xref: /openbmc/linux/drivers/md/dm-bufio.c (revision efe4a1ac)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_PERCENT	75
37 
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS	30
42 
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS	300
47 
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52 
53 /*
54  * The number of bvec entries that are embedded directly in the buffer.
55  * If the chunk size is larger, dm-io is used to do the io.
56  */
57 #define DM_BUFIO_INLINE_VECS		16
58 
59 /*
60  * Don't try to use kmem_cache_alloc for blocks larger than this.
61  * For explanation, see alloc_buffer_data below.
62  */
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
65 
66 /*
67  * dm_buffer->list_mode
68  */
69 #define LIST_CLEAN	0
70 #define LIST_DIRTY	1
71 #define LIST_SIZE	2
72 
73 /*
74  * Linking of buffers:
75  *	All buffers are linked to cache_hash with their hash_list field.
76  *
77  *	Clean buffers that are not being written (B_WRITING not set)
78  *	are linked to lru[LIST_CLEAN] with their lru_list field.
79  *
80  *	Dirty and clean buffers that are being written are linked to
81  *	lru[LIST_DIRTY] with their lru_list field. When the write
82  *	finishes, the buffer cannot be relinked immediately (because we
83  *	are in an interrupt context and relinking requires process
84  *	context), so some clean-not-writing buffers can be held on
85  *	dirty_lru too.  They are later added to lru in the process
86  *	context.
87  */
88 struct dm_bufio_client {
89 	struct mutex lock;
90 
91 	struct list_head lru[LIST_SIZE];
92 	unsigned long n_buffers[LIST_SIZE];
93 
94 	struct block_device *bdev;
95 	unsigned block_size;
96 	unsigned char sectors_per_block_bits;
97 	unsigned char pages_per_block_bits;
98 	unsigned char blocks_per_page_bits;
99 	unsigned aux_size;
100 	void (*alloc_callback)(struct dm_buffer *);
101 	void (*write_callback)(struct dm_buffer *);
102 
103 	struct dm_io_client *dm_io;
104 
105 	struct list_head reserved_buffers;
106 	unsigned need_reserved_buffers;
107 
108 	unsigned minimum_buffers;
109 
110 	struct rb_root buffer_tree;
111 	wait_queue_head_t free_buffer_wait;
112 
113 	sector_t start;
114 
115 	int async_write_error;
116 
117 	struct list_head client_list;
118 	struct shrinker shrinker;
119 };
120 
121 /*
122  * Buffer state bits.
123  */
124 #define B_READING	0
125 #define B_WRITING	1
126 #define B_DIRTY		2
127 
128 /*
129  * Describes how the block was allocated:
130  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
131  * See the comment at alloc_buffer_data.
132  */
133 enum data_mode {
134 	DATA_MODE_SLAB = 0,
135 	DATA_MODE_GET_FREE_PAGES = 1,
136 	DATA_MODE_VMALLOC = 2,
137 	DATA_MODE_LIMIT = 3
138 };
139 
140 struct dm_buffer {
141 	struct rb_node node;
142 	struct list_head lru_list;
143 	sector_t block;
144 	void *data;
145 	enum data_mode data_mode;
146 	unsigned char list_mode;		/* LIST_* */
147 	unsigned hold_count;
148 	int read_error;
149 	int write_error;
150 	unsigned long state;
151 	unsigned long last_accessed;
152 	struct dm_bufio_client *c;
153 	struct list_head write_list;
154 	struct bio bio;
155 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
156 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
157 #define MAX_STACK 10
158 	struct stack_trace stack_trace;
159 	unsigned long stack_entries[MAX_STACK];
160 #endif
161 };
162 
163 /*----------------------------------------------------------------*/
164 
165 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
166 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
167 
168 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
169 {
170 	unsigned ret = c->blocks_per_page_bits - 1;
171 
172 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
173 
174 	return ret;
175 }
176 
177 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
178 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
179 
180 #define dm_bufio_in_request()	(!!current->bio_list)
181 
182 static void dm_bufio_lock(struct dm_bufio_client *c)
183 {
184 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
185 }
186 
187 static int dm_bufio_trylock(struct dm_bufio_client *c)
188 {
189 	return mutex_trylock(&c->lock);
190 }
191 
192 static void dm_bufio_unlock(struct dm_bufio_client *c)
193 {
194 	mutex_unlock(&c->lock);
195 }
196 
197 /*----------------------------------------------------------------*/
198 
199 /*
200  * Default cache size: available memory divided by the ratio.
201  */
202 static unsigned long dm_bufio_default_cache_size;
203 
204 /*
205  * Total cache size set by the user.
206  */
207 static unsigned long dm_bufio_cache_size;
208 
209 /*
210  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
211  * at any time.  If it disagrees, the user has changed cache size.
212  */
213 static unsigned long dm_bufio_cache_size_latch;
214 
215 static DEFINE_SPINLOCK(param_spinlock);
216 
217 /*
218  * Buffers are freed after this timeout
219  */
220 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
221 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
222 
223 static unsigned long dm_bufio_peak_allocated;
224 static unsigned long dm_bufio_allocated_kmem_cache;
225 static unsigned long dm_bufio_allocated_get_free_pages;
226 static unsigned long dm_bufio_allocated_vmalloc;
227 static unsigned long dm_bufio_current_allocated;
228 
229 /*----------------------------------------------------------------*/
230 
231 /*
232  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
233  */
234 static unsigned long dm_bufio_cache_size_per_client;
235 
236 /*
237  * The current number of clients.
238  */
239 static int dm_bufio_client_count;
240 
241 /*
242  * The list of all clients.
243  */
244 static LIST_HEAD(dm_bufio_all_clients);
245 
246 /*
247  * This mutex protects dm_bufio_cache_size_latch,
248  * dm_bufio_cache_size_per_client and dm_bufio_client_count
249  */
250 static DEFINE_MUTEX(dm_bufio_clients_lock);
251 
252 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
253 static void buffer_record_stack(struct dm_buffer *b)
254 {
255 	b->stack_trace.nr_entries = 0;
256 	b->stack_trace.max_entries = MAX_STACK;
257 	b->stack_trace.entries = b->stack_entries;
258 	b->stack_trace.skip = 2;
259 	save_stack_trace(&b->stack_trace);
260 }
261 #endif
262 
263 /*----------------------------------------------------------------
264  * A red/black tree acts as an index for all the buffers.
265  *--------------------------------------------------------------*/
266 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
267 {
268 	struct rb_node *n = c->buffer_tree.rb_node;
269 	struct dm_buffer *b;
270 
271 	while (n) {
272 		b = container_of(n, struct dm_buffer, node);
273 
274 		if (b->block == block)
275 			return b;
276 
277 		n = (b->block < block) ? n->rb_left : n->rb_right;
278 	}
279 
280 	return NULL;
281 }
282 
283 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
284 {
285 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
286 	struct dm_buffer *found;
287 
288 	while (*new) {
289 		found = container_of(*new, struct dm_buffer, node);
290 
291 		if (found->block == b->block) {
292 			BUG_ON(found != b);
293 			return;
294 		}
295 
296 		parent = *new;
297 		new = (found->block < b->block) ?
