_dirty = smq_clear_dirty; 1691 mq->policy.load_mapping = smq_load_mapping; 1692 mq->policy.invalidate_mapping = smq_invalidate_mapping; 1693 mq->policy.get_hint = smq_get_hint; 1694 mq->policy.residency = smq_residency; 1695 mq->policy.tick = smq_tick; 1696 mq->policy.allow_migrations = smq_allow_migrations; 1697 1698 if (mimic_mq) { 1699 mq->policy.set_config_value = mq_set_config_value; 1700 mq->policy.emit_config_values = mq_emit_config_values; 1701 } 1702 } 1703 1704 static bool too_many_hotspot_blocks(sector_t origin_size, 1705 sector_t hotspot_block_size, 1706 unsigned int nr_hotspot_blocks) 1707 { 1708 return (hotspot_block_size * nr_hotspot_blocks) > origin_size; 1709 } 1710 1711 static void calc_hotspot_params(sector_t origin_size, 1712 sector_t cache_block_size, 1713 unsigned int nr_cache_blocks, 1714 sector_t *hotspot_block_size, 1715 unsigned int *nr_hotspot_blocks) 1716 { 1717 *hotspot_block_size = cache_block_size * 16u; 1718 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); 1719 1720 while ((*hotspot_block_size > cache_block_size) && 1721 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) 1722 *hotspot_block_size /= 2u; 1723 } 1724 1725 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size, 1726 sector_t origin_size, 1727 sector_t cache_block_size, 1728 bool mimic_mq, 1729 bool migrations_allowed) 1730 { 1731 unsigned int i; 1732 unsigned int nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; 1733 unsigned int total_sentinels = 2u * nr_sentinels_per_queue; 1734 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); 1735 1736 if (!mq) 1737 return NULL; 1738 1739 init_policy_functions(mq, mimic_mq); 1740 mq->cache_size = cache_size; 1741 mq->cache_block_size = cache_block_size; 1742 1743 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), 1744 &mq->hotspot_block_size, &mq->nr_hotspot_blocks); 1745 1746 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); 1747 mq->hotspot_level_jump = 1u; 1748 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { 1749 DMERR("couldn't initialize entry space"); 1750 goto bad_pool_init; 1751 } 1752 1753 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); 1754 for (i = 0; i < nr_sentinels_per_queue; i++) 1755 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; 1756 1757 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); 1758 for (i = 0; i < nr_sentinels_per_queue; i++) 1759 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; 1760 1761 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, 1762 total_sentinels + mq->nr_hotspot_blocks); 1763 1764 init_allocator(&mq->cache_alloc, &mq->es, 1765 total_sentinels + mq->nr_hotspot_blocks, 1766 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); 1767 1768 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); 1769 if (!mq->hotspot_hit_bits) { 1770 DMERR("couldn't allocate hotspot hit bitset"); 1771 goto bad_hotspot_hit_bits; 1772 } 1773 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1774 1775 if (from_cblock(cache_size)) { 1776 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); 1777 if (!mq->cache_hit_bits) { 1778 DMERR("couldn't allocate cache hit bitset"); 1779 goto bad_cache_hit_bits; 1780 } 1781 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1782 } else 1783 mq->cache_hit_bits = NULL; 1784 1785 mq->tick = 0; 1786 spin_lock_init(&mq->lock); 1787 1788 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); 1789 mq->hotspot.nr_top_levels = 8; 1790 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, 1791 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); 1792 1793 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); 1794 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); 1795 1796 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); 1797 stats_init(&mq->cache_stats, NR_CACHE_LEVELS); 1798 1799 if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) 1800 goto bad_alloc_table; 