xref: /openbmc/linux/drivers/md/dm-bufio.c (revision e8f6f3b4)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 #include <linux/rbtree.h>
18 
19 #define DM_MSG_PREFIX "bufio"
20 
21 /*
22  * Memory management policy:
23  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
24  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
25  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
26  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
27  *	dirty buffers.
28  */
29 #define DM_BUFIO_MIN_BUFFERS		8
30 
31 #define DM_BUFIO_MEMORY_PERCENT		2
32 #define DM_BUFIO_VMALLOC_PERCENT	25
33 #define DM_BUFIO_WRITEBACK_PERCENT	75
34 
35 /*
36  * Check buffer ages in this interval (seconds)
37  */
38 #define DM_BUFIO_WORK_TIMER_SECS	30
39 
40 /*
41  * Free buffers when they are older than this (seconds)
42  */
43 #define DM_BUFIO_DEFAULT_AGE_SECS	300
44 
45 /*
46  * The nr of bytes of cached data to keep around.
47  */
48 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
49 
50 /*
51  * The number of bvec entries that are embedded directly in the buffer.
52  * If the chunk size is larger, dm-io is used to do the io.
53  */
54 #define DM_BUFIO_INLINE_VECS		16
55 
56 /*
57  * Don't try to use kmem_cache_alloc for blocks larger than this.
58  * For explanation, see alloc_buffer_data below.
59  */
60 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
61 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
62 
63 /*
64  * dm_buffer->list_mode
65  */
66 #define LIST_CLEAN	0
67 #define LIST_DIRTY	1
68 #define LIST_SIZE	2
69 
70 /*
71  * Linking of buffers:
72  *	All buffers are linked to cache_hash with their hash_list field.
73  *
74  *	Clean buffers that are not being written (B_WRITING not set)
75  *	are linked to lru[LIST_CLEAN] with their lru_list field.
76  *
77  *	Dirty and clean buffers that are being written are linked to
78  *	lru[LIST_DIRTY] with their lru_list field. When the write
79  *	finishes, the buffer cannot be relinked immediately (because we
80  *	are in an interrupt context and relinking requires process
81  *	context), so some clean-not-writing buffers can be held on
82  *	dirty_lru too.  They are later added to lru in the process
83  *	context.
84  */
85 struct dm_bufio_client {
86 	struct mutex lock;
87 
88 	struct list_head lru[LIST_SIZE];
89 	unsigned long n_buffers[LIST_SIZE];
90 
91 	struct block_device *bdev;
92 	unsigned block_size;
93 	unsigned char sectors_per_block_bits;
94 	unsigned char pages_per_block_bits;
95 	unsigned char blocks_per_page_bits;
96 	unsigned aux_size;
97 	void (*alloc_callback)(struct dm_buffer *);
98 	void (*write_callback)(struct dm_buffer *);
99 
100 	struct dm_io_client *dm_io;
101 
102 	struct list_head reserved_buffers;
103 	unsigned need_reserved_buffers;
104 
105 	unsigned minimum_buffers;
106 
107 	struct rb_root buffer_tree;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct rb_node node;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct list_head write_list;
149 	struct bio bio;
150 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
151 };
152 
153 /*----------------------------------------------------------------*/
154 
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
157 
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
159 {
160 	unsigned ret = c->blocks_per_page_bits - 1;
161 
162 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
163 
164 	return ret;
165 }
166 
167 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
169 
170 #define dm_bufio_in_request()	(!!current->bio_list)
171 
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
175 }
176 
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
178 {
179 	return mutex_trylock(&c->lock);
180 }
181 
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
183 {
184 	mutex_unlock(&c->lock);
185 }
186 
187 /*
188  * FIXME Move to sched.h?
189  */
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 #  define dm_bufio_cond_resched()		\
192 do {						\
193 	if (unlikely(need_resched()))		\
194 		_cond_resched();		\
195 } while (0)
196 #else
197 #  define dm_bufio_cond_resched()                do { } while (0)
198 #endif
199 
200 /*----------------------------------------------------------------*/
201 
202 /*
203  * Default cache size: available memory divided by the ratio.
204  */
205 static unsigned long dm_bufio_default_cache_size;
206 
207 /*
208  * Total cache size set by the user.
209  */
210 static unsigned long dm_bufio_cache_size;
211 
212 /*
213  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214  * at any time.  If it disagrees, the user has changed cache size.
215  */
216 static unsigned long dm_bufio_cache_size_latch;
217 
218 static DEFINE_SPINLOCK(param_spinlock);
219 
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
225 
226 static unsigned long dm_bufio_peak_allocated;
227 static unsigned long dm_bufio_allocated_kmem_cache;
228 static unsigned long dm_bufio_allocated_get_free_pages;
229 static unsigned long dm_bufio_allocated_vmalloc;
230 static unsigned long dm_bufio_current_allocated;
231 
232 /*----------------------------------------------------------------*/
233 
234 /*
235  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
236  */
237 static unsigned long dm_bufio_cache_size_per_client;
238 
239 /*
240  * The current number of clients.
241  */
242 static int dm_bufio_client_count;
243 
244 /*
245  * The list of all clients.
246  */
247 static LIST_HEAD(dm_bufio_all_clients);
248 
249 /*
250  * This mutex protects dm_bufio_cache_size_latch,
251  * dm_bufio_cache_size_per_client and dm_bufio_client_count
252  */
253 static DEFINE_MUTEX(dm_bufio_clients_lock);
254 
255 /*----------------------------------------------------------------
256  * A red/black tree acts as an index for all the buffers.
257  *--------------------------------------------------------------*/
258 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
259 {
260 	struct rb_node *n = c->buffer_tree.rb_node;
261 	struct dm_buffer *b;
262 
263 	while (n) {
264 		b = container_of(n, struct dm_buffer, node);
265 
266 		if (b->block == block)
267 			return b;
268 
269 		n = (b->block < block) ? n->rb_left : n->rb_right;
270 	}
271 
272 	return NULL;
273 }
274 
275 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
276 {
277 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
278 	struct dm_buffer *found;
279 
280 	while (*new) {
281 		found = container_of(*new, struct dm_buffer, node);
282 
283 		if (found->block == b->block) {
284 			BUG_ON(found != b);
285 			return;
286 		}
287 
288 		parent = *new;
289 		new = (found->block < b->block) ?