298 			&((*new)->rb_left) : &((*new)->rb_right);
299 	}
300 
301 	rb_link_node(&b->node, parent, new);
302 	rb_insert_color(&b->node, &c->buffer_tree);
303 }
304 
305 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
306 {
307 	rb_erase(&b->node, &c->buffer_tree);
308 }
309 
310 /*----------------------------------------------------------------*/
311 
312 static void adjust_total_allocated(enum data_mode data_mode, long diff)
313 {
314 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
315 		&dm_bufio_allocated_kmem_cache,
316 		&dm_bufio_allocated_get_free_pages,
317 		&dm_bufio_allocated_vmalloc,
318 	};
319 
320 	spin_lock(&param_spinlock);
321 
322 	*class_ptr[data_mode] += diff;
323 
324 	dm_bufio_current_allocated += diff;
325 
326 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
327 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
328 
329 	spin_unlock(&param_spinlock);
330 }
331 
332 /*
333  * Change the number of clients and recalculate per-client limit.
334  */
335 static void __cache_size_refresh(void)
336 {
337 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
338 	BUG_ON(dm_bufio_client_count < 0);
339 
340 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
341 
342 	/*
343 	 * Use default if set to 0 and report the actual cache size used.
344 	 */
345 	if (!dm_bufio_cache_size_latch) {
346 		(void)cmpxchg(&dm_bufio_cache_size, 0,
347 			      dm_bufio_default_cache_size);
348 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
349 	}
350 
351 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
352 					 (dm_bufio_client_count ? : 1);
353 }
354 
355 /*
356  * Allocating buffer data.
357  *
358  * Small buffers are allocated with kmem_cache, to use space optimally.
359  *
360  * For large buffers, we choose between get_free_pages and vmalloc.
361  * Each has advantages and disadvantages.
362  *
363  * __get_free_pages can randomly fail if the memory is fragmented.
364  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
365  * as low as 128M) so using it for caching is not appropriate.
366  *
367  * If the allocation may fail we use __get_free_pages. Memory fragmentation
368  * won't have a fatal effect here, but it just causes flushes of some other
369  * buffers and more I/O will be performed. Don't use __get_free_pages if it
370  * always fails (i.e. order >= MAX_ORDER).
371  *
372  * If the allocation shouldn't fail we use __vmalloc. This is only for the
373  * initial reserve allocation, so there's no risk of wasting all vmalloc
374  * space.
375  */
376 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
377 			       enum data_mode *data_mode)
378 {
379 	unsigned noio_flag;
380 	void *ptr;
381 
382 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
383 		*data_mode = DATA_MODE_SLAB;
384 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
385 	}
386 
387 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
388 	    gfp_mask & __GFP_NORETRY) {
389 		*data_mode = DATA_MODE_GET_FREE_PAGES;
390 		return (void *)__get_free_pages(gfp_mask,
391 						c->pages_per_block_bits);
392 	}
393 
394 	*data_mode = DATA_MODE_VMALLOC;
395 
396 	/*
397 	 * __vmalloc allocates the data pages and auxiliary structures with
398 	 * gfp_flags that were specified, but pagetables are always allocated
399 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
400 	 *
401 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
402 	 * all allocations done by this process (including pagetables) are done
403 	 * as if GFP_NOIO was specified.
404 	 */
405 
406 	if (gfp_mask & __GFP_NORETRY)
407 		noio_flag = memalloc_noio_save();
408 
409 	ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
410 
411 	if (gfp_mask & __GFP_NORETRY)
412 		memalloc_noio_restore(noio_flag);
413 
414 	return ptr;
415 }
416 
417 /*
418  * Free buffer's data.
419  */
420 static void free_buffer_data(struct dm_bufio_client *c,
421 			     void *data, enum data_mode data_mode)
422 {
423 	switch (data_mode) {
424 	case DATA_MODE_SLAB:
425 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
426 		break;
427 
428 	case DATA_MODE_GET_FREE_PAGES:
429 		free_pages((unsigned long)data, c->pages_per_block_bits);
430 		break;
431 
432 	case DATA_MODE_VMALLOC:
433 		vfree(data);
434 		break;
435 
436 	default:
437 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
438 		       data_mode);
439 		BUG();
440 	}
441 }
442 
443 /*
444  * Allocate buffer and its data.
445  */
446 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
447 {
448 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
449 				      gfp_mask);
450 
451 	if (!b)
452 		return NULL;
453 
454 	b->c = c;
455 
456 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
457 	if (!b->data) {
458 		kfree(b);
459 		return NULL;
460 	}
461 
462 	adjust_total_allocated(b->data_mode, (long)c->block_size);
463 
464 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
465 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
466 #endif
467 	return b;
468 }
469 
470 /*
471  * Free buffer and its data.
472  */
473 static void free_buffer(struct dm_buffer *b)
474 {
475 	struct dm_bufio_client *c = b->c;
476 
477 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
478 
479 	free_buffer_data(c, b->data, b->data_mode);
480 	kfree(b);
481 }
482 
483 /*
484  * Link buffer to the hash list and clean or dirty queue.
485  */
486 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
487 {
488 	struct dm_bufio_client *c = b->c;
489 
490 	c->n_buffers[dirty]++;
491 	b->block = block;
492 	b->list_mode = dirty;
493 	list_add(&b->lru_list, &c->lru[dirty]);
494 	__insert(b->c, b);
495 	b->last_accessed = jiffies;
496 }
497 
498 /*
499  * Unlink buffer from the hash list and dirty or clean queue.
500  */
501 static void __unlink_buffer(struct dm_buffer *b)
502 {
503 	struct dm_bufio_client *c = b->c;
504 
505 	BUG_ON(!c->n_buffers[b->list_mode]);
506 
507 	c->n_buffers[b->list_mode]--;
508 	__remove(b->c, b);
509 	list_del(&b->lru_list);
510 }
511 
512 /*
513  * Place the buffer to the head of dirty or clean LRU queue.
514  */
515 static void __relink_lru(struct dm_buffer *b, int dirty)
516 {
517 	struct dm_bufio_client *c = b->c;
518 
519 	BUG_ON(!c->n_buffers[b->list_mode]);
520 
521 	c->n_buffers[b->list_mode]--;
522 	c->n_buffers[dirty]++;
523 	b->list_mode = dirty;
524 	list_move(&b->lru_list, &c->lru[dirty]);
525 	b->last_accessed = jiffies;
526 }
527 
528 /*----------------------------------------------------------------
529  * Submit I/O on the buffer.
530  *
531  * Bio interface is faster but it has some problems:
532  *	the vector list is limited (increasing this limit increases
533  *	memory-consumption per buffer, so it is not viable);
534  *
535  *	the memory must be direct-mapped, not vmalloced;
536  *
537  *	the I/O driver can reject requests spuriously if it thinks that
538  *	the requests are too big for the device or if they cross a
539  *	controller-defined memory boundary.
