xref: /openbmc/linux/drivers/md/dm-bufio.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*----------------------------------------------------------------*/
195 
196 /*
197  * Default cache size: available memory divided by the ratio.
198  */
199 static unsigned long dm_bufio_default_cache_size;
200 
201 /*
202  * Total cache size set by the user.
203  */
204 static unsigned long dm_bufio_cache_size;
205 
206 /*
207  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208  * at any time.  If it disagrees, the user has changed cache size.
209  */
210 static unsigned long dm_bufio_cache_size_latch;
211 
212 static DEFINE_SPINLOCK(param_spinlock);
213 
214 /*
215  * Buffers are freed after this timeout
216  */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219 
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225 
226 /*----------------------------------------------------------------*/
227 
228 /*
229  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230  */
231 static unsigned long dm_bufio_cache_size_per_client;
232 
233 /*
234  * The current number of clients.
235  */
236 static int dm_bufio_client_count;
237 
238 /*
239  * The list of all clients.
240  */
241 static LIST_HEAD(dm_bufio_all_clients);
242 
243 /*
244  * This mutex protects dm_bufio_cache_size_latch,
245  * dm_bufio_cache_size_per_client and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248 
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 	b->stack_trace.nr_entries = 0;
253 	b->stack_trace.max_entries = MAX_STACK;
254 	b->stack_trace.entries = b->stack_entries;
255 	b->stack_trace.skip = 2;
256 	save_stack_trace(&b->stack_trace);
257 }
258 #endif
259 
260 /*----------------------------------------------------------------
261  * A red/black tree acts as an index for all the buffers.
262  *--------------------------------------------------------------*/
263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 	struct rb_node *n = c->buffer_tree.rb_node;
266 	struct dm_buffer *b;
267 
268 	while (n) {
269 		b = container_of(n, struct dm_buffer, node);
270 
271 		if (b->block == block)
272 			return b;
273 
274 		n = (b->block < block) ? n->rb_left : n->rb_right;
275 	}
276 
277 	return NULL;
278 }
279 
280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 	struct dm_buffer *found;
284 
285 	while (*new) {
286 		found = container_of(*new, struct dm_buffer, node);
287 
288 		if (found->block == b->block) {
289 			BUG_ON(found != b);
290 			return;
291 		}
292 
293 		parent = *new;
294 		new = (found->block < b->block) ?
295 			&((*new)->rb_left) : &((*new)->rb_right);
296 	}
297 
298 	rb_link_node(&b->node, parent, new);
299 	rb_insert_color(&b->node, &c->buffer_tree);
300 }
301 
302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 	rb_erase(&b->node, &c->buffer_tree);
305 }
306 
307 /*----------------------------------------------------------------*/
308 
309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 		&dm_bufio_allocated_kmem_cache,
313 		&dm_bufio_allocated_get_free_pages,
314 		&dm_bufio_allocated_vmalloc,
315 	};
316 
317 	spin_lock(&param_spinlock);
318 
319 	*class_ptr[data_mode] += diff;
320 
321 	dm_bufio_current_allocated += diff;
322 
323 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
325 
326 	spin_unlock(&param_spinlock);
327 }
328 
329 /*
330  * Change the number of clients and recalculate per-client limit.
331  */
332 static void __cache_size_refresh(void)
333 {
334 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 	BUG_ON(dm_bufio_client_count < 0);
336 
337 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338 
339 	/*
340 	 * Use default if set to 0 and report the actual cache size used.
341 	 */
342 	if (!dm_bufio_cache_size_latch) {
343 		(void)cmpxchg(&dm_bufio_cache_size, 0,
344 			      dm_bufio_default_cache_size);
345 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 	}
347 
348 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 					 (dm_bufio_client_count ? : 1);
350 }
351 
352 /*
353  * Allocating buffer data.
354  *
355  * Small buffers are allocated with kmem_cache, to use space optimally.
356  *
357  * For large buffers, we choose between get_free_pages and vmalloc.
358  * Each has advantages and disadvantages.
359  *
360  * __get_free_pages can randomly fail if the memory is fragmented.
361  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362  * as low as 128M) so using it for caching is not appropriate.
363  *
364  * If the allocation may fail we use __get_free_pages. Memory fragmentation
365  * won't have a fatal effect here, but it just causes flushes of some other
366  * buffers and more I/O will be performed. Don't use __get_free_pages if it
367  * always fails (i.e. order >= MAX_ORDER).
368  *
369  * If the allocation shouldn't fail we use __vmalloc. This is only for the
370  * initial reserve allocation, so there's no risk of wasting all vmalloc
371  * space.
372  */
373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 			       enum data_mode *data_mode)
375 {
376 	unsigned noio_flag;
377 	void *ptr;
378 
379 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 		*data_mode = DATA_MODE_SLAB;
381 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 	}
383 
384 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 	    gfp_mask & __GFP_NORETRY) {
386 		*data_mode = DATA_MODE_GET_FREE_PAGES;
387 		return (void *)__get_free_pages(gfp_mask,
388 						c->pages_per_block_bits);
389 	}
390 
391 	*data_mode = DATA_MODE_VMALLOC;
392 
393 	/*
394 	 * __vmalloc allocates the data pages and auxiliary structures with
395 	 * gfp_flags that were specified, but pagetables are always allocated
396 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 	 *
398 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 	 * all allocations done by this process (including pagetables) are done
400 	 * as if GFP_NOIO was specified.
401 	 */
402 
403 	if (gfp_mask & __GFP_NORETRY)
404 		noio_flag = memalloc_noio_save();
405 
406 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407 
408 	if (gfp_mask & __GFP_NORETRY)
409 		memalloc_noio_restore(noio_flag);
410 
411 	return ptr;
412 }
413 
414 /*
415  * Free buffer's data.
416  */
417 static void free_buffer_data(struct dm_bufio_client *c,
418 			     void *data, enum data_mode data_mode)
419 {
420 	switch (data_mode) {
421 	case DATA_MODE_SLAB:
422 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 		break;
424 
425 	case DATA_MODE_GET_FREE_PAGES:
426 		free_pages((unsigned long)data, c->pages_per_block_bits);
427 		break;
428 
429 	case DATA_MODE_VMALLOC:
430 		vfree(data);
431 		break;
432 
433 	default:
434 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 		       data_mode);
436 		BUG();
437 	}
438 }
439 
440 /*
441  * Allocate buffer and its data.