290 			&((*new)->rb_left) : &((*new)->rb_right);
291 	}
292 
293 	rb_link_node(&b->node, parent, new);
294 	rb_insert_color(&b->node, &c->buffer_tree);
295 }
296 
297 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
298 {
299 	rb_erase(&b->node, &c->buffer_tree);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 static void adjust_total_allocated(enum data_mode data_mode, long diff)
305 {
306 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
307 		&dm_bufio_allocated_kmem_cache,
308 		&dm_bufio_allocated_get_free_pages,
309 		&dm_bufio_allocated_vmalloc,
310 	};
311 
312 	spin_lock(&param_spinlock);
313 
314 	*class_ptr[data_mode] += diff;
315 
316 	dm_bufio_current_allocated += diff;
317 
318 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
319 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
320 
321 	spin_unlock(&param_spinlock);
322 }
323 
324 /*
325  * Change the number of clients and recalculate per-client limit.
326  */
327 static void __cache_size_refresh(void)
328 {
329 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
330 	BUG_ON(dm_bufio_client_count < 0);
331 
332 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
333 
334 	/*
335 	 * Use default if set to 0 and report the actual cache size used.
336 	 */
337 	if (!dm_bufio_cache_size_latch) {
338 		(void)cmpxchg(&dm_bufio_cache_size, 0,
339 			      dm_bufio_default_cache_size);
340 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
341 	}
342 
343 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
344 					 (dm_bufio_client_count ? : 1);
345 }
346 
347 /*
348  * Allocating buffer data.
349  *
350  * Small buffers are allocated with kmem_cache, to use space optimally.
351  *
352  * For large buffers, we choose between get_free_pages and vmalloc.
353  * Each has advantages and disadvantages.
354  *
355  * __get_free_pages can randomly fail if the memory is fragmented.
356  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
357  * as low as 128M) so using it for caching is not appropriate.
358  *
359  * If the allocation may fail we use __get_free_pages. Memory fragmentation
360  * won't have a fatal effect here, but it just causes flushes of some other
361  * buffers and more I/O will be performed. Don't use __get_free_pages if it
362  * always fails (i.e. order >= MAX_ORDER).
363  *
364  * If the allocation shouldn't fail we use __vmalloc. This is only for the
365  * initial reserve allocation, so there's no risk of wasting all vmalloc
366  * space.
367  */
368 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
369 			       enum data_mode *data_mode)
370 {
371 	unsigned noio_flag;
372 	void *ptr;
373 
374 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
375 		*data_mode = DATA_MODE_SLAB;
376 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
377 	}
378 
379 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
380 	    gfp_mask & __GFP_NORETRY) {
381 		*data_mode = DATA_MODE_GET_FREE_PAGES;
382 		return (void *)__get_free_pages(gfp_mask,
383 						c->pages_per_block_bits);
384 	}
385 
386 	*data_mode = DATA_MODE_VMALLOC;
387 
388 	/*
389 	 * __vmalloc allocates the data pages and auxiliary structures with
390 	 * gfp_flags that were specified, but pagetables are always allocated
391 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
392 	 *
393 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
394 	 * all allocations done by this process (including pagetables) are done
395 	 * as if GFP_NOIO was specified.
396 	 */
397 
398 	if (gfp_mask & __GFP_NORETRY)
399 		noio_flag = memalloc_noio_save();
400 
401 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
402 
403 	if (gfp_mask & __GFP_NORETRY)
404 		memalloc_noio_restore(noio_flag);
405 
406 	return ptr;
407 }
408 
409 /*
410  * Free buffer's data.
411  */
412 static void free_buffer_data(struct dm_bufio_client *c,
413 			     void *data, enum data_mode data_mode)
414 {
415 	switch (data_mode) {
416 	case DATA_MODE_SLAB:
417 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
418 		break;
419 
420 	case DATA_MODE_GET_FREE_PAGES:
421 		free_pages((unsigned long)data, c->pages_per_block_bits);
422 		break;
423 
424 	case DATA_MODE_VMALLOC:
425 		vfree(data);
426 		break;
427 
428 	default:
429 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
430 		       data_mode);
431 		BUG();
432 	}
433 }
434 
435 /*
436  * Allocate buffer and its data.
437  */
438 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
439 {
440 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
441 				      gfp_mask);
442 
443 	if (!b)
444 		return NULL;
445 
446 	b->c = c;
447 
448 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
449 	if (!b->data) {
450 		kfree(b);
451 		return NULL;
452 	}
453 
454 	adjust_total_allocated(b->data_mode, (long)c->block_size);
455 
456 	return b;
457 }
458 
459 /*
460  * Free buffer and its data.
461  */
462 static void free_buffer(struct dm_buffer *b)
463 {
464 	struct dm_bufio_client *c = b->c;
465 
466 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
467 
468 	free_buffer_data(c, b->data, b->data_mode);
469 	kfree(b);
470 }
471 
472 /*
473  * Link buffer to the hash list and clean or dirty queue.
474  */
475 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
476 {
477 	struct dm_bufio_client *c = b->c;
478 
479 	c->n_buffers[dirty]++;
480 	b->block = block;
481 	b->list_mode = dirty;
482 	list_add(&b->lru_list, &c->lru[dirty]);
483 	__insert(b->c, b);
484 	b->last_accessed = jiffies;
485 }
486 
487 /*
488  * Unlink buffer from the hash list and dirty or clean queue.
489  */
490 static void __unlink_buffer(struct dm_buffer *b)
491 {
492 	struct dm_bufio_client *c = b->c;
493 
494 	BUG_ON(!c->n_buffers[b->list_mode]);
495 
496 	c->n_buffers[b->list_mode]--;
497 	__remove(b->c, b);
498 	list_del(&b->lru_list);
499 }
500 
501 /*
502  * Place the buffer to the head of dirty or clean LRU queue.
503  */
504 static void __relink_lru(struct dm_buffer *b, int dirty)
505 {
506 	struct dm_bufio_client *c = b->c;
507 
508 	BUG_ON(!c->n_buffers[b->list_mode]);
509 
510 	c->n_buffers[b->list_mode]--;
511 	c->n_buffers[dirty]++;
512 	b->list_mode = dirty;
513 	list_move(&b->lru_list, &c->lru[dirty]);
514 	b->last_accessed = jiffies;
515 }
516 
517 /*----------------------------------------------------------------
518  * Submit I/O on the buffer.
519  *
520  * Bio interface is faster but it has some problems:
521  *	the vector list is limited (increasing this limit increases
522  *	memory-consumption per buffer, so it is not viable);
523  *
524  *	the memory must be direct-mapped, not vmalloced;
525  *
526  *	the I/O driver can reject requests spuriously if it thinks that
527  *	the requests are too big for the device or if they cross a
528  *	controller-defined memory boundary.
529  *
530  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
531  * it is not vmalloced, try using the bio interface.
532  *
533  * If the buffer is big, if it is vmalloced or if the underlying device
534  * rejects the bio because it is too large, use dm-io layer to do the I/O.
535  * The dm-io layer splits the I/O into multiple requests, avoiding the above
536  * shortcomings.
537  *--------------------------------------------------------------*/
538 
539 /*
540  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
541  * that the request was handled directly with bio interface.
