xref: /openbmc/linux/drivers/md/dm-bufio.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/dm-bufio.h>
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23 
24 #include "dm.h"
25 
26 #define DM_MSG_PREFIX "bufio"
27 
28 /*
29  * Memory management policy:
30  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *	dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS		8
37 
38 #define DM_BUFIO_MEMORY_PERCENT		2
39 #define DM_BUFIO_VMALLOC_PERCENT	25
40 #define DM_BUFIO_WRITEBACK_RATIO	3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
42 
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS	30
47 
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS	300
52 
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57 
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN		4096
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*--------------------------------------------------------------*/
72 
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81 	struct list_head list;
82 	atomic_t referenced;
83 };
84 
85 struct lru_iter {
86 	struct lru *lru;
87 	struct list_head list;
88 	struct lru_entry *stop;
89 	struct lru_entry *e;
90 };
91 
92 struct lru {
93 	struct list_head *cursor;
94 	unsigned long count;
95 
96 	struct list_head iterators;
97 };
98 
99 /*--------------*/
100 
101 static void lru_init(struct lru *lru)
102 {
103 	lru->cursor = NULL;
104 	lru->count = 0;
105 	INIT_LIST_HEAD(&lru->iterators);
106 }
107 
108 static void lru_destroy(struct lru *lru)
109 {
110 	WARN_ON_ONCE(lru->cursor);
111 	WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113 
114 /*
115  * Insert a new entry into the lru.
116  */
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119 	/*
120 	 * Don't be tempted to set to 1, makes the lru aspect
121 	 * perform poorly.
122 	 */
123 	atomic_set(&le->referenced, 0);
124 
125 	if (lru->cursor) {
126 		list_add_tail(&le->list, lru->cursor);
127 	} else {
128 		INIT_LIST_HEAD(&le->list);
129 		lru->cursor = &le->list;
130 	}
131 	lru->count++;
132 }
133 
134 /*--------------*/
135 
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141 	return container_of(l, struct lru_entry, list);
142 }
143 
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149 	it->lru = lru;
150 	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 	list_add(&it->list, &lru->iterators);
153 }
154 
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160 	list_del(&it->list);
161 }
162 
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165 
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 				       iter_predicate pred, void *context)
173 {
174 	struct lru_entry *e;
175 
176 	while (it->e) {
177 		e = it->e;
178 
179 		/* advance the cursor */
180 		if (it->e == it->stop)
181 			it->e = NULL;
182 		else
183 			it->e = to_le(it->e->list.next);
184 
185 		if (pred(e, context))
186 			return e;
187 	}
188 
189 	return NULL;
190 }
191 
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198 	struct lru_iter *it;
199 
200 	list_for_each_entry(it, &lru->iterators, list) {
201 		/* Move c->e forwards if necc. */
202 		if (it->e == e) {
203 			it->e = to_le(it->e->list.next);
204 			if (it->e == e)
205 				it->e = NULL;
206 		}
207 
208 		/* Move it->stop backwards if necc. */
209 		if (it->stop == e) {
210 			it->stop = to_le(it->stop->list.prev);
211 			if (it->stop == e)
212 				it->stop = NULL;
213 		}
214 	}
215 }
216 
217 /*--------------*/
218 
219 /*
220  * Remove a specific entry from the lru.
221  */
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224 	lru_iter_invalidate(lru, le);
225 	if (lru->count == 1) {
226 		lru->cursor = NULL;
227 	} else {
228 		if (lru->cursor == &le->list)
229 			lru->cursor = lru->cursor->next;
230 		list_del(&le->list);
231 	}
232 	lru->count--;
233 }
234 
235 /*
236  * Mark as referenced.
237  */
238 static inline void lru_reference(struct lru_entry *le)
239 {
240 	atomic_set(&le->referenced, 1);
241 }
242 
243 /*--------------*/
244 
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250 	ER_EVICT,
251 	ER_DONT_EVICT,
252 	ER_STOP, /* stop looking for something to evict */
253 };
254 
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256 
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context)
258 {
259 	unsigned long tested = 0;
260 	struct list_head *h = lru->cursor;
261 	struct lru_entry *le;
262 
263 	if (!h)
264 		return NULL;
265 	/*
266 	 * In the worst case we have to loop around twice. Once to clear
267 	 * the reference flags, and then again to discover the predicate
268 	 * fails for all entries.
269 	 */
270 	while (tested < lru->count) {
271 		le = container_of(h, struct lru_entry, list);
272 
273 		if (atomic_read(&le->referenced)) {
274 			atomic_set(&le->referenced, 0);
275 		} else {
276 			tested++;
277 			switch (pred(le, context)) {
278 			case ER_EVICT:
279 				/*
280 				 * Adjust the cursor, so we start the next
281 				 * search from here.
282 				 */
283 				lru->cursor = le->list.next;
284 				lru_remove(lru, le);
285 				return le;
286 
287 			case ER_DONT_EVICT:
288 				break;
289 
290 			case ER_STOP:
291 				lru->cursor = le->list.next;
292 				return NULL;
293 			}
294 		}
295 
296 		h = h->next;
297 
298 		cond_resched();
299 	}
300 
301 	return NULL;
302 }
303 
304 /*--------------------------------------------------------------*/
305 
306 /*
307  * Buffer state bits.