442  */
443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 				      gfp_mask);
447 
448 	if (!b)
449 		return NULL;
450 
451 	b->c = c;
452 
453 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 	if (!b->data) {
455 		kfree(b);
456 		return NULL;
457 	}
458 
459 	adjust_total_allocated(b->data_mode, (long)c->block_size);
460 
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 	return b;
465 }
466 
467 /*
468  * Free buffer and its data.
469  */
470 static void free_buffer(struct dm_buffer *b)
471 {
472 	struct dm_bufio_client *c = b->c;
473 
474 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
475 
476 	free_buffer_data(c, b->data, b->data_mode);
477 	kfree(b);
478 }
479 
480 /*
481  * Link buffer to the hash list and clean or dirty queue.
482  */
483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	c->n_buffers[dirty]++;
488 	b->block = block;
489 	b->list_mode = dirty;
490 	list_add(&b->lru_list, &c->lru[dirty]);
491 	__insert(b->c, b);
492 	b->last_accessed = jiffies;
493 }
494 
495 /*
496  * Unlink buffer from the hash list and dirty or clean queue.
497  */
498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 	struct dm_bufio_client *c = b->c;
501 
502 	BUG_ON(!c->n_buffers[b->list_mode]);
503 
504 	c->n_buffers[b->list_mode]--;
505 	__remove(b->c, b);
506 	list_del(&b->lru_list);
507 }
508 
509 /*
510  * Place the buffer to the head of dirty or clean LRU queue.
511  */
512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 	struct dm_bufio_client *c = b->c;
515 
516 	BUG_ON(!c->n_buffers[b->list_mode]);
517 
518 	c->n_buffers[b->list_mode]--;
519 	c->n_buffers[dirty]++;
520 	b->list_mode = dirty;
521 	list_move(&b->lru_list, &c->lru[dirty]);
522 	b->last_accessed = jiffies;
523 }
524 
525 /*----------------------------------------------------------------
526  * Submit I/O on the buffer.
527  *
528  * Bio interface is faster but it has some problems:
529  *	the vector list is limited (increasing this limit increases
530  *	memory-consumption per buffer, so it is not viable);
531  *
532  *	the memory must be direct-mapped, not vmalloced;
533  *
534  *	the I/O driver can reject requests spuriously if it thinks that
535  *	the requests are too big for the device or if they cross a
536  *	controller-defined memory boundary.
537  *
538  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539  * it is not vmalloced, try using the bio interface.
540  *
541  * If the buffer is big, if it is vmalloced or if the underlying device
542  * rejects the bio because it is too large, use dm-io layer to do the I/O.
543  * The dm-io layer splits the I/O into multiple requests, avoiding the above
544  * shortcomings.
545  *--------------------------------------------------------------*/
546 
547 /*
548  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549  * that the request was handled directly with bio interface.
550  */
551 static void dmio_complete(unsigned long error, void *context)
552 {
553 	struct dm_buffer *b = context;
554 
555 	b->bio.bi_error = error ? -EIO : 0;
556 	b->bio.bi_end_io(&b->bio);
557 }
558 
559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 		     bio_end_io_t *end_io)
561 {
562 	int r;
563 	struct dm_io_request io_req = {
564 		.bi_op = rw,
565 		.bi_op_flags = 0,
566 		.notify.fn = dmio_complete,
567 		.notify.context = b,
568 		.client = b->c->dm_io,
569 	};
570 	struct dm_io_region region = {
571 		.bdev = b->c->bdev,
572 		.sector = block << b->c->sectors_per_block_bits,
573 		.count = b->c->block_size >> SECTOR_SHIFT,
574 	};
575 
576 	if (b->data_mode != DATA_MODE_VMALLOC) {
577 		io_req.mem.type = DM_IO_KMEM;
578 		io_req.mem.ptr.addr = b->data;
579 	} else {
580 		io_req.mem.type = DM_IO_VMA;
581 		io_req.mem.ptr.vma = b->data;
582 	}
583 
584 	b->bio.bi_end_io = end_io;
585 
586 	r = dm_io(&io_req, 1, &region, NULL);
587 	if (r) {
588 		b->bio.bi_error = r;
589 		end_io(&b->bio);
590 	}
591 }
592 
593 static void inline_endio(struct bio *bio)
594 {
595 	bio_end_io_t *end_fn = bio->bi_private;
596 	int error = bio->bi_error;
597 
598 	/*
599 	 * Reset the bio to free any attached resources
600 	 * (e.g. bio integrity profiles).
601 	 */
602 	bio_reset(bio);
603 
604 	bio->bi_error = error;
605 	end_fn(bio);
606 }
607 
608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 			   bio_end_io_t *end_io)
610 {
611 	char *ptr;
612 	int len;
613 
614 	bio_init(&b->bio);
615 	b->bio.bi_io_vec = b->bio_vec;
616 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
617 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
618 	b->bio.bi_bdev = b->c->bdev;
619 	b->bio.bi_end_io = inline_endio;
620 	/*
621 	 * Use of .bi_private isn't a problem here because
622 	 * the dm_buffer's inline bio is local to bufio.
623 	 */
624 	b->bio.bi_private = end_io;
625 	bio_set_op_attrs(&b->bio, rw, 0);
626 
627 	/*
628 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
629 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
630 	 */
631 	ptr = b->data;
632 	len = b->c->block_size;
633 
634 	if (len >= PAGE_SIZE)
635 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
636 	else
637 		BUG_ON((unsigned long)ptr & (len - 1));
638 
639 	do {
640 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
641 				  len < PAGE_SIZE ? len : PAGE_SIZE,
642 				  offset_in_page(ptr))) {
643 			BUG_ON(b->c->block_size <= PAGE_SIZE);
644 			use_dmio(b, rw, block, end_io);
645 			return;
646 		}
647 
648 		len -= PAGE_SIZE;
649 		ptr += PAGE_SIZE;
650 	} while (len > 0);
651 
652 	submit_bio(&b->bio);
653 }
654 
655 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
656 		      bio_end_io_t *end_io)
657 {
658 	if (rw == WRITE && b->c->write_callback)
659 		b->c->write_callback(b);
660 
661 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
662 	    b->data_mode != DATA_MODE_VMALLOC)
663 		use_inline_bio(b, rw, block, end_io);
664 	else
665 		use_dmio(b, rw, block, end_io);
666 }
667 
668 /*----------------------------------------------------------------
669  * Writing dirty buffers
670  *--------------------------------------------------------------*/
671 
672 /*
673  * The endio routine for write.
