1 /* 2 * Copyright (C) 2015 Red Hat. All rights reserved. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-cache-background-tracker.h" 8 #include "dm-cache-policy-internal.h" 9 #include "dm-cache-policy.h" 10 #include "dm.h" 11 12 #include <linux/hash.h> 13 #include <linux/jiffies.h> 14 #include <linux/module.h> 15 #include <linux/mutex.h> 16 #include <linux/vmalloc.h> 17 #include <linux/math64.h> 18 19 #define DM_MSG_PREFIX "cache-policy-smq" 20 21 /*----------------------------------------------------------------*/ 22 23 /* 24 * Safe division functions that return zero on divide by zero. 25 */ 26 static unsigned safe_div(unsigned n, unsigned d) 27 { 28 return d ? n / d : 0u; 29 } 30 31 static unsigned safe_mod(unsigned n, unsigned d) 32 { 33 return d ? n % d : 0u; 34 } 35 36 /*----------------------------------------------------------------*/ 37 38 struct entry { 39 unsigned hash_next:28; 40 unsigned prev:28; 41 unsigned next:28; 42 unsigned level:6; 43 bool dirty:1; 44 bool allocated:1; 45 bool sentinel:1; 46 bool pending_work:1; 47 48 dm_oblock_t oblock; 49 }; 50 51 /*----------------------------------------------------------------*/ 52 53 #define INDEXER_NULL ((1u << 28u) - 1u) 54 55 /* 56 * An entry_space manages a set of entries that we use for the queues. 57 * The clean and dirty queues share entries, so this object is separate 58 * from the queue itself. 59 */ 60 struct entry_space { 61 struct entry *begin; 62 struct entry *end; 63 }; 64 65 static int space_init(struct entry_space *es, unsigned nr_entries) 66 { 67 if (!nr_entries) { 68 es->begin = es->end = NULL; 69 return 0; 70 } 71 72 es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry))); 73 if (!es->begin) 74 return -ENOMEM; 75 76 es->end = es->begin + nr_entries; 77 return 0; 78 } 79 80 static void space_exit(struct entry_space *es) 81 { 82 vfree(es->begin); 83 } 84 85 static struct entry *__get_entry(struct entry_space *es, unsigned block) 86 { 87 struct entry *e; 88 89 e = es->begin + block; 90 BUG_ON(e >= es->end); 91 92 return e; 93 } 94 95 static unsigned to_index(struct entry_space *es, struct entry *e) 96 { 97 BUG_ON(e < es->begin || e >= es->end); 98 return e - es->begin; 99 } 100 101 static struct entry *to_entry(struct entry_space *es, unsigned block) 102 { 103 if (block == INDEXER_NULL) 104 return NULL; 105 106 return __get_entry(es, block); 107 } 108 109 /*----------------------------------------------------------------*/ 110 111 struct ilist { 112 unsigned nr_elts; /* excluding sentinel entries */ 113 unsigned head, tail; 114 }; 115 116 static void l_init(struct ilist *l) 117 { 118 l->nr_elts = 0; 119 l->head = l->tail = INDEXER_NULL; 120 } 121 122 static struct entry *l_head(struct entry_space *es, struct ilist *l) 123 { 124 return to_entry(es, l->head); 125 } 126 127 static struct entry *l_tail(struct entry_space *es, struct ilist *l) 128 { 129 return to_entry(es, l->tail); 130 } 131 132 static struct entry *l_next(struct entry_space *es, struct entry *e) 133 { 134 return to_entry(es, e->next); 135 } 136 137 static struct entry *l_prev(struct entry_space *es, struct entry *e) 138 { 139 return to_entry(es, e->prev); 140 } 141 142 static bool l_empty(struct ilist *l) 143 { 144 return l->head == INDEXER_NULL; 145 } 146 147 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e) 148 { 149 struct entry *head = l_head(es, l); 150 151 e->next = l->head; 152 e->prev = INDEXER_NULL; 153 154 if (head) 155 head->prev = l->head = to_index(es, e); 156 else 157 l->head = l->tail = to_index(es, e); 158 159 if (!e->sentinel) 160 l->nr_elts++; 161 } 162 163 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e) 164 { 165 struct entry *tail = l_tail(es, l); 166 167 e->next = INDEXER_NULL; 168 e->prev = l->tail; 169 170 if (tail) 171 tail->next = l->tail = to_index(es, e); 172 else 173 l->head = l->tail = to_index(es, e); 174 175 if (!e->sentinel) 176 l->nr_elts++; 177 } 178 179 static void l_add_before(struct entry_space *es, struct ilist *l, 180 struct entry *old, struct entry *e) 181 { 182 struct entry *prev = l_prev(es, old); 183 184 if (!prev) 185 l_add_head(es, l, e); 186 187 else { 188 e->prev = old->prev; 189 e->next = to_index(es, old); 190 prev->next = old->prev = to_index(es, e); 191 192 if (!e->sentinel) 193 l->nr_elts++; 194 } 195 } 196 197 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e) 198 { 199 struct entry *prev = l_prev(es, e); 200 struct entry *next = l_next(es, e); 201 202 if (prev) 203 prev->next = e->next; 204 else 205 l->head = e->next; 206 207 if (next) 208 next->prev = e->prev; 209 else 210 l->tail = e->prev; 211 212 if (!e->sentinel) 213 l->nr_elts--; 214 } 215 216 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l) 217 { 218 struct entry *e; 219 220 for (e = l_head(es, l); e; e = l_next(es, e)) 221 if (!e->sentinel) { 222 l_del(es, l, e); 223 return e; 224 } 225 226 return NULL; 227 } 228 229 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l) 230 { 231 struct entry *e; 232 233 for (e = l_tail(es, l); e; e = l_prev(es, e)) 234 if (!e->sentinel) { 235 l_del(es, l, e); 236 return e; 237 } 238 239 return NULL; 240 } 241 242 /*----------------------------------------------------------------*/ 243 244 /* 245 * The stochastic-multi-queue is a set of lru lists stacked into levels. 246 * Entries are moved up levels when they are used, which loosely orders the 247 * most accessed entries in the top levels and least in the bottom. This 248 * structure is *much* better than a single lru list. 249 */ 250 #define MAX_LEVELS 64u 251 252 struct queue { 253 struct entry_space *es; 254 255 unsigned nr_elts; 256 unsigned nr_levels; 257 struct ilist qs[MAX_LEVELS]; 258 259 /* 260 * We maintain a count of the number of entries we would like in each 261 * level. 262 */ 263 unsigned last_target_nr_elts; 264 unsigned nr_top_levels; 265 unsigned nr_in_top_levels; 266 unsigned target_count[MAX_LEVELS]; 267 }; 268 269 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels) 270 { 271 unsigned i; 272 273 q->es = es; 274 q->nr_elts = 0; 275 q->nr_levels = nr_levels; 276 277 for (i = 0; i < q->nr_levels; i++) { 278 l_init(q->qs + i); 279 q->target_count[i] = 0u; 280 } 281 282 q->last_target_nr_elts = 0u; 283 q->nr_top_levels = 0u; 284 q->nr_in_top_levels = 0u; 285 } 286 287 static unsigned q_size(struct queue *q) 288 { 289 return q->nr_elts; 290 } 291 292 /* 293 * Insert an entry to the back of the given level. 