308  */
309 #define B_READING	0
310 #define B_WRITING	1
311 #define B_DIRTY		2
312 
313 /*
314  * Describes how the block was allocated:
315  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
316  * See the comment at alloc_buffer_data.
317  */
318 enum data_mode {
319 	DATA_MODE_SLAB = 0,
320 	DATA_MODE_GET_FREE_PAGES = 1,
321 	DATA_MODE_VMALLOC = 2,
322 	DATA_MODE_LIMIT = 3
323 };
324 
325 struct dm_buffer {
326 	/* protected by the locks in dm_buffer_cache */
327 	struct rb_node node;
328 
329 	/* immutable, so don't need protecting */
330 	sector_t block;
331 	void *data;
332 	unsigned char data_mode;		/* DATA_MODE_* */
333 
334 	/*
335 	 * These two fields are used in isolation, so do not need
336 	 * a surrounding lock.
337 	 */
338 	atomic_t hold_count;
339 	unsigned long last_accessed;
340 
341 	/*
342 	 * Everything else is protected by the mutex in
343 	 * dm_bufio_client
344 	 */
345 	unsigned long state;
346 	struct lru_entry lru;
347 	unsigned char list_mode;		/* LIST_* */
348 	blk_status_t read_error;
349 	blk_status_t write_error;
350 	unsigned int dirty_start;
351 	unsigned int dirty_end;
352 	unsigned int write_start;
353 	unsigned int write_end;
354 	struct list_head write_list;
355 	struct dm_bufio_client *c;
356 	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
357 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
358 #define MAX_STACK 10
359 	unsigned int stack_len;
360 	unsigned long stack_entries[MAX_STACK];
361 #endif
362 };
363 
364 /*--------------------------------------------------------------*/
365 
366 /*
367  * The buffer cache manages buffers, particularly:
368  *  - inc/dec of holder count
369  *  - setting the last_accessed field
370  *  - maintains clean/dirty state along with lru
371  *  - selecting buffers that match predicates
372  *
373  * It does *not* handle:
374  *  - allocation/freeing of buffers.
375  *  - IO
376  *  - Eviction or cache sizing.
377  *
378  * cache_get() and cache_put() are threadsafe, you do not need to
379  * protect these calls with a surrounding mutex.  All the other
380  * methods are not threadsafe; they do use locking primitives, but
381  * only enough to ensure get/put are threadsafe.
382  */
383 
384 struct buffer_tree {
385 	struct rw_semaphore lock;
386 	struct rb_root root;
387 } ____cacheline_aligned_in_smp;
388 
389 struct dm_buffer_cache {
390 	struct lru lru[LIST_SIZE];
391 	/*
392 	 * We spread entries across multiple trees to reduce contention
393 	 * on the locks.
394 	 */
395 	unsigned int num_locks;
396 	struct buffer_tree trees[];
397 };
398 
399 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
400 {
401 	return dm_hash_locks_index(block, num_locks);
402 }
403 
404 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
405 {
406 	down_read(&bc->trees[cache_index(block, bc->num_locks)].lock);
407 }
408 
409 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
410 {
411 	up_read(&bc->trees[cache_index(block, bc->num_locks)].lock);
412 }
413 
414 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
415 {
416 	down_write(&bc->trees[cache_index(block, bc->num_locks)].lock);
417 }
418 
419 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
420 {
421 	up_write(&bc->trees[cache_index(block, bc->num_locks)].lock);
422 }
423 
424 /*
425  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
426  * This struct helps avoid redundant drop and gets of the same lock.
427  */
428 struct lock_history {
429 	struct dm_buffer_cache *cache;
430 	bool write;
431 	unsigned int previous;
432 	unsigned int no_previous;
433 };
434 
435 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
436 {
437 	lh->cache = cache;
438 	lh->write = write;
439 	lh->no_previous = cache->num_locks;
440 	lh->previous = lh->no_previous;
441 }
442 
443 static void __lh_lock(struct lock_history *lh, unsigned int index)
444 {
445 	if (lh->write)
446 		down_write(&lh->cache->trees[index].lock);
447 	else
448 		down_read(&lh->cache->trees[index].lock);
449 }
450 
451 static void __lh_unlock(struct lock_history *lh, unsigned int index)
452 {
453 	if (lh->write)
454 		up_write(&lh->cache->trees[index].lock);
455 	else
456 		up_read(&lh->cache->trees[index].lock);
457 }
458 
459 /*
460  * Make sure you call this since it will unlock the final lock.
461  */
462 static void lh_exit(struct lock_history *lh)
463 {
464 	if (lh->previous != lh->no_previous) {
465 		__lh_unlock(lh, lh->previous);
466 		lh->previous = lh->no_previous;
467 	}
468 }
469 
470 /*
471  * Named 'next' because there is no corresponding
472  * 'up/unlock' call since it's done automatically.