674  *
675  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
676  * it.
677  */
678 static void write_endio(struct bio *bio)
679 {
680 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
681 
682 	b->write_error = bio->bi_error;
683 	if (unlikely(bio->bi_error)) {
684 		struct dm_bufio_client *c = b->c;
685 		int error = bio->bi_error;
686 		(void)cmpxchg(&c->async_write_error, 0, error);
687 	}
688 
689 	BUG_ON(!test_bit(B_WRITING, &b->state));
690 
691 	smp_mb__before_atomic();
692 	clear_bit(B_WRITING, &b->state);
693 	smp_mb__after_atomic();
694 
695 	wake_up_bit(&b->state, B_WRITING);
696 }
697 
698 /*
699  * Initiate a write on a dirty buffer, but don't wait for it.
700  *
701  * - If the buffer is not dirty, exit.
702  * - If there some previous write going on, wait for it to finish (we can't
703  *   have two writes on the same buffer simultaneously).
704  * - Submit our write and don't wait on it. We set B_WRITING indicating
705  *   that there is a write in progress.
706  */
707 static void __write_dirty_buffer(struct dm_buffer *b,
708 				 struct list_head *write_list)
709 {
710 	if (!test_bit(B_DIRTY, &b->state))
711 		return;
712 
713 	clear_bit(B_DIRTY, &b->state);
714 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
715 
716 	if (!write_list)
717 		submit_io(b, WRITE, b->block, write_endio);
718 	else
719 		list_add_tail(&b->write_list, write_list);
720 }
721 
722 static void __flush_write_list(struct list_head *write_list)
723 {
724 	struct blk_plug plug;
725 	blk_start_plug(&plug);
726 	while (!list_empty(write_list)) {
727 		struct dm_buffer *b =
728 			list_entry(write_list->next, struct dm_buffer, write_list);
729 		list_del(&b->write_list);
730 		submit_io(b, WRITE, b->block, write_endio);
731 		cond_resched();
732 	}
733 	blk_finish_plug(&plug);
734 }
735 
736 /*
737  * Wait until any activity on the buffer finishes.  Possibly write the
738  * buffer if it is dirty.  When this function finishes, there is no I/O
739  * running on the buffer and the buffer is not dirty.
740  */
741 static void __make_buffer_clean(struct dm_buffer *b)
742 {
743 	BUG_ON(b->hold_count);
744 
745 	if (!b->state)	/* fast case */
746 		return;
747 
748 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
749 	__write_dirty_buffer(b, NULL);
750 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
751 }
752 
753 /*
754  * Find some buffer that is not held by anybody, clean it, unlink it and
755  * return it.
756  */
757 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
758 {
759 	struct dm_buffer *b;
760 
761 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
762 		BUG_ON(test_bit(B_WRITING, &b->state));
763 		BUG_ON(test_bit(B_DIRTY, &b->state));
764 
765 		if (!b->hold_count) {
766 			__make_buffer_clean(b);
767 			__unlink_buffer(b);
768 			return b;
769 		}
770 		cond_resched();
771 	}
772 
773 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
774 		BUG_ON(test_bit(B_READING, &b->state));
775 
776 		if (!b->hold_count) {
777 			__make_buffer_clean(b);
778 			__unlink_buffer(b);
779 			return b;
780 		}
781 		cond_resched();
782 	}
783 
784 	return NULL;
785 }
786 
787 /*
788  * Wait until some other threads free some buffer or release hold count on
789  * some buffer.
790  *
791  * This function is entered with c->lock held, drops it and regains it
792  * before exiting.
793  */
794 static void __wait_for_free_buffer(struct dm_bufio_client *c)
795 {
796 	DECLARE_WAITQUEUE(wait, current);
797 
798 	add_wait_queue(&c->free_buffer_wait, &wait);
799 	set_task_state(current, TASK_UNINTERRUPTIBLE);
800 	dm_bufio_unlock(c);
801 
802 	io_schedule();
803 
804 	remove_wait_queue(&c->free_buffer_wait, &wait);
805 
806 	dm_bufio_lock(c);
807 }
808 
809 enum new_flag {
810 	NF_FRESH = 0,
811 	NF_READ = 1,
812 	NF_GET = 2,
813 	NF_PREFETCH = 3
814 };
815 
816 /*
817  * Allocate a new buffer. If the allocation is not possible, wait until
818  * some other thread frees a buffer.
819  *
820  * May drop the lock and regain it.
821  */
822 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
823 {
824 	struct dm_buffer *b;
825 
826 	/*
827 	 * dm-bufio is resistant to allocation failures (it just keeps
828 	 * one buffer reserved in cases all the allocations fail).
829 	 * So set flags to not try too hard:
830 	 *	GFP_NOIO: don't recurse into the I/O layer
831 	 *	__GFP_NORETRY: don't retry and rather return failure
832 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
833 	 *	__GFP_NOWARN: don't print a warning in case of failure
834 	 *
835 	 * For debugging, if we set the cache size to 1, no new buffers will
836 	 * be allocated.
837 	 */
838 	while (1) {
839 		if (dm_bufio_cache_size_latch != 1) {
840 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
841 			if (b)
842 				return b;
843 		}
844 
845 		if (nf == NF_PREFETCH)
846 			return NULL;
847 
848 		if (!list_empty(&c->reserved_buffers)) {
849 			b = list_entry(c->reserved_buffers.next,
850 				       struct dm_buffer, lru_list);
851 			list_del(&b->lru_list);
852 			c->need_reserved_buffers++;
853 
854 			return b;
855 		}
856 
857 		b = __get_unclaimed_buffer(c);
858 		if (b)
859 			return b;
860 
861 		__wait_for_free_buffer(c);
862 	}
863 }
864 
865 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
866 {
867 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
868 
869 	if (!b)
870 		return NULL;
871 
872 	if (c->alloc_callback)
873 		c->alloc_callback(b);
874 
875 	return b;
876 }
877 
878 /*
879  * Free a buffer and wake other threads waiting for free buffers.