294 */ 295 static void q_push(struct queue *q, struct entry *e) 296 { 297 BUG_ON(e->pending_work); 298 299 if (!e->sentinel) 300 q->nr_elts++; 301 302 l_add_tail(q->es, q->qs + e->level, e); 303 } 304 305 static void q_push_front(struct queue *q, struct entry *e) 306 { 307 BUG_ON(e->pending_work); 308 309 if (!e->sentinel) 310 q->nr_elts++; 311 312 l_add_head(q->es, q->qs + e->level, e); 313 } 314 315 static void q_push_before(struct queue *q, struct entry *old, struct entry *e) 316 { 317 BUG_ON(e->pending_work); 318 319 if (!e->sentinel) 320 q->nr_elts++; 321 322 l_add_before(q->es, q->qs + e->level, old, e); 323 } 324 325 static void q_del(struct queue *q, struct entry *e) 326 { 327 l_del(q->es, q->qs + e->level, e); 328 if (!e->sentinel) 329 q->nr_elts--; 330 } 331 332 /* 333 * Return the oldest entry of the lowest populated level. 334 */ 335 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel) 336 { 337 unsigned level; 338 struct entry *e; 339 340 max_level = min(max_level, q->nr_levels); 341 342 for (level = 0; level < max_level; level++) 343 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) { 344 if (e->sentinel) { 345 if (can_cross_sentinel) 346 continue; 347 else 348 break; 349 } 350 351 return e; 352 } 353 354 return NULL; 355 } 356 357 static struct entry *q_pop(struct queue *q) 358 { 359 struct entry *e = q_peek(q, q->nr_levels, true); 360 361 if (e) 362 q_del(q, e); 363 364 return e; 365 } 366 367 /* 368 * This function assumes there is a non-sentinel entry to pop. It's only 369 * used by redistribute, so we know this is true. It also doesn't adjust 370 * the q->nr_elts count. 371 */ 372 static struct entry *__redist_pop_from(struct queue *q, unsigned level) 373 { 374 struct entry *e; 375 376 for (; level < q->nr_levels; level++) 377 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) 378 if (!e->sentinel) { 379 l_del(q->es, q->qs + e->level, e); 380 return e; 381 } 382 383 return NULL; 384 } 385 386 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend) 387 { 388 unsigned level, nr_levels, entries_per_level, remainder; 389 390 BUG_ON(lbegin > lend); 391 BUG_ON(lend > q->nr_levels); 392 nr_levels = lend - lbegin; 393 entries_per_level = safe_div(nr_elts, nr_levels); 394 remainder = safe_mod(nr_elts, nr_levels); 395 396 for (level = lbegin; level < lend; level++) 397 q->target_count[level] = 398 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level; 399 } 400 401 /* 402 * Typically we have fewer elements in the top few levels which allows us 403 * to adjust the promote threshold nicely. 404 */ 405 static void q_set_targets(struct queue *q) 406 { 407 if (q->last_target_nr_elts == q->nr_elts) 408 return; 409 410 q->last_target_nr_elts = q->nr_elts; 411 412 if (q->nr_top_levels > q->nr_levels) 413 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels); 414 415 else { 416 q_set_targets_subrange_(q, q->nr_in_top_levels, 417 q->nr_levels - q->nr_top_levels, q->nr_levels); 418 419 if (q->nr_in_top_levels < q->nr_elts) 420 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels, 421 0, q->nr_levels - q->nr_top_levels); 422 else 423 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels); 424 } 425 } 426 427 static void q_redistribute(struct queue *q) 428 { 429 unsigned target, level; 430 struct ilist *l, *l_above; 431 struct entry *e; 432 433 q_set_targets(q); 434 435 for (level = 0u; level < q->nr_levels - 1u; level++) { 436 l = q->qs + level; 437 target = q->target_count[level]; 438 439 /* 440 * Pull down some entries from the level above. 441 */ 442 while (l->nr_elts < target) { 443 e = __redist_pop_from(q, level + 1u); 444 if (!e) { 445 /* bug in nr_elts */ 446 break; 447 } 448 449 e->level = level; 450 l_add_tail(q->es, l, e); 451 } 452 453 /* 454 * Push some entries up. 455 */ 456 l_above = q->qs + level + 1u; 457 while (l->nr_elts > target) { 458 e = l_pop_tail(q->es, l); 459 460 if (!e) 461 /* bug in nr_elts */ 462 break; 463 464 e->level = level + 1u; 465 l_add_tail(q->es, l_above, e); 466 } 467 } 468 } 469 470 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels, 471 struct entry *s1, struct entry *s2) 472 { 473 struct entry *de; 474 unsigned sentinels_passed = 0; 475 unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels); 476 477 /* try and find an entry to swap with */ 478 if (extra_levels && (e->level < q->nr_levels - 1u)) { 479 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de)) 480 sentinels_passed++; 481 482 if (de) { 483 q_del(q, de); 484 de->level = e->level; 485 if (s1) { 486 switch (sentinels_passed) { 487 case 0: 488 q_push_before(q, s1, de); 489 break; 490 491 case 1: 492 q_push_before(q, s2, de); 493 break; 494 495 default: 496 q_push(q, de); 497 } 498 } else 499 q_push(q, de); 500 } 501 } 502 503 q_del(q, e); 504 e->level = new_level; 505 q_push(q, e); 506 } 507 508 /*----------------------------------------------------------------*/ 509 510 #define FP_SHIFT 8 511 #define SIXTEENTH (1u << (FP_SHIFT - 4u)) 512 #define EIGHTH (1u << (FP_SHIFT - 3u)) 513 514 struct stats { 515 unsigned hit_threshold; 516 unsigned hits; 517 unsigned misses; 518 }; 519 520 enum performance { 521 Q_POOR, 522 Q_FAIR, 523 Q_WELL 524 }; 525 526 static void stats_init(struct stats *s, unsigned nr_levels) 527 { 528 s->hit_threshold = (nr_levels * 3u) / 4u; 529 s->hits = 0u; 530 s->misses = 0u; 531 } 532 533 static void stats_reset(struct stats *s) 534 { 535 s->hits = s->misses = 0u; 536 } 537 538 static void stats_level_accessed(struct stats *s, unsigned level) 539 { 540 if (level >= s->hit_threshold) 541 s->hits++; 542 else 543 s->misses++; 544 } 545 546 static void stats_miss(struct stats *s) 547 { 548 s->misses++; 549 } 550 551 /* 552 * There are times when we don't have any confidence in the hotspot queue. 553 * Such as when a fresh cache is created and the blocks have been spread 554 * out across the levels, or if an io load changes. We detect this by 555 * seeing how often a lookup is in the top levels of the hotspot queue. 