542  */
543 static void dmio_complete(unsigned long error, void *context)
544 {
545 	struct dm_buffer *b = context;
546 
547 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
548 }
549 
550 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
551 		     bio_end_io_t *end_io)
552 {
553 	int r;
554 	struct dm_io_request io_req = {
555 		.bi_rw = rw,
556 		.notify.fn = dmio_complete,
557 		.notify.context = b,
558 		.client = b->c->dm_io,
559 	};
560 	struct dm_io_region region = {
561 		.bdev = b->c->bdev,
562 		.sector = block << b->c->sectors_per_block_bits,
563 		.count = b->c->block_size >> SECTOR_SHIFT,
564 	};
565 
566 	if (b->data_mode != DATA_MODE_VMALLOC) {
567 		io_req.mem.type = DM_IO_KMEM;
568 		io_req.mem.ptr.addr = b->data;
569 	} else {
570 		io_req.mem.type = DM_IO_VMA;
571 		io_req.mem.ptr.vma = b->data;
572 	}
573 
574 	b->bio.bi_end_io = end_io;
575 
576 	r = dm_io(&io_req, 1, &region, NULL);
577 	if (r)
578 		end_io(&b->bio, r);
579 }
580 
581 static void inline_endio(struct bio *bio, int error)
582 {
583 	bio_end_io_t *end_fn = bio->bi_private;
584 
585 	/*
586 	 * Reset the bio to free any attached resources
587 	 * (e.g. bio integrity profiles).
588 	 */
589 	bio_reset(bio);
590 
591 	end_fn(bio, error);
592 }
593 
594 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
595 			   bio_end_io_t *end_io)
596 {
597 	char *ptr;
598 	int len;
599 
600 	bio_init(&b->bio);
601 	b->bio.bi_io_vec = b->bio_vec;
602 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
603 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
604 	b->bio.bi_bdev = b->c->bdev;
605 	b->bio.bi_end_io = inline_endio;
606 	/*
607 	 * Use of .bi_private isn't a problem here because
608 	 * the dm_buffer's inline bio is local to bufio.
609 	 */
610 	b->bio.bi_private = end_io;
611 
612 	/*
613 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
614 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
615 	 */
616 	ptr = b->data;
617 	len = b->c->block_size;
618 
619 	if (len >= PAGE_SIZE)
620 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
621 	else
622 		BUG_ON((unsigned long)ptr & (len - 1));
623 
624 	do {
625 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
626 				  len < PAGE_SIZE ? len : PAGE_SIZE,
627 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
628 			BUG_ON(b->c->block_size <= PAGE_SIZE);
629 			use_dmio(b, rw, block, end_io);
630 			return;
631 		}
632 
633 		len -= PAGE_SIZE;
634 		ptr += PAGE_SIZE;
635 	} while (len > 0);
636 
637 	submit_bio(rw, &b->bio);
638 }
639 
640 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
641 		      bio_end_io_t *end_io)
642 {
643 	if (rw == WRITE && b->c->write_callback)
644 		b->c->write_callback(b);
645 
646 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
647 	    b->data_mode != DATA_MODE_VMALLOC)
648 		use_inline_bio(b, rw, block, end_io);
649 	else
650 		use_dmio(b, rw, block, end_io);
651 }
652 
653 /*----------------------------------------------------------------
654  * Writing dirty buffers
655  *--------------------------------------------------------------*/
656 
657 /*
658  * The endio routine for write.
659  *
660  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
661  * it.
662  */
663 static void write_endio(struct bio *bio, int error)
664 {
665 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
666 
667 	b->write_error = error;
668 	if (unlikely(error)) {
669 		struct dm_bufio_client *c = b->c;
670 		(void)cmpxchg(&c->async_write_error, 0, error);
671 	}
672 
673 	BUG_ON(!test_bit(B_WRITING, &b->state));
674 
675 	smp_mb__before_atomic();
676 	clear_bit(B_WRITING, &b->state);
677 	smp_mb__after_atomic();
678 
679 	wake_up_bit(&b->state, B_WRITING);
680 }
681 
682 /*
683  * Initiate a write on a dirty buffer, but don't wait for it.
684  *
685  * - If the buffer is not dirty, exit.
686  * - If there some previous write going on, wait for it to finish (we can't
687  *   have two writes on the same buffer simultaneously).
688  * - Submit our write and don't wait on it. We set B_WRITING indicating
689  *   that there is a write in progress.
690  */
691 static void __write_dirty_buffer(struct dm_buffer *b,
692 				 struct list_head *write_list)
693 {
694 	if (!test_bit(B_DIRTY, &b->state))
695 		return;
696 
697 	clear_bit(B_DIRTY, &b->state);
698 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
699 
700 	if (!write_list)
701 		submit_io(b, WRITE, b->block, write_endio);
702 	else
703 		list_add_tail(&b->write_list, write_list);
704 }
705 
706 static void __flush_write_list(struct list_head *write_list)
707 {
708 	struct blk_plug plug;
709 	blk_start_plug(&plug);
710 	while (!list_empty(write_list)) {
711 		struct dm_buffer *b =
712 			list_entry(write_list->next, struct dm_buffer, write_list);
713 		list_del(&b->write_list);
714 		submit_io(b, WRITE, b->block, write_endio);
715 		dm_bufio_cond_resched();
716 	}
717 	blk_finish_plug(&plug);
718 }
719 
720 /*
721  * Wait until any activity on the buffer finishes.  Possibly write the
722  * buffer if it is dirty.  When this function finishes, there is no I/O
723  * running on the buffer and the buffer is not dirty.
724  */
725 static void __make_buffer_clean(struct dm_buffer *b)
726 {
727 	BUG_ON(b->hold_count);
728 
729 	if (!b->state)	/* fast case */
730 		return;
731 
732 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
733 	__write_dirty_buffer(b, NULL);
734 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
735 }
736 
737 /*
738  * Find some buffer that is not held by anybody, clean it, unlink it and
739  * return it.
740  */
741 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
742 {
743 	struct dm_buffer *b;
744 
745 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
746 		BUG_ON(test_bit(B_WRITING, &b->state));
747 		BUG_ON(test_bit(B_DIRTY, &b->state));
748 
749 		if (!b->hold_count) {
750 			__make_buffer_clean(b);
751 			__unlink_buffer(b);
752 			return b;
753 		}
754 		dm_bufio_cond_resched();
755 	}
756 
757 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
758 		BUG_ON(test_bit(B_READING, &b->state));
759 
760 		if (!b->hold_count) {
761 			__make_buffer_clean(b);
762 			__unlink_buffer(b);
763 			return b;
764 		}
765 		dm_bufio_cond_resched();
766 	}
767 
768 	return NULL;
769 }
770 
771 /*
772  * Wait until some other threads free some buffer or release hold count on
773  * some buffer.