880  */
881 static void __free_buffer_wake(struct dm_buffer *b)
882 {
883 	struct dm_bufio_client *c = b->c;
884 
885 	if (!c->need_reserved_buffers)
886 		free_buffer(b);
887 	else {
888 		list_add(&b->lru_list, &c->reserved_buffers);
889 		c->need_reserved_buffers--;
890 	}
891 
892 	wake_up(&c->free_buffer_wait);
893 }
894 
895 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
896 					struct list_head *write_list)
897 {
898 	struct dm_buffer *b, *tmp;
899 
900 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
901 		BUG_ON(test_bit(B_READING, &b->state));
902 
903 		if (!test_bit(B_DIRTY, &b->state) &&
904 		    !test_bit(B_WRITING, &b->state)) {
905 			__relink_lru(b, LIST_CLEAN);
906 			continue;
907 		}
908 
909 		if (no_wait && test_bit(B_WRITING, &b->state))
910 			return;
911 
912 		__write_dirty_buffer(b, write_list);
913 		cond_resched();
914 	}
915 }
916 
917 /*
918  * Get writeback threshold and buffer limit for a given client.
919  */
920 static void __get_memory_limit(struct dm_bufio_client *c,
921 			       unsigned long *threshold_buffers,
922 			       unsigned long *limit_buffers)
923 {
924 	unsigned long buffers;
925 
926 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
927 		mutex_lock(&dm_bufio_clients_lock);
928 		__cache_size_refresh();
929 		mutex_unlock(&dm_bufio_clients_lock);
930 	}
931 
932 	buffers = dm_bufio_cache_size_per_client >>
933 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
934 
935 	if (buffers < c->minimum_buffers)
936 		buffers = c->minimum_buffers;
937 
938 	*limit_buffers = buffers;
939 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
940 }
941 
942 /*
943  * Check if we're over watermark.
944  * If we are over threshold_buffers, start freeing buffers.
945  * If we're over "limit_buffers", block until we get under the limit.
946  */
947 static void __check_watermark(struct dm_bufio_client *c,
948 			      struct list_head *write_list)
949 {
950 	unsigned long threshold_buffers, limit_buffers;
951 
952 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
953 
954 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
955 	       limit_buffers) {
956 
957 		struct dm_buffer *b = __get_unclaimed_buffer(c);
958 
959 		if (!b)
960 			return;
961 
962 		__free_buffer_wake(b);
963 		cond_resched();
964 	}
965 
966 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
967 		__write_dirty_buffers_async(c, 1, write_list);
968 }
969 
970 /*----------------------------------------------------------------
971  * Getting a buffer
972  *--------------------------------------------------------------*/
973 
974 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
975 				     enum new_flag nf, int *need_submit,
976 				     struct list_head *write_list)
977 {
978 	struct dm_buffer *b, *new_b = NULL;
979 
980 	*need_submit = 0;
981 
982 	b = __find(c, block);
983 	if (b)
984 		goto found_buffer;
985 
986 	if (nf == NF_GET)
987 		return NULL;
988 
989 	new_b = __alloc_buffer_wait(c, nf);
990 	if (!new_b)
991 		return NULL;
992 
993 	/*
994 	 * We've had a period where the mutex was unlocked, so need to
995 	 * recheck the hash table.
996 	 */
997 	b = __find(c, block);
998 	if (b) {
999 		__free_buffer_wake(new_b);
1000 		goto found_buffer;
1001 	}
1002 
1003 	__check_watermark(c, write_list);
1004 
1005 	b = new_b;
1006 	b->hold_count = 1;
1007 	b->read_error = 0;
1008 	b->write_error = 0;
1009 	__link_buffer(b, block, LIST_CLEAN);
1010 
1011 	if (nf == NF_FRESH) {
1012 		b->state = 0;
1013 		return b;
1014 	}
1015 
1016 	b->state = 1 << B_READING;
1017 	*need_submit = 1;
1018 
1019 	return b;
1020 
1021 found_buffer:
1022 	if (nf == NF_PREFETCH)
1023 		return NULL;
1024 	/*
1025 	 * Note: it is essential that we don't wait for the buffer to be
1026 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1027 	 * dm_bufio_prefetch can be used in the driver request routine.
1028 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1029 	 * the same buffer, it would deadlock if we waited.
1030 	 */
1031 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1032 		return NULL;
1033 
1034 	b->hold_count++;
1035 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1036 		     test_bit(B_WRITING, &b->state));
1037 	return b;
1038 }
1039 
1040 /*
1041  * The endio routine for reading: set the error, clear the bit and wake up
1042  * anyone waiting on the buffer.