556 */ 557 static enum performance stats_assess(struct stats *s) 558 { 559 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses); 560 561 if (confidence < SIXTEENTH) 562 return Q_POOR; 563 564 else if (confidence < EIGHTH) 565 return Q_FAIR; 566 567 else 568 return Q_WELL; 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 struct smq_hash_table { 574 struct entry_space *es; 575 unsigned long long hash_bits; 576 unsigned *buckets; 577 }; 578 579 /* 580 * All cache entries are stored in a chained hash table. To save space we 581 * use indexing again, and only store indexes to the next entry. 582 */ 583 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries) 584 { 585 unsigned i, nr_buckets; 586 587 ht->es = es; 588 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u)); 589 ht->hash_bits = __ffs(nr_buckets); 590 591 ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets))); 592 if (!ht->buckets) 593 return -ENOMEM; 594 595 for (i = 0; i < nr_buckets; i++) 596 ht->buckets[i] = INDEXER_NULL; 597 598 return 0; 599 } 600 601 static void h_exit(struct smq_hash_table *ht) 602 { 603 vfree(ht->buckets); 604 } 605 606 static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket) 607 { 608 return to_entry(ht->es, ht->buckets[bucket]); 609 } 610 611 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e) 612 { 613 return to_entry(ht->es, e->hash_next); 614 } 615 616 static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e) 617 { 618 e->hash_next = ht->buckets[bucket]; 619 ht->buckets[bucket] = to_index(ht->es, e); 620 } 621 622 static void h_insert(struct smq_hash_table *ht, struct entry *e) 623 { 624 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 625 __h_insert(ht, h, e); 626 } 627 628 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock, 629 struct entry **prev) 630 { 631 struct entry *e; 632 633 *prev = NULL; 634 for (e = h_head(ht, h); e; e = h_next(ht, e)) { 635 if (e->oblock == oblock) 636 return e; 637 638 *prev = e; 639 } 640 641 return NULL; 642 } 643 644 static void __h_unlink(struct smq_hash_table *ht, unsigned h, 645 struct entry *e, struct entry *prev) 646 { 647 if (prev) 648 prev->hash_next = e->hash_next; 649 else 650 ht->buckets[h] = e->hash_next; 651 } 652 653 /* 654 * Also moves each entry to the front of the bucket. 655 */ 656 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock) 657 { 658 struct entry *e, *prev; 659 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits); 660 661 e = __h_lookup(ht, h, oblock, &prev); 662 if (e && prev) { 663 /* 664 * Move to the front because this entry is likely 665 * to be hit again. 666 */ 667 __h_unlink(ht, h, e, prev); 668 __h_insert(ht, h, e); 669 } 670 671 return e; 672 } 673 674 static void h_remove(struct smq_hash_table *ht, struct entry *e) 675 { 676 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits); 677 struct entry *prev; 678 679 /* 680 * The down side of using a singly linked list is we have to 681 * iterate the bucket to remove an item. 682 */ 683 e = __h_lookup(ht, h, e->oblock, &prev); 684 if (e) 685 __h_unlink(ht, h, e, prev); 686 } 687 688 /*----------------------------------------------------------------*/ 689 690 struct entry_alloc { 691 struct entry_space *es; 692 unsigned begin; 693 694 unsigned nr_allocated; 695 struct ilist free; 696 }; 697 698 static void init_allocator(struct entry_alloc *ea, struct entry_space *es, 699 unsigned begin, unsigned end) 700 { 701 unsigned i; 702 703 ea->es = es; 704 ea->nr_allocated = 0u; 705 ea->begin = begin; 706 707 l_init(&ea->free); 708 for (i = begin; i != end; i++) 709 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i)); 710 } 711 712 static void init_entry(struct entry *e) 713 { 714 /* 715 * We can't memset because that would clear the hotspot and 716 * sentinel bits which remain constant. 717 */ 718 e->hash_next = INDEXER_NULL; 719 e->next = INDEXER_NULL; 720 e->prev = INDEXER_NULL; 721 e->level = 0u; 722 e->dirty = true; /* FIXME: audit */ 723 e->allocated = true; 724 e->sentinel = false; 725 e->pending_work = false; 726 } 727 728 static struct entry *alloc_entry(struct entry_alloc *ea) 729 { 730 struct entry *e; 731 732 if (l_empty(&ea->free)) 733 return NULL; 734 735 e = l_pop_head(ea->es, &ea->free); 736 init_entry(e); 737 ea->nr_allocated++; 738 739 return e; 740 } 741 742 /* 743 * This assumes the cblock hasn't already been allocated. 744 */ 745 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i) 746 { 747 struct entry *e = __get_entry(ea->es, ea->begin + i); 748 749 BUG_ON(e->allocated); 750 751 l_del(ea->es, &ea->free, e); 752 init_entry(e); 753 ea->nr_allocated++; 754 755 return e; 756 } 757 758 static void free_entry(struct entry_alloc *ea, struct entry *e) 759 { 760 BUG_ON(!ea->nr_allocated); 761 BUG_ON(!e->allocated); 762 763 ea->nr_allocated--; 764 e->allocated = false; 765 l_add_tail(ea->es, &ea->free, e); 766 } 767 768 static bool allocator_empty(struct entry_alloc *ea) 769 { 770 return l_empty(&ea->free); 771 } 772 773 static unsigned get_index(struct entry_alloc *ea, struct entry *e) 774 { 775 return to_index(ea->es, e) - ea->begin; 776 } 777 778 static struct entry *get_entry(struct entry_alloc *ea, unsigned index) 779 { 780 return __get_entry(ea->es, ea->begin + index); 781 } 782 783 /*----------------------------------------------------------------*/ 784 785 #define NR_HOTSPOT_LEVELS 64u 786 #define NR_CACHE_LEVELS 64u 787 788 #define WRITEBACK_PERIOD (10ul * HZ) 789 #define DEMOTE_PERIOD (60ul * HZ) 790 791 #define HOTSPOT_UPDATE_PERIOD (HZ) 792 #define CACHE_UPDATE_PERIOD (60ul * HZ) 793 794 struct smq_policy { 795 struct dm_cache_policy policy; 796 797 /* protects everything */ 798 spinlock_t lock; 799 dm_cblock_t cache_size; 800 sector_t cache_block_size; 801 802 sector_t hotspot_block_size; 803 unsigned nr_hotspot_blocks; 804 unsigned cache_blocks_per_hotspot_block; 805 unsigned hotspot_level_jump; 806 807 struct entry_space es; 808 struct entry_alloc writeback_sentinel_alloc; 809 struct entry_alloc demote_sentinel_alloc; 810 struct entry_alloc hotspot_alloc; 811 struct entry_alloc cache_alloc; 812 813 unsigned long *hotspot_hit_bits; 814 unsigned long *cache_hit_bits; 815 816 /* 817 * We maintain three queues of entries. The cache proper, 818 * consisting of a clean and dirty queue, containing the currently 819 * active mappings. The hotspot queue uses a larger block size to 820 * track blocks that are being hit frequently and potential 821 * candidates for promotion to the cache. 