1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-cache-background-tracker.h"
9 #include "dm-cache-policy-internal.h"
10 #include "dm-cache-policy.h"
11 #include "dm.h"
12
13 #include <linux/hash.h>
14 #include <linux/jiffies.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/vmalloc.h>
18 #include <linux/math64.h>
19
20 #define DM_MSG_PREFIX "cache-policy-smq"
21
22 /*----------------------------------------------------------------*/
23
24 /*
25 * Safe division functions that return zero on divide by zero.
26 */
safe_div(unsigned int n,unsigned int d)27 static unsigned int safe_div(unsigned int n, unsigned int d)
28 {
29 return d ? n / d : 0u;
30 }
31
safe_mod(unsigned int n,unsigned int d)32 static unsigned int safe_mod(unsigned int n, unsigned int d)
33 {
34 return d ? n % d : 0u;
35 }
36
37 /*----------------------------------------------------------------*/
38
39 struct entry {
40 unsigned int hash_next:28;
41 unsigned int prev:28;
42 unsigned int next:28;
43 unsigned int level:6;
44 bool dirty:1;
45 bool allocated:1;
46 bool sentinel:1;
47 bool pending_work:1;
48
49 dm_oblock_t oblock;
50 };
51
52 /*----------------------------------------------------------------*/
53
54 #define INDEXER_NULL ((1u << 28u) - 1u)
55
56 /*
57 * An entry_space manages a set of entries that we use for the queues.
58 * The clean and dirty queues share entries, so this object is separate
59 * from the queue itself.
60 */
61 struct entry_space {
62 struct entry *begin;
63 struct entry *end;
64 };
65
space_init(struct entry_space * es,unsigned int nr_entries)66 static int space_init(struct entry_space *es, unsigned int nr_entries)
67 {
68 if (!nr_entries) {
69 es->begin = es->end = NULL;
70 return 0;
71 }
72
73 es->begin = vzalloc(array_size(nr_entries, sizeof(struct entry)));
74 if (!es->begin)
75 return -ENOMEM;
76
77 es->end = es->begin + nr_entries;
78 return 0;
79 }
80
space_exit(struct entry_space * es)81 static void space_exit(struct entry_space *es)
82 {
83 vfree(es->begin);
84 }
85
__get_entry(struct entry_space * es,unsigned int block)86 static struct entry *__get_entry(struct entry_space *es, unsigned int block)
87 {
88 struct entry *e;
89
90 e = es->begin + block;
91 BUG_ON(e >= es->end);
92
93 return e;
94 }
95
to_index(struct entry_space * es,struct entry * e)96 static unsigned int to_index(struct entry_space *es, struct entry *e)
97 {
98 BUG_ON(e < es->begin || e >= es->end);
99 return e - es->begin;
100 }
101
to_entry(struct entry_space * es,unsigned int block)102 static struct entry *to_entry(struct entry_space *es, unsigned int block)
103 {
104 if (block == INDEXER_NULL)
105 return NULL;
106
107 return __get_entry(es, block);
108 }
109
110 /*----------------------------------------------------------------*/
111
112 struct ilist {
113 unsigned int nr_elts; /* excluding sentinel entries */
114 unsigned int head, tail;
115 };
116
l_init(struct ilist * l)117 static void l_init(struct ilist *l)
118 {
119 l->nr_elts = 0;
120 l->head = l->tail = INDEXER_NULL;
121 }
122
l_head(struct entry_space * es,struct ilist * l)123 static struct entry *l_head(struct entry_space *es, struct ilist *l)
124 {
125 return to_entry(es, l->head);
126 }
127
l_tail(struct entry_space * es,struct ilist * l)128 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
129 {
130 return to_entry(es, l->tail);
131 }
132
l_next(struct entry_space * es,struct entry * e)133 static struct entry *l_next(struct entry_space *es, struct entry *e)
134 {
135 return to_entry(es, e->next);
136 }
137
l_prev(struct entry_space * es,struct entry * e)138 static struct entry *l_prev(struct entry_space *es, struct entry *e)
139 {
140 return to_entry(es, e->prev);
141 }
142
l_empty(struct ilist * l)143 static bool l_empty(struct ilist *l)
144 {
145 return l->head == INDEXER_NULL;
146 }
147
l_add_head(struct entry_space * es,struct ilist * l,struct entry * e)148 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
149 {
150 struct entry *head = l_head(es, l);
151
152 e->next = l->head;
153 e->prev = INDEXER_NULL;
154
155 if (head)
156 head->prev = l->head = to_index(es, e);
157 else
158 l->head = l->tail = to_index(es, e);
159
160 if (!e->sentinel)
161 l->nr_elts++;
162 }
163
l_add_tail(struct entry_space * es,struct ilist * l,struct entry * e)164 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
165 {
166 struct entry *tail = l_tail(es, l);
167
168 e->next = INDEXER_NULL;
169 e->prev = l->tail;
170
171 if (tail)
172 tail->next = l->tail = to_index(es, e);
173 else
174 l->head = l->tail = to_index(es, e);
175
176 if (!e->sentinel)
177 l->nr_elts++;
178 }
179
l_add_before(struct entry_space * es,struct ilist * l,struct entry * old,struct entry * e)180 static void l_add_before(struct entry_space *es, struct ilist *l,
181 struct entry *old, struct entry *e)
182 {
183 struct entry *prev = l_prev(es, old);
184
185 if (!prev)
186 l_add_head(es, l, e);
187
188 else {
189 e->prev = old->prev;
190 e->next = to_index(es, old);
191 prev->next = old->prev = to_index(es, e);
192
193 if (!e->sentinel)
194 l->nr_elts++;
195 }
196 }
197
l_del(struct entry_space * es,struct ilist * l,struct entry * e)198 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
199 {
200 struct entry *prev = l_prev(es, e);
201 struct entry *next = l_next(es, e);
202
203 if (prev)
204 prev->next = e->next;
205 else
206 l->head = e->next;
207
208 if (next)
209 next->prev = e->prev;
210 else
211 l->tail = e->prev;
212
213 if (!e->sentinel)
214 l->nr_elts--;
215 }
216
l_pop_head(struct entry_space * es,struct ilist * l)217 static struct entry *l_pop_head(struct entry_space *es, struct ilist *l)
218 {
219 struct entry *e;
220
221 for (e = l_head(es, l); e; e = l_next(es, e))
222 if (!e->sentinel) {
223 l_del(es, l, e);
224 return e;
225 }
226
227 return NULL;
228 }
229
l_pop_tail(struct entry_space * es,struct ilist * l)230 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
231 {
232 struct entry *e;
233
234 for (e = l_tail(es, l); e; e = l_prev(es, e))
235 if (!e->sentinel) {
236 l_del(es, l, e);
237 return e;
238 }
239
240 return NULL;
241 }
242
243 /*----------------------------------------------------------------*/
244
245 /*
246 * The stochastic-multi-queue is a set of lru lists stacked into levels.
247 * Entries are moved up levels when they are used, which loosely orders the
248 * most accessed entries in the top levels and least in the bottom. This
249 * structure is *much* better than a single lru list.
250 */
251 #define MAX_LEVELS 64u
252
253 struct queue {
254 struct entry_space *es;
255
256 unsigned int nr_elts;
257 unsigned int nr_levels;
258 struct ilist qs[MAX_LEVELS];
259
260 /*
261 * We maintain a count of the number of entries we would like in each
262 * level.