473  */
474 static void lh_next(struct lock_history *lh, sector_t b)
475 {
476 	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
477 
478 	if (lh->previous != lh->no_previous) {
479 		if (lh->previous != index) {
480 			__lh_unlock(lh, lh->previous);
481 			__lh_lock(lh, index);
482 			lh->previous = index;
483 		}
484 	} else {
485 		__lh_lock(lh, index);
486 		lh->previous = index;
487 	}
488 }
489 
490 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
491 {
492 	return container_of(le, struct dm_buffer, lru);
493 }
494 
495 static struct dm_buffer *list_to_buffer(struct list_head *l)
496 {
497 	struct lru_entry *le = list_entry(l, struct lru_entry, list);
498 
499 	if (!le)
500 		return NULL;
501 
502 	return le_to_buffer(le);
503 }
504 
505 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks)
506 {
507 	unsigned int i;
508 
509 	bc->num_locks = num_locks;
510 
511 	for (i = 0; i < bc->num_locks; i++) {
512 		init_rwsem(&bc->trees[i].lock);
513 		bc->trees[i].root = RB_ROOT;
514 	}
515 
516 	lru_init(&bc->lru[LIST_CLEAN]);
517 	lru_init(&bc->lru[LIST_DIRTY]);
518 }
519 
520 static void cache_destroy(struct dm_buffer_cache *bc)
521 {
522 	unsigned int i;
523 
524 	for (i = 0; i < bc->num_locks; i++)
525 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
526 
527 	lru_destroy(&bc->lru[LIST_CLEAN]);
528 	lru_destroy(&bc->lru[LIST_DIRTY]);
529 }
530 
531 /*--------------*/
532 
533 /*
534  * not threadsafe, or racey depending how you look at it
535  */
536 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
537 {
538 	return bc->lru[list_mode].count;
539 }
540 
541 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
542 {
543 	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
544 }
545 
546 /*--------------*/
547 
548 /*
549  * Gets a specific buffer, indexed by block.
550  * If the buffer is found then its holder count will be incremented and
551  * lru_reference will be called.
552  *
553  * threadsafe
554  */
555 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
556 {
557 	struct rb_node *n = root->rb_node;
558 	struct dm_buffer *b;
559 
560 	while (n) {
561 		b = container_of(n, struct dm_buffer, node);
562 
563 		if (b->block == block)
564 			return b;
565 
566 		n = block < b->block ? n->rb_left : n->rb_right;
567 	}
568 
569 	return NULL;
570 }
571 
572 static void __cache_inc_buffer(struct dm_buffer *b)
573 {
574 	atomic_inc(&b->hold_count);
575 	WRITE_ONCE(b->last_accessed, jiffies);
576 }
577 
578 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
579 {
580 	struct dm_buffer *b;
581 
582 	cache_read_lock(bc, block);
583 	b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
584 	if (b) {
585 		lru_reference(&b->lru);
586 		__cache_inc_buffer(b);
587 	}
588 	cache_read_unlock(bc, block);
589 
590 	return b;
591 }
592 
593 /*--------------*/
594 
595 /*
596  * Returns true if the hold count hits zero.
597  * threadsafe
598  */
599 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
600 {
601 	bool r;
602 
603 	cache_read_lock(bc, b->block);
604 	BUG_ON(!atomic_read(&b->hold_count));
605 	r = atomic_dec_and_test(&b->hold_count);
606 	cache_read_unlock(bc, b->block);
607 
608 	return r;
609 }
610 
611 /*--------------*/
612 
613 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
614 
615 /*
616  * Evicts a buffer based on a predicate.  The oldest buffer that
617  * matches the predicate will be selected.  In addition to the
618  * predicate the hold_count of the selected buffer will be zero.
619  */
620 struct evict_wrapper {
621 	struct lock_history *lh;
622 	b_predicate pred;
623 	void *context;
624 };
625 
626 /*
627  * Wraps the buffer predicate turning it into an lru predicate.  Adds
628  * extra test for hold_count.
629  */
630 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
631 {
632 	struct evict_wrapper *w = context;
633 	struct dm_buffer *b = le_to_buffer(le);
634 
635 	lh_next(w->lh, b->block);
636 
637 	if (atomic_read(&b->hold_count))
638 		return ER_DONT_EVICT;
639 
640 	return w->pred(b, w->context);
641 }
642 
643 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
644 				       b_predicate pred, void *context,
645 				       struct lock_history *lh)
646 {
647 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
648 	struct lru_entry *le;
649 	struct dm_buffer *b;
650 
651 	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w);
652 	if (!le)
653 		return NULL;
654 
655 	b = le_to_buffer(le);
656 	/* __evict_pred will have locked the appropriate tree. */
657 	rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
658 
659 	return b;
660 }
661 
662 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
663 				     b_predicate pred, void *context)
664 {
665 	struct dm_buffer *b;
666 	struct lock_history lh;
667 
668 	lh_init(&lh, bc, true);
669 	b = __cache_evict(bc, list_mode, pred, context, &lh);
670 	lh_exit(&lh);
671 
672 	return b;
673 }
674 
675 /*--------------*/
676 
677 /*
678  * Mark a buffer as clean or dirty. Not threadsafe.