822 */ 823 struct queue hotspot; 824 struct queue clean; 825 struct queue dirty; 826 827 struct stats hotspot_stats; 828 struct stats cache_stats; 829 830 /* 831 * Keeps track of time, incremented by the core. We use this to 832 * avoid attributing multiple hits within the same tick. 833 */ 834 unsigned tick; 835 836 /* 837 * The hash tables allows us to quickly find an entry by origin 838 * block. 839 */ 840 struct smq_hash_table table; 841 struct smq_hash_table hotspot_table; 842 843 bool current_writeback_sentinels; 844 unsigned long next_writeback_period; 845 846 bool current_demote_sentinels; 847 unsigned long next_demote_period; 848 849 unsigned write_promote_level; 850 unsigned read_promote_level; 851 852 unsigned long next_hotspot_period; 853 unsigned long next_cache_period; 854 855 struct background_tracker *bg_work; 856 857 bool migrations_allowed; 858 }; 859 860 /*----------------------------------------------------------------*/ 861 862 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which) 863 { 864 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level); 865 } 866 867 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level) 868 { 869 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels); 870 } 871 872 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level) 873 { 874 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels); 875 } 876 877 static void __update_writeback_sentinels(struct smq_policy *mq) 878 { 879 unsigned level; 880 struct queue *q = &mq->dirty; 881 struct entry *sentinel; 882 883 for (level = 0; level < q->nr_levels; level++) { 884 sentinel = writeback_sentinel(mq, level); 885 q_del(q, sentinel); 886 q_push(q, sentinel); 887 } 888 } 889 890 static void __update_demote_sentinels(struct smq_policy *mq) 891 { 892 unsigned level; 893 struct queue *q = &mq->clean; 894 struct entry *sentinel; 895 896 for (level = 0; level < q->nr_levels; level++) { 897 sentinel = demote_sentinel(mq, level); 898 q_del(q, sentinel); 899 q_push(q, sentinel); 900 } 901 } 902 903 static void update_sentinels(struct smq_policy *mq) 904 { 905 if (time_after(jiffies, mq->next_writeback_period)) { 906 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 907 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 908 __update_writeback_sentinels(mq); 909 } 910 911 if (time_after(jiffies, mq->next_demote_period)) { 912 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 913 mq->current_demote_sentinels = !mq->current_demote_sentinels; 914 __update_demote_sentinels(mq); 915 } 916 } 917 918 static void __sentinels_init(struct smq_policy *mq) 919 { 920 unsigned level; 921 struct entry *sentinel; 922 923 for (level = 0; level < NR_CACHE_LEVELS; level++) { 924 sentinel = writeback_sentinel(mq, level); 925 sentinel->level = level; 926 q_push(&mq->dirty, sentinel); 927 928 sentinel = demote_sentinel(mq, level); 929 sentinel->level = level; 930 q_push(&mq->clean, sentinel); 931 } 932 } 933 934 static void sentinels_init(struct smq_policy *mq) 935 { 936 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD; 937 mq->next_demote_period = jiffies + DEMOTE_PERIOD; 938 939 mq->current_writeback_sentinels = false; 940 mq->current_demote_sentinels = false; 941 __sentinels_init(mq); 942 943 mq->current_writeback_sentinels = !mq->current_writeback_sentinels; 944 mq->current_demote_sentinels = !mq->current_demote_sentinels; 945 __sentinels_init(mq); 946 } 947 948 /*----------------------------------------------------------------*/ 949 950 static void del_queue(struct smq_policy *mq, struct entry *e) 951 { 952 q_del(e->dirty ? &mq->dirty : &mq->clean, e); 953 } 954 955 static void push_queue(struct smq_policy *mq, struct entry *e) 956 { 957 if (e->dirty) 958 q_push(&mq->dirty, e); 959 else 960 q_push(&mq->clean, e); 961 } 962 963 // !h, !q, a -> h, q, a 964 static void push(struct smq_policy *mq, struct entry *e) 965 { 966 h_insert(&mq->table, e); 967 if (!e->pending_work) 968 push_queue(mq, e); 969 } 970 971 static void push_queue_front(struct smq_policy *mq, struct entry *e) 972 { 973 if (e->dirty) 974 q_push_front(&mq->dirty, e); 975 else 976 q_push_front(&mq->clean, e); 977 } 978 979 static void push_front(struct smq_policy *mq, struct entry *e) 980 { 981 h_insert(&mq->table, e); 982 if (!e->pending_work) 983 push_queue_front(mq, e); 984 } 985 986 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e) 987 { 988 return to_cblock(get_index(&mq->cache_alloc, e)); 989 } 990 991 static void requeue(struct smq_policy *mq, struct entry *e) 992 { 993 /* 994 * Pending work has temporarily been taken out of the queues. 995 */ 996 if (e->pending_work) 997 return; 998 999 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) { 1000 if (!e->dirty) { 1001 q_requeue(&mq->clean, e, 1u, NULL, NULL); 1002 return; 1003 } 1004 1005 q_requeue(&mq->dirty, e, 1u, 1006 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels), 1007 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels)); 1008 } 1009 } 1010 1011 static unsigned default_promote_level(struct smq_policy *mq) 1012 { 1013 /* 1014 * The promote level depends on the current performance of the 1015 * cache. 1016 * 1017 * If the cache is performing badly, then we can't afford 1018 * to promote much without causing performance to drop below that 1019 * of the origin device. 1020 * 1021 * If the cache is performing well, then we don't need to promote 1022 * much. If it isn't broken, don't fix it. 1023 * 1024 * If the cache is middling then we promote more. 1025 * 1026 * This scheme reminds me of a graph of entropy vs probability of a 1027 * binary variable. 1028 */ 1029 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1}; 1030 1031 unsigned hits = mq->cache_stats.hits; 1032 unsigned misses = mq->cache_stats.misses; 1033 unsigned index = safe_div(hits << 4u, hits + misses); 1034 return table[index]; 1035 } 1036 1037 static void update_promote_levels(struct smq_policy *mq) 1038 { 1039 /* 1040 * If there are unused cache entries then we want to be really 1041 * eager to promote. 