263 */
264 unsigned int last_target_nr_elts;
265 unsigned int nr_top_levels;
266 unsigned int nr_in_top_levels;
267 unsigned int target_count[MAX_LEVELS];
268 };
269
q_init(struct queue * q,struct entry_space * es,unsigned int nr_levels)270 static void q_init(struct queue *q, struct entry_space *es, unsigned int nr_levels)
271 {
272 unsigned int i;
273
274 q->es = es;
275 q->nr_elts = 0;
276 q->nr_levels = nr_levels;
277
278 for (i = 0; i < q->nr_levels; i++) {
279 l_init(q->qs + i);
280 q->target_count[i] = 0u;
281 }
282
283 q->last_target_nr_elts = 0u;
284 q->nr_top_levels = 0u;
285 q->nr_in_top_levels = 0u;
286 }
287
q_size(struct queue * q)288 static unsigned int q_size(struct queue *q)
289 {
290 return q->nr_elts;
291 }
292
293 /*
294 * Insert an entry to the back of the given level.
295 */
q_push(struct queue * q,struct entry * e)296 static void q_push(struct queue *q, struct entry *e)
297 {
298 BUG_ON(e->pending_work);
299
300 if (!e->sentinel)
301 q->nr_elts++;
302
303 l_add_tail(q->es, q->qs + e->level, e);
304 }
305
q_push_front(struct queue * q,struct entry * e)306 static void q_push_front(struct queue *q, struct entry *e)
307 {
308 BUG_ON(e->pending_work);
309
310 if (!e->sentinel)
311 q->nr_elts++;
312
313 l_add_head(q->es, q->qs + e->level, e);
314 }
315
q_push_before(struct queue * q,struct entry * old,struct entry * e)316 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
317 {
318 BUG_ON(e->pending_work);
319
320 if (!e->sentinel)
321 q->nr_elts++;
322
323 l_add_before(q->es, q->qs + e->level, old, e);
324 }
325
q_del(struct queue * q,struct entry * e)326 static void q_del(struct queue *q, struct entry *e)
327 {
328 l_del(q->es, q->qs + e->level, e);
329 if (!e->sentinel)
330 q->nr_elts--;
331 }
332
333 /*
334 * Return the oldest entry of the lowest populated level.
335 */
q_peek(struct queue * q,unsigned int max_level,bool can_cross_sentinel)336 static struct entry *q_peek(struct queue *q, unsigned int max_level, bool can_cross_sentinel)
337 {
338 unsigned int level;
339 struct entry *e;
340
341 max_level = min(max_level, q->nr_levels);
342
343 for (level = 0; level < max_level; level++)
344 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
345 if (e->sentinel) {
346 if (can_cross_sentinel)
347 continue;
348 else
349 break;
350 }
351
352 return e;
353 }
354
355 return NULL;
356 }
357
q_pop(struct queue * q)358 static struct entry *q_pop(struct queue *q)
359 {
360 struct entry *e = q_peek(q, q->nr_levels, true);
361
362 if (e)
363 q_del(q, e);
364
365 return e;
366 }
367
368 /*
369 * This function assumes there is a non-sentinel entry to pop. It's only
370 * used by redistribute, so we know this is true. It also doesn't adjust
371 * the q->nr_elts count.
372 */
__redist_pop_from(struct queue * q,unsigned int level)373 static struct entry *__redist_pop_from(struct queue *q, unsigned int level)
374 {
375 struct entry *e;
376
377 for (; level < q->nr_levels; level++)
378 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
379 if (!e->sentinel) {
380 l_del(q->es, q->qs + e->level, e);
381 return e;
382 }
383
384 return NULL;
385 }
386
q_set_targets_subrange_(struct queue * q,unsigned int nr_elts,unsigned int lbegin,unsigned int lend)387 static void q_set_targets_subrange_(struct queue *q, unsigned int nr_elts,
388 unsigned int lbegin, unsigned int lend)
389 {
390 unsigned int level, nr_levels, entries_per_level, remainder;
391
392 BUG_ON(lbegin > lend);
393 BUG_ON(lend > q->nr_levels);
394 nr_levels = lend - lbegin;
395 entries_per_level = safe_div(nr_elts, nr_levels);
396 remainder = safe_mod(nr_elts, nr_levels);
397
398 for (level = lbegin; level < lend; level++)
399 q->target_count[level] =
400 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
401 }
402
403 /*
404 * Typically we have fewer elements in the top few levels which allows us
405 * to adjust the promote threshold nicely.
406 */
q_set_targets(struct queue * q)407 static void q_set_targets(struct queue *q)
408 {
409 if (q->last_target_nr_elts == q->nr_elts)
410 return;
411
412 q->last_target_nr_elts = q->nr_elts;
413
414 if (q->nr_top_levels > q->nr_levels)
415 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
416
417 else {
418 q_set_targets_subrange_(q, q->nr_in_top_levels,
419 q->nr_levels - q->nr_top_levels, q->nr_levels);
420
421 if (q->nr_in_top_levels < q->nr_elts)
422 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
423 0, q->nr_levels - q->nr_top_levels);
424 else
425 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
426 }
427 }
428
q_redistribute(struct queue * q)429 static void q_redistribute(struct queue *q)
430 {
431 unsigned int target, level;
432 struct ilist *l, *l_above;
433 struct entry *e;
434
435 q_set_targets(q);
436
437 for (level = 0u; level < q->nr_levels - 1u; level++) {
438 l = q->qs + level;
439 target = q->target_count[level];
440
441 /*
442 * Pull down some entries from the level above.
443 */
444 while (l->nr_elts < target) {
445 e = __redist_pop_from(q, level + 1u);
446 if (!e) {
447 /* bug in nr_elts */
448 break;
449 }
450
451 e->level = level;
452 l_add_tail(q->es, l, e);
453 }
454
455 /*
456 * Push some entries up.
457 */
458 l_above = q->qs + level + 1u;
459 while (l->nr_elts > target) {
460 e = l_pop_tail(q->es, l);
461
462 if (!e)
463 /* bug in nr_elts */
464 break;
465
466 e->level = level + 1u;
467 l_add_tail(q->es, l_above, e);
468 }
469 }
470 }
471
q_requeue(struct queue * q,struct entry * e,unsigned int extra_levels,struct entry * s1,struct entry * s2)472 static void q_requeue(struct queue *q, struct entry *e, unsigned int extra_levels,
473 struct entry *s1, struct entry *s2)
474 {
475 struct entry *de;
476 unsigned int sentinels_passed = 0;
477 unsigned int new_level = min(q->nr_levels - 1u, e->level + extra_levels);
478
479 /* try and find an entry to swap with */
480 if (extra_levels && (e->level < q->nr_levels - 1u)) {
481 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
482 sentinels_passed++;
483
484 if (de) {
485 q_del(q, de);
486 de->level = e->level;
487 if (s1) {
488 switch (sentinels_passed) {
489 case 0:
490 q_push_before(q, s1, de);
491 break;
492
493 case 1:
494 q_push_before(q, s2, de);
495 break;
496
497 default:
498 q_push(q, de);
499 }
500 } else
501 q_push(q, de);
502 }
503 }
504
505 q_del(q, e);
506 e->level = new_level;
507 q_push(q, e);
508 }
509
510 /*----------------------------------------------------------------*/
511
512 #define FP_SHIFT 8
513 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
514 #define EIGHTH (1u << (FP_SHIFT - 3u))
515
516 struct stats {
517 unsigned int hit_threshold;
518 unsigned int hits;
519 unsigned int misses;
520 };
521
522 enum performance {
523 Q_POOR,
524 Q_FAIR,
525 Q_WELL
526 };
527
stats_init(struct stats * s,unsigned int nr_levels)528 static void stats_init(struct stats *s, unsigned int nr_levels)
529 {
530 s->hit_threshold = (nr_levels * 3u) / 4u;
531 s->hits = 0u;
532 s->misses = 0u;
533 }
534
stats_reset(struct stats * s)535 static void stats_reset(struct stats *s)
536 {
537 s->hits = s->misses = 0u;
538 }
539
stats_level_accessed(struct stats * s,unsigned int level)540 static void stats_level_accessed(struct stats *s, unsigned int level)
541 {
542 if (level >= s->hit_threshold)
543 s->hits++;
544 else
545 s->misses++;
546 }
547
stats_miss(struct stats * s)548 static void stats_miss(struct stats *s)
549 {
550 s->misses++;
551 }
552
553 /*
554 * There are times when we don't have any confidence in the hotspot queue.