540  *
541  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
542  * it is not vmalloced, try using the bio interface.
543  *
544  * If the buffer is big, if it is vmalloced or if the underlying device
545  * rejects the bio because it is too large, use dm-io layer to do the I/O.
546  * The dm-io layer splits the I/O into multiple requests, avoiding the above
547  * shortcomings.
548  *--------------------------------------------------------------*/
549 
550 /*
551  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
552  * that the request was handled directly with bio interface.
553  */
554 static void dmio_complete(unsigned long error, void *context)
555 {
556 	struct dm_buffer *b = context;
557 
558 	b->bio.bi_error = error ? -EIO : 0;
559 	b->bio.bi_end_io(&b->bio);
560 }
561 
562 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
563 		     unsigned n_sectors, bio_end_io_t *end_io)
564 {
565 	int r;
566 	struct dm_io_request io_req = {
567 		.bi_op = rw,
568 		.bi_op_flags = 0,
569 		.notify.fn = dmio_complete,
570 		.notify.context = b,
571 		.client = b->c->dm_io,
572 	};
573 	struct dm_io_region region = {
574 		.bdev = b->c->bdev,
575 		.sector = sector,
576 		.count = n_sectors,
577 	};
578 
579 	if (b->data_mode != DATA_MODE_VMALLOC) {
580 		io_req.mem.type = DM_IO_KMEM;
581 		io_req.mem.ptr.addr = b->data;
582 	} else {
583 		io_req.mem.type = DM_IO_VMA;
584 		io_req.mem.ptr.vma = b->data;
585 	}
586 
587 	b->bio.bi_end_io = end_io;
588 
589 	r = dm_io(&io_req, 1, &region, NULL);
590 	if (r) {
591 		b->bio.bi_error = r;
592 		end_io(&b->bio);
593 	}
594 }
595 
596 static void inline_endio(struct bio *bio)
597 {
598 	bio_end_io_t *end_fn = bio->bi_private;
599 	int error = bio->bi_error;
600 
601 	/*
602 	 * Reset the bio to free any attached resources
603 	 * (e.g. bio integrity profiles).
604 	 */
605 	bio_reset(bio);
606 
607 	bio->bi_error = error;
608 	end_fn(bio);
609 }
610 
611 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
612 			   unsigned n_sectors, bio_end_io_t *end_io)
613 {
614 	char *ptr;
615 	int len;
616 
617 	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
618 	b->bio.bi_iter.bi_sector = sector;
619 	b->bio.bi_bdev = b->c->bdev;
620 	b->bio.bi_end_io = inline_endio;
621 	/*
622 	 * Use of .bi_private isn't a problem here because
623 	 * the dm_buffer's inline bio is local to bufio.
624 	 */
625 	b->bio.bi_private = end_io;
626 	bio_set_op_attrs(&b->bio, rw, 0);
627 
628 	/*
629 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
630 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
631 	 */
632 	ptr = b->data;
633 	len = n_sectors << SECTOR_SHIFT;
634 
635 	if (len >= PAGE_SIZE)
636 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
637 	else
638 		BUG_ON((unsigned long)ptr & (len - 1));
639 
640 	do {
641 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
642 				  len < PAGE_SIZE ? len : PAGE_SIZE,
643 				  offset_in_page(ptr))) {
644 			BUG_ON(b->c->block_size <= PAGE_SIZE);
645 			use_dmio(b, rw, sector, n_sectors, end_io);
646 			return;
647 		}
648 
649 		len -= PAGE_SIZE;
650 		ptr += PAGE_SIZE;
651 	} while (len > 0);
652 
653 	submit_bio(&b->bio);
654 }
655 
656 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
657 {
658 	unsigned n_sectors;
659 	sector_t sector;
660 
661 	if (rw == WRITE && b->c->write_callback)
662 		b->c->write_callback(b);
663 
664 	sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
665 	n_sectors = 1 << b->c->sectors_per_block_bits;
666 
667 	if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
668 	    b->data_mode != DATA_MODE_VMALLOC)
669 		use_inline_bio(b, rw, sector, n_sectors, end_io);
670 	else
671 		use_dmio(b, rw, sector, n_sectors, end_io);
672 }
673 
674 /*----------------------------------------------------------------
675  * Writing dirty buffers
676  *--------------------------------------------------------------*/
677 
678 /*
679  * The endio routine for write.
680  *
681  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
682  * it.
683  */
684 static void write_endio(struct bio *bio)
685 {
686 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
687 
688 	b->write_error = bio->bi_error;
689 	if (unlikely(bio->bi_error)) {
690 		struct dm_bufio_client *c = b->c;
691 		int error = bio->bi_error;
692 		(void)cmpxchg(&c->async_write_error, 0, error);
693 	}
694 
695 	BUG_ON(!test_bit(B_WRITING, &b->state));
696 
697 	smp_mb__before_atomic();
698 	clear_bit(B_WRITING, &b->state);
699 	smp_mb__after_atomic();
700 
701 	wake_up_bit(&b->state, B_WRITING);
702 }
703 
704 /*
705  * Initiate a write on a dirty buffer, but don't wait for it.
706  *
707  * - If the buffer is not dirty, exit.
708  * - If there some previous write going on, wait for it to finish (we can't
709  *   have two writes on the same buffer simultaneously).
710  * - Submit our write and don't wait on it. We set B_WRITING indicating
711  *   that there is a write in progress.
712  */
713 static void __write_dirty_buffer(struct dm_buffer *b,
714 				 struct list_head *write_list)
715 {
716 	if (!test_bit(B_DIRTY, &b->state))
717 		return;
718 
719 	clear_bit(B_DIRTY, &b->state);
720 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
721 
722 	if (!write_list)
723 		submit_io(b, WRITE, write_endio);
724 	else
725 		list_add_tail(&b->write_list, write_list);
726 }
727 
728 static void __flush_write_list(struct list_head *write_list)
729 {
730 	struct blk_plug plug;
731 	blk_start_plug(&plug);
732 	while (!list_empty(write_list)) {
733 		struct dm_buffer *b =
734 			list_entry(write_list->next, struct dm_buffer, write_list);
735 		list_del(&b->write_list);
736 		submit_io(b, WRITE, write_endio);
737 		cond_resched();
738 	}
739 	blk_finish_plug(&plug);
740 }
741 
742 /*
743  * Wait until any activity on the buffer finishes.  Possibly write the
744  * buffer if it is dirty.  When this function finishes, there is no I/O
745  * running on the buffer and the buffer is not dirty.
746  */
747 static void __make_buffer_clean(struct dm_buffer *b)
748 {
749 	BUG_ON(b->hold_count);
750 
751 	if (!b->state)	/* fast case */
752 		return;
753 
754 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
755 	__write_dirty_buffer(b, NULL);
756 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
757 }
758 
759 /*
760  * Find some buffer that is not held by anybody, clean it, unlink it and
761  * return it.