679  */
680 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
681 {
682 	cache_write_lock(bc, b->block);
683 	if (list_mode != b->list_mode) {
684 		lru_remove(&bc->lru[b->list_mode], &b->lru);
685 		b->list_mode = list_mode;
686 		lru_insert(&bc->lru[b->list_mode], &b->lru);
687 	}
688 	cache_write_unlock(bc, b->block);
689 }
690 
691 /*--------------*/
692 
693 /*
694  * Runs through the lru associated with 'old_mode', if the predicate matches then
695  * it moves them to 'new_mode'.  Not threadsafe.
696  */
697 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
698 			      b_predicate pred, void *context, struct lock_history *lh)
699 {
700 	struct lru_entry *le;
701 	struct dm_buffer *b;
702 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
703 
704 	while (true) {
705 		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w);
706 		if (!le)
707 			break;
708 
709 		b = le_to_buffer(le);
710 		b->list_mode = new_mode;
711 		lru_insert(&bc->lru[b->list_mode], &b->lru);
712 	}
713 }
714 
715 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
716 			    b_predicate pred, void *context)
717 {
718 	struct lock_history lh;
719 
720 	lh_init(&lh, bc, true);
721 	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
722 	lh_exit(&lh);
723 }
724 
725 /*--------------*/
726 
727 /*
728  * Iterates through all clean or dirty entries calling a function for each
729  * entry.  The callback may terminate the iteration early.  Not threadsafe.
730  */
731 
732 /*
733  * Iterator functions should return one of these actions to indicate
734  * how the iteration should proceed.
735  */
736 enum it_action {
737 	IT_NEXT,
738 	IT_COMPLETE,
739 };
740 
741 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
742 
743 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
744 			    iter_fn fn, void *context, struct lock_history *lh)
745 {
746 	struct lru *lru = &bc->lru[list_mode];
747 	struct lru_entry *le, *first;
748 
749 	if (!lru->cursor)
750 		return;
751 
752 	first = le = to_le(lru->cursor);
753 	do {
754 		struct dm_buffer *b = le_to_buffer(le);
755 
756 		lh_next(lh, b->block);
757 
758 		switch (fn(b, context)) {
759 		case IT_NEXT:
760 			break;
761 
762 		case IT_COMPLETE:
763 			return;
764 		}
765 		cond_resched();
766 
767 		le = to_le(le->list.next);
768 	} while (le != first);
769 }
770 
771 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
772 			  iter_fn fn, void *context)
773 {
774 	struct lock_history lh;
775 
776 	lh_init(&lh, bc, false);
777 	__cache_iterate(bc, list_mode, fn, context, &lh);
778 	lh_exit(&lh);
779 }
780 
781 /*--------------*/
782 
783 /*
784  * Passes ownership of the buffer to the cache. Returns false if the
785  * buffer was already present (in which case ownership does not pass).
786  * eg, a race with another thread.
787  *
788  * Holder count should be 1 on insertion.
789  *
790  * Not threadsafe.
791  */
792 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
793 {
794 	struct rb_node **new = &root->rb_node, *parent = NULL;
795 	struct dm_buffer *found;
796 
797 	while (*new) {
798 		found = container_of(*new, struct dm_buffer, node);
799 
800 		if (found->block == b->block)
801 			return false;
802 
803 		parent = *new;
804 		new = b->block < found->block ?
805 			&found->node.rb_left : &found->node.rb_right;
806 	}
807 
808 	rb_link_node(&b->node, parent, new);
809 	rb_insert_color(&b->node, root);
810 
811 	return true;
812 }
813 
814 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
815 {
816 	bool r;
817 
818 	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
819 		return false;
820 
821 	cache_write_lock(bc, b->block);
822 	BUG_ON(atomic_read(&b->hold_count) != 1);
823 	r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
824 	if (r)
825 		lru_insert(&bc->lru[b->list_mode], &b->lru);
826 	cache_write_unlock(bc, b->block);
827 
828 	return r;
829 }
830 
831 /*--------------*/
832 
833 /*
834  * Removes buffer from cache, ownership of the buffer passes back to the caller.
835  * Fails if the hold_count is not one (ie. the caller holds the only reference).
836  *
837  * Not threadsafe.