555 * Such as when a fresh cache is created and the blocks have been spread
556 * out across the levels, or if an io load changes. We detect this by
557 * seeing how often a lookup is in the top levels of the hotspot queue.
558 */
stats_assess(struct stats * s)559 static enum performance stats_assess(struct stats *s)
560 {
561 unsigned int confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
562
563 if (confidence < SIXTEENTH)
564 return Q_POOR;
565
566 else if (confidence < EIGHTH)
567 return Q_FAIR;
568
569 else
570 return Q_WELL;
571 }
572
573 /*----------------------------------------------------------------*/
574
575 struct smq_hash_table {
576 struct entry_space *es;
577 unsigned long long hash_bits;
578 unsigned int *buckets;
579 };
580
581 /*
582 * All cache entries are stored in a chained hash table. To save space we
583 * use indexing again, and only store indexes to the next entry.
584 */
h_init(struct smq_hash_table * ht,struct entry_space * es,unsigned int nr_entries)585 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned int nr_entries)
586 {
587 unsigned int i, nr_buckets;
588
589 ht->es = es;
590 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
591 ht->hash_bits = __ffs(nr_buckets);
592
593 ht->buckets = vmalloc(array_size(nr_buckets, sizeof(*ht->buckets)));
594 if (!ht->buckets)
595 return -ENOMEM;
596
597 for (i = 0; i < nr_buckets; i++)
598 ht->buckets[i] = INDEXER_NULL;
599
600 return 0;
601 }
602
h_exit(struct smq_hash_table * ht)603 static void h_exit(struct smq_hash_table *ht)
604 {
605 vfree(ht->buckets);
606 }
607
h_head(struct smq_hash_table * ht,unsigned int bucket)608 static struct entry *h_head(struct smq_hash_table *ht, unsigned int bucket)
609 {
610 return to_entry(ht->es, ht->buckets[bucket]);
611 }
612
h_next(struct smq_hash_table * ht,struct entry * e)613 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
614 {
615 return to_entry(ht->es, e->hash_next);
616 }
617
__h_insert(struct smq_hash_table * ht,unsigned int bucket,struct entry * e)618 static void __h_insert(struct smq_hash_table *ht, unsigned int bucket, struct entry *e)
619 {
620 e->hash_next = ht->buckets[bucket];
621 ht->buckets[bucket] = to_index(ht->es, e);
622 }
623
h_insert(struct smq_hash_table * ht,struct entry * e)624 static void h_insert(struct smq_hash_table *ht, struct entry *e)
625 {
626 unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
627
628 __h_insert(ht, h, e);
629 }
630
__h_lookup(struct smq_hash_table * ht,unsigned int h,dm_oblock_t oblock,struct entry ** prev)631 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned int h, dm_oblock_t oblock,
632 struct entry **prev)
633 {
634 struct entry *e;
635
636 *prev = NULL;
637 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
638 if (e->oblock == oblock)
639 return e;
640
641 *prev = e;
642 }
643
644 return NULL;
645 }
646
__h_unlink(struct smq_hash_table * ht,unsigned int h,struct entry * e,struct entry * prev)647 static void __h_unlink(struct smq_hash_table *ht, unsigned int h,
648 struct entry *e, struct entry *prev)
649 {
650 if (prev)
651 prev->hash_next = e->hash_next;
652 else
653 ht->buckets[h] = e->hash_next;
654 }
655
656 /*
657 * Also moves each entry to the front of the bucket.
658 */
h_lookup(struct smq_hash_table * ht,dm_oblock_t oblock)659 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
660 {
661 struct entry *e, *prev;
662 unsigned int h = hash_64(from_oblock(oblock), ht->hash_bits);
663
664 e = __h_lookup(ht, h, oblock, &prev);
665 if (e && prev) {
666 /*
667 * Move to the front because this entry is likely
668 * to be hit again.
669 */
670 __h_unlink(ht, h, e, prev);
671 __h_insert(ht, h, e);
672 }
673
674 return e;
675 }
676
h_remove(struct smq_hash_table * ht,struct entry * e)677 static void h_remove(struct smq_hash_table *ht, struct entry *e)
678 {
679 unsigned int h = hash_64(from_oblock(e->oblock), ht->hash_bits);
680 struct entry *prev;
681
682 /*
683 * The down side of using a singly linked list is we have to
684 * iterate the bucket to remove an item.
685 */
686 e = __h_lookup(ht, h, e->oblock, &prev);
687 if (e)
688 __h_unlink(ht, h, e, prev);
689 }
690
691 /*----------------------------------------------------------------*/
692
693 struct entry_alloc {
694 struct entry_space *es;
695 unsigned int begin;
696
697 unsigned int nr_allocated;
698 struct ilist free;
699 };
700
init_allocator(struct entry_alloc * ea,struct entry_space * es,unsigned int begin,unsigned int end)701 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
702 unsigned int begin, unsigned int end)
703 {
704 unsigned int i;
705
706 ea->es = es;
707 ea->nr_allocated = 0u;
708 ea->begin = begin;
709
710 l_init(&ea->free);
711 for (i = begin; i != end; i++)
712 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
713 }
714
init_entry(struct entry * e)715 static void init_entry(struct entry *e)
716 {
717 /*
718 * We can't memset because that would clear the hotspot and
719 * sentinel bits which remain constant.
720 */
721 e->hash_next = INDEXER_NULL;
722 e->next = INDEXER_NULL;
723 e->prev = INDEXER_NULL;
724 e->level = 0u;
725 e->dirty = true; /* FIXME: audit */
726 e->allocated = true;
727 e->sentinel = false;
728 e->pending_work = false;
729 }
730
alloc_entry(struct entry_alloc * ea)731 static struct entry *alloc_entry(struct entry_alloc *ea)
732 {
733 struct entry *e;
734
735 if (l_empty(&ea->free))
736 return NULL;
737
738 e = l_pop_head(ea->es, &ea->free);
739 init_entry(e);
740 ea->nr_allocated++;
741
742 return e;
743 }
744
745 /*
746 * This assumes the cblock hasn't already been allocated.