1042 */ 1043 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ? 1044 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u); 1045 1046 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS); 1047 1048 /* 1049 * If the hotspot queue is performing badly then we have little 1050 * confidence that we know which blocks to promote. So we cut down 1051 * the amount of promotions. 1052 */ 1053 switch (stats_assess(&mq->hotspot_stats)) { 1054 case Q_POOR: 1055 threshold_level /= 4u; 1056 break; 1057 1058 case Q_FAIR: 1059 threshold_level /= 2u; 1060 break; 1061 1062 case Q_WELL: 1063 break; 1064 } 1065 1066 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level; 1067 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level); 1068 } 1069 1070 /* 1071 * If the hotspot queue is performing badly, then we try and move entries 1072 * around more quickly. 1073 */ 1074 static void update_level_jump(struct smq_policy *mq) 1075 { 1076 switch (stats_assess(&mq->hotspot_stats)) { 1077 case Q_POOR: 1078 mq->hotspot_level_jump = 4u; 1079 break; 1080 1081 case Q_FAIR: 1082 mq->hotspot_level_jump = 2u; 1083 break; 1084 1085 case Q_WELL: 1086 mq->hotspot_level_jump = 1u; 1087 break; 1088 } 1089 } 1090 1091 static void end_hotspot_period(struct smq_policy *mq) 1092 { 1093 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1094 update_promote_levels(mq); 1095 1096 if (time_after(jiffies, mq->next_hotspot_period)) { 1097 update_level_jump(mq); 1098 q_redistribute(&mq->hotspot); 1099 stats_reset(&mq->hotspot_stats); 1100 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD; 1101 } 1102 } 1103 1104 static void end_cache_period(struct smq_policy *mq) 1105 { 1106 if (time_after(jiffies, mq->next_cache_period)) { 1107 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1108 1109 q_redistribute(&mq->dirty); 1110 q_redistribute(&mq->clean); 1111 stats_reset(&mq->cache_stats); 1112 1113 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD; 1114 } 1115 } 1116 1117 /*----------------------------------------------------------------*/ 1118 1119 /* 1120 * Targets are given as a percentage. 1121 */ 1122 #define CLEAN_TARGET 25u 1123 #define FREE_TARGET 25u 1124 1125 static unsigned percent_to_target(struct smq_policy *mq, unsigned p) 1126 { 1127 return from_cblock(mq->cache_size) * p / 100u; 1128 } 1129 1130 static bool clean_target_met(struct smq_policy *mq, bool idle) 1131 { 1132 /* 1133 * Cache entries may not be populated. So we cannot rely on the 1134 * size of the clean queue. 1135 */ 1136 if (idle) { 1137 /* 1138 * We'd like to clean everything. 1139 */ 1140 return q_size(&mq->dirty) == 0u; 1141 } 1142 1143 /* 1144 * If we're busy we don't worry about cleaning at all. 1145 */ 1146 return true; 1147 } 1148 1149 static bool free_target_met(struct smq_policy *mq) 1150 { 1151 unsigned nr_free; 1152 1153 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated; 1154 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >= 1155 percent_to_target(mq, FREE_TARGET); 1156 } 1157 1158 /*----------------------------------------------------------------*/ 1159 1160 static void mark_pending(struct smq_policy *mq, struct entry *e) 1161 { 1162 BUG_ON(e->sentinel); 1163 BUG_ON(!e->allocated); 1164 BUG_ON(e->pending_work); 1165 e->pending_work = true; 1166 } 1167 1168 static void clear_pending(struct smq_policy *mq, struct entry *e) 1169 { 1170 BUG_ON(!e->pending_work); 1171 e->pending_work = false; 1172 } 1173 1174 static void queue_writeback(struct smq_policy *mq, bool idle) 1175 { 1176 int r; 1177 struct policy_work work; 1178 struct entry *e; 1179 1180 e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle); 1181 if (e) { 1182 mark_pending(mq, e); 1183 q_del(&mq->dirty, e); 1184 1185 work.op = POLICY_WRITEBACK; 1186 work.oblock = e->oblock; 1187 work.cblock = infer_cblock(mq, e); 1188 1189 r = btracker_queue(mq->bg_work, &work, NULL); 1190 if (r) { 1191 clear_pending(mq, e); 1192 q_push_front(&mq->dirty, e); 1193 } 1194 } 1195 } 1196 1197 static void queue_demotion(struct smq_policy *mq) 1198 { 1199 int r; 1200 struct policy_work work; 1201 struct entry *e; 1202 1203 if (WARN_ON_ONCE(!mq->migrations_allowed)) 1204 return; 1205 1206 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true); 1207 if (!e) { 1208 if (!clean_target_met(mq, true)) 1209 queue_writeback(mq, false); 1210 return; 1211 } 1212 1213 mark_pending(mq, e); 1214 q_del(&mq->clean, e); 1215 1216 work.op = POLICY_DEMOTE; 1217 work.oblock = e->oblock; 1218 work.cblock = infer_cblock(mq, e); 1219 r = btracker_queue(mq->bg_work, &work, NULL); 1220 if (r) { 1221 clear_pending(mq, e); 1222 q_push_front(&mq->clean, e); 1223 } 1224 } 1225 1226 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock, 1227 struct policy_work **workp) 1228 { 1229 int r; 1230 struct entry *e; 1231 struct policy_work work; 1232 1233 if (!mq->migrations_allowed) 1234 return; 1235 1236 if (allocator_empty(&mq->cache_alloc)) { 1237 /* 1238 * We always claim to be 'idle' to ensure some demotions happen 1239 * with continuous loads. 1240 */ 1241 if (!free_target_met(mq)) 1242 queue_demotion(mq); 1243 return; 1244 } 1245 1246 if (btracker_promotion_already_present(mq->bg_work, oblock)) 1247 return; 1248 1249 /* 1250 * We allocate the entry now to reserve the cblock. If the 1251 * background work is aborted we must remember to free it. 1252 */ 1253 e = alloc_entry(&mq->cache_alloc); 1254 BUG_ON(!e); 1255 e->pending_work = true; 1256 work.op = POLICY_PROMOTE; 1257 work.oblock = oblock; 1258 work.cblock = infer_cblock(mq, e); 1259 r = btracker_queue(mq->bg_work, &work, workp); 1260 if (r) 1261 free_entry(&mq->cache_alloc, e); 1262 } 1263 1264 /*----------------------------------------------------------------*/ 1265 1266 enum promote_result { 1267 PROMOTE_NOT, 1268 PROMOTE_TEMPORARY, 1269 PROMOTE_PERMANENT 1270 }; 1271 1272 /* 1273 * Converts a boolean into a promote result. 