774  *
775  * This function is entered with c->lock held, drops it and regains it
776  * before exiting.
777  */
778 static void __wait_for_free_buffer(struct dm_bufio_client *c)
779 {
780 	DECLARE_WAITQUEUE(wait, current);
781 
782 	add_wait_queue(&c->free_buffer_wait, &wait);
783 	set_task_state(current, TASK_UNINTERRUPTIBLE);
784 	dm_bufio_unlock(c);
785 
786 	io_schedule();
787 
788 	remove_wait_queue(&c->free_buffer_wait, &wait);
789 
790 	dm_bufio_lock(c);
791 }
792 
793 enum new_flag {
794 	NF_FRESH = 0,
795 	NF_READ = 1,
796 	NF_GET = 2,
797 	NF_PREFETCH = 3
798 };
799 
800 /*
801  * Allocate a new buffer. If the allocation is not possible, wait until
802  * some other thread frees a buffer.
803  *
804  * May drop the lock and regain it.
805  */
806 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
807 {
808 	struct dm_buffer *b;
809 
810 	/*
811 	 * dm-bufio is resistant to allocation failures (it just keeps
812 	 * one buffer reserved in cases all the allocations fail).
813 	 * So set flags to not try too hard:
814 	 *	GFP_NOIO: don't recurse into the I/O layer
815 	 *	__GFP_NORETRY: don't retry and rather return failure
816 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
817 	 *	__GFP_NOWARN: don't print a warning in case of failure
818 	 *
819 	 * For debugging, if we set the cache size to 1, no new buffers will
820 	 * be allocated.
821 	 */
822 	while (1) {
823 		if (dm_bufio_cache_size_latch != 1) {
824 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
825 			if (b)
826 				return b;
827 		}
828 
829 		if (nf == NF_PREFETCH)
830 			return NULL;
831 
832 		if (!list_empty(&c->reserved_buffers)) {
833 			b = list_entry(c->reserved_buffers.next,
834 				       struct dm_buffer, lru_list);
835 			list_del(&b->lru_list);
836 			c->need_reserved_buffers++;
837 
838 			return b;
839 		}
840 
841 		b = __get_unclaimed_buffer(c);
842 		if (b)
843 			return b;
844 
845 		__wait_for_free_buffer(c);
846 	}
847 }
848 
849 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
850 {
851 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
852 
853 	if (!b)
854 		return NULL;
855 
856 	if (c->alloc_callback)
857 		c->alloc_callback(b);
858 
859 	return b;
860 }
861 
862 /*
863  * Free a buffer and wake other threads waiting for free buffers.
864  */
865 static void __free_buffer_wake(struct dm_buffer *b)
866 {
867 	struct dm_bufio_client *c = b->c;
868 
869 	if (!c->need_reserved_buffers)
870 		free_buffer(b);
871 	else {
872 		list_add(&b->lru_list, &c->reserved_buffers);
873 		c->need_reserved_buffers--;
874 	}
875 
876 	wake_up(&c->free_buffer_wait);
877 }
878 
879 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
880 					struct list_head *write_list)
881 {
882 	struct dm_buffer *b, *tmp;
883 
884 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
885 		BUG_ON(test_bit(B_READING, &b->state));
886 
887 		if (!test_bit(B_DIRTY, &b->state) &&
888 		    !test_bit(B_WRITING, &b->state)) {
889 			__relink_lru(b, LIST_CLEAN);
890 			continue;
891 		}
892 
893 		if (no_wait && test_bit(B_WRITING, &b->state))
894 			return;
895 
896 		__write_dirty_buffer(b, write_list);
897 		dm_bufio_cond_resched();
898 	}
899 }
900 
901 /*
902  * Get writeback threshold and buffer limit for a given client.
903  */
904 static void __get_memory_limit(struct dm_bufio_client *c,
905 			       unsigned long *threshold_buffers,
906 			       unsigned long *limit_buffers)
907 {
908 	unsigned long buffers;
909 
910 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
911 		mutex_lock(&dm_bufio_clients_lock);
912 		__cache_size_refresh();
913 		mutex_unlock(&dm_bufio_clients_lock);
914 	}
915 
916 	buffers = dm_bufio_cache_size_per_client >>
917 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
918 
919 	if (buffers < c->minimum_buffers)
920 		buffers = c->minimum_buffers;
921 
922 	*limit_buffers = buffers;
923 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
924 }
925 
926 /*
927  * Check if we're over watermark.
928  * If we are over threshold_buffers, start freeing buffers.
929  * If we're over "limit_buffers", block until we get under the limit.
930  */
931 static void __check_watermark(struct dm_bufio_client *c,
932 			      struct list_head *write_list)
933 {
934 	unsigned long threshold_buffers, limit_buffers;
935 
936 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
937 
938 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
939 	       limit_buffers) {
940 
941 		struct dm_buffer *b = __get_unclaimed_buffer(c);
942 
943 		if (!b)
944 			return;
945 
946 		__free_buffer_wake(b);
947 		dm_bufio_cond_resched();
948 	}
949 
950 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
951 		__write_dirty_buffers_async(c, 1, write_list);
952 }
953 
954 /*----------------------------------------------------------------
955  * Getting a buffer
956  *--------------------------------------------------------------*/
957 
958 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
959 				     enum new_flag nf, int *need_submit,
960 				     struct list_head *write_list)
961 {
962 	struct dm_buffer *b, *new_b = NULL;
963 
964 	*need_submit = 0;
965 
966 	b = __find(c, block);
967 	if (b)
968 		goto found_buffer;
969 
970 	if (nf == NF_GET)
971 		return NULL;
972 
973 	new_b = __alloc_buffer_wait(c, nf);
974 	if (!new_b)
975 		return NULL;
976 
977 	/*
978 	 * We've had a period where the mutex was unlocked, so need to
979 	 * recheck the hash table.
980 	 */
981 	b = __find(c, block);
982 	if (b) {
983 		__free_buffer_wake(new_b);
984 		goto found_buffer;
985 	}
986 
987 	__check_watermark(c, write_list);
988 
989 	b = new_b;
990 	b->hold_count = 1;
991 	b->read_error = 0;
992 	b->write_error = 0;
993 	__link_buffer(b, block, LIST_CLEAN);
994 
995 	if (nf == NF_FRESH) {
996 		b->state = 0;
997 		return b;
998 	}
999 
1000 	b->state = 1 << B_READING;
1001 	*need_submit = 1;
1002 
1003 	return b;
1004 
1005 found_buffer:
1006 	if (nf == NF_PREFETCH)
1007 		return NULL;
1008 	/*
1009 	 * Note: it is essential that we don't wait for the buffer to be
1010 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1011 	 * dm_bufio_prefetch can be used in the driver request routine.