747 */
alloc_particular_entry(struct entry_alloc * ea,unsigned int i)748 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned int i)
749 {
750 struct entry *e = __get_entry(ea->es, ea->begin + i);
751
752 BUG_ON(e->allocated);
753
754 l_del(ea->es, &ea->free, e);
755 init_entry(e);
756 ea->nr_allocated++;
757
758 return e;
759 }
760
free_entry(struct entry_alloc * ea,struct entry * e)761 static void free_entry(struct entry_alloc *ea, struct entry *e)
762 {
763 BUG_ON(!ea->nr_allocated);
764 BUG_ON(!e->allocated);
765
766 ea->nr_allocated--;
767 e->allocated = false;
768 l_add_tail(ea->es, &ea->free, e);
769 }
770
allocator_empty(struct entry_alloc * ea)771 static bool allocator_empty(struct entry_alloc *ea)
772 {
773 return l_empty(&ea->free);
774 }
775
get_index(struct entry_alloc * ea,struct entry * e)776 static unsigned int get_index(struct entry_alloc *ea, struct entry *e)
777 {
778 return to_index(ea->es, e) - ea->begin;
779 }
780
get_entry(struct entry_alloc * ea,unsigned int index)781 static struct entry *get_entry(struct entry_alloc *ea, unsigned int index)
782 {
783 return __get_entry(ea->es, ea->begin + index);
784 }
785
786 /*----------------------------------------------------------------*/
787
788 #define NR_HOTSPOT_LEVELS 64u
789 #define NR_CACHE_LEVELS 64u
790
791 #define WRITEBACK_PERIOD (10ul * HZ)
792 #define DEMOTE_PERIOD (60ul * HZ)
793
794 #define HOTSPOT_UPDATE_PERIOD (HZ)
795 #define CACHE_UPDATE_PERIOD (60ul * HZ)
796
797 struct smq_policy {
798 struct dm_cache_policy policy;
799
800 /* protects everything */
801 spinlock_t lock;
802 dm_cblock_t cache_size;
803 sector_t cache_block_size;
804
805 sector_t hotspot_block_size;
806 unsigned int nr_hotspot_blocks;
807 unsigned int cache_blocks_per_hotspot_block;
808 unsigned int hotspot_level_jump;
809
810 struct entry_space es;
811 struct entry_alloc writeback_sentinel_alloc;
812 struct entry_alloc demote_sentinel_alloc;
813 struct entry_alloc hotspot_alloc;
814 struct entry_alloc cache_alloc;
815
816 unsigned long *hotspot_hit_bits;
817 unsigned long *cache_hit_bits;
818
819 /*
820 * We maintain three queues of entries. The cache proper,
821 * consisting of a clean and dirty queue, containing the currently
822 * active mappings. The hotspot queue uses a larger block size to
823 * track blocks that are being hit frequently and potential
824 * candidates for promotion to the cache.
825 */
826 struct queue hotspot;
827 struct queue clean;
828 struct queue dirty;
829
830 struct stats hotspot_stats;
831 struct stats cache_stats;
832
833 /*
834 * Keeps track of time, incremented by the core. We use this to
835 * avoid attributing multiple hits within the same tick.
836 */
837 unsigned int tick;
838
839 /*
840 * The hash tables allows us to quickly find an entry by origin
841 * block.
842 */
843 struct smq_hash_table table;
844 struct smq_hash_table hotspot_table;
845
846 bool current_writeback_sentinels;
847 unsigned long next_writeback_period;
848
849 bool current_demote_sentinels;
850 unsigned long next_demote_period;
851
852 unsigned int write_promote_level;
853 unsigned int read_promote_level;
854
855 unsigned long next_hotspot_period;
856 unsigned long next_cache_period;
857
858 struct background_tracker *bg_work;
859
860 bool migrations_allowed:1;
861
862 /*
863 * If this is set the policy will try and clean the whole cache
864 * even if the device is not idle.
865 */
866 bool cleaner:1;
867 };
868
869 /*----------------------------------------------------------------*/
870
get_sentinel(struct entry_alloc * ea,unsigned int level,bool which)871 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned int level, bool which)
872 {
873 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
874 }
875
writeback_sentinel(struct smq_policy * mq,unsigned int level)876 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned int level)
877 {
878 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
879 }
880
demote_sentinel(struct smq_policy * mq,unsigned int level)881 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned int level)
882 {
883 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
884 }
885
__update_writeback_sentinels(struct smq_policy * mq)886 static void __update_writeback_sentinels(struct smq_policy *mq)
887 {
888 unsigned int level;
889 struct queue *q = &mq->dirty;
890 struct entry *sentinel;
891
892 for (level = 0; level < q->nr_levels; level++) {
893 sentinel = writeback_sentinel(mq, level);
894 q_del(q, sentinel);
895 q_push(q, sentinel);
896 }
897 }
898
__update_demote_sentinels(struct smq_policy * mq)899 static void __update_demote_sentinels(struct smq_policy *mq)
900 {
901 unsigned int level;
902 struct queue *q = &mq->clean;
903 struct entry *sentinel;
904
905 for (level = 0; level < q->nr_levels; level++) {
906 sentinel = demote_sentinel(mq, level);
907 q_del(q, sentinel);
908 q_push(q, sentinel);
909 }
910 }
911
update_sentinels(struct smq_policy * mq)912 static void update_sentinels(struct smq_policy *mq)
913 {
914 if (time_after(jiffies, mq->next_writeback_period)) {
915 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
916 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
917 __update_writeback_sentinels(mq);
918 }
919
920 if (time_after(jiffies, mq->next_demote_period)) {
921 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
922 mq->current_demote_sentinels = !mq->current_demote_sentinels;
923 __update_demote_sentinels(mq);
924 }
925 }
926
__sentinels_init(struct smq_policy * mq)927 static void __sentinels_init(struct smq_policy *mq)
928 {
929 unsigned int level;
930 struct entry *sentinel;
931
932 for (level = 0; level < NR_CACHE_LEVELS; level++) {
933 sentinel = writeback_sentinel(mq, level);
934 sentinel->level = level;
935 q_push(&mq->dirty, sentinel);
936
937 sentinel = demote_sentinel(mq, level);
938 sentinel->level = level;
939 q_push(&mq->clean, sentinel);
940 }
941 }
942
sentinels_init(struct smq_policy * mq)943 static void sentinels_init(struct smq_policy *mq)
944 {
945 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
946 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
947
948 mq->current_writeback_sentinels = false;
949 mq->current_demote_sentinels = false;
950 __sentinels_init(mq);
951
952 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
953 mq->current_demote_sentinels = !mq->current_demote_sentinels;
954 __sentinels_init(mq);
955 }
956
957 /*----------------------------------------------------------------*/
958
del_queue(struct smq_policy * mq,struct entry * e)959 static void del_queue(struct smq_policy *mq, struct entry *e)
960 {
961 q_del(e->dirty ? &mq->dirty : &mq->clean, e);
962 }
963
push_queue(struct smq_policy * mq,struct entry * e)964 static void push_queue(struct smq_policy *mq, struct entry *e)
965 {
966 if (e->dirty)
967 q_push(&mq->dirty, e);
968 else
969 q_push(&mq->clean, e);
970 }
971
972 // !h, !q, a -> h, q, a
push(struct smq_policy * mq,struct entry * e)973 static void push(struct smq_policy *mq, struct entry *e)
974 {
975 h_insert(&mq->table, e);
976 if (!e->pending_work)
977 push_queue(mq, e);
978 }
979
push_queue_front(struct smq_policy * mq,struct entry * e)980 static void push_queue_front(struct smq_policy *mq, struct entry *e)
981 {
982 if (e->dirty)
983 q_push_front(&mq->dirty, e);
984 else
985 q_push_front(&mq->clean, e);
986 }
987
push_front(struct smq_policy * mq,struct entry * e)988 static void push_front(struct smq_policy *mq, struct entry *e)
989 {
990 h_insert(&mq->table, e);
991 if (!e->pending_work)
992 push_queue_front(mq, e);
993 }
994
infer_cblock(struct smq_policy * mq,struct entry * e)995 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
996 {
997 return to_cblock(get_index(&mq->cache_alloc, e));
998 }
999
requeue(struct smq_policy * mq,struct entry * e)1000 static void requeue(struct smq_policy *mq, struct entry *e)
1001 {
1002 /*
1003 * Pending work has temporarily been taken out of the queues.
1004 */
1005 if (e->pending_work)
1006 return;
1007
1008 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
1009 if (!e->dirty) {
1010 q_requeue(&mq->clean, e, 1u, NULL, NULL);
1011 return;
1012 }
1013
1014 q_requeue(&mq->dirty, e, 1u,
1015 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
1016 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
1017 }
1018 }
1019
default_promote_level(struct smq_policy * mq)1020 static unsigned int default_promote_level(struct smq_policy *mq)
1021 {
1022 /*
1023 * The promote level depends on the current performance of the
1024 * cache.