1801 1802 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) 1803 goto bad_alloc_hotspot_table; 1804 1805 sentinels_init(mq); 1806 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; 1807 1808 mq->next_hotspot_period = jiffies; 1809 mq->next_cache_period = jiffies; 1810 1811 mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */ 1812 if (!mq->bg_work) 1813 goto bad_btracker; 1814 1815 mq->migrations_allowed = migrations_allowed; 1816 1817 return &mq->policy; 1818 1819 bad_btracker: 1820 h_exit(&mq->hotspot_table); 1821 bad_alloc_hotspot_table: 1822 h_exit(&mq->table); 1823 bad_alloc_table: 1824 free_bitset(mq->cache_hit_bits); 1825 bad_cache_hit_bits: 1826 free_bitset(mq->hotspot_hit_bits); 1827 bad_hotspot_hit_bits: 1828 space_exit(&mq->es); 1829 bad_pool_init: 1830 kfree(mq); 1831 1832 return NULL; 1833 } 1834 1835 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, 1836 sector_t origin_size, 1837 sector_t cache_block_size) 1838 { 1839 return __smq_create(cache_size, origin_size, cache_block_size, false, true); 1840 } 1841 1842 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, 1843 sector_t origin_size, 1844 sector_t cache_block_size) 1845 { 1846 return __smq_create(cache_size, origin_size, cache_block_size, true, true); 1847 } 1848 1849 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size, 1850 sector_t origin_size, 1851 sector_t cache_block_size) 1852 { 1853 return __smq_create(cache_size, origin_size, cache_block_size, false, false); 1854 } 1855 1856 /*----------------------------------------------------------------*/ 1857 1858 static struct dm_cache_policy_type smq_policy_type = { 1859 .name = "smq", 1860 .version = {2, 0, 0}, 1861 .hint_size = 4, 1862 .owner = THIS_MODULE, 1863 .create = smq_create 1864 }; 1865 1866 static struct dm_cache_policy_type mq_policy_type = { 1867 .name = "mq", 1868 .version = {2, 0, 0}, 1869 .hint_size = 4, 1870 .owner = THIS_MODULE, 1871 .create = mq_create, 1872 }; 1873 1874 static struct dm_cache_policy_type cleaner_policy_type = { 1875 .name = "cleaner", 1876 .version = {2, 0, 0}, 1877 .hint_size = 4, 1878 .owner = THIS_MODULE, 1879 .create = cleaner_create, 1880 }; 1881 1882 static struct dm_cache_policy_type default_policy_type = { 1883 .name = "default", 1884 .version = {2, 0, 0}, 1885 .hint_size = 4, 1886 .owner = THIS_MODULE, 1887 .create = smq_create, 1888 .real = &smq_policy_type 1889 }; 1890 1891 static int __init smq_init(void) 1892 { 1893 int r; 1894 1895 r = dm_cache_policy_register(&smq_policy_type); 1896 if (r) { 1897 DMERR("register failed %d", r); 1898 return -ENOMEM; 1899 } 1900 1901 r = dm_cache_policy_register(&mq_policy_type); 1902 if (r) { 1903 DMERR("register failed (as mq) %d", r); 1904 goto out_mq; 1905 } 1906 1907 r = dm_cache_policy_register(&cleaner_policy_type); 1908 if (r) { 1909 DMERR("register failed (as cleaner) %d", r); 1910 goto out_cleaner; 1911 } 1912 1913 r = dm_cache_policy_register(&default_policy_type); 1914 if (r) { 1915 DMERR("register failed (as default) %d", r); 1916 goto out_default; 1917 } 1918 1919 return 0; 1920 1921 out_default: 1922 dm_cache_policy_unregister(&cleaner_policy_type); 1923 out_cleaner: 1924 dm_cache_policy_unregister(&mq_policy_type); 1925 out_mq: 1926 dm_cache_policy_unregister(&smq_policy_type); 1927 1928 return -ENOMEM; 1929 } 1930 1931 static void __exit smq_exit(void) 1932 { 1933 dm_cache_policy_unregister(&cleaner_policy_type); 1934 dm_cache_policy_unregister(&smq_policy_type); 1935 dm_cache_policy_unregister(&mq_policy_type); 1936 dm_cache_policy_unregister(&default_policy_type); 1937 } 1938 1939 module_init(smq_init); 1940 module_exit(smq_exit); 1941 1942 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1943 MODULE_LICENSE("GPL"); 1944 MODULE_DESCRIPTION("smq cache policy"); 1945 1946 MODULE_ALIAS("dm-cache-default"); 1947 MODULE_ALIAS("dm-cache-mq"); 1948 MODULE_ALIAS("dm-cache-cleaner"); 1949