1012 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1013 	 * the same buffer, it would deadlock if we waited.
1014 	 */
1015 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1016 		return NULL;
1017 
1018 	b->hold_count++;
1019 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1020 		     test_bit(B_WRITING, &b->state));
1021 	return b;
1022 }
1023 
1024 /*
1025  * The endio routine for reading: set the error, clear the bit and wake up
1026  * anyone waiting on the buffer.
1027  */
1028 static void read_endio(struct bio *bio, int error)
1029 {
1030 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1031 
1032 	b->read_error = error;
1033 
1034 	BUG_ON(!test_bit(B_READING, &b->state));
1035 
1036 	smp_mb__before_atomic();
1037 	clear_bit(B_READING, &b->state);
1038 	smp_mb__after_atomic();
1039 
1040 	wake_up_bit(&b->state, B_READING);
1041 }
1042 
1043 /*
1044  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1045  * functions is similar except that dm_bufio_new doesn't read the
1046  * buffer from the disk (assuming that the caller overwrites all the data
1047  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1048  */
1049 static void *new_read(struct dm_bufio_client *c, sector_t block,
1050 		      enum new_flag nf, struct dm_buffer **bp)
1051 {
1052 	int need_submit;
1053 	struct dm_buffer *b;
1054 
1055 	LIST_HEAD(write_list);
1056 
1057 	dm_bufio_lock(c);
1058 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1059 	dm_bufio_unlock(c);
1060 
1061 	__flush_write_list(&write_list);
1062 
1063 	if (!b)
1064 		return b;
1065 
1066 	if (need_submit)
1067 		submit_io(b, READ, b->block, read_endio);
1068 
1069 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1070 
1071 	if (b->read_error) {
1072 		int error = b->read_error;
1073 
1074 		dm_bufio_release(b);
1075 
1076 		return ERR_PTR(error);
1077 	}
1078 
1079 	*bp = b;
1080 
1081 	return b->data;
1082 }
1083 
1084 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1085 		   struct dm_buffer **bp)
1086 {
1087 	return new_read(c, block, NF_GET, bp);
1088 }
1089 EXPORT_SYMBOL_GPL(dm_bufio_get);
1090 
1091 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1092 		    struct dm_buffer **bp)
1093 {
1094 	BUG_ON(dm_bufio_in_request());
1095 
1096 	return new_read(c, block, NF_READ, bp);
1097 }
1098 EXPORT_SYMBOL_GPL(dm_bufio_read);
1099 
1100 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1101 		   struct dm_buffer **bp)
1102 {
1103 	BUG_ON(dm_bufio_in_request());
1104 
1105 	return new_read(c, block, NF_FRESH, bp);
1106 }
1107 EXPORT_SYMBOL_GPL(dm_bufio_new);
1108 
1109 void dm_bufio_prefetch(struct dm_bufio_client *c,
1110 		       sector_t block, unsigned n_blocks)
1111 {
1112 	struct blk_plug plug;
1113 
1114 	LIST_HEAD(write_list);
1115 
1116 	BUG_ON(dm_bufio_in_request());
1117 
1118 	blk_start_plug(&plug);
1119 	dm_bufio_lock(c);
1120 
1121 	for (; n_blocks--; block++) {
1122 		int need_submit;
1123 		struct dm_buffer *b;
1124 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1125 				&write_list);
1126 		if (unlikely(!list_empty(&write_list))) {
1127 			dm_bufio_unlock(c);
1128 			blk_finish_plug(&plug);
1129 			__flush_write_list(&write_list);
1130 			blk_start_plug(&plug);
1131 			dm_bufio_lock(c);
1132 		}
1133 		if (unlikely(b != NULL)) {
1134 			dm_bufio_unlock(c);
1135 
1136 			if (need_submit)
1137 				submit_io(b, READ, b->block, read_endio);
1138 			dm_bufio_release(b);
1139 
1140 			dm_bufio_cond_resched();
1141 
1142 			if (!n_blocks)
1143 				goto flush_plug;
1144 			dm_bufio_lock(c);
1145 		}
1146 	}
1147 
1148 	dm_bufio_unlock(c);
1149 
1150 flush_plug:
1151 	blk_finish_plug(&plug);
1152 }
1153 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1154 
1155 void dm_bufio_release(struct dm_buffer *b)
1156 {
1157 	struct dm_bufio_client *c = b->c;
1158 
1159 	dm_bufio_lock(c);
1160 
1161 	BUG_ON(!b->hold_count);
1162 
1163 	b->hold_count--;
1164 	if (!b->hold_count) {
1165 		wake_up(&c->free_buffer_wait);
1166 
1167 		/*
1168 		 * If there were errors on the buffer, and the buffer is not
1169 		 * to be written, free the buffer. There is no point in caching
1170 		 * invalid buffer.
1171 		 */
1172 		if ((b->read_error || b->write_error) &&
1173 		    !test_bit(B_READING, &b->state) &&
1174 		    !test_bit(B_WRITING, &b->state) &&
1175 		    !test_bit(B_DIRTY, &b->state)) {
1176 			__unlink_buffer(b);
1177 			__free_buffer_wake(b);
1178 		}
1179 	}
1180 
1181 	dm_bufio_unlock(c);
1182 }
1183 EXPORT_SYMBOL_GPL(dm_bufio_release);
1184 
1185 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1186 {
1187 	struct dm_bufio_client *c = b->c;
1188 
1189 	dm_bufio_lock(c);
1190 
1191 	BUG_ON(test_bit(B_READING, &b->state));
1192 
1193 	if (!test_and_set_bit(B_DIRTY, &b->state))
1194 		__relink_lru(b, LIST_DIRTY);
1195 
1196 	dm_bufio_unlock(c);
1197 }
1198 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1199 
1200 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1201 {
1202 	LIST_HEAD(write_list);
1203 
1204 	BUG_ON(dm_bufio_in_request());
1205 
1206 	dm_bufio_lock(c);
1207 	__write_dirty_buffers_async(c, 0, &write_list);
1208 	dm_bufio_unlock(c);
1209 	__flush_write_list(&write_list);
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1212 
1213 /*
1214  * For performance, it is essential that the buffers are written asynchronously
1215  * and simultaneously (so that the block layer can merge the writes) and then
1216  * waited upon.
1217  *
1218  * Finally, we flush hardware disk cache.