1043  */
1044 static void read_endio(struct bio *bio)
1045 {
1046 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1047 
1048 	b->read_error = bio->bi_error;
1049 
1050 	BUG_ON(!test_bit(B_READING, &b->state));
1051 
1052 	smp_mb__before_atomic();
1053 	clear_bit(B_READING, &b->state);
1054 	smp_mb__after_atomic();
1055 
1056 	wake_up_bit(&b->state, B_READING);
1057 }
1058 
1059 /*
1060  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1061  * functions is similar except that dm_bufio_new doesn't read the
1062  * buffer from the disk (assuming that the caller overwrites all the data
1063  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1064  */
1065 static void *new_read(struct dm_bufio_client *c, sector_t block,
1066 		      enum new_flag nf, struct dm_buffer **bp)
1067 {
1068 	int need_submit;
1069 	struct dm_buffer *b;
1070 
1071 	LIST_HEAD(write_list);
1072 
1073 	dm_bufio_lock(c);
1074 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1075 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1076 	if (b && b->hold_count == 1)
1077 		buffer_record_stack(b);
1078 #endif
1079 	dm_bufio_unlock(c);
1080 
1081 	__flush_write_list(&write_list);
1082 
1083 	if (!b)
1084 		return NULL;
1085 
1086 	if (need_submit)
1087 		submit_io(b, READ, b->block, read_endio);
1088 
1089 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1090 
1091 	if (b->read_error) {
1092 		int error = b->read_error;
1093 
1094 		dm_bufio_release(b);
1095 
1096 		return ERR_PTR(error);
1097 	}
1098 
1099 	*bp = b;
1100 
1101 	return b->data;
1102 }
1103 
1104 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1105 		   struct dm_buffer **bp)
1106 {
1107 	return new_read(c, block, NF_GET, bp);
1108 }
1109 EXPORT_SYMBOL_GPL(dm_bufio_get);
1110 
1111 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1112 		    struct dm_buffer **bp)
1113 {
1114 	BUG_ON(dm_bufio_in_request());
1115 
1116 	return new_read(c, block, NF_READ, bp);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_read);
1119 
1120 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1121 		   struct dm_buffer **bp)
1122 {
1123 	BUG_ON(dm_bufio_in_request());
1124 
1125 	return new_read(c, block, NF_FRESH, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_new);
1128 
1129 void dm_bufio_prefetch(struct dm_bufio_client *c,
1130 		       sector_t block, unsigned n_blocks)
1131 {
1132 	struct blk_plug plug;
1133 
1134 	LIST_HEAD(write_list);
1135 
1136 	BUG_ON(dm_bufio_in_request());
1137 
1138 	blk_start_plug(&plug);
1139 	dm_bufio_lock(c);
1140 
1141 	for (; n_blocks--; block++) {
1142 		int need_submit;
1143 		struct dm_buffer *b;
1144 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1145 				&write_list);
1146 		if (unlikely(!list_empty(&write_list))) {
1147 			dm_bufio_unlock(c);
1148 			blk_finish_plug(&plug);
1149 			__flush_write_list(&write_list);
1150 			blk_start_plug(&plug);
1151 			dm_bufio_lock(c);
1152 		}
1153 		if (unlikely(b != NULL)) {
1154 			dm_bufio_unlock(c);
1155 
1156 			if (need_submit)
1157 				submit_io(b, READ, b->block, read_endio);
1158 			dm_bufio_release(b);
1159 
1160 			cond_resched();
1161 
1162 			if (!n_blocks)
1163 				goto flush_plug;
1164 			dm_bufio_lock(c);
1165 		}
1166 	}
1167 
1168 	dm_bufio_unlock(c);
1169 
1170 flush_plug:
1171 	blk_finish_plug(&plug);
1172 }
1173 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1174 
1175 void dm_bufio_release(struct dm_buffer *b)
1176 {
1177 	struct dm_bufio_client *c = b->c;
1178 
1179 	dm_bufio_lock(c);
1180 
1181 	BUG_ON(!b->hold_count);
1182 
1183 	b->hold_count--;
1184 	if (!b->hold_count) {
1185 		wake_up(&c->free_buffer_wait);
1186 
1187 		/*
1188 		 * If there were errors on the buffer, and the buffer is not
1189 		 * to be written, free the buffer. There is no point in caching
1190 		 * invalid buffer.
1191 		 */
1192 		if ((b->read_error || b->write_error) &&
1193 		    !test_bit(B_READING, &b->state) &&
1194 		    !test_bit(B_WRITING, &b->state) &&
1195 		    !test_bit(B_DIRTY, &b->state)) {
1196 			__unlink_buffer(b);
1197 			__free_buffer_wake(b);
1198 		}
1199 	}
1200 
1201 	dm_bufio_unlock(c);
1202 }
1203 EXPORT_SYMBOL_GPL(dm_bufio_release);
1204 
1205 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1206 {
1207 	struct dm_bufio_client *c = b->c;
1208 
1209 	dm_bufio_lock(c);
1210 
1211 	BUG_ON(test_bit(B_READING, &b->state));
1212 
1213 	if (!test_and_set_bit(B_DIRTY, &b->state))
1214 		__relink_lru(b, LIST_DIRTY);
1215 
1216 	dm_bufio_unlock(c);
1217 }
1218 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1219 
1220 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1221 {
1222 	LIST_HEAD(write_list);
1223 
1224 	BUG_ON(dm_bufio_in_request());
1225 
1226 	dm_bufio_lock(c);
1227 	__write_dirty_buffers_async(c, 0, &write_list);
1228 	dm_bufio_unlock(c);
1229 	__flush_write_list(&write_list);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1232 
1233 /*
1234  * For performance, it is essential that the buffers are written asynchronously
1235  * and simultaneously (so that the block layer can merge the writes) and then
1236  * waited upon.
1237  *
1238  * Finally, we flush hardware disk cache.
1239  */
1240 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1241 {
1242 	int a, f;
1243 	unsigned long buffers_processed = 0;
1244 	struct dm_buffer *b, *tmp;
1245 
1246 	LIST_HEAD(write_list);
1247 
1248 	dm_bufio_lock(c);
1249 	__write_dirty_buffers_async(c, 0, &write_list);
1250 	dm_bufio_unlock(c);
1251 	__flush_write_list(&write_list);
1252 	dm_bufio_lock(c);
1253 
1254 again:
1255 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1256 		int dropped_lock = 0;
1257 
1258 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1259 			buffers_processed++;
1260 
1261 		BUG_ON(test_bit(B_READING, &b->state));
1262 
1263 		if (test_bit(B_WRITING, &b->state)) {
1264 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1265 				dropped_lock = 1;
1266 				b->hold_count++;
1267 				dm_bufio_unlock(c);
1268 				wait_on_bit_io(&b->state, B_WRITING,
1269 					       TASK_UNINTERRUPTIBLE);
1270 				dm_bufio_lock(c);
1271 				b->hold_count--;
1272 			} else
1273 				wait_on_bit_io(&b->state, B_WRITING,
1274 					       TASK_UNINTERRUPTIBLE);
1275 		}
1276 
1277 		if (!test_bit(B_DIRTY, &b->state) &&
1278 		    !test_bit(B_WRITING, &b->state))
1279 			__relink_lru(b, LIST_CLEAN);
1280 
1281 		cond_resched();
1282 
1283 		/*
1284 		 * If we dropped the lock, the list is no longer consistent,
1285 		 * so we must restart the search.
1286 		 *
1287 		 * In the most common case, the buffer just processed is
1288 		 * relinked to the clean list, so we won't loop scanning the
1289 		 * same buffer again and again.
1290 		 *
1291 		 * This may livelock if there is another thread simultaneously
1292 		 * dirtying buffers, so we count the number of buffers walked
1293 		 * and if it exceeds the total number of buffers, it means that
1294 		 * someone is doing some writes simultaneously with us.  In
1295 		 * this case, stop, dropping the lock.