762  */
763 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
764 {
765 	struct dm_buffer *b;
766 
767 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
768 		BUG_ON(test_bit(B_WRITING, &b->state));
769 		BUG_ON(test_bit(B_DIRTY, &b->state));
770 
771 		if (!b->hold_count) {
772 			__make_buffer_clean(b);
773 			__unlink_buffer(b);
774 			return b;
775 		}
776 		cond_resched();
777 	}
778 
779 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
780 		BUG_ON(test_bit(B_READING, &b->state));
781 
782 		if (!b->hold_count) {
783 			__make_buffer_clean(b);
784 			__unlink_buffer(b);
785 			return b;
786 		}
787 		cond_resched();
788 	}
789 
790 	return NULL;
791 }
792 
793 /*
794  * Wait until some other threads free some buffer or release hold count on
795  * some buffer.
796  *
797  * This function is entered with c->lock held, drops it and regains it
798  * before exiting.
799  */
800 static void __wait_for_free_buffer(struct dm_bufio_client *c)
801 {
802 	DECLARE_WAITQUEUE(wait, current);
803 
804 	add_wait_queue(&c->free_buffer_wait, &wait);
805 	set_current_state(TASK_UNINTERRUPTIBLE);
806 	dm_bufio_unlock(c);
807 
808 	io_schedule();
809 
810 	remove_wait_queue(&c->free_buffer_wait, &wait);
811 
812 	dm_bufio_lock(c);
813 }
814 
815 enum new_flag {
816 	NF_FRESH = 0,
817 	NF_READ = 1,
818 	NF_GET = 2,
819 	NF_PREFETCH = 3
820 };
821 
822 /*
823  * Allocate a new buffer. If the allocation is not possible, wait until
824  * some other thread frees a buffer.
825  *
826  * May drop the lock and regain it.
827  */
828 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
829 {
830 	struct dm_buffer *b;
831 	bool tried_noio_alloc = false;
832 
833 	/*
834 	 * dm-bufio is resistant to allocation failures (it just keeps
835 	 * one buffer reserved in cases all the allocations fail).
836 	 * So set flags to not try too hard:
837 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
838 	 *		    mutex and wait ourselves.
839 	 *	__GFP_NORETRY: don't retry and rather return failure
840 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
841 	 *	__GFP_NOWARN: don't print a warning in case of failure
842 	 *
843 	 * For debugging, if we set the cache size to 1, no new buffers will
844 	 * be allocated.
845 	 */
846 	while (1) {
847 		if (dm_bufio_cache_size_latch != 1) {
848 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
849 			if (b)
850 				return b;
851 		}
852 
853 		if (nf == NF_PREFETCH)
854 			return NULL;
855 
856 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
857 			dm_bufio_unlock(c);
858 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
859 			dm_bufio_lock(c);
860 			if (b)
861 				return b;
862 			tried_noio_alloc = true;
863 		}
864 
865 		if (!list_empty(&c->reserved_buffers)) {
866 			b = list_entry(c->reserved_buffers.next,
867 				       struct dm_buffer, lru_list);
868 			list_del(&b->lru_list);
869 			c->need_reserved_buffers++;
870 
871 			return b;
872 		}
873 
874 		b = __get_unclaimed_buffer(c);
875 		if (b)
876 			return b;
877 
878 		__wait_for_free_buffer(c);
879 	}
880 }
881 
882 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
883 {
884 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
885 
886 	if (!b)
887 		return NULL;
888 
889 	if (c->alloc_callback)
890 		c->alloc_callback(b);
891 
892 	return b;
893 }
894 
895 /*
896  * Free a buffer and wake other threads waiting for free buffers.
897  */
898 static void __free_buffer_wake(struct dm_buffer *b)
899 {
900 	struct dm_bufio_client *c = b->c;
901 
902 	if (!c->need_reserved_buffers)
903 		free_buffer(b);
904 	else {
905 		list_add(&b->lru_list, &c->reserved_buffers);
906 		c->need_reserved_buffers--;
907 	}
908 
909 	wake_up(&c->free_buffer_wait);
910 }
911 
912 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
913 					struct list_head *write_list)
914 {
915 	struct dm_buffer *b, *tmp;
916 
917 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
918 		BUG_ON(test_bit(B_READING, &b->state));
919 
920 		if (!test_bit(B_DIRTY, &b->state) &&
921 		    !test_bit(B_WRITING, &b->state)) {
922 			__relink_lru(b, LIST_CLEAN);
923 			continue;
924 		}
925 
926 		if (no_wait && test_bit(B_WRITING, &b->state))
927 			return;
928 
929 		__write_dirty_buffer(b, write_list);
930 		cond_resched();
931 	}
932 }
933 
934 /*
935  * Get writeback threshold and buffer limit for a given client.
936  */
937 static void __get_memory_limit(struct dm_bufio_client *c,
938 			       unsigned long *threshold_buffers,
939 			       unsigned long *limit_buffers)
940 {
941 	unsigned long buffers;
942 
943 	if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
944 		if (mutex_trylock(&dm_bufio_clients_lock)) {
945 			__cache_size_refresh();
946 			mutex_unlock(&dm_bufio_clients_lock);
947 		}
948 	}
949 
950 	buffers = dm_bufio_cache_size_per_client >>
951 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
952 
953 	if (buffers < c->minimum_buffers)
954 		buffers = c->minimum_buffers;
955 
956 	*limit_buffers = buffers;
957 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
958 }
959 
960 /*
961  * Check if we're over watermark.
962  * If we are over threshold_buffers, start freeing buffers.
963  * If we're over "limit_buffers", block until we get under the limit.
964  */
965 static void __check_watermark(struct dm_bufio_client *c,
966 			      struct list_head *write_list)
967 {
968 	unsigned long threshold_buffers, limit_buffers;
969 
970 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
971 
972 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
973 	       limit_buffers) {
974 
975 		struct dm_buffer *b = __get_unclaimed_buffer(c);
976 
977 		if (!b)
978 			return;
979 
980 		__free_buffer_wake(b);
981 		cond_resched();
982 	}
983 
984 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
985 		__write_dirty_buffers_async(c, 1, write_list);
986 }
987 
988 /*----------------------------------------------------------------
989  * Getting a buffer
990  *--------------------------------------------------------------*/
991 
992 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
993 				     enum new_flag nf, int *need_submit,
994 				     struct list_head *write_list)
995 {
996 	struct dm_buffer *b, *new_b = NULL;
997 
998 	*need_submit = 0;
999 
1000 	b = __find(c, block);
1001 	if (b)
1002 		goto found_buffer;
1003 
1004 	if (nf == NF_GET)
1005 		return NULL;
1006 
1007 	new_b = __alloc_buffer_wait(c, nf);
1008 	if (!new_b)
1009 		return NULL;
1010 
1011 	/*
1012 	 * We've had a period where the mutex was unlocked, so need to
1013 	 * recheck the hash table.