838  */
839 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
840 {
841 	bool r;
842 
843 	cache_write_lock(bc, b->block);
844 
845 	if (atomic_read(&b->hold_count) != 1) {
846 		r = false;
847 	} else {
848 		r = true;
849 		rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
850 		lru_remove(&bc->lru[b->list_mode], &b->lru);
851 	}
852 
853 	cache_write_unlock(bc, b->block);
854 
855 	return r;
856 }
857 
858 /*--------------*/
859 
860 typedef void (*b_release)(struct dm_buffer *);
861 
862 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
863 {
864 	struct rb_node *n = root->rb_node;
865 	struct dm_buffer *b;
866 	struct dm_buffer *best = NULL;
867 
868 	while (n) {
869 		b = container_of(n, struct dm_buffer, node);
870 
871 		if (b->block == block)
872 			return b;
873 
874 		if (block <= b->block) {
875 			n = n->rb_left;
876 			best = b;
877 		} else {
878 			n = n->rb_right;
879 		}
880 	}
881 
882 	return best;
883 }
884 
885 static void __remove_range(struct dm_buffer_cache *bc,
886 			   struct rb_root *root,
887 			   sector_t begin, sector_t end,
888 			   b_predicate pred, b_release release)
889 {
890 	struct dm_buffer *b;
891 
892 	while (true) {
893 		cond_resched();
894 
895 		b = __find_next(root, begin);
896 		if (!b || (b->block >= end))
897 			break;
898 
899 		begin = b->block + 1;
900 
901 		if (atomic_read(&b->hold_count))
902 			continue;
903 
904 		if (pred(b, NULL) == ER_EVICT) {
905 			rb_erase(&b->node, root);
906 			lru_remove(&bc->lru[b->list_mode], &b->lru);
907 			release(b);
908 		}
909 	}
910 }
911 
912 static void cache_remove_range(struct dm_buffer_cache *bc,
913 			       sector_t begin, sector_t end,
914 			       b_predicate pred, b_release release)
915 {
916 	unsigned int i;
917 
918 	for (i = 0; i < bc->num_locks; i++) {
919 		down_write(&bc->trees[i].lock);
920 		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
921 		up_write(&bc->trees[i].lock);
922 	}
923 }
924 
925 /*----------------------------------------------------------------*/
926 
927 /*
928  * Linking of buffers:
929  *	All buffers are linked to buffer_cache with their node field.
930  *
931  *	Clean buffers that are not being written (B_WRITING not set)
932  *	are linked to lru[LIST_CLEAN] with their lru_list field.
933  *
934  *	Dirty and clean buffers that are being written are linked to
935  *	lru[LIST_DIRTY] with their lru_list field. When the write
936  *	finishes, the buffer cannot be relinked immediately (because we
937  *	are in an interrupt context and relinking requires process
938  *	context), so some clean-not-writing buffers can be held on
939  *	dirty_lru too.  They are later added to lru in the process
940  *	context.
941  */
942 struct dm_bufio_client {
943 	struct block_device *bdev;
944 	unsigned int block_size;
945 	s8 sectors_per_block_bits;
946 
947 	bool no_sleep;
948 	struct mutex lock;
949 	spinlock_t spinlock;
950 
951 	int async_write_error;
952 
953 	void (*alloc_callback)(struct dm_buffer *buf);
954 	void (*write_callback)(struct dm_buffer *buf);
955 	struct kmem_cache *slab_buffer;
956 	struct kmem_cache *slab_cache;
957 	struct dm_io_client *dm_io;
958 
959 	struct list_head reserved_buffers;
960 	unsigned int need_reserved_buffers;
961 
962 	unsigned int minimum_buffers;
963 
964 	sector_t start;
965 
966 	struct shrinker shrinker;
967 	struct work_struct shrink_work;
968 	atomic_long_t need_shrink;
969 
970 	wait_queue_head_t free_buffer_wait;
971 
972 	struct list_head client_list;
973 
974 	/*
975 	 * Used by global_cleanup to sort the clients list.
976 	 */
977 	unsigned long oldest_buffer;
978 
979 	struct dm_buffer_cache cache; /* must be last member */
980 };
981 
982 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
983 
984 /*----------------------------------------------------------------*/
985 
986 #define dm_bufio_in_request()	(!!current->bio_list)
987 
988 static void dm_bufio_lock(struct dm_bufio_client *c)
989 {
990 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
991 		spin_lock_bh(&c->spinlock);
992 	else
993 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
994 }
995 
996 static void dm_bufio_unlock(struct dm_bufio_client *c)
997 {
998 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
999 		spin_unlock_bh(&c->spinlock);
1000 	else
1001 		mutex_unlock(&c->lock);
1002 }
1003 
1004 /*----------------------------------------------------------------*/
1005 
1006 /*
1007  * Default cache size: available memory divided by the ratio.
1008  */
1009 static unsigned long dm_bufio_default_cache_size;
1010 
1011 /*
1012  * Total cache size set by the user.
1013  */
1014 static unsigned long dm_bufio_cache_size;
1015 
1016 /*
1017  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1018  * at any time.  If it disagrees, the user has changed cache size.
1019  */
1020 static unsigned long dm_bufio_cache_size_latch;
1021 
1022 static DEFINE_SPINLOCK(global_spinlock);
1023 
1024 /*
1025  * Buffers are freed after this timeout
1026  */
1027 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1028 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1029 
1030 static unsigned long dm_bufio_peak_allocated;
1031 static unsigned long dm_bufio_allocated_kmem_cache;
1032 static unsigned long dm_bufio_allocated_get_free_pages;
1033 static unsigned long dm_bufio_allocated_vmalloc;
1034 static unsigned long dm_bufio_current_allocated;
1035 
1036 /*----------------------------------------------------------------*/
1037 
1038 /*
1039  * The current number of clients.
1040  */
1041 static int dm_bufio_client_count;
1042 
1043 /*
1044  * The list of all clients.