1296 		 */
1297 		if (dropped_lock)
1298 			goto again;
1299 	}
1300 	wake_up(&c->free_buffer_wait);
1301 	dm_bufio_unlock(c);
1302 
1303 	a = xchg(&c->async_write_error, 0);
1304 	f = dm_bufio_issue_flush(c);
1305 	if (a)
1306 		return a;
1307 
1308 	return f;
1309 }
1310 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1311 
1312 /*
1313  * Use dm-io to send and empty barrier flush the device.
1314  */
1315 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1316 {
1317 	struct dm_io_request io_req = {
1318 		.bi_op = REQ_OP_WRITE,
1319 		.bi_op_flags = WRITE_FLUSH,
1320 		.mem.type = DM_IO_KMEM,
1321 		.mem.ptr.addr = NULL,
1322 		.client = c->dm_io,
1323 	};
1324 	struct dm_io_region io_reg = {
1325 		.bdev = c->bdev,
1326 		.sector = 0,
1327 		.count = 0,
1328 	};
1329 
1330 	BUG_ON(dm_bufio_in_request());
1331 
1332 	return dm_io(&io_req, 1, &io_reg, NULL);
1333 }
1334 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1335 
1336 /*
1337  * We first delete any other buffer that may be at that new location.
1338  *
1339  * Then, we write the buffer to the original location if it was dirty.
1340  *
1341  * Then, if we are the only one who is holding the buffer, relink the buffer
1342  * in the hash queue for the new location.
1343  *
1344  * If there was someone else holding the buffer, we write it to the new
1345  * location but not relink it, because that other user needs to have the buffer
1346  * at the same place.
1347  */
1348 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1349 {
1350 	struct dm_bufio_client *c = b->c;
1351 	struct dm_buffer *new;
1352 
1353 	BUG_ON(dm_bufio_in_request());
1354 
1355 	dm_bufio_lock(c);
1356 
1357 retry:
1358 	new = __find(c, new_block);
1359 	if (new) {
1360 		if (new->hold_count) {
1361 			__wait_for_free_buffer(c);
1362 			goto retry;
1363 		}
1364 
1365 		/*
1366 		 * FIXME: Is there any point waiting for a write that's going
1367 		 * to be overwritten in a bit?
1368 		 */
1369 		__make_buffer_clean(new);
1370 		__unlink_buffer(new);
1371 		__free_buffer_wake(new);
1372 	}
1373 
1374 	BUG_ON(!b->hold_count);
1375 	BUG_ON(test_bit(B_READING, &b->state));
1376 
1377 	__write_dirty_buffer(b, NULL);
1378 	if (b->hold_count == 1) {
1379 		wait_on_bit_io(&b->state, B_WRITING,
1380 			       TASK_UNINTERRUPTIBLE);
1381 		set_bit(B_DIRTY, &b->state);
1382 		__unlink_buffer(b);
1383 		__link_buffer(b, new_block, LIST_DIRTY);
1384 	} else {
1385 		sector_t old_block;
1386 		wait_on_bit_lock_io(&b->state, B_WRITING,
1387 				    TASK_UNINTERRUPTIBLE);
1388 		/*
1389 		 * Relink buffer to "new_block" so that write_callback
1390 		 * sees "new_block" as a block number.
1391 		 * After the write, link the buffer back to old_block.
1392 		 * All this must be done in bufio lock, so that block number
1393 		 * change isn't visible to other threads.
1394 		 */
1395 		old_block = b->block;
1396 		__unlink_buffer(b);
1397 		__link_buffer(b, new_block, b->list_mode);
1398 		submit_io(b, WRITE, new_block, write_endio);
1399 		wait_on_bit_io(&b->state, B_WRITING,
1400 			       TASK_UNINTERRUPTIBLE);
1401 		__unlink_buffer(b);
1402 		__link_buffer(b, old_block, b->list_mode);
1403 	}
1404 
1405 	dm_bufio_unlock(c);
1406 	dm_bufio_release(b);
1407 }
1408 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1409 
1410 /*
1411  * Free the given buffer.
1412  *
1413  * This is just a hint, if the buffer is in use or dirty, this function
1414  * does nothing.
1415  */
1416 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1417 {
1418 	struct dm_buffer *b;
1419 
1420 	dm_bufio_lock(c);
1421 
1422 	b = __find(c, block);
1423 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1424 		__unlink_buffer(b);
1425 		__free_buffer_wake(b);
1426 	}
1427 
1428 	dm_bufio_unlock(c);
1429 }
1430 EXPORT_SYMBOL(dm_bufio_forget);
1431 
1432 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1433 {
1434 	c->minimum_buffers = n;
1435 }
1436 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1437 
1438 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1439 {
1440 	return c->block_size;
1441 }
1442 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1443 
1444 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1445 {
1446 	return i_size_read(c->bdev->bd_inode) >>
1447 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1448 }
1449 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1450 
1451 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1452 {
1453 	return b->block;
1454 }
1455 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1456 
1457 void *dm_bufio_get_block_data(struct dm_buffer *b)
1458 {
1459 	return b->data;
1460 }
1461 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1462 
1463 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1464 {
1465 	return b + 1;
1466 }
1467 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1468 
1469 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1470 {
1471 	return b->c;
1472 }
1473 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1474 
1475 static void drop_buffers(struct dm_bufio_client *c)
1476 {
1477 	struct dm_buffer *b;
1478 	int i;
1479 	bool warned = false;
1480 
1481 	BUG_ON(dm_bufio_in_request());
1482 
1483 	/*
1484 	 * An optimization so that the buffers are not written one-by-one.
1485 	 */
1486 	dm_bufio_write_dirty_buffers_async(c);
1487 
1488 	dm_bufio_lock(c);
1489 
1490 	while ((b = __get_unclaimed_buffer(c)))
1491 		__free_buffer_wake(b);
1492 
1493 	for (i = 0; i < LIST_SIZE; i++)
1494 		list_for_each_entry(b, &c->lru[i], lru_list) {
1495 			WARN_ON(!warned);
1496 			warned = true;
1497 			DMERR("leaked buffer %llx, hold count %u, list %d",
1498 			      (unsigned long long)b->block, b->hold_count, i);
1499 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1500 			print_stack_trace(&b->stack_trace, 1);
1501 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1502 #endif
1503 		}
1504 
1505 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1506 	while ((b = __get_unclaimed_buffer(c)))
1507 		__free_buffer_wake(b);
1508 #endif
1509 
1510 	for (i = 0; i < LIST_SIZE; i++)
1511 		BUG_ON(!list_empty(&c->lru[i]));
1512 
1513 	dm_bufio_unlock(c);
1514 }
1515 
1516 /*
1517  * We may not be able to evict this buffer if IO pending or the client
1518  * is still using it.  Caller is expected to know buffer is too old.