1014 	 */
1015 	b = __find(c, block);
1016 	if (b) {
1017 		__free_buffer_wake(new_b);
1018 		goto found_buffer;
1019 	}
1020 
1021 	__check_watermark(c, write_list);
1022 
1023 	b = new_b;
1024 	b->hold_count = 1;
1025 	b->read_error = 0;
1026 	b->write_error = 0;
1027 	__link_buffer(b, block, LIST_CLEAN);
1028 
1029 	if (nf == NF_FRESH) {
1030 		b->state = 0;
1031 		return b;
1032 	}
1033 
1034 	b->state = 1 << B_READING;
1035 	*need_submit = 1;
1036 
1037 	return b;
1038 
1039 found_buffer:
1040 	if (nf == NF_PREFETCH)
1041 		return NULL;
1042 	/*
1043 	 * Note: it is essential that we don't wait for the buffer to be
1044 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1045 	 * dm_bufio_prefetch can be used in the driver request routine.
1046 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1047 	 * the same buffer, it would deadlock if we waited.
1048 	 */
1049 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1050 		return NULL;
1051 
1052 	b->hold_count++;
1053 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1054 		     test_bit(B_WRITING, &b->state));
1055 	return b;
1056 }
1057 
1058 /*
1059  * The endio routine for reading: set the error, clear the bit and wake up
1060  * anyone waiting on the buffer.
1061  */
1062 static void read_endio(struct bio *bio)
1063 {
1064 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1065 
1066 	b->read_error = bio->bi_error;
1067 
1068 	BUG_ON(!test_bit(B_READING, &b->state));
1069 
1070 	smp_mb__before_atomic();
1071 	clear_bit(B_READING, &b->state);
1072 	smp_mb__after_atomic();
1073 
1074 	wake_up_bit(&b->state, B_READING);
1075 }
1076 
1077 /*
1078  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1079  * functions is similar except that dm_bufio_new doesn't read the
1080  * buffer from the disk (assuming that the caller overwrites all the data
1081  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1082  */
1083 static void *new_read(struct dm_bufio_client *c, sector_t block,
1084 		      enum new_flag nf, struct dm_buffer **bp)
1085 {
1086 	int need_submit;
1087 	struct dm_buffer *b;
1088 
1089 	LIST_HEAD(write_list);
1090 
1091 	dm_bufio_lock(c);
1092 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1094 	if (b && b->hold_count == 1)
1095 		buffer_record_stack(b);
1096 #endif
1097 	dm_bufio_unlock(c);
1098 
1099 	__flush_write_list(&write_list);
1100 
1101 	if (!b)
1102 		return NULL;
1103 
1104 	if (need_submit)
1105 		submit_io(b, READ, read_endio);
1106 
1107 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1108 
1109 	if (b->read_error) {
1110 		int error = b->read_error;
1111 
1112 		dm_bufio_release(b);
1113 
1114 		return ERR_PTR(error);
1115 	}
1116 
1117 	*bp = b;
1118 
1119 	return b->data;
1120 }
1121 
1122 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1123 		   struct dm_buffer **bp)
1124 {
1125 	return new_read(c, block, NF_GET, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_get);
1128 
1129 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1130 		    struct dm_buffer **bp)
1131 {
1132 	BUG_ON(dm_bufio_in_request());
1133 
1134 	return new_read(c, block, NF_READ, bp);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_read);
1137 
1138 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1139 		   struct dm_buffer **bp)
1140 {
1141 	BUG_ON(dm_bufio_in_request());
1142 
1143 	return new_read(c, block, NF_FRESH, bp);
1144 }
1145 EXPORT_SYMBOL_GPL(dm_bufio_new);
1146 
1147 void dm_bufio_prefetch(struct dm_bufio_client *c,
1148 		       sector_t block, unsigned n_blocks)
1149 {
1150 	struct blk_plug plug;
1151 
1152 	LIST_HEAD(write_list);
1153 
1154 	BUG_ON(dm_bufio_in_request());
1155 
1156 	blk_start_plug(&plug);
1157 	dm_bufio_lock(c);
1158 
1159 	for (; n_blocks--; block++) {
1160 		int need_submit;
1161 		struct dm_buffer *b;
1162 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1163 				&write_list);
1164 		if (unlikely(!list_empty(&write_list))) {
1165 			dm_bufio_unlock(c);
1166 			blk_finish_plug(&plug);
1167 			__flush_write_list(&write_list);
1168 			blk_start_plug(&plug);
1169 			dm_bufio_lock(c);
1170 		}
1171 		if (unlikely(b != NULL)) {
1172 			dm_bufio_unlock(c);
1173 
1174 			if (need_submit)
1175 				submit_io(b, READ, read_endio);
1176 			dm_bufio_release(b);
1177 
1178 			cond_resched();
1179 
1180 			if (!n_blocks)
1181 				goto flush_plug;
1182 			dm_bufio_lock(c);
1183 		}
1184 	}
1185 
1186 	dm_bufio_unlock(c);
1187 
1188 flush_plug:
1189 	blk_finish_plug(&plug);
1190 }
1191 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1192 
1193 void dm_bufio_release(struct dm_buffer *b)
1194 {
1195 	struct dm_bufio_client *c = b->c;
1196 
1197 	dm_bufio_lock(c);
1198 
1199 	BUG_ON(!b->hold_count);
1200 
1201 	b->hold_count--;
1202 	if (!b->hold_count) {
1203 		wake_up(&c->free_buffer_wait);
1204 
1205 		/*
1206 		 * If there were errors on the buffer, and the buffer is not
1207 		 * to be written, free the buffer. There is no point in caching
1208 		 * invalid buffer.
1209 		 */
1210 		if ((b->read_error || b->write_error) &&
1211 		    !test_bit(B_READING, &b->state) &&
1212 		    !test_bit(B_WRITING, &b->state) &&
1213 		    !test_bit(B_DIRTY, &b->state)) {
1214 			__unlink_buffer(b);
1215 			__free_buffer_wake(b);
1216 		}
1217 	}
1218 
1219 	dm_bufio_unlock(c);
1220 }
1221 EXPORT_SYMBOL_GPL(dm_bufio_release);
1222 
1223 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1224 {
1225 	struct dm_bufio_client *c = b->c;
1226 
1227 	dm_bufio_lock(c);
1228 
1229 	BUG_ON(test_bit(B_READING, &b->state));
1230 
1231 	if (!test_and_set_bit(B_DIRTY, &b->state))
1232 		__relink_lru(b, LIST_DIRTY);
1233 
1234 	dm_bufio_unlock(c);
1235 }
1236 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1237 
1238 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1239 {
1240 	LIST_HEAD(write_list);
1241 
1242 	BUG_ON(dm_bufio_in_request());
1243 
1244 	dm_bufio_lock(c);
1245 	__write_dirty_buffers_async(c, 0, &write_list);
1246 	dm_bufio_unlock(c);
1247 	__flush_write_list(&write_list);
1248 }
1249 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1250 
1251 /*
1252  * For performance, it is essential that the buffers are written asynchronously
1253  * and simultaneously (so that the block layer can merge the writes) and then
1254  * waited upon.
1255  *
1256  * Finally, we flush hardware disk cache.