1025 *
1026 * If the cache is performing badly, then we can't afford
1027 * to promote much without causing performance to drop below that
1028 * of the origin device.
1029 *
1030 * If the cache is performing well, then we don't need to promote
1031 * much. If it isn't broken, don't fix it.
1032 *
1033 * If the cache is middling then we promote more.
1034 *
1035 * This scheme reminds me of a graph of entropy vs probability of a
1036 * binary variable.
1037 */
1038 static const unsigned int table[] = {
1039 1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1
1040 };
1041
1042 unsigned int hits = mq->cache_stats.hits;
1043 unsigned int misses = mq->cache_stats.misses;
1044 unsigned int index = safe_div(hits << 4u, hits + misses);
1045 return table[index];
1046 }
1047
update_promote_levels(struct smq_policy * mq)1048 static void update_promote_levels(struct smq_policy *mq)
1049 {
1050 /*
1051 * If there are unused cache entries then we want to be really
1052 * eager to promote.
1053 */
1054 unsigned int threshold_level = allocator_empty(&mq->cache_alloc) ?
1055 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1056
1057 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1058
1059 /*
1060 * If the hotspot queue is performing badly then we have little
1061 * confidence that we know which blocks to promote. So we cut down
1062 * the amount of promotions.
1063 */
1064 switch (stats_assess(&mq->hotspot_stats)) {
1065 case Q_POOR:
1066 threshold_level /= 4u;
1067 break;
1068
1069 case Q_FAIR:
1070 threshold_level /= 2u;
1071 break;
1072
1073 case Q_WELL:
1074 break;
1075 }
1076
1077 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1078 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1079 }
1080
1081 /*
1082 * If the hotspot queue is performing badly, then we try and move entries
1083 * around more quickly.
1084 */
update_level_jump(struct smq_policy * mq)1085 static void update_level_jump(struct smq_policy *mq)
1086 {
1087 switch (stats_assess(&mq->hotspot_stats)) {
1088 case Q_POOR:
1089 mq->hotspot_level_jump = 4u;
1090 break;
1091
1092 case Q_FAIR:
1093 mq->hotspot_level_jump = 2u;
1094 break;
1095
1096 case Q_WELL:
1097 mq->hotspot_level_jump = 1u;
1098 break;
1099 }
1100 }
1101
end_hotspot_period(struct smq_policy * mq)1102 static void end_hotspot_period(struct smq_policy *mq)
1103 {
1104 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1105 update_promote_levels(mq);
1106
1107 if (time_after(jiffies, mq->next_hotspot_period)) {
1108 update_level_jump(mq);
1109 q_redistribute(&mq->hotspot);
1110 stats_reset(&mq->hotspot_stats);
1111 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1112 }
1113 }
1114
end_cache_period(struct smq_policy * mq)1115 static void end_cache_period(struct smq_policy *mq)
1116 {
1117 if (time_after(jiffies, mq->next_cache_period)) {
1118 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1119
1120 q_redistribute(&mq->dirty);
1121 q_redistribute(&mq->clean);
1122 stats_reset(&mq->cache_stats);
1123
1124 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1125 }
1126 }
1127
1128 /*----------------------------------------------------------------*/
1129
1130 /*
1131 * Targets are given as a percentage.
1132 */
1133 #define CLEAN_TARGET 25u
1134 #define FREE_TARGET 25u
1135
percent_to_target(struct smq_policy * mq,unsigned int p)1136 static unsigned int percent_to_target(struct smq_policy *mq, unsigned int p)
1137 {
1138 return from_cblock(mq->cache_size) * p / 100u;
1139 }
1140
clean_target_met(struct smq_policy * mq,bool idle)1141 static bool clean_target_met(struct smq_policy *mq, bool idle)
1142 {
1143 /*
1144 * Cache entries may not be populated. So we cannot rely on the
1145 * size of the clean queue.
1146 */
1147 if (idle || mq->cleaner) {
1148 /*
1149 * We'd like to clean everything.
1150 */
1151 return q_size(&mq->dirty) == 0u;
1152 }
1153
1154 /*
1155 * If we're busy we don't worry about cleaning at all.
1156 */
1157 return true;
1158 }
1159
free_target_met(struct smq_policy * mq)1160 static bool free_target_met(struct smq_policy *mq)
1161 {
1162 unsigned int nr_free;
1163
1164 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1165 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1166 percent_to_target(mq, FREE_TARGET);
1167 }
1168
1169 /*----------------------------------------------------------------*/
1170
mark_pending(struct smq_policy * mq,struct entry * e)1171 static void mark_pending(struct smq_policy *mq, struct entry *e)
1172 {
1173 BUG_ON(e->sentinel);
1174 BUG_ON(!e->allocated);
1175 BUG_ON(e->pending_work);
1176 e->pending_work = true;
1177 }
1178
clear_pending(struct smq_policy * mq,struct entry * e)1179 static void clear_pending(struct smq_policy *mq, struct entry *e)
1180 {
1181 BUG_ON(!e->pending_work);
1182 e->pending_work = false;
1183 }
1184
queue_writeback(struct smq_policy * mq,bool idle)1185 static void queue_writeback(struct smq_policy *mq, bool idle)
1186 {
1187 int r;
1188 struct policy_work work;
1189 struct entry *e;
1190
1191 e = q_peek(&mq->dirty, mq->dirty.nr_levels, idle);
1192 if (e) {
1193 mark_pending(mq, e);
1194 q_del(&mq->dirty, e);
1195
1196 work.op = POLICY_WRITEBACK;
1197 work.oblock = e->oblock;
1198 work.cblock = infer_cblock(mq, e);
1199
1200 r = btracker_queue(mq->bg_work, &work, NULL);
1201 if (r) {
1202 clear_pending(mq, e);
1203 q_push_front(&mq->dirty, e);
1204 }
1205 }
1206 }
1207
queue_demotion(struct smq_policy * mq)1208 static void queue_demotion(struct smq_policy *mq)
1209 {
1210 int r;
1211 struct policy_work work;
1212 struct entry *e;
1213
1214 if (WARN_ON_ONCE(!mq->migrations_allowed))
1215 return;
1216
1217 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1218 if (!e) {
1219 if (!clean_target_met(mq, true))
1220 queue_writeback(mq, false);
1221 return;
1222 }
1223
1224 mark_pending(mq, e);
1225 q_del(&mq->clean, e);
1226
1227 work.op = POLICY_DEMOTE;
1228 work.oblock = e->oblock;
1229 work.cblock = infer_cblock(mq, e);
1230 r = btracker_queue(mq->bg_work, &work, NULL);
1231 if (r) {
1232 clear_pending(mq, e);
1233 q_push_front(&mq->clean, e);
1234 }
1235 }
1236
queue_promotion(struct smq_policy * mq,dm_oblock_t oblock,struct policy_work ** workp)1237 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1238 struct policy_work **workp)
1239 {
1240 int r;
1241 struct entry *e;
1242 struct policy_work work;
1243
1244 if (!mq->migrations_allowed)
1245 return;
1246
1247 if (allocator_empty(&mq->cache_alloc)) {
1248 /*
1249 * We always claim to be 'idle' to ensure some demotions happen
1250 * with continuous loads.
1251 */
1252 if (!free_target_met(mq))
1253 queue_demotion(mq);
1254 return;
1255 }
1256
1257 if (btracker_promotion_already_present(mq->bg_work, oblock))
1258 return;
1259
1260 /*
1261 * We allocate the entry now to reserve the cblock. If the
1262 * background work is aborted we must remember to free it.