1274 */ 1275 static enum promote_result maybe_promote(bool promote) 1276 { 1277 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT; 1278 } 1279 1280 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e, 1281 int data_dir, bool fast_promote) 1282 { 1283 if (data_dir == WRITE) { 1284 if (!allocator_empty(&mq->cache_alloc) && fast_promote) 1285 return PROMOTE_TEMPORARY; 1286 1287 return maybe_promote(hs_e->level >= mq->write_promote_level); 1288 } else 1289 return maybe_promote(hs_e->level >= mq->read_promote_level); 1290 } 1291 1292 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b) 1293 { 1294 sector_t r = from_oblock(b); 1295 (void) sector_div(r, mq->cache_blocks_per_hotspot_block); 1296 return to_oblock(r); 1297 } 1298 1299 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b) 1300 { 1301 unsigned hi; 1302 dm_oblock_t hb = to_hblock(mq, b); 1303 struct entry *e = h_lookup(&mq->hotspot_table, hb); 1304 1305 if (e) { 1306 stats_level_accessed(&mq->hotspot_stats, e->level); 1307 1308 hi = get_index(&mq->hotspot_alloc, e); 1309 q_requeue(&mq->hotspot, e, 1310 test_and_set_bit(hi, mq->hotspot_hit_bits) ? 1311 0u : mq->hotspot_level_jump, 1312 NULL, NULL); 1313 1314 } else { 1315 stats_miss(&mq->hotspot_stats); 1316 1317 e = alloc_entry(&mq->hotspot_alloc); 1318 if (!e) { 1319 e = q_pop(&mq->hotspot); 1320 if (e) { 1321 h_remove(&mq->hotspot_table, e); 1322 hi = get_index(&mq->hotspot_alloc, e); 1323 clear_bit(hi, mq->hotspot_hit_bits); 1324 } 1325 1326 } 1327 1328 if (e) { 1329 e->oblock = hb; 1330 q_push(&mq->hotspot, e); 1331 h_insert(&mq->hotspot_table, e); 1332 } 1333 } 1334 1335 return e; 1336 } 1337 1338 /*----------------------------------------------------------------*/ 1339 1340 /* 1341 * Public interface, via the policy struct. See dm-cache-policy.h for a 1342 * description of these. 1343 */ 1344 1345 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p) 1346 { 1347 return container_of(p, struct smq_policy, policy); 1348 } 1349 1350 static void smq_destroy(struct dm_cache_policy *p) 1351 { 1352 struct smq_policy *mq = to_smq_policy(p); 1353 1354 btracker_destroy(mq->bg_work); 1355 h_exit(&mq->hotspot_table); 1356 h_exit(&mq->table); 1357 free_bitset(mq->hotspot_hit_bits); 1358 free_bitset(mq->cache_hit_bits); 1359 space_exit(&mq->es); 1360 kfree(mq); 1361 } 1362 1363 /*----------------------------------------------------------------*/ 1364 1365 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock, 1366 int data_dir, bool fast_copy, 1367 struct policy_work **work, bool *background_work) 1368 { 1369 struct entry *e, *hs_e; 1370 enum promote_result pr; 1371 1372 *background_work = false; 1373 1374 e = h_lookup(&mq->table, oblock); 1375 if (e) { 1376 stats_level_accessed(&mq->cache_stats, e->level); 1377 1378 requeue(mq, e); 1379 *cblock = infer_cblock(mq, e); 1380 return 0; 1381 1382 } else { 1383 stats_miss(&mq->cache_stats); 1384 1385 /* 1386 * The hotspot queue only gets updated with misses. 1387 */ 1388 hs_e = update_hotspot_queue(mq, oblock); 1389 1390 pr = should_promote(mq, hs_e, data_dir, fast_copy); 1391 if (pr != PROMOTE_NOT) { 1392 queue_promotion(mq, oblock, work); 1393 *background_work = true; 1394 } 1395 1396 return -ENOENT; 1397 } 1398 } 1399 1400 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock, 1401 int data_dir, bool fast_copy, 1402 bool *background_work) 1403 { 1404 int r; 1405 unsigned long flags; 1406 struct smq_policy *mq = to_smq_policy(p); 1407 1408 spin_lock_irqsave(&mq->lock, flags); 1409 r = __lookup(mq, oblock, cblock, 1410 data_dir, fast_copy, 1411 NULL, background_work); 1412 spin_unlock_irqrestore(&mq->lock, flags); 1413 1414 return r; 1415 } 1416 1417 static int smq_lookup_with_work(struct dm_cache_policy *p, 1418 dm_oblock_t oblock, dm_cblock_t *cblock, 1419 int data_dir, bool fast_copy, 1420 struct policy_work **work) 1421 { 1422 int r; 1423 bool background_queued; 1424 unsigned long flags; 1425 struct smq_policy *mq = to_smq_policy(p); 1426 1427 spin_lock_irqsave(&mq->lock, flags); 1428 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued); 1429 spin_unlock_irqrestore(&mq->lock, flags); 1430 1431 return r; 1432 } 1433 1434 static int smq_get_background_work(struct dm_cache_policy *p, bool idle, 1435 struct policy_work **result) 1436 { 1437 int r; 1438 unsigned long flags; 1439 struct smq_policy *mq = to_smq_policy(p); 1440 1441 spin_lock_irqsave(&mq->lock, flags); 1442 r = btracker_issue(mq->bg_work, result); 1443 if (r == -ENODATA) { 1444 if (!clean_target_met(mq, idle)) { 1445 queue_writeback(mq, idle); 1446 r = btracker_issue(mq->bg_work, result); 1447 } 1448 } 1449 spin_unlock_irqrestore(&mq->lock, flags); 1450 1451 return r; 1452 } 1453 1454 /* 1455 * We need to clear any pending work flags that have been set, and in the 1456 * case of promotion free the entry for the destination cblock. 1457 */ 1458 static void __complete_background_work(struct smq_policy *mq, 1459 struct policy_work *work, 1460 bool success) 1461 { 1462 struct entry *e = get_entry(&mq->cache_alloc, 1463 from_cblock(work->cblock)); 1464 1465 switch (work->op) { 1466 case POLICY_PROMOTE: 1467 // !h, !q, a 1468 clear_pending(mq, e); 1469 if (success) { 1470 e->oblock = work->oblock; 1471 e->level = NR_CACHE_LEVELS - 1; 1472 push(mq, e); 1473 // h, q, a 1474 } else { 1475 free_entry(&mq->cache_alloc, e); 1476 // !h, !q, !a 1477 } 1478 break; 1479 1480 case POLICY_DEMOTE: 1481 // h, !q, a 1482 if (success) { 1483 h_remove(&mq->table, e); 1484 free_entry(&mq->cache_alloc, e); 1485 // !h, !q, !a 1486 } else { 1487 clear_pending(mq, e); 1488 push_queue(mq, e); 1489 // h, q, a 1490 } 1491 break; 1492 1493 case POLICY_WRITEBACK: 1494 // h, !q, a 1495 clear_pending(mq, e); 1496 push_queue(mq, e); 1497 // h, q, a 1498 break; 1499 } 1500 1501 btracker_complete(mq->bg_work, work); 1502 } 1503 1504 static void smq_complete_background_work(struct dm_cache_policy *p, 1505 struct policy_work *work, 1506 bool success) 1507 { 1508 unsigned long flags; 1509 struct smq_policy *mq = to_smq_policy(p); 1510 1511 spin_lock_irqsave(&mq->lock, flags); 1512 __complete_background_work(mq, work, success); 1513 spin_unlock_irqrestore(&mq->lock, flags); 1514 } 1515 1516 // in_hash(oblock) -> in_hash(oblock) 1517 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set) 1518 { 1519 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1520 1521 if (e->pending_work) 1522 e->dirty = set; 1523 else { 1524 del_queue(mq, e); 1525 e->dirty = set; 