1257  */
1258 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1259 {
1260 	int a, f;
1261 	unsigned long buffers_processed = 0;
1262 	struct dm_buffer *b, *tmp;
1263 
1264 	LIST_HEAD(write_list);
1265 
1266 	dm_bufio_lock(c);
1267 	__write_dirty_buffers_async(c, 0, &write_list);
1268 	dm_bufio_unlock(c);
1269 	__flush_write_list(&write_list);
1270 	dm_bufio_lock(c);
1271 
1272 again:
1273 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1274 		int dropped_lock = 0;
1275 
1276 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1277 			buffers_processed++;
1278 
1279 		BUG_ON(test_bit(B_READING, &b->state));
1280 
1281 		if (test_bit(B_WRITING, &b->state)) {
1282 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1283 				dropped_lock = 1;
1284 				b->hold_count++;
1285 				dm_bufio_unlock(c);
1286 				wait_on_bit_io(&b->state, B_WRITING,
1287 					       TASK_UNINTERRUPTIBLE);
1288 				dm_bufio_lock(c);
1289 				b->hold_count--;
1290 			} else
1291 				wait_on_bit_io(&b->state, B_WRITING,
1292 					       TASK_UNINTERRUPTIBLE);
1293 		}
1294 
1295 		if (!test_bit(B_DIRTY, &b->state) &&
1296 		    !test_bit(B_WRITING, &b->state))
1297 			__relink_lru(b, LIST_CLEAN);
1298 
1299 		cond_resched();
1300 
1301 		/*
1302 		 * If we dropped the lock, the list is no longer consistent,
1303 		 * so we must restart the search.
1304 		 *
1305 		 * In the most common case, the buffer just processed is
1306 		 * relinked to the clean list, so we won't loop scanning the
1307 		 * same buffer again and again.
1308 		 *
1309 		 * This may livelock if there is another thread simultaneously
1310 		 * dirtying buffers, so we count the number of buffers walked
1311 		 * and if it exceeds the total number of buffers, it means that
1312 		 * someone is doing some writes simultaneously with us.  In
1313 		 * this case, stop, dropping the lock.
1314 		 */
1315 		if (dropped_lock)
1316 			goto again;
1317 	}
1318 	wake_up(&c->free_buffer_wait);
1319 	dm_bufio_unlock(c);
1320 
1321 	a = xchg(&c->async_write_error, 0);
1322 	f = dm_bufio_issue_flush(c);
1323 	if (a)
1324 		return a;
1325 
1326 	return f;
1327 }
1328 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1329 
1330 /*
1331  * Use dm-io to send and empty barrier flush the device.
1332  */
1333 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1334 {
1335 	struct dm_io_request io_req = {
1336 		.bi_op = REQ_OP_WRITE,
1337 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1338 		.mem.type = DM_IO_KMEM,
1339 		.mem.ptr.addr = NULL,
1340 		.client = c->dm_io,
1341 	};
1342 	struct dm_io_region io_reg = {
1343 		.bdev = c->bdev,
1344 		.sector = 0,
1345 		.count = 0,
1346 	};
1347 
1348 	BUG_ON(dm_bufio_in_request());
1349 
1350 	return dm_io(&io_req, 1, &io_reg, NULL);
1351 }
1352 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1353 
1354 /*
1355  * We first delete any other buffer that may be at that new location.
1356  *
1357  * Then, we write the buffer to the original location if it was dirty.
1358  *
1359  * Then, if we are the only one who is holding the buffer, relink the buffer
1360  * in the hash queue for the new location.
1361  *
1362  * If there was someone else holding the buffer, we write it to the new
1363  * location but not relink it, because that other user needs to have the buffer
1364  * at the same place.
1365  */
1366 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1367 {
1368 	struct dm_bufio_client *c = b->c;
1369 	struct dm_buffer *new;
1370 
1371 	BUG_ON(dm_bufio_in_request());
1372 
1373 	dm_bufio_lock(c);
1374 
1375 retry:
1376 	new = __find(c, new_block);
1377 	if (new) {
1378 		if (new->hold_count) {
1379 			__wait_for_free_buffer(c);
1380 			goto retry;
1381 		}
1382 
1383 		/*
1384 		 * FIXME: Is there any point waiting for a write that's going
1385 		 * to be overwritten in a bit?
1386 		 */
1387 		__make_buffer_clean(new);
1388 		__unlink_buffer(new);
1389 		__free_buffer_wake(new);
1390 	}
1391 
1392 	BUG_ON(!b->hold_count);
1393 	BUG_ON(test_bit(B_READING, &b->state));
1394 
1395 	__write_dirty_buffer(b, NULL);
1396 	if (b->hold_count == 1) {
1397 		wait_on_bit_io(&b->state, B_WRITING,
1398 			       TASK_UNINTERRUPTIBLE);
1399 		set_bit(B_DIRTY, &b->state);
1400 		__unlink_buffer(b);
1401 		__link_buffer(b, new_block, LIST_DIRTY);
1402 	} else {
1403 		sector_t old_block;
1404 		wait_on_bit_lock_io(&b->state, B_WRITING,
1405 				    TASK_UNINTERRUPTIBLE);
1406 		/*
1407 		 * Relink buffer to "new_block" so that write_callback
1408 		 * sees "new_block" as a block number.
1409 		 * After the write, link the buffer back to old_block.
1410 		 * All this must be done in bufio lock, so that block number
1411 		 * change isn't visible to other threads.
1412 		 */
1413 		old_block = b->block;
1414 		__unlink_buffer(b);
1415 		__link_buffer(b, new_block, b->list_mode);
1416 		submit_io(b, WRITE, write_endio);
1417 		wait_on_bit_io(&b->state, B_WRITING,
1418 			       TASK_UNINTERRUPTIBLE);
1419 		__unlink_buffer(b);
1420 		__link_buffer(b, old_block, b->list_mode);
1421 	}
1422 
1423 	dm_bufio_unlock(c);
1424 	dm_bufio_release(b);
1425 }
1426 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1427 
1428 /*
1429  * Free the given buffer.
1430  *
1431  * This is just a hint, if the buffer is in use or dirty, this function
1432  * does nothing.
1433  */
1434 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1435 {
1436 	struct dm_buffer *b;
1437 
1438 	dm_bufio_lock(c);
1439 
1440 	b = __find(c, block);
1441 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1442 		__unlink_buffer(b);
1443 		__free_buffer_wake(b);
1444 	}
1445 
1446 	dm_bufio_unlock(c);
1447 }
1448 EXPORT_SYMBOL(dm_bufio_forget);
1449 
1450 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1451 {
1452 	c->minimum_buffers = n;
1453 }
1454 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1455 
1456 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1457 {
1458 	return c->block_size;
1459 }
1460 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1461 
1462 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1463 {
1464 	return i_size_read(c->bdev->bd_inode) >>
1465 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1466 }
1467 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1468 
1469 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1470 {
1471 	return b->block;
1472 }
1473 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1474 
1475 void *dm_bufio_get_block_data(struct dm_buffer *b)
1476 {
1477 	return b->data;
1478 }
1479 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1480 
1481 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1482 {
1483 	return b + 1;
1484 }
1485 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1486 
1487 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1488 {
1489 	return b->c;
1490 }
1491 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1492 
1493 static void drop_buffers(struct dm_bufio_client *c)
1494 {
1495 	struct dm_buffer *b;
1496 	int i;
1497 	bool warned = false;
1498 
1499 	BUG_ON(dm_bufio_in_request());
1500 
1501 	/*
1502 	 * An optimization so that the buffers are not written one-by-one.