1263 */
1264 e = alloc_entry(&mq->cache_alloc);
1265 BUG_ON(!e);
1266 e->pending_work = true;
1267 work.op = POLICY_PROMOTE;
1268 work.oblock = oblock;
1269 work.cblock = infer_cblock(mq, e);
1270 r = btracker_queue(mq->bg_work, &work, workp);
1271 if (r)
1272 free_entry(&mq->cache_alloc, e);
1273 }
1274
1275 /*----------------------------------------------------------------*/
1276
1277 enum promote_result {
1278 PROMOTE_NOT,
1279 PROMOTE_TEMPORARY,
1280 PROMOTE_PERMANENT
1281 };
1282
1283 /*
1284 * Converts a boolean into a promote result.
1285 */
maybe_promote(bool promote)1286 static enum promote_result maybe_promote(bool promote)
1287 {
1288 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1289 }
1290
should_promote(struct smq_policy * mq,struct entry * hs_e,int data_dir,bool fast_promote)1291 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1292 int data_dir, bool fast_promote)
1293 {
1294 if (data_dir == WRITE) {
1295 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1296 return PROMOTE_TEMPORARY;
1297
1298 return maybe_promote(hs_e->level >= mq->write_promote_level);
1299 } else
1300 return maybe_promote(hs_e->level >= mq->read_promote_level);
1301 }
1302
to_hblock(struct smq_policy * mq,dm_oblock_t b)1303 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1304 {
1305 sector_t r = from_oblock(b);
1306 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1307 return to_oblock(r);
1308 }
1309
update_hotspot_queue(struct smq_policy * mq,dm_oblock_t b)1310 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1311 {
1312 unsigned int hi;
1313 dm_oblock_t hb = to_hblock(mq, b);
1314 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1315
1316 if (e) {
1317 stats_level_accessed(&mq->hotspot_stats, e->level);
1318
1319 hi = get_index(&mq->hotspot_alloc, e);
1320 q_requeue(&mq->hotspot, e,
1321 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1322 0u : mq->hotspot_level_jump,
1323 NULL, NULL);
1324
1325 } else {
1326 stats_miss(&mq->hotspot_stats);
1327
1328 e = alloc_entry(&mq->hotspot_alloc);
1329 if (!e) {
1330 e = q_pop(&mq->hotspot);
1331 if (e) {
1332 h_remove(&mq->hotspot_table, e);
1333 hi = get_index(&mq->hotspot_alloc, e);
1334 clear_bit(hi, mq->hotspot_hit_bits);
1335 }
1336
1337 }
1338
1339 if (e) {
1340 e->oblock = hb;
1341 q_push(&mq->hotspot, e);
1342 h_insert(&mq->hotspot_table, e);
1343 }
1344 }
1345
1346 return e;
1347 }
1348
1349 /*----------------------------------------------------------------*/
1350
1351 /*
1352 * Public interface, via the policy struct. See dm-cache-policy.h for a
1353 * description of these.
1354 */
1355
to_smq_policy(struct dm_cache_policy * p)1356 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1357 {
1358 return container_of(p, struct smq_policy, policy);
1359 }
1360
smq_destroy(struct dm_cache_policy * p)1361 static void smq_destroy(struct dm_cache_policy *p)
1362 {
1363 struct smq_policy *mq = to_smq_policy(p);
1364
1365 btracker_destroy(mq->bg_work);
1366 h_exit(&mq->hotspot_table);
1367 h_exit(&mq->table);
1368 free_bitset(mq->hotspot_hit_bits);
1369 free_bitset(mq->cache_hit_bits);
1370 space_exit(&mq->es);
1371 kfree(mq);
1372 }
1373
1374 /*----------------------------------------------------------------*/
1375
__lookup(struct smq_policy * mq,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,struct policy_work ** work,bool * background_work)1376 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1377 int data_dir, bool fast_copy,
1378 struct policy_work **work, bool *background_work)
1379 {
1380 struct entry *e, *hs_e;
1381 enum promote_result pr;
1382
1383 *background_work = false;
1384
1385 e = h_lookup(&mq->table, oblock);
1386 if (e) {
1387 stats_level_accessed(&mq->cache_stats, e->level);
1388
1389 requeue(mq, e);
1390 *cblock = infer_cblock(mq, e);
1391 return 0;
1392
1393 } else {
1394 stats_miss(&mq->cache_stats);
1395
1396 /*
1397 * The hotspot queue only gets updated with misses.
1398 */
1399 hs_e = update_hotspot_queue(mq, oblock);
1400
1401 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1402 if (pr != PROMOTE_NOT) {
1403 queue_promotion(mq, oblock, work);
1404 *background_work = true;
1405 }
1406
1407 return -ENOENT;
1408 }
1409 }
1410
smq_lookup(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,bool * background_work)1411 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1412 int data_dir, bool fast_copy,
1413 bool *background_work)
1414 {
1415 int r;
1416 unsigned long flags;
1417 struct smq_policy *mq = to_smq_policy(p);
1418
1419 spin_lock_irqsave(&mq->lock, flags);
1420 r = __lookup(mq, oblock, cblock,
1421 data_dir, fast_copy,
1422 NULL, background_work);
1423 spin_unlock_irqrestore(&mq->lock, flags);
1424
1425 return r;
1426 }
1427
smq_lookup_with_work(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t * cblock,int data_dir,bool fast_copy,struct policy_work ** work)1428 static int smq_lookup_with_work(struct dm_cache_policy *p,
1429 dm_oblock_t oblock, dm_cblock_t *cblock,
1430 int data_dir, bool fast_copy,
1431 struct policy_work **work)
1432 {
1433 int r;
1434 bool background_queued;
1435 unsigned long flags;
1436 struct smq_policy *mq = to_smq_policy(p);
1437
1438 spin_lock_irqsave(&mq->lock, flags);
1439 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1440 spin_unlock_irqrestore(&mq->lock, flags);
1441
1442 return r;
1443 }
1444
smq_get_background_work(struct dm_cache_policy * p,bool idle,struct policy_work ** result)1445 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1446 struct policy_work **result)
1447 {
1448 int r;
1449 unsigned long flags;
1450 struct smq_policy *mq = to_smq_policy(p);
1451
1452 spin_lock_irqsave(&mq->lock, flags);
1453 r = btracker_issue(mq->bg_work, result);
1454 if (r == -ENODATA) {
1455 if (!clean_target_met(mq, idle)) {
1456 queue_writeback(mq, idle);
1457 r = btracker_issue(mq->bg_work, result);
1458 }
1459 }
1460 spin_unlock_irqrestore(&mq->lock, flags);
1461
1462 return r;
1463 }
1464
1465 /*
1466 * We need to clear any pending work flags that have been set, and in the
1467 * case of promotion free the entry for the destination cblock.