1045  */
1046 static LIST_HEAD(dm_bufio_all_clients);
1047 
1048 /*
1049  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1050  */
1051 static DEFINE_MUTEX(dm_bufio_clients_lock);
1052 
1053 static struct workqueue_struct *dm_bufio_wq;
1054 static struct delayed_work dm_bufio_cleanup_old_work;
1055 static struct work_struct dm_bufio_replacement_work;
1056 
1057 
1058 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1059 static void buffer_record_stack(struct dm_buffer *b)
1060 {
1061 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1062 }
1063 #endif
1064 
1065 /*----------------------------------------------------------------*/
1066 
1067 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1068 {
1069 	unsigned char data_mode;
1070 	long diff;
1071 
1072 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1073 		&dm_bufio_allocated_kmem_cache,
1074 		&dm_bufio_allocated_get_free_pages,
1075 		&dm_bufio_allocated_vmalloc,
1076 	};
1077 
1078 	data_mode = b->data_mode;
1079 	diff = (long)b->c->block_size;
1080 	if (unlink)
1081 		diff = -diff;
1082 
1083 	spin_lock(&global_spinlock);
1084 
1085 	*class_ptr[data_mode] += diff;
1086 
1087 	dm_bufio_current_allocated += diff;
1088 
1089 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1090 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1091 
1092 	if (!unlink) {
1093 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1094 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1095 	}
1096 
1097 	spin_unlock(&global_spinlock);
1098 }
1099 
1100 /*
1101  * Change the number of clients and recalculate per-client limit.
1102  */
1103 static void __cache_size_refresh(void)
1104 {
1105 	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1106 		return;
1107 	if (WARN_ON(dm_bufio_client_count < 0))
1108 		return;
1109 
1110 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1111 
1112 	/*
1113 	 * Use default if set to 0 and report the actual cache size used.
1114 	 */
1115 	if (!dm_bufio_cache_size_latch) {
1116 		(void)cmpxchg(&dm_bufio_cache_size, 0,
1117 			      dm_bufio_default_cache_size);
1118 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1119 	}
1120 }
1121 
1122 /*
1123  * Allocating buffer data.
1124  *
1125  * Small buffers are allocated with kmem_cache, to use space optimally.
1126  *
1127  * For large buffers, we choose between get_free_pages and vmalloc.
1128  * Each has advantages and disadvantages.
1129  *
1130  * __get_free_pages can randomly fail if the memory is fragmented.
1131  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1132  * as low as 128M) so using it for caching is not appropriate.
1133  *
1134  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1135  * won't have a fatal effect here, but it just causes flushes of some other
1136  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1137  * always fails (i.e. order > MAX_ORDER).
1138  *
1139  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1140  * initial reserve allocation, so there's no risk of wasting all vmalloc
1141  * space.
1142  */
1143 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1144 			       unsigned char *data_mode)
1145 {
1146 	if (unlikely(c->slab_cache != NULL)) {
1147 		*data_mode = DATA_MODE_SLAB;
1148 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1149 	}
1150 
1151 	if (c->block_size <= KMALLOC_MAX_SIZE &&
1152 	    gfp_mask & __GFP_NORETRY) {
1153 		*data_mode = DATA_MODE_GET_FREE_PAGES;
1154 		return (void *)__get_free_pages(gfp_mask,
1155 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1156 	}
1157 
1158 	*data_mode = DATA_MODE_VMALLOC;
1159 
1160 	/*
1161 	 * __vmalloc allocates the data pages and auxiliary structures with
1162 	 * gfp_flags that were specified, but pagetables are always allocated
1163 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
1164 	 *
1165 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
1166 	 * all allocations done by this process (including pagetables) are done
1167 	 * as if GFP_NOIO was specified.
1168 	 */
1169 	if (gfp_mask & __GFP_NORETRY) {
1170 		unsigned int noio_flag = memalloc_noio_save();
1171 		void *ptr = __vmalloc(c->block_size, gfp_mask);
1172 
1173 		memalloc_noio_restore(noio_flag);
1174 		return ptr;
1175 	}
1176 
1177 	return __vmalloc(c->block_size, gfp_mask);
1178 }
1179 
1180 /*
1181  * Free buffer's data.
1182  */
1183 static void free_buffer_data(struct dm_bufio_client *c,
1184 			     void *data, unsigned char data_mode)
1185 {
1186 	switch (data_mode) {
1187 	case DATA_MODE_SLAB:
1188 		kmem_cache_free(c->slab_cache, data);
1189 		break;
1190 
1191 	case DATA_MODE_GET_FREE_PAGES:
1192 		free_pages((unsigned long)data,
1193 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1194 		break;
1195 
1196 	case DATA_MODE_VMALLOC:
1197 		vfree(data);
1198 		break;
1199 
1200 	default:
1201 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1202 		       data_mode);
1203 		BUG();
1204 	}
1205 }
1206 
1207 /*
1208  * Allocate buffer and its data.