1503 	 */
1504 	dm_bufio_write_dirty_buffers_async(c);
1505 
1506 	dm_bufio_lock(c);
1507 
1508 	while ((b = __get_unclaimed_buffer(c)))
1509 		__free_buffer_wake(b);
1510 
1511 	for (i = 0; i < LIST_SIZE; i++)
1512 		list_for_each_entry(b, &c->lru[i], lru_list) {
1513 			WARN_ON(!warned);
1514 			warned = true;
1515 			DMERR("leaked buffer %llx, hold count %u, list %d",
1516 			      (unsigned long long)b->block, b->hold_count, i);
1517 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1518 			print_stack_trace(&b->stack_trace, 1);
1519 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1520 #endif
1521 		}
1522 
1523 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1524 	while ((b = __get_unclaimed_buffer(c)))
1525 		__free_buffer_wake(b);
1526 #endif
1527 
1528 	for (i = 0; i < LIST_SIZE; i++)
1529 		BUG_ON(!list_empty(&c->lru[i]));
1530 
1531 	dm_bufio_unlock(c);
1532 }
1533 
1534 /*
1535  * We may not be able to evict this buffer if IO pending or the client
1536  * is still using it.  Caller is expected to know buffer is too old.
1537  *
1538  * And if GFP_NOFS is used, we must not do any I/O because we hold
1539  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1540  * rerouted to different bufio client.
1541  */
1542 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1543 {
1544 	if (!(gfp & __GFP_FS)) {
1545 		if (test_bit(B_READING, &b->state) ||
1546 		    test_bit(B_WRITING, &b->state) ||
1547 		    test_bit(B_DIRTY, &b->state))
1548 			return false;
1549 	}
1550 
1551 	if (b->hold_count)
1552 		return false;
1553 
1554 	__make_buffer_clean(b);
1555 	__unlink_buffer(b);
1556 	__free_buffer_wake(b);
1557 
1558 	return true;
1559 }
1560 
1561 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1562 {
1563         unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1564         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1565 }
1566 
1567 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1568 			    gfp_t gfp_mask)
1569 {
1570 	int l;
1571 	struct dm_buffer *b, *tmp;
1572 	unsigned long freed = 0;
1573 	unsigned long count = nr_to_scan;
1574 	unsigned long retain_target = get_retain_buffers(c);
1575 
1576 	for (l = 0; l < LIST_SIZE; l++) {
1577 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1578 			if (__try_evict_buffer(b, gfp_mask))
1579 				freed++;
1580 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1581 				return freed;
1582 			cond_resched();
1583 		}
1584 	}
1585 	return freed;
1586 }
1587 
1588 static unsigned long
1589 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1590 {
1591 	struct dm_bufio_client *c;
1592 	unsigned long freed;
1593 
1594 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1595 	if (sc->gfp_mask & __GFP_FS)
1596 		dm_bufio_lock(c);
1597 	else if (!dm_bufio_trylock(c))
1598 		return SHRINK_STOP;
1599 
1600 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1601 	dm_bufio_unlock(c);
1602 	return freed;
1603 }
1604 
1605 static unsigned long
1606 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1607 {
1608 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1609 
1610 	return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
1611 }
1612 
1613 /*
1614  * Create the buffering interface
1615  */
1616 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1617 					       unsigned reserved_buffers, unsigned aux_size,
1618 					       void (*alloc_callback)(struct dm_buffer *),
1619 					       void (*write_callback)(struct dm_buffer *))
1620 {
1621 	int r;
1622 	struct dm_bufio_client *c;
1623 	unsigned i;
1624 
1625 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1626 	       (block_size & (block_size - 1)));
1627 
1628 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1629 	if (!c) {
1630 		r = -ENOMEM;
1631 		goto bad_client;
1632 	}
1633 	c->buffer_tree = RB_ROOT;
1634 
1635 	c->bdev = bdev;
1636 	c->block_size = block_size;
1637 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1638 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1639 				  __ffs(block_size) - PAGE_SHIFT : 0;
1640 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1641 				  PAGE_SHIFT - __ffs(block_size) : 0);
1642 
1643 	c->aux_size = aux_size;
1644 	c->alloc_callback = alloc_callback;
1645 	c->write_callback = write_callback;
1646 
1647 	for (i = 0; i < LIST_SIZE; i++) {
1648 		INIT_LIST_HEAD(&c->lru[i]);
1649 		c->n_buffers[i] = 0;
1650 	}
1651 
1652 	mutex_init(&c->lock);
1653 	INIT_LIST_HEAD(&c->reserved_buffers);
1654 	c->need_reserved_buffers = reserved_buffers;
1655 
1656 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1657 
1658 	init_waitqueue_head(&c->free_buffer_wait);
1659 	c->async_write_error = 0;
1660 
1661 	c->dm_io = dm_io_client_create();
1662 	if (IS_ERR(c->dm_io)) {
1663 		r = PTR_ERR(c->dm_io);
1664 		goto bad_dm_io;
1665 	}
1666 
1667 	mutex_lock(&dm_bufio_clients_lock);
1668 	if (c->blocks_per_page_bits) {
1669 		if (!DM_BUFIO_CACHE_NAME(c)) {
1670 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1671 			if (!DM_BUFIO_CACHE_NAME(c)) {
1672 				r = -ENOMEM;
1673 				mutex_unlock(&dm_bufio_clients_lock);
1674 				goto bad_cache;
1675 			}
1676 		}
1677 
1678 		if (!DM_BUFIO_CACHE(c)) {
1679 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1680 							      c->block_size,
1681 							      c->block_size, 0, NULL);
1682 			if (!DM_BUFIO_CACHE(c)) {
1683 				r = -ENOMEM;
1684 				mutex_unlock(&dm_bufio_clients_lock);
1685 				goto bad_cache;
1686 			}
1687 		}
1688 	}
1689 	mutex_unlock(&dm_bufio_clients_lock);
1690 
1691 	while (c->need_reserved_buffers) {
1692 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1693 
1694 		if (!b) {
1695 			r = -ENOMEM;
1696 			goto bad_buffer;
1697 		}
1698 		__free_buffer_wake(b);
1699 	}
1700 
1701 	mutex_lock(&dm_bufio_clients_lock);
1702 	dm_bufio_client_count++;
1703 	list_add(&c->client_list, &dm_bufio_all_clients);
1704 	__cache_size_refresh();
1705 	mutex_unlock(&dm_bufio_clients_lock);
1706 
1707 	c->shrinker.count_objects = dm_bufio_shrink_count;
1708 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1709 	c->shrinker.seeks = 1;
1710 	c->shrinker.batch = 0;
1711 	register_shrinker(&c->shrinker);
1712 
1713 	return c;
1714 
1715 bad_buffer:
1716 bad_cache:
1717 	while (!list_empty(&c->reserved_buffers)) {
1718 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1719 						 struct dm_buffer, lru_list);
1720 		list_del(&b->lru_list);
1721 		free_buffer(b);
1722 	}
1723 	dm_io_client_destroy(c->dm_io);
1724 bad_dm_io:
1725 	kfree(c);
1726 bad_client:
1727 	return ERR_PTR(r);
1728 }
1729 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1730 
1731 /*
1732  * Free the buffering interface.