1468 */
__complete_background_work(struct smq_policy * mq,struct policy_work * work,bool success)1469 static void __complete_background_work(struct smq_policy *mq,
1470 struct policy_work *work,
1471 bool success)
1472 {
1473 struct entry *e = get_entry(&mq->cache_alloc,
1474 from_cblock(work->cblock));
1475
1476 switch (work->op) {
1477 case POLICY_PROMOTE:
1478 // !h, !q, a
1479 clear_pending(mq, e);
1480 if (success) {
1481 e->oblock = work->oblock;
1482 e->level = NR_CACHE_LEVELS - 1;
1483 push(mq, e);
1484 // h, q, a
1485 } else {
1486 free_entry(&mq->cache_alloc, e);
1487 // !h, !q, !a
1488 }
1489 break;
1490
1491 case POLICY_DEMOTE:
1492 // h, !q, a
1493 if (success) {
1494 h_remove(&mq->table, e);
1495 free_entry(&mq->cache_alloc, e);
1496 // !h, !q, !a
1497 } else {
1498 clear_pending(mq, e);
1499 push_queue(mq, e);
1500 // h, q, a
1501 }
1502 break;
1503
1504 case POLICY_WRITEBACK:
1505 // h, !q, a
1506 clear_pending(mq, e);
1507 push_queue(mq, e);
1508 // h, q, a
1509 break;
1510 }
1511
1512 btracker_complete(mq->bg_work, work);
1513 }
1514
smq_complete_background_work(struct dm_cache_policy * p,struct policy_work * work,bool success)1515 static void smq_complete_background_work(struct dm_cache_policy *p,
1516 struct policy_work *work,
1517 bool success)
1518 {
1519 unsigned long flags;
1520 struct smq_policy *mq = to_smq_policy(p);
1521
1522 spin_lock_irqsave(&mq->lock, flags);
1523 __complete_background_work(mq, work, success);
1524 spin_unlock_irqrestore(&mq->lock, flags);
1525 }
1526
1527 // in_hash(oblock) -> in_hash(oblock)
__smq_set_clear_dirty(struct smq_policy * mq,dm_cblock_t cblock,bool set)1528 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1529 {
1530 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1531
1532 if (e->pending_work)
1533 e->dirty = set;
1534 else {
1535 del_queue(mq, e);
1536 e->dirty = set;
1537 push_queue(mq, e);
1538 }
1539 }
1540
smq_set_dirty(struct dm_cache_policy * p,dm_cblock_t cblock)1541 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1542 {
1543 unsigned long flags;
1544 struct smq_policy *mq = to_smq_policy(p);
1545
1546 spin_lock_irqsave(&mq->lock, flags);
1547 __smq_set_clear_dirty(mq, cblock, true);
1548 spin_unlock_irqrestore(&mq->lock, flags);
1549 }
1550
smq_clear_dirty(struct dm_cache_policy * p,dm_cblock_t cblock)1551 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1552 {
1553 struct smq_policy *mq = to_smq_policy(p);
1554 unsigned long flags;
1555
1556 spin_lock_irqsave(&mq->lock, flags);
1557 __smq_set_clear_dirty(mq, cblock, false);
1558 spin_unlock_irqrestore(&mq->lock, flags);
1559 }
1560
random_level(dm_cblock_t cblock)1561 static unsigned int random_level(dm_cblock_t cblock)
1562 {
1563 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1564 }
1565
smq_load_mapping(struct dm_cache_policy * p,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)1566 static int smq_load_mapping(struct dm_cache_policy *p,
1567 dm_oblock_t oblock, dm_cblock_t cblock,
1568 bool dirty, uint32_t hint, bool hint_valid)
1569 {
1570 struct smq_policy *mq = to_smq_policy(p);
1571 struct entry *e;
1572
1573 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1574 e->oblock = oblock;
1575 e->dirty = dirty;
1576 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1577 e->pending_work = false;
1578
1579 /*
1580 * When we load mappings we push ahead of both sentinels in order to
1581 * allow demotions and cleaning to occur immediately.
1582 */
1583 push_front(mq, e);
1584
1585 return 0;
1586 }
1587
smq_invalidate_mapping(struct dm_cache_policy * p,dm_cblock_t cblock)1588 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1589 {
1590 struct smq_policy *mq = to_smq_policy(p);
1591 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1592
1593 if (!e->allocated)
1594 return -ENODATA;
1595
1596 // FIXME: what if this block has pending background work?
1597 del_queue(mq, e);
1598 h_remove(&mq->table, e);
1599 free_entry(&mq->cache_alloc, e);
1600 return 0;
1601 }
1602
smq_get_hint(struct dm_cache_policy * p,dm_cblock_t cblock)1603 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1604 {
1605 struct smq_policy *mq = to_smq_policy(p);
1606 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1607
1608 if (!e->allocated)
1609 return 0;
1610
1611 return e->level;
1612 }
1613
smq_residency(struct dm_cache_policy * p)1614 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1615 {
1616 dm_cblock_t r;
1617 unsigned long flags;
1618 struct smq_policy *mq = to_smq_policy(p);
1619
1620 spin_lock_irqsave(&mq->lock, flags);
1621 r = to_cblock(mq->cache_alloc.nr_allocated);
1622 spin_unlock_irqrestore(&mq->lock, flags);
1623
1624 return r;
1625 }
1626
smq_tick(struct dm_cache_policy * p,bool can_block)1627 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1628 {
1629 struct smq_policy *mq = to_smq_policy(p);
1630 unsigned long flags;
1631
1632 spin_lock_irqsave(&mq->lock, flags);
1633 mq->tick++;
1634 update_sentinels(mq);
1635 end_hotspot_period(mq);
1636 end_cache_period(mq);
1637 spin_unlock_irqrestore(&mq->lock, flags);
1638 }
1639
smq_allow_migrations(struct dm_cache_policy * p,bool allow)1640 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1641 {
1642 struct smq_policy *mq = to_smq_policy(p);
1643
1644 mq->migrations_allowed = allow;
1645 }
1646
1647 /*
1648 * smq has no config values, but the old mq policy did. To avoid breaking
1649 * software we continue to accept these configurables for the mq policy,
1650 * but they have no effect.
1651 */
mq_set_config_value(struct dm_cache_policy * p,const char * key,const char * value)1652 static int mq_set_config_value(struct dm_cache_policy *p,
1653 const char *key, const char *value)
1654 {
1655 unsigned long tmp;
1656
1657 if (kstrtoul(value, 10, &tmp))
1658 return -EINVAL;
1659
1660 if (!strcasecmp(key, "random_threshold") ||
1661 !strcasecmp(key, "sequential_threshold") ||
1662 !strcasecmp(key, "discard_promote_adjustment") ||
1663 !strcasecmp(key, "read_promote_adjustment") ||
1664 !strcasecmp(key, "write_promote_adjustment")) {
1665 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1666 return 0;
1667 }
1668
1669 return -EINVAL;
1670 }
1671
mq_emit_config_values(struct dm_cache_policy * p,char * result,unsigned int maxlen,ssize_t * sz_ptr)1672 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1673 unsigned int maxlen, ssize_t *sz_ptr)
1674 {
1675 ssize_t sz = *sz_ptr;
1676
1677 DMEMIT("10 random_threshold 0 "
1678 "sequential_threshold 0 "
1679 "discard_promote_adjustment 0 "
1680 "read_promote_adjustment 0 "
1681 "write_promote_adjustment 0 ");
1682
1683 *sz_ptr = sz;
1684 return 0;
1685 }
1686
1687 /* Init the policy plugin interface function pointers. */
init_policy_functions(struct smq_policy * mq,bool mimic_mq)1688 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1689 {
1690 mq->policy.destroy = smq_destroy;
1691 mq->policy.lookup = smq_lookup;
1692 mq->policy.lookup_with_work = smq_lookup_with_work;
1693 mq->policy.get_background_work = smq_get_background_work;
1694 mq->policy.complete_background_work = smq_complete_background_work;
1695 mq->policy.set_dirty = smq_set_dirty;
1696 mq->policy.clear_dirty = smq_clear_dirty;
1697 mq->policy.load_mapping = smq_load_mapping;
1698 mq->policy.invalidate_mapping = smq_invalidate_mapping;
1699 mq->policy.get_hint = smq_get_hint;
1700 mq->policy.residency = smq_residency;
1701 mq->policy.tick = smq_tick;
1702 mq->policy.allow_migrations = smq_allow_migrations;
1703
1704 if (mimic_mq) {
1705 mq->policy.set_config_value = mq_set_config_value;
1706 mq->policy.emit_config_values = mq_emit_config_values;
1707 }
1708 }
1709
too_many_hotspot_blocks(sector_t origin_size,sector_t hotspot_block_size,unsigned int nr_hotspot_blocks)1710 static bool too_many_hotspot_blocks(sector_t origin_size,