1219  */
1220 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1221 {
1222 	int a, f;
1223 	unsigned long buffers_processed = 0;
1224 	struct dm_buffer *b, *tmp;
1225 
1226 	LIST_HEAD(write_list);
1227 
1228 	dm_bufio_lock(c);
1229 	__write_dirty_buffers_async(c, 0, &write_list);
1230 	dm_bufio_unlock(c);
1231 	__flush_write_list(&write_list);
1232 	dm_bufio_lock(c);
1233 
1234 again:
1235 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1236 		int dropped_lock = 0;
1237 
1238 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1239 			buffers_processed++;
1240 
1241 		BUG_ON(test_bit(B_READING, &b->state));
1242 
1243 		if (test_bit(B_WRITING, &b->state)) {
1244 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1245 				dropped_lock = 1;
1246 				b->hold_count++;
1247 				dm_bufio_unlock(c);
1248 				wait_on_bit_io(&b->state, B_WRITING,
1249 					       TASK_UNINTERRUPTIBLE);
1250 				dm_bufio_lock(c);
1251 				b->hold_count--;
1252 			} else
1253 				wait_on_bit_io(&b->state, B_WRITING,
1254 					       TASK_UNINTERRUPTIBLE);
1255 		}
1256 
1257 		if (!test_bit(B_DIRTY, &b->state) &&
1258 		    !test_bit(B_WRITING, &b->state))
1259 			__relink_lru(b, LIST_CLEAN);
1260 
1261 		dm_bufio_cond_resched();
1262 
1263 		/*
1264 		 * If we dropped the lock, the list is no longer consistent,
1265 		 * so we must restart the search.
1266 		 *
1267 		 * In the most common case, the buffer just processed is
1268 		 * relinked to the clean list, so we won't loop scanning the
1269 		 * same buffer again and again.
1270 		 *
1271 		 * This may livelock if there is another thread simultaneously
1272 		 * dirtying buffers, so we count the number of buffers walked
1273 		 * and if it exceeds the total number of buffers, it means that
1274 		 * someone is doing some writes simultaneously with us.  In
1275 		 * this case, stop, dropping the lock.
1276 		 */
1277 		if (dropped_lock)
1278 			goto again;
1279 	}
1280 	wake_up(&c->free_buffer_wait);
1281 	dm_bufio_unlock(c);
1282 
1283 	a = xchg(&c->async_write_error, 0);
1284 	f = dm_bufio_issue_flush(c);
1285 	if (a)
1286 		return a;
1287 
1288 	return f;
1289 }
1290 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1291 
1292 /*
1293  * Use dm-io to send and empty barrier flush the device.
1294  */
1295 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1296 {
1297 	struct dm_io_request io_req = {
1298 		.bi_rw = WRITE_FLUSH,
1299 		.mem.type = DM_IO_KMEM,
1300 		.mem.ptr.addr = NULL,
1301 		.client = c->dm_io,
1302 	};
1303 	struct dm_io_region io_reg = {
1304 		.bdev = c->bdev,
1305 		.sector = 0,
1306 		.count = 0,
1307 	};
1308 
1309 	BUG_ON(dm_bufio_in_request());
1310 
1311 	return dm_io(&io_req, 1, &io_reg, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1314 
1315 /*
1316  * We first delete any other buffer that may be at that new location.
1317  *
1318  * Then, we write the buffer to the original location if it was dirty.
1319  *
1320  * Then, if we are the only one who is holding the buffer, relink the buffer
1321  * in the hash queue for the new location.
1322  *
1323  * If there was someone else holding the buffer, we write it to the new
1324  * location but not relink it, because that other user needs to have the buffer
1325  * at the same place.
1326  */
1327 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1328 {
1329 	struct dm_bufio_client *c = b->c;
1330 	struct dm_buffer *new;
1331 
1332 	BUG_ON(dm_bufio_in_request());
1333 
1334 	dm_bufio_lock(c);
1335 
1336 retry:
1337 	new = __find(c, new_block);
1338 	if (new) {
1339 		if (new->hold_count) {
1340 			__wait_for_free_buffer(c);
1341 			goto retry;
1342 		}
1343 
1344 		/*
1345 		 * FIXME: Is there any point waiting for a write that's going
1346 		 * to be overwritten in a bit?
1347 		 */
1348 		__make_buffer_clean(new);
1349 		__unlink_buffer(new);
1350 		__free_buffer_wake(new);
1351 	}
1352 
1353 	BUG_ON(!b->hold_count);
1354 	BUG_ON(test_bit(B_READING, &b->state));
1355 
1356 	__write_dirty_buffer(b, NULL);
1357 	if (b->hold_count == 1) {
1358 		wait_on_bit_io(&b->state, B_WRITING,
1359 			       TASK_UNINTERRUPTIBLE);
1360 		set_bit(B_DIRTY, &b->state);
1361 		__unlink_buffer(b);
1362 		__link_buffer(b, new_block, LIST_DIRTY);
1363 	} else {
1364 		sector_t old_block;
1365 		wait_on_bit_lock_io(&b->state, B_WRITING,
1366 				    TASK_UNINTERRUPTIBLE);
1367 		/*
1368 		 * Relink buffer to "new_block" so that write_callback
1369 		 * sees "new_block" as a block number.
1370 		 * After the write, link the buffer back to old_block.
1371 		 * All this must be done in bufio lock, so that block number
1372 		 * change isn't visible to other threads.
1373 		 */
1374 		old_block = b->block;
1375 		__unlink_buffer(b);
1376 		__link_buffer(b, new_block, b->list_mode);
1377 		submit_io(b, WRITE, new_block, write_endio);
1378 		wait_on_bit_io(&b->state, B_WRITING,
1379 			       TASK_UNINTERRUPTIBLE);
1380 		__unlink_buffer(b);
1381 		__link_buffer(b, old_block, b->list_mode);
1382 	}
1383 
1384 	dm_bufio_unlock(c);
1385 	dm_bufio_release(b);
1386 }
1387 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1388 
1389 /*
1390  * Free the given buffer.
1391  *
1392  * This is just a hint, if the buffer is in use or dirty, this function
1393  * does nothing.
1394  */
1395 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1396 {
1397 	struct dm_buffer *b;
1398 
1399 	dm_bufio_lock(c);
1400 
1401 	b = __find(c, block);
1402 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1403 		__unlink_buffer(b);
1404 		__free_buffer_wake(b);
1405 	}
1406 
1407 	dm_bufio_unlock(c);
1408 }
1409 EXPORT_SYMBOL(dm_bufio_forget);
1410 
1411 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1412 {
1413 	c->minimum_buffers = n;
1414 }
1415 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1416 
1417 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1418 {
1419 	return c->block_size;
1420 }
1421 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1422 
1423 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1424 {
1425 	return i_size_read(c->bdev->bd_inode) >>
1426 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1427 }
1428 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1429 
1430 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1431 {
1432 	return b->block;
1433 }
1434 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1435 
1436 void *dm_bufio_get_block_data(struct dm_buffer *b)
1437 {
1438 	return b->data;
1439 }
1440 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1441 
1442 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1443 {
1444 	return b + 1;
1445 }
1446 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1447 
1448 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1449 {
1450 	return b->c;
1451 }
1452 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1453 
1454 static void drop_buffers(struct dm_bufio_client *c)
1455 {
1456 	struct dm_buffer *b;
1457 	int i;
1458 
1459 	BUG_ON(dm_bufio_in_request());
1460 
1461 	/*
1462 	 * An optimization so that the buffers are not written one-by-one.