1209  */
1210 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1211 {
1212 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1213 
1214 	if (!b)
1215 		return NULL;
1216 
1217 	b->c = c;
1218 
1219 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1220 	if (!b->data) {
1221 		kmem_cache_free(c->slab_buffer, b);
1222 		return NULL;
1223 	}
1224 	adjust_total_allocated(b, false);
1225 
1226 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1227 	b->stack_len = 0;
1228 #endif
1229 	return b;
1230 }
1231 
1232 /*
1233  * Free buffer and its data.
1234  */
1235 static void free_buffer(struct dm_buffer *b)
1236 {
1237 	struct dm_bufio_client *c = b->c;
1238 
1239 	adjust_total_allocated(b, true);
1240 	free_buffer_data(c, b->data, b->data_mode);
1241 	kmem_cache_free(c->slab_buffer, b);
1242 }
1243 
1244 /*
1245  *--------------------------------------------------------------------------
1246  * Submit I/O on the buffer.
1247  *
1248  * Bio interface is faster but it has some problems:
1249  *	the vector list is limited (increasing this limit increases
1250  *	memory-consumption per buffer, so it is not viable);
1251  *
1252  *	the memory must be direct-mapped, not vmalloced;
1253  *
1254  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1255  * it is not vmalloced, try using the bio interface.
1256  *
1257  * If the buffer is big, if it is vmalloced or if the underlying device
1258  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1259  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1260  * shortcomings.
1261  *--------------------------------------------------------------------------
1262  */
1263 
1264 /*
1265  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1266  * that the request was handled directly with bio interface.
1267  */
1268 static void dmio_complete(unsigned long error, void *context)
1269 {
1270 	struct dm_buffer *b = context;
1271 
1272 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1273 }
1274 
1275 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1276 		     unsigned int n_sectors, unsigned int offset)
1277 {
1278 	int r;
1279 	struct dm_io_request io_req = {
1280 		.bi_opf = op,
1281 		.notify.fn = dmio_complete,
1282 		.notify.context = b,
1283 		.client = b->c->dm_io,
1284 	};
1285 	struct dm_io_region region = {
1286 		.bdev = b->c->bdev,
1287 		.sector = sector,
1288 		.count = n_sectors,
1289 	};
1290 
1291 	if (b->data_mode != DATA_MODE_VMALLOC) {
1292 		io_req.mem.type = DM_IO_KMEM;
1293 		io_req.mem.ptr.addr = (char *)b->data + offset;
1294 	} else {
1295 		io_req.mem.type = DM_IO_VMA;
1296 		io_req.mem.ptr.vma = (char *)b->data + offset;
1297 	}
1298 
1299 	r = dm_io(&io_req, 1, &region, NULL);
1300 	if (unlikely(r))
1301 		b->end_io(b, errno_to_blk_status(r));
1302 }
1303 
1304 static void bio_complete(struct bio *bio)
1305 {
1306 	struct dm_buffer *b = bio->bi_private;
1307 	blk_status_t status = bio->bi_status;
1308 
1309 	bio_uninit(bio);
1310 	kfree(bio);
1311 	b->end_io(b, status);
1312 }
1313 
1314 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1315 		    unsigned int n_sectors, unsigned int offset)
1316 {
1317 	struct bio *bio;
1318 	char *ptr;
1319 	unsigned int len;
1320 
1321 	bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1322 	if (!bio) {
1323 		use_dmio(b, op, sector, n_sectors, offset);
1324 		return;
1325 	}
1326 	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1327 	bio->bi_iter.bi_sector = sector;
1328 	bio->bi_end_io = bio_complete;
1329 	bio->bi_private = b;
1330 
1331 	ptr = (char *)b->data + offset;
1332 	len = n_sectors << SECTOR_SHIFT;
1333 
1334 	__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1335 
1336 	submit_bio(bio);
1337 }
1338 
1339 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1340 {
1341 	sector_t sector;
1342 
1343 	if (likely(c->sectors_per_block_bits >= 0))
1344 		sector = block << c->sectors_per_block_bits;
1345 	else
1346 		sector = block * (c->block_size >> SECTOR_SHIFT);
1347 	sector += c->start;
1348 
1349 	return sector;
1350 }
1351 
1352 static void submit_io(struct dm_buffer *b, enum req_op op,
1353 		      void (*end_io)(struct dm_buffer *, blk_status_t))
1354 {
1355 	unsigned int n_sectors;
1356 	sector_t sector;
1357 	unsigned int offset, end;
1358 
1359 	b->end_io = end_io;
1360 
1361 	sector = block_to_sector(b->c, b->block);
1362 
1363 	if (op != REQ_OP_WRITE) {
1364 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1365 		offset = 0;
1366 	} else {
1367 		if (b->c->write_callback)
1368 			b->c->write_callback(b);
1369 		offset = b->write_start;
1370 		end = b->write_end;
1371 		offset &= -DM_BUFIO_WRITE_ALIGN;
1372 		end += DM_BUFIO_WRITE_ALIGN - 1;
1373 		end &= -DM_BUFIO_WRITE_ALIGN;
1374 		if (unlikely(end > b->c->block_size))
1375 			end = b->c->block_size;
1376 
1377 		sector += offset >> SECTOR_SHIFT;
1378 		n_sectors = (end - offset) >> SECTOR_SHIFT;
1379 	}
1380 
1381 	if (b->data_mode != DATA_MODE_VMALLOC)
1382 		use_bio(b, op, sector, n_sectors, offset);
1383 	else
1384 		use_dmio(b, op, sector, n_sectors, offset);
1385 }
1386 
1387 /*
1388  *--------------------------------------------------------------
1389  * Writing dirty buffers
1390  *--------------------------------------------------------------
1391  */
1392 
1393 /*
1394  * The endio routine for write.