1519  *
1520  * And if GFP_NOFS is used, we must not do any I/O because we hold
1521  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1522  * rerouted to different bufio client.
1523  */
1524 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1525 {
1526 	if (!(gfp & __GFP_FS)) {
1527 		if (test_bit(B_READING, &b->state) ||
1528 		    test_bit(B_WRITING, &b->state) ||
1529 		    test_bit(B_DIRTY, &b->state))
1530 			return false;
1531 	}
1532 
1533 	if (b->hold_count)
1534 		return false;
1535 
1536 	__make_buffer_clean(b);
1537 	__unlink_buffer(b);
1538 	__free_buffer_wake(b);
1539 
1540 	return true;
1541 }
1542 
1543 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1544 {
1545         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1546         return retain_bytes / c->block_size;
1547 }
1548 
1549 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1550 			    gfp_t gfp_mask)
1551 {
1552 	int l;
1553 	struct dm_buffer *b, *tmp;
1554 	unsigned long freed = 0;
1555 	unsigned long count = nr_to_scan;
1556 	unsigned retain_target = get_retain_buffers(c);
1557 
1558 	for (l = 0; l < LIST_SIZE; l++) {
1559 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1560 			if (__try_evict_buffer(b, gfp_mask))
1561 				freed++;
1562 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1563 				return freed;
1564 			cond_resched();
1565 		}
1566 	}
1567 	return freed;
1568 }
1569 
1570 static unsigned long
1571 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1572 {
1573 	struct dm_bufio_client *c;
1574 	unsigned long freed;
1575 
1576 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1577 	if (sc->gfp_mask & __GFP_FS)
1578 		dm_bufio_lock(c);
1579 	else if (!dm_bufio_trylock(c))
1580 		return SHRINK_STOP;
1581 
1582 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1583 	dm_bufio_unlock(c);
1584 	return freed;
1585 }
1586 
1587 static unsigned long
1588 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1589 {
1590 	struct dm_bufio_client *c;
1591 	unsigned long count;
1592 
1593 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1594 	if (sc->gfp_mask & __GFP_FS)
1595 		dm_bufio_lock(c);
1596 	else if (!dm_bufio_trylock(c))
1597 		return 0;
1598 
1599 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1600 	dm_bufio_unlock(c);
1601 	return count;
1602 }
1603 
1604 /*
1605  * Create the buffering interface
1606  */
1607 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1608 					       unsigned reserved_buffers, unsigned aux_size,
1609 					       void (*alloc_callback)(struct dm_buffer *),
1610 					       void (*write_callback)(struct dm_buffer *))
1611 {
1612 	int r;
1613 	struct dm_bufio_client *c;
1614 	unsigned i;
1615 
1616 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1617 	       (block_size & (block_size - 1)));
1618 
1619 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1620 	if (!c) {
1621 		r = -ENOMEM;
1622 		goto bad_client;
1623 	}
1624 	c->buffer_tree = RB_ROOT;
1625 
1626 	c->bdev = bdev;
1627 	c->block_size = block_size;
1628 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1629 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1630 				  __ffs(block_size) - PAGE_SHIFT : 0;
1631 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1632 				  PAGE_SHIFT - __ffs(block_size) : 0);
1633 
1634 	c->aux_size = aux_size;
1635 	c->alloc_callback = alloc_callback;
1636 	c->write_callback = write_callback;
1637 
1638 	for (i = 0; i < LIST_SIZE; i++) {
1639 		INIT_LIST_HEAD(&c->lru[i]);
1640 		c->n_buffers[i] = 0;
1641 	}
1642 
1643 	mutex_init(&c->lock);
1644 	INIT_LIST_HEAD(&c->reserved_buffers);
1645 	c->need_reserved_buffers = reserved_buffers;
1646 
1647 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1648 
1649 	init_waitqueue_head(&c->free_buffer_wait);
1650 	c->async_write_error = 0;
1651 
1652 	c->dm_io = dm_io_client_create();
1653 	if (IS_ERR(c->dm_io)) {
1654 		r = PTR_ERR(c->dm_io);
1655 		goto bad_dm_io;
1656 	}
1657 
1658 	mutex_lock(&dm_bufio_clients_lock);
1659 	if (c->blocks_per_page_bits) {
1660 		if (!DM_BUFIO_CACHE_NAME(c)) {
1661 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1662 			if (!DM_BUFIO_CACHE_NAME(c)) {
1663 				r = -ENOMEM;
1664 				mutex_unlock(&dm_bufio_clients_lock);
1665 				goto bad_cache;
1666 			}
1667 		}
1668 
1669 		if (!DM_BUFIO_CACHE(c)) {
1670 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1671 							      c->block_size,
1672 							      c->block_size, 0, NULL);
1673 			if (!DM_BUFIO_CACHE(c)) {
1674 				r = -ENOMEM;
1675 				mutex_unlock(&dm_bufio_clients_lock);
1676 				goto bad_cache;
1677 			}
1678 		}
1679 	}
1680 	mutex_unlock(&dm_bufio_clients_lock);
1681 
1682 	while (c->need_reserved_buffers) {
1683 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1684 
1685 		if (!b) {
1686 			r = -ENOMEM;
1687 			goto bad_buffer;
1688 		}
1689 		__free_buffer_wake(b);
1690 	}
1691 
1692 	mutex_lock(&dm_bufio_clients_lock);
1693 	dm_bufio_client_count++;
1694 	list_add(&c->client_list, &dm_bufio_all_clients);
1695 	__cache_size_refresh();
1696 	mutex_unlock(&dm_bufio_clients_lock);
1697 
1698 	c->shrinker.count_objects = dm_bufio_shrink_count;
1699 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1700 	c->shrinker.seeks = 1;
1701 	c->shrinker.batch = 0;
1702 	register_shrinker(&c->shrinker);
1703 
1704 	return c;
1705 
1706 bad_buffer:
1707 bad_cache:
1708 	while (!list_empty(&c->reserved_buffers)) {
1709 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1710 						 struct dm_buffer, lru_list);
1711 		list_del(&b->lru_list);
1712 		free_buffer(b);
1713 	}
1714 	dm_io_client_destroy(c->dm_io);
1715 bad_dm_io:
1716 	kfree(c);
1717 bad_client:
1718 	return ERR_PTR(r);
1719 }
1720 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1721 
1722 /*
1723  * Free the buffering interface.