1526 push_queue(mq, e); 1527 } 1528 } 1529 1530 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1531 { 1532 unsigned long flags; 1533 struct smq_policy *mq = to_smq_policy(p); 1534 1535 spin_lock_irqsave(&mq->lock, flags); 1536 __smq_set_clear_dirty(mq, cblock, true); 1537 spin_unlock_irqrestore(&mq->lock, flags); 1538 } 1539 1540 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock) 1541 { 1542 struct smq_policy *mq = to_smq_policy(p); 1543 unsigned long flags; 1544 1545 spin_lock_irqsave(&mq->lock, flags); 1546 __smq_set_clear_dirty(mq, cblock, false); 1547 spin_unlock_irqrestore(&mq->lock, flags); 1548 } 1549 1550 static unsigned random_level(dm_cblock_t cblock) 1551 { 1552 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1); 1553 } 1554 1555 static int smq_load_mapping(struct dm_cache_policy *p, 1556 dm_oblock_t oblock, dm_cblock_t cblock, 1557 bool dirty, uint32_t hint, bool hint_valid) 1558 { 1559 struct smq_policy *mq = to_smq_policy(p); 1560 struct entry *e; 1561 1562 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock)); 1563 e->oblock = oblock; 1564 e->dirty = dirty; 1565 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock); 1566 e->pending_work = false; 1567 1568 /* 1569 * When we load mappings we push ahead of both sentinels in order to 1570 * allow demotions and cleaning to occur immediately. 1571 */ 1572 push_front(mq, e); 1573 1574 return 0; 1575 } 1576 1577 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock) 1578 { 1579 struct smq_policy *mq = to_smq_policy(p); 1580 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1581 1582 if (!e->allocated) 1583 return -ENODATA; 1584 1585 // FIXME: what if this block has pending background work? 1586 del_queue(mq, e); 1587 h_remove(&mq->table, e); 1588 free_entry(&mq->cache_alloc, e); 1589 return 0; 1590 } 1591 1592 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock) 1593 { 1594 struct smq_policy *mq = to_smq_policy(p); 1595 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock)); 1596 1597 if (!e->allocated) 1598 return 0; 1599 1600 return e->level; 1601 } 1602 1603 static dm_cblock_t smq_residency(struct dm_cache_policy *p) 1604 { 1605 dm_cblock_t r; 1606 unsigned long flags; 1607 struct smq_policy *mq = to_smq_policy(p); 1608 1609 spin_lock_irqsave(&mq->lock, flags); 1610 r = to_cblock(mq->cache_alloc.nr_allocated); 1611 spin_unlock_irqrestore(&mq->lock, flags); 1612 1613 return r; 1614 } 1615 1616 static void smq_tick(struct dm_cache_policy *p, bool can_block) 1617 { 1618 struct smq_policy *mq = to_smq_policy(p); 1619 unsigned long flags; 1620 1621 spin_lock_irqsave(&mq->lock, flags); 1622 mq->tick++; 1623 update_sentinels(mq); 1624 end_hotspot_period(mq); 1625 end_cache_period(mq); 1626 spin_unlock_irqrestore(&mq->lock, flags); 1627 } 1628 1629 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow) 1630 { 1631 struct smq_policy *mq = to_smq_policy(p); 1632 mq->migrations_allowed = allow; 1633 } 1634 1635 /* 1636 * smq has no config values, but the old mq policy did. To avoid breaking 1637 * software we continue to accept these configurables for the mq policy, 1638 * but they have no effect. 1639 */ 1640 static int mq_set_config_value(struct dm_cache_policy *p, 1641 const char *key, const char *value) 1642 { 1643 unsigned long tmp; 1644 1645 if (kstrtoul(value, 10, &tmp)) 1646 return -EINVAL; 1647 1648 if (!strcasecmp(key, "random_threshold") || 1649 !strcasecmp(key, "sequential_threshold") || 1650 !strcasecmp(key, "discard_promote_adjustment") || 1651 !strcasecmp(key, "read_promote_adjustment") || 1652 !strcasecmp(key, "write_promote_adjustment")) { 1653 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key); 1654 return 0; 1655 } 1656 1657 return -EINVAL; 1658 } 1659 1660 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, 1661 unsigned maxlen, ssize_t *sz_ptr) 1662 { 1663 ssize_t sz = *sz_ptr; 1664 1665 DMEMIT("10 random_threshold 0 " 1666 "sequential_threshold 0 " 1667 "discard_promote_adjustment 0 " 1668 "read_promote_adjustment 0 " 1669 "write_promote_adjustment 0 "); 1670 1671 *sz_ptr = sz; 1672 return 0; 1673 } 1674 1675 /* Init the policy plugin interface function pointers. */ 1676 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq) 1677 { 1678 mq->policy.destroy = smq_destroy; 1679 mq->policy.lookup = smq_lookup; 1680 mq->policy.lookup_with_work = smq_lookup_with_work; 1681 mq->policy.get_background_work = smq_get_background_work; 1682 mq->policy.complete_background_work = smq_complete_background_work; 1683 mq->policy.set_dirty = smq_set_dirty; 1684 mq->policy.clear_dirty = smq_clear_dirty; 1685 mq->policy.load_mapping = smq_load_mapping; 1686 mq->policy.invalidate_mapping = smq_invalidate_mapping; 1687 mq->policy.get_hint = smq_get_hint; 1688 mq->policy.residency = smq_residency; 1689 mq->policy.tick = smq_tick; 1690 mq->policy.allow_migrations = smq_allow_migrations; 1691 1692 if (mimic_mq) { 1693 mq->policy.set_config_value = mq_set_config_value; 1694 mq->policy.emit_config_values = mq_emit_config_values; 1695 } 1696 } 1697 1698 static bool too_many_hotspot_blocks(sector_t origin_size, 1699 sector_t hotspot_block_size, 1700 unsigned nr_hotspot_blocks) 1701 { 1702 return (hotspot_block_size * nr_hotspot_blocks) > origin_size; 1703 } 1704 1705 static void calc_hotspot_params(sector_t origin_size, 1706 sector_t cache_block_size, 1707 unsigned nr_cache_blocks, 1708 sector_t *hotspot_block_size, 1709 unsigned *nr_hotspot_blocks) 1710 { 1711 *hotspot_block_size = cache_block_size * 16u; 1712 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u); 1713 1714 while ((*hotspot_block_size > cache_block_size) && 1715 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks)) 1716 *hotspot_block_size /= 2u; 1717 } 1718 1719 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size, 1720 sector_t origin_size, 1721 sector_t cache_block_size, 1722 bool mimic_mq, 1723 bool migrations_allowed) 1724 { 1725 unsigned i; 1726 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS; 1727 unsigned total_sentinels = 2u * nr_sentinels_per_queue; 1728 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL); 1729 1730 if (!mq) 1731 return NULL; 1732 1733 init_policy_functions(mq, mimic_mq); 1734 mq->cache_size = cache_size; 1735 mq->cache_block_size = cache_block_size; 1736 1737 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size), 1738 &mq->hotspot_block_size, &mq->nr_hotspot_blocks); 1739 1740 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size); 1741 mq->hotspot_level_jump = 1u; 1742 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) { 1743 DMERR("couldn't initialize entry space"); 1744 goto bad_pool_init; 1745 } 1746 1747 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue); 1748 for (i = 0; i < nr_sentinels_per_queue; i++) 1749 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true; 1750 1751 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels); 1752 for (i = 0; i < nr_sentinels_per_queue; i++) 1753 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true; 1754 1755 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels, 1756 total_sentinels + mq->nr_hotspot_blocks); 1757 1758 init_allocator(&mq->cache_alloc, &mq->es, 1759 total_sentinels + mq->nr_hotspot_blocks, 1760 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size)); 1761 1762 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks); 1763 if (!mq->hotspot_hit_bits) { 1764 DMERR("couldn't allocate hotspot hit bitset"); 1765 goto bad_hotspot_hit_bits; 1766 } 1767 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks); 1768 1769 if (from_cblock(cache_size)) { 1770 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size)); 1771 if (!mq->cache_hit_bits) { 1772 DMERR("couldn't allocate cache hit bitset"); 1773 goto bad_cache_hit_bits; 1774 } 1775 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size)); 1776 } else 1777 mq->cache_hit_bits = NULL; 1778 1779 mq->tick = 0; 1780 spin_lock_init(&mq->lock); 1781 1782 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS); 1783 mq->hotspot.nr_top_levels = 8; 1784 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS, 1785 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block); 1786 1787 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS); 1788 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS); 1789 1790 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS); 1791 stats_init(&mq->cache_stats, NR_CACHE_LEVELS); 1792 1793 if (h_init(&mq->table, &mq->es, from_cblock(cache_size))) 1794 goto bad_alloc_table; 1795 1796 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks)) 1797 goto bad_alloc_hotspot_table; 1798 1799 sentinels_init(mq); 1800 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS; 1801 1802 mq->next_hotspot_period = jiffies; 1803 mq->next_cache_period = jiffies; 1804 1805 mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */ 1806 if (!mq->bg_work) 1807 goto bad_btracker; 1808 1809 mq->migrations_allowed = migrations_allowed; 1810 1811 return &mq->policy; 1812 1813 bad_btracker: 1814 h_exit(&mq->hotspot_table); 1815 bad_alloc_hotspot_table: 1816 h_exit(&mq->table); 1817 bad_alloc_table: 1818 free_bitset(mq->cache_hit_bits); 1819 bad_cache_hit_bits: 1820 free_bitset(mq->hotspot_hit_bits); 1821 bad_hotspot_hit_bits: 1822 space_exit(&mq->es); 1823 bad_pool_init: 1824 kfree(mq); 1825 1826 return NULL; 1827 } 1828 1829 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size, 1830 sector_t origin_size, 1831 sector_t cache_block_size) 1832 { 1833 return __smq_create(cache_size, origin_size, cache_block_size, false, true); 1834 } 1835 1836 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size, 1837 sector_t origin_size, 1838 sector_t cache_block_size) 1839 { 1840 return __smq_create(cache_size, origin_size, cache_block_size, true, true); 1841 } 1842 1843 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size, 1844 sector_t origin_size, 1845 sector_t cache_block_size) 1846 { 1847 return __smq_create(cache_size, origin_size, cache_block_size, false, false); 1848 } 1849 1850 /*----------------------------------------------------------------*/ 1851 1852 static struct dm_cache_policy_type smq_policy_type = { 1853 .name = "smq", 1854 .version = {2, 0, 0}, 1855 .hint_size = 4, 1856 .owner = THIS_MODULE, 1857 .create = smq_create 1858 }; 1859 1860 static struct dm_cache_policy_type mq_policy_type = { 1861 .name = "mq", 1862 .version = {2, 0, 0}, 1863 .hint_size = 4, 1864 .owner = THIS_MODULE, 1865 .create = mq_create, 1866 }; 1867 1868 static struct dm_cache_policy_type cleaner_policy_type = { 1869 .name = "cleaner", 1870 .version = {2, 0, 0}, 1871 .hint_size = 4, 1872 .owner = THIS_MODULE, 1873 .create = cleaner_create, 1874 }; 1875 1876 static struct dm_cache_policy_type default_policy_type = { 1877 .name = "default", 1878 .version = {2, 0, 0}, 1879 .hint_size = 4, 1880 .owner = THIS_MODULE, 1881 .create = smq_create, 1882 .real = &smq_policy_type 1883 }; 1884 1885 static int __init smq_init(void) 1886 { 1887 int r; 1888 1889 r = dm_cache_policy_register(&smq_policy_type); 1890 if (r) { 1891 DMERR("register failed %d", r); 1892 return -ENOMEM; 1893 } 1894 1895 r = dm_cache_policy_register(&mq_policy_type); 1896 if (r) { 1897 DMERR("register failed (as mq) %d", r); 1898 goto out_mq; 1899 } 1900 1901 r = dm_cache_policy_register(&cleaner_policy_type); 1902 if (r) { 1903 DMERR("register failed (as cleaner) %d", r); 1904 goto out_cleaner; 1905 } 1906 1907 r = dm_cache_policy_register(&default_policy_type); 1908 if (r) { 1909 DMERR("register failed (as default) %d", r); 1910 goto out_default; 1911 } 1912 1913 return 0; 1914 1915 out_default: 1916 dm_cache_policy_unregister(&cleaner_policy_type); 1917 out_cleaner: 1918 dm_cache_policy_unregister(&mq_policy_type); 1919 out_mq: 1920 dm_cache_policy_unregister(&smq_policy_type); 1921 1922 return -ENOMEM; 1923 } 1924 1925 static void __exit smq_exit(void) 1926 { 1927 dm_cache_policy_unregister(&cleaner_policy_type); 1928 dm_cache_policy_unregister(&smq_policy_type); 1929 dm_cache_policy_unregister(&mq_policy_type); 1930 dm_cache_policy_unregister(&default_policy_type); 1931 } 1932 1933 module_init(smq_init); 1934 module_exit(smq_exit); 1935 1936 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1937 MODULE_LICENSE("GPL"); 1938 MODULE_DESCRIPTION("smq cache policy"); 1939 1940 MODULE_ALIAS("dm-cache-default"); 1941 MODULE_ALIAS("dm-cache-mq"); 1942 MODULE_ALIAS("dm-cache-cleaner"); 1943