1463 	 */
1464 	dm_bufio_write_dirty_buffers_async(c);
1465 
1466 	dm_bufio_lock(c);
1467 
1468 	while ((b = __get_unclaimed_buffer(c)))
1469 		__free_buffer_wake(b);
1470 
1471 	for (i = 0; i < LIST_SIZE; i++)
1472 		list_for_each_entry(b, &c->lru[i], lru_list)
1473 			DMERR("leaked buffer %llx, hold count %u, list %d",
1474 			      (unsigned long long)b->block, b->hold_count, i);
1475 
1476 	for (i = 0; i < LIST_SIZE; i++)
1477 		BUG_ON(!list_empty(&c->lru[i]));
1478 
1479 	dm_bufio_unlock(c);
1480 }
1481 
1482 /*
1483  * We may not be able to evict this buffer if IO pending or the client
1484  * is still using it.  Caller is expected to know buffer is too old.
1485  *
1486  * And if GFP_NOFS is used, we must not do any I/O because we hold
1487  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1488  * rerouted to different bufio client.
1489  */
1490 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1491 {
1492 	if (!(gfp & __GFP_FS)) {
1493 		if (test_bit(B_READING, &b->state) ||
1494 		    test_bit(B_WRITING, &b->state) ||
1495 		    test_bit(B_DIRTY, &b->state))
1496 			return false;
1497 	}
1498 
1499 	if (b->hold_count)
1500 		return false;
1501 
1502 	__make_buffer_clean(b);
1503 	__unlink_buffer(b);
1504 	__free_buffer_wake(b);
1505 
1506 	return true;
1507 }
1508 
1509 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1510 {
1511         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1512         return retain_bytes / c->block_size;
1513 }
1514 
1515 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1516 			    gfp_t gfp_mask)
1517 {
1518 	int l;
1519 	struct dm_buffer *b, *tmp;
1520 	unsigned long freed = 0;
1521 	unsigned long count = nr_to_scan;
1522 	unsigned retain_target = get_retain_buffers(c);
1523 
1524 	for (l = 0; l < LIST_SIZE; l++) {
1525 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1526 			if (__try_evict_buffer(b, gfp_mask))
1527 				freed++;
1528 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1529 				return freed;
1530 			dm_bufio_cond_resched();
1531 		}
1532 	}
1533 	return freed;
1534 }
1535 
1536 static unsigned long
1537 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1538 {
1539 	struct dm_bufio_client *c;
1540 	unsigned long freed;
1541 
1542 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1543 	if (sc->gfp_mask & __GFP_FS)
1544 		dm_bufio_lock(c);
1545 	else if (!dm_bufio_trylock(c))
1546 		return SHRINK_STOP;
1547 
1548 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1549 	dm_bufio_unlock(c);
1550 	return freed;
1551 }
1552 
1553 static unsigned long
1554 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1555 {
1556 	struct dm_bufio_client *c;
1557 	unsigned long count;
1558 
1559 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1560 	if (sc->gfp_mask & __GFP_FS)
1561 		dm_bufio_lock(c);
1562 	else if (!dm_bufio_trylock(c))
1563 		return 0;
1564 
1565 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1566 	dm_bufio_unlock(c);
1567 	return count;
1568 }
1569 
1570 /*
1571  * Create the buffering interface
1572  */
1573 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1574 					       unsigned reserved_buffers, unsigned aux_size,
1575 					       void (*alloc_callback)(struct dm_buffer *),
1576 					       void (*write_callback)(struct dm_buffer *))
1577 {
1578 	int r;
1579 	struct dm_bufio_client *c;
1580 	unsigned i;
1581 
1582 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1583 	       (block_size & (block_size - 1)));
1584 
1585 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1586 	if (!c) {
1587 		r = -ENOMEM;
1588 		goto bad_client;
1589 	}
1590 	c->buffer_tree = RB_ROOT;
1591 
1592 	c->bdev = bdev;
1593 	c->block_size = block_size;
1594 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1595 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1596 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1597 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1598 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1599 
1600 	c->aux_size = aux_size;
1601 	c->alloc_callback = alloc_callback;
1602 	c->write_callback = write_callback;
1603 
1604 	for (i = 0; i < LIST_SIZE; i++) {
1605 		INIT_LIST_HEAD(&c->lru[i]);
1606 		c->n_buffers[i] = 0;
1607 	}
1608 
1609 	mutex_init(&c->lock);
1610 	INIT_LIST_HEAD(&c->reserved_buffers);
1611 	c->need_reserved_buffers = reserved_buffers;
1612 
1613 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1614 
1615 	init_waitqueue_head(&c->free_buffer_wait);
1616 	c->async_write_error = 0;
1617 
1618 	c->dm_io = dm_io_client_create();
1619 	if (IS_ERR(c->dm_io)) {
1620 		r = PTR_ERR(c->dm_io);
1621 		goto bad_dm_io;
1622 	}
1623 
1624 	mutex_lock(&dm_bufio_clients_lock);
1625 	if (c->blocks_per_page_bits) {
1626 		if (!DM_BUFIO_CACHE_NAME(c)) {
1627 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1628 			if (!DM_BUFIO_CACHE_NAME(c)) {
1629 				r = -ENOMEM;
1630 				mutex_unlock(&dm_bufio_clients_lock);
1631 				goto bad_cache;
1632 			}
1633 		}
1634 
1635 		if (!DM_BUFIO_CACHE(c)) {
1636 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1637 							      c->block_size,
1638 							      c->block_size, 0, NULL);
1639 			if (!DM_BUFIO_CACHE(c)) {
1640 				r = -ENOMEM;
1641 				mutex_unlock(&dm_bufio_clients_lock);
1642 				goto bad_cache;
1643 			}
1644 		}
1645 	}
1646 	mutex_unlock(&dm_bufio_clients_lock);
1647 
1648 	while (c->need_reserved_buffers) {
1649 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1650 
1651 		if (!b) {
1652 			r = -ENOMEM;
1653 			goto bad_buffer;
1654 		}
1655 		__free_buffer_wake(b);
1656 	}
1657 
1658 	mutex_lock(&dm_bufio_clients_lock);
1659 	dm_bufio_client_count++;
1660 	list_add(&c->client_list, &dm_bufio_all_clients);
1661 	__cache_size_refresh();
1662 	mutex_unlock(&dm_bufio_clients_lock);
1663 
1664 	c->shrinker.count_objects = dm_bufio_shrink_count;
1665 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1666 	c->shrinker.seeks = 1;
1667 	c->shrinker.batch = 0;
1668 	register_shrinker(&c->shrinker);
1669 
1670 	return c;
1671 
1672 bad_buffer:
1673 bad_cache:
1674 	while (!list_empty(&c->reserved_buffers)) {
1675 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1676 						 struct dm_buffer, lru_list);
1677 		list_del(&b->lru_list);
1678 		free_buffer(b);
1679 	}
1680 	dm_io_client_destroy(c->dm_io);
1681 bad_dm_io:
1682 	kfree(c);
1683 bad_client:
1684 	return ERR_PTR(r);
1685 }
1686 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1687 
1688 /*
1689  * Free the buffering interface.