1724  * It is required that there are no references on any buffers.
1725  */
1726 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1727 {
1728 	unsigned i;
1729 
1730 	drop_buffers(c);
1731 
1732 	unregister_shrinker(&c->shrinker);
1733 
1734 	mutex_lock(&dm_bufio_clients_lock);
1735 
1736 	list_del(&c->client_list);
1737 	dm_bufio_client_count--;
1738 	__cache_size_refresh();
1739 
1740 	mutex_unlock(&dm_bufio_clients_lock);
1741 
1742 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1743 	BUG_ON(c->need_reserved_buffers);
1744 
1745 	while (!list_empty(&c->reserved_buffers)) {
1746 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1747 						 struct dm_buffer, lru_list);
1748 		list_del(&b->lru_list);
1749 		free_buffer(b);
1750 	}
1751 
1752 	for (i = 0; i < LIST_SIZE; i++)
1753 		if (c->n_buffers[i])
1754 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1755 
1756 	for (i = 0; i < LIST_SIZE; i++)
1757 		BUG_ON(c->n_buffers[i]);
1758 
1759 	dm_io_client_destroy(c->dm_io);
1760 	kfree(c);
1761 }
1762 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1763 
1764 static unsigned get_max_age_hz(void)
1765 {
1766 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1767 
1768 	if (max_age > UINT_MAX / HZ)
1769 		max_age = UINT_MAX / HZ;
1770 
1771 	return max_age * HZ;
1772 }
1773 
1774 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1775 {
1776 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1777 }
1778 
1779 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1780 {
1781 	struct dm_buffer *b, *tmp;
1782 	unsigned retain_target = get_retain_buffers(c);
1783 	unsigned count;
1784 
1785 	dm_bufio_lock(c);
1786 
1787 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1788 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1789 		if (count <= retain_target)
1790 			break;
1791 
1792 		if (!older_than(b, age_hz))
1793 			break;
1794 
1795 		if (__try_evict_buffer(b, 0))
1796 			count--;
1797 
1798 		cond_resched();
1799 	}
1800 
1801 	dm_bufio_unlock(c);
1802 }
1803 
1804 static void cleanup_old_buffers(void)
1805 {
1806 	unsigned long max_age_hz = get_max_age_hz();
1807 	struct dm_bufio_client *c;
1808 
1809 	mutex_lock(&dm_bufio_clients_lock);
1810 
1811 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1812 		__evict_old_buffers(c, max_age_hz);
1813 
1814 	mutex_unlock(&dm_bufio_clients_lock);
1815 }
1816 
1817 static struct workqueue_struct *dm_bufio_wq;
1818 static struct delayed_work dm_bufio_work;
1819 
1820 static void work_fn(struct work_struct *w)
1821 {
1822 	cleanup_old_buffers();
1823 
1824 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1825 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1826 }
1827 
1828 /*----------------------------------------------------------------
1829  * Module setup
1830  *--------------------------------------------------------------*/
1831 
1832 /*
1833  * This is called only once for the whole dm_bufio module.
1834  * It initializes memory limit.
1835  */
1836 static int __init dm_bufio_init(void)
1837 {
1838 	__u64 mem;
1839 
1840 	dm_bufio_allocated_kmem_cache = 0;
1841 	dm_bufio_allocated_get_free_pages = 0;
1842 	dm_bufio_allocated_vmalloc = 0;
1843 	dm_bufio_current_allocated = 0;
1844 
1845 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1846 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1847 
1848 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1849 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1850 
1851 	if (mem > ULONG_MAX)
1852 		mem = ULONG_MAX;
1853 
1854 #ifdef CONFIG_MMU
1855 	/*
1856 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1857 	 * in fs/proc/internal.h
1858 	 */
1859 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1860 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1861 #endif
1862 
1863 	dm_bufio_default_cache_size = mem;
1864 
1865 	mutex_lock(&dm_bufio_clients_lock);
1866 	__cache_size_refresh();
1867 	mutex_unlock(&dm_bufio_clients_lock);
1868 
1869 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1870 	if (!dm_bufio_wq)
1871 		return -ENOMEM;
1872 
1873 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1874 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1875 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * This is called once when unloading the dm_bufio module.
1882  */
1883 static void __exit dm_bufio_exit(void)
1884 {
1885 	int bug = 0;
1886 	int i;
1887 
1888 	cancel_delayed_work_sync(&dm_bufio_work);
1889 	destroy_workqueue(dm_bufio_wq);
1890 
1891 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1892 		kmem_cache_destroy(dm_bufio_caches[i]);
1893 
1894 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1895 		kfree(dm_bufio_cache_names[i]);
1896 
1897 	if (dm_bufio_client_count) {
1898 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1899 			__func__, dm_bufio_client_count);
1900 		bug = 1;
1901 	}
1902 
1903 	if (dm_bufio_current_allocated) {
1904 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1905 			__func__, dm_bufio_current_allocated);
1906 		bug = 1;
1907 	}
1908 
1909 	if (dm_bufio_allocated_get_free_pages) {
1910 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1911 		       __func__, dm_bufio_allocated_get_free_pages);
1912 		bug = 1;
1913 	}
1914 
1915 	if (dm_bufio_allocated_vmalloc) {
1916 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1917 		       __func__, dm_bufio_allocated_vmalloc);
1918 		bug = 1;
1919 	}
1920 
1921 	BUG_ON(bug);
1922 }
1923 
1924 module_init(dm_bufio_init)
1925 module_exit(dm_bufio_exit)
1926 
1927 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1928 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1929 
1930 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1931 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1932 
1933 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1934 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1935 
1936 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1937 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1938 
1939 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1940 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1941 
1942 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1943 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1944 
1945 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1946 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1947 
1948 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1949 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1950 
1951 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1952 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1953 MODULE_LICENSE("GPL");
1954