1711 sector_t hotspot_block_size,
1712 unsigned int nr_hotspot_blocks)
1713 {
1714 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1715 }
1716
calc_hotspot_params(sector_t origin_size,sector_t cache_block_size,unsigned int nr_cache_blocks,sector_t * hotspot_block_size,unsigned int * nr_hotspot_blocks)1717 static void calc_hotspot_params(sector_t origin_size,
1718 sector_t cache_block_size,
1719 unsigned int nr_cache_blocks,
1720 sector_t *hotspot_block_size,
1721 unsigned int *nr_hotspot_blocks)
1722 {
1723 *hotspot_block_size = cache_block_size * 16u;
1724 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1725
1726 while ((*hotspot_block_size > cache_block_size) &&
1727 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1728 *hotspot_block_size /= 2u;
1729 }
1730
1731 static struct dm_cache_policy *
__smq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size,bool mimic_mq,bool migrations_allowed,bool cleaner)1732 __smq_create(dm_cblock_t cache_size, sector_t origin_size, sector_t cache_block_size,
1733 bool mimic_mq, bool migrations_allowed, bool cleaner)
1734 {
1735 unsigned int i;
1736 unsigned int nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1737 unsigned int total_sentinels = 2u * nr_sentinels_per_queue;
1738 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1739
1740 if (!mq)
1741 return NULL;
1742
1743 init_policy_functions(mq, mimic_mq);
1744 mq->cache_size = cache_size;
1745 mq->cache_block_size = cache_block_size;
1746
1747 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1748 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1749
1750 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1751 mq->hotspot_level_jump = 1u;
1752 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1753 DMERR("couldn't initialize entry space");
1754 goto bad_pool_init;
1755 }
1756
1757 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1758 for (i = 0; i < nr_sentinels_per_queue; i++)
1759 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1760
1761 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1762 for (i = 0; i < nr_sentinels_per_queue; i++)
1763 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1764
1765 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1766 total_sentinels + mq->nr_hotspot_blocks);
1767
1768 init_allocator(&mq->cache_alloc, &mq->es,
1769 total_sentinels + mq->nr_hotspot_blocks,
1770 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1771
1772 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1773 if (!mq->hotspot_hit_bits) {
1774 DMERR("couldn't allocate hotspot hit bitset");
1775 goto bad_hotspot_hit_bits;
1776 }
1777 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1778
1779 if (from_cblock(cache_size)) {
1780 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1781 if (!mq->cache_hit_bits) {
1782 DMERR("couldn't allocate cache hit bitset");
1783 goto bad_cache_hit_bits;
1784 }
1785 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1786 } else
1787 mq->cache_hit_bits = NULL;
1788
1789 mq->tick = 0;
1790 spin_lock_init(&mq->lock);
1791
1792 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1793 mq->hotspot.nr_top_levels = 8;
1794 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1795 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1796
1797 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1798 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1799
1800 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1801 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1802
1803 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1804 goto bad_alloc_table;
1805
1806 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1807 goto bad_alloc_hotspot_table;
1808
1809 sentinels_init(mq);
1810 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1811
1812 mq->next_hotspot_period = jiffies;
1813 mq->next_cache_period = jiffies;
1814
1815 mq->bg_work = btracker_create(4096); /* FIXME: hard coded value */
1816 if (!mq->bg_work)
1817 goto bad_btracker;
1818
1819 mq->migrations_allowed = migrations_allowed;
1820 mq->cleaner = cleaner;
1821
1822 return &mq->policy;
1823
1824 bad_btracker:
1825 h_exit(&mq->hotspot_table);
1826 bad_alloc_hotspot_table:
1827 h_exit(&mq->table);
1828 bad_alloc_table:
1829 free_bitset(mq->cache_hit_bits);
1830 bad_cache_hit_bits:
1831 free_bitset(mq->hotspot_hit_bits);
1832 bad_hotspot_hit_bits:
1833 space_exit(&mq->es);
1834 bad_pool_init:
1835 kfree(mq);
1836
1837 return NULL;
1838 }
1839
smq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1840 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1841 sector_t origin_size,
1842 sector_t cache_block_size)
1843 {
1844 return __smq_create(cache_size, origin_size, cache_block_size,
1845 false, true, false);
1846 }
1847
mq_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1848 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1849 sector_t origin_size,
1850 sector_t cache_block_size)
1851 {
1852 return __smq_create(cache_size, origin_size, cache_block_size,
1853 true, true, false);
1854 }
1855
cleaner_create(dm_cblock_t cache_size,sector_t origin_size,sector_t cache_block_size)1856 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1857 sector_t origin_size,
1858 sector_t cache_block_size)
1859 {
1860 return __smq_create(cache_size, origin_size, cache_block_size,
1861 false, false, true);
1862 }
1863
1864 /*----------------------------------------------------------------*/
1865
1866 static struct dm_cache_policy_type smq_policy_type = {
1867 .name = "smq",
1868 .version = {2, 0, 0},
1869 .hint_size = 4,
1870 .owner = THIS_MODULE,
1871 .create = smq_create
1872 };
1873
1874 static struct dm_cache_policy_type mq_policy_type = {
1875 .name = "mq",
1876 .version = {2, 0, 0},
1877 .hint_size = 4,
1878 .owner = THIS_MODULE,
1879 .create = mq_create,
1880 };
1881
1882 static struct dm_cache_policy_type cleaner_policy_type = {
1883 .name = "cleaner",
1884 .version = {2, 0, 0},
1885 .hint_size = 4,
1886 .owner = THIS_MODULE,
1887 .create = cleaner_create,
1888 };
1889
1890 static struct dm_cache_policy_type default_policy_type = {
1891 .name = "default",
1892 .version = {2, 0, 0},
1893 .hint_size = 4,
1894 .owner = THIS_MODULE,
1895 .create = smq_create,
1896 .real = &smq_policy_type
1897 };
1898
smq_init(void)1899 static int __init smq_init(void)
1900 {
1901 int r;
1902
1903 r = dm_cache_policy_register(&smq_policy_type);
1904 if (r) {
1905 DMERR("register failed %d", r);
1906 return -ENOMEM;
1907 }
1908
1909 r = dm_cache_policy_register(&mq_policy_type);
1910 if (r) {
1911 DMERR("register failed (as mq) %d", r);
1912 goto out_mq;
1913 }
1914
1915 r = dm_cache_policy_register(&cleaner_policy_type);
1916 if (r) {
1917 DMERR("register failed (as cleaner) %d", r);
1918 goto out_cleaner;
1919 }
1920
1921 r = dm_cache_policy_register(&default_policy_type);
1922 if (r) {
1923 DMERR("register failed (as default) %d", r);
1924 goto out_default;
1925 }
1926
1927 return 0;
1928
1929 out_default:
1930 dm_cache_policy_unregister(&cleaner_policy_type);
1931 out_cleaner:
1932 dm_cache_policy_unregister(&mq_policy_type);
1933 out_mq:
1934 dm_cache_policy_unregister(&smq_policy_type);
1935
1936 return -ENOMEM;
1937 }
1938
smq_exit(void)1939 static void __exit smq_exit(void)
1940 {
1941 dm_cache_policy_unregister(&cleaner_policy_type);
1942 dm_cache_policy_unregister(&smq_policy_type);
1943 dm_cache_policy_unregister(&mq_policy_type);
1944 dm_cache_policy_unregister(&default_policy_type);
1945 }
1946
1947 module_init(smq_init);
1948 module_exit(smq_exit);
1949
1950 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1951 MODULE_LICENSE("GPL");
1952 MODULE_DESCRIPTION("smq cache policy");
1953
1954 MODULE_ALIAS("dm-cache-default");
1955 MODULE_ALIAS("dm-cache-mq");
1956 MODULE_ALIAS("dm-cache-cleaner");
1957