1690  * It is required that there are no references on any buffers.
1691  */
1692 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1693 {
1694 	unsigned i;
1695 
1696 	drop_buffers(c);
1697 
1698 	unregister_shrinker(&c->shrinker);
1699 
1700 	mutex_lock(&dm_bufio_clients_lock);
1701 
1702 	list_del(&c->client_list);
1703 	dm_bufio_client_count--;
1704 	__cache_size_refresh();
1705 
1706 	mutex_unlock(&dm_bufio_clients_lock);
1707 
1708 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1709 	BUG_ON(c->need_reserved_buffers);
1710 
1711 	while (!list_empty(&c->reserved_buffers)) {
1712 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1713 						 struct dm_buffer, lru_list);
1714 		list_del(&b->lru_list);
1715 		free_buffer(b);
1716 	}
1717 
1718 	for (i = 0; i < LIST_SIZE; i++)
1719 		if (c->n_buffers[i])
1720 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1721 
1722 	for (i = 0; i < LIST_SIZE; i++)
1723 		BUG_ON(c->n_buffers[i]);
1724 
1725 	dm_io_client_destroy(c->dm_io);
1726 	kfree(c);
1727 }
1728 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1729 
1730 static unsigned get_max_age_hz(void)
1731 {
1732 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1733 
1734 	if (max_age > UINT_MAX / HZ)
1735 		max_age = UINT_MAX / HZ;
1736 
1737 	return max_age * HZ;
1738 }
1739 
1740 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1741 {
1742 	return (jiffies - b->last_accessed) >= age_hz;
1743 }
1744 
1745 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1746 {
1747 	struct dm_buffer *b, *tmp;
1748 	unsigned retain_target = get_retain_buffers(c);
1749 	unsigned count;
1750 
1751 	dm_bufio_lock(c);
1752 
1753 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1754 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1755 		if (count <= retain_target)
1756 			break;
1757 
1758 		if (!older_than(b, age_hz))
1759 			break;
1760 
1761 		if (__try_evict_buffer(b, 0))
1762 			count--;
1763 
1764 		dm_bufio_cond_resched();
1765 	}
1766 
1767 	dm_bufio_unlock(c);
1768 }
1769 
1770 static void cleanup_old_buffers(void)
1771 {
1772 	unsigned long max_age_hz = get_max_age_hz();
1773 	struct dm_bufio_client *c;
1774 
1775 	mutex_lock(&dm_bufio_clients_lock);
1776 
1777 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1778 		__evict_old_buffers(c, max_age_hz);
1779 
1780 	mutex_unlock(&dm_bufio_clients_lock);
1781 }
1782 
1783 static struct workqueue_struct *dm_bufio_wq;
1784 static struct delayed_work dm_bufio_work;
1785 
1786 static void work_fn(struct work_struct *w)
1787 {
1788 	cleanup_old_buffers();
1789 
1790 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1791 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1792 }
1793 
1794 /*----------------------------------------------------------------
1795  * Module setup
1796  *--------------------------------------------------------------*/
1797 
1798 /*
1799  * This is called only once for the whole dm_bufio module.
1800  * It initializes memory limit.
1801  */
1802 static int __init dm_bufio_init(void)
1803 {
1804 	__u64 mem;
1805 
1806 	dm_bufio_allocated_kmem_cache = 0;
1807 	dm_bufio_allocated_get_free_pages = 0;
1808 	dm_bufio_allocated_vmalloc = 0;
1809 	dm_bufio_current_allocated = 0;
1810 
1811 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1812 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1813 
1814 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1815 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1816 
1817 	if (mem > ULONG_MAX)
1818 		mem = ULONG_MAX;
1819 
1820 #ifdef CONFIG_MMU
1821 	/*
1822 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1823 	 * in fs/proc/internal.h
1824 	 */
1825 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1826 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1827 #endif
1828 
1829 	dm_bufio_default_cache_size = mem;
1830 
1831 	mutex_lock(&dm_bufio_clients_lock);
1832 	__cache_size_refresh();
1833 	mutex_unlock(&dm_bufio_clients_lock);
1834 
1835 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1836 	if (!dm_bufio_wq)
1837 		return -ENOMEM;
1838 
1839 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1840 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1841 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1842 
1843 	return 0;
1844 }
1845 
1846 /*
1847  * This is called once when unloading the dm_bufio module.
1848  */
1849 static void __exit dm_bufio_exit(void)
1850 {
1851 	int bug = 0;
1852 	int i;
1853 
1854 	cancel_delayed_work_sync(&dm_bufio_work);
1855 	destroy_workqueue(dm_bufio_wq);
1856 
1857 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1858 		struct kmem_cache *kc = dm_bufio_caches[i];
1859 
1860 		if (kc)
1861 			kmem_cache_destroy(kc);
1862 	}
1863 
1864 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1865 		kfree(dm_bufio_cache_names[i]);
1866 
1867 	if (dm_bufio_client_count) {
1868 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1869 			__func__, dm_bufio_client_count);
1870 		bug = 1;
1871 	}
1872 
1873 	if (dm_bufio_current_allocated) {
1874 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1875 			__func__, dm_bufio_current_allocated);
1876 		bug = 1;
1877 	}
1878 
1879 	if (dm_bufio_allocated_get_free_pages) {
1880 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1881 		       __func__, dm_bufio_allocated_get_free_pages);
1882 		bug = 1;
1883 	}
1884 
1885 	if (dm_bufio_allocated_vmalloc) {
1886 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1887 		       __func__, dm_bufio_allocated_vmalloc);
1888 		bug = 1;
1889 	}
1890 
1891 	if (bug)
1892 		BUG();
1893 }
1894 
1895 module_init(dm_bufio_init)
1896 module_exit(dm_bufio_exit)
1897 
1898 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1899 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1900 
1901 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1902 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1903 
1904 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1905 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1906 
1907 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1908 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1909 
1910 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1911 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1912 
1913 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1914 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1915 
1916 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1917 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1918 
1919 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1920 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1921 
1922 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1923 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1924 MODULE_LICENSE("GPL");
1925