1733  * It is required that there are no references on any buffers.
1734  */
1735 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1736 {
1737 	unsigned i;
1738 
1739 	drop_buffers(c);
1740 
1741 	unregister_shrinker(&c->shrinker);
1742 
1743 	mutex_lock(&dm_bufio_clients_lock);
1744 
1745 	list_del(&c->client_list);
1746 	dm_bufio_client_count--;
1747 	__cache_size_refresh();
1748 
1749 	mutex_unlock(&dm_bufio_clients_lock);
1750 
1751 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1752 	BUG_ON(c->need_reserved_buffers);
1753 
1754 	while (!list_empty(&c->reserved_buffers)) {
1755 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1756 						 struct dm_buffer, lru_list);
1757 		list_del(&b->lru_list);
1758 		free_buffer(b);
1759 	}
1760 
1761 	for (i = 0; i < LIST_SIZE; i++)
1762 		if (c->n_buffers[i])
1763 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1764 
1765 	for (i = 0; i < LIST_SIZE; i++)
1766 		BUG_ON(c->n_buffers[i]);
1767 
1768 	dm_io_client_destroy(c->dm_io);
1769 	kfree(c);
1770 }
1771 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1772 
1773 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1774 {
1775 	c->start = start;
1776 }
1777 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1778 
1779 static unsigned get_max_age_hz(void)
1780 {
1781 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1782 
1783 	if (max_age > UINT_MAX / HZ)
1784 		max_age = UINT_MAX / HZ;
1785 
1786 	return max_age * HZ;
1787 }
1788 
1789 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1790 {
1791 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1792 }
1793 
1794 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1795 {
1796 	struct dm_buffer *b, *tmp;
1797 	unsigned long retain_target = get_retain_buffers(c);
1798 	unsigned long count;
1799 	LIST_HEAD(write_list);
1800 
1801 	dm_bufio_lock(c);
1802 
1803 	__check_watermark(c, &write_list);
1804 	if (unlikely(!list_empty(&write_list))) {
1805 		dm_bufio_unlock(c);
1806 		__flush_write_list(&write_list);
1807 		dm_bufio_lock(c);
1808 	}
1809 
1810 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1811 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1812 		if (count <= retain_target)
1813 			break;
1814 
1815 		if (!older_than(b, age_hz))
1816 			break;
1817 
1818 		if (__try_evict_buffer(b, 0))
1819 			count--;
1820 
1821 		cond_resched();
1822 	}
1823 
1824 	dm_bufio_unlock(c);
1825 }
1826 
1827 static void cleanup_old_buffers(void)
1828 {
1829 	unsigned long max_age_hz = get_max_age_hz();
1830 	struct dm_bufio_client *c;
1831 
1832 	mutex_lock(&dm_bufio_clients_lock);
1833 
1834 	__cache_size_refresh();
1835 
1836 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1837 		__evict_old_buffers(c, max_age_hz);
1838 
1839 	mutex_unlock(&dm_bufio_clients_lock);
1840 }
1841 
1842 static struct workqueue_struct *dm_bufio_wq;
1843 static struct delayed_work dm_bufio_work;
1844 
1845 static void work_fn(struct work_struct *w)
1846 {
1847 	cleanup_old_buffers();
1848 
1849 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1850 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1851 }
1852 
1853 /*----------------------------------------------------------------
1854  * Module setup
1855  *--------------------------------------------------------------*/
1856 
1857 /*
1858  * This is called only once for the whole dm_bufio module.
1859  * It initializes memory limit.
1860  */
1861 static int __init dm_bufio_init(void)
1862 {
1863 	__u64 mem;
1864 
1865 	dm_bufio_allocated_kmem_cache = 0;
1866 	dm_bufio_allocated_get_free_pages = 0;
1867 	dm_bufio_allocated_vmalloc = 0;
1868 	dm_bufio_current_allocated = 0;
1869 
1870 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1871 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1872 
1873 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1874 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1875 
1876 	if (mem > ULONG_MAX)
1877 		mem = ULONG_MAX;
1878 
1879 #ifdef CONFIG_MMU
1880 	/*
1881 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1882 	 * in fs/proc/internal.h
1883 	 */
1884 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1885 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1886 #endif
1887 
1888 	dm_bufio_default_cache_size = mem;
1889 
1890 	mutex_lock(&dm_bufio_clients_lock);
1891 	__cache_size_refresh();
1892 	mutex_unlock(&dm_bufio_clients_lock);
1893 
1894 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1895 	if (!dm_bufio_wq)
1896 		return -ENOMEM;
1897 
1898 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1899 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1900 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1901 
1902 	return 0;
1903 }
1904 
1905 /*
1906  * This is called once when unloading the dm_bufio module.
1907  */
1908 static void __exit dm_bufio_exit(void)
1909 {
1910 	int bug = 0;
1911 	int i;
1912 
1913 	cancel_delayed_work_sync(&dm_bufio_work);
1914 	destroy_workqueue(dm_bufio_wq);
1915 
1916 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1917 		kmem_cache_destroy(dm_bufio_caches[i]);
1918 
1919 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1920 		kfree(dm_bufio_cache_names[i]);
1921 
1922 	if (dm_bufio_client_count) {
1923 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1924 			__func__, dm_bufio_client_count);
1925 		bug = 1;
1926 	}
1927 
1928 	if (dm_bufio_current_allocated) {
1929 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1930 			__func__, dm_bufio_current_allocated);
1931 		bug = 1;
1932 	}
1933 
1934 	if (dm_bufio_allocated_get_free_pages) {
1935 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1936 		       __func__, dm_bufio_allocated_get_free_pages);
1937 		bug = 1;
1938 	}
1939 
1940 	if (dm_bufio_allocated_vmalloc) {
1941 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1942 		       __func__, dm_bufio_allocated_vmalloc);
1943 		bug = 1;
1944 	}
1945 
1946 	BUG_ON(bug);
1947 }
1948 
1949 module_init(dm_bufio_init)
1950 module_exit(dm_bufio_exit)
1951 
1952 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1953 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1954 
1955 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1956 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1957 
1958 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1959 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1960 
1961 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1962 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1963 
1964 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1965 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1966 
1967 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1968 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1969 
1970 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1971 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1972 
1973 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1974 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1975 
1976 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1977 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1978 MODULE_LICENSE("GPL");
1979