1395  *
1396  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1397  * it.
1398  */
1399 static void write_endio(struct dm_buffer *b, blk_status_t status)
1400 {
1401 	b->write_error = status;
1402 	if (unlikely(status)) {
1403 		struct dm_bufio_client *c = b->c;
1404 
1405 		(void)cmpxchg(&c->async_write_error, 0,
1406 				blk_status_to_errno(status));
1407 	}
1408 
1409 	BUG_ON(!test_bit(B_WRITING, &b->state));
1410 
1411 	smp_mb__before_atomic();
1412 	clear_bit(B_WRITING, &b->state);
1413 	smp_mb__after_atomic();
1414 
1415 	wake_up_bit(&b->state, B_WRITING);
1416 }
1417 
1418 /*
1419  * Initiate a write on a dirty buffer, but don't wait for it.
1420  *
1421  * - If the buffer is not dirty, exit.
1422  * - If there some previous write going on, wait for it to finish (we can't
1423  *   have two writes on the same buffer simultaneously).
1424  * - Submit our write and don't wait on it. We set B_WRITING indicating
1425  *   that there is a write in progress.
1426  */
1427 static void __write_dirty_buffer(struct dm_buffer *b,
1428 				 struct list_head *write_list)
1429 {
1430 	if (!test_bit(B_DIRTY, &b->state))
1431 		return;
1432 
1433 	clear_bit(B_DIRTY, &b->state);
1434 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1435 
1436 	b->write_start = b->dirty_start;
1437 	b->write_end = b->dirty_end;
1438 
1439 	if (!write_list)
1440 		submit_io(b, REQ_OP_WRITE, write_endio);
1441 	else
1442 		list_add_tail(&b->write_list, write_list);
1443 }
1444 
1445 static void __flush_write_list(struct list_head *write_list)
1446 {
1447 	struct blk_plug plug;
1448 
1449 	blk_start_plug(&plug);
1450 	while (!list_empty(write_list)) {
1451 		struct dm_buffer *b =
1452 			list_entry(write_list->next, struct dm_buffer, write_list);
1453 		list_del(&b->write_list);
1454 		submit_io(b, REQ_OP_WRITE, write_endio);
1455 		cond_resched();
1456 	}
1457 	blk_finish_plug(&plug);
1458 }
1459 
1460 /*
1461  * Wait until any activity on the buffer finishes.  Possibly write the
1462  * buffer if it is dirty.  When this function finishes, there is no I/O
1463  * running on the buffer and the buffer is not dirty.
1464  */
1465 static void __make_buffer_clean(struct dm_buffer *b)
1466 {
1467 	BUG_ON(atomic_read(&b->hold_count));
1468 
1469 	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1470 	if (!smp_load_acquire(&b->state))	/* fast case */
1471 		return;
1472 
1473 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1474 	__write_dirty_buffer(b, NULL);
1475 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1476 }
1477 
1478 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1479 {
1480 	struct dm_bufio_client *c = context;
1481 
1482 	/* These should never happen */
1483 	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1484 		return ER_DONT_EVICT;
1485 	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1486 		return ER_DONT_EVICT;
1487 	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1488 		return ER_DONT_EVICT;
1489 
1490 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1491 	    unlikely(test_bit(B_READING, &b->state)))
1492 		return ER_DONT_EVICT;
1493 
1494 	return ER_EVICT;
1495 }
1496 
1497 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1498 {
1499 	/* These should never happen */
1500 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1501 		return ER_DONT_EVICT;
1502 	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1503 		return ER_DONT_EVICT;
1504 
1505 	return ER_EVICT;
1506 }
1507 
1508 /*
1509  * Find some buffer that is not held by anybody, clean it, unlink it and
1510  * return it.
1511  */
1512 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1513 {
1514 	struct dm_buffer *b;
1515 
1516 	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1517 	if (b) {
1518 		/* this also waits for pending reads */
1519 		__make_buffer_clean(b);
1520 		return b;
1521 	}
1522 
1523 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1524 		return NULL;
1525 
1526 	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1527 	if (b) {
1528 		__make_buffer_clean(b);
1529 		return b;
1530 	}
1531 
1532 	return NULL;
1533 }
1534 
1535 /*
1536  * Wait until some other threads free some buffer or release hold count on
1537  * some buffer.
1538  *
1539  * This function is entered with c->lock held, drops it and regains it
1540  * before exiting.
1541  */
1542 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1543 {
1544 	DECLARE_WAITQUEUE(wait, current);
1545 
1546 	add_wait_queue(&c->free_buffer_wait, &wait);
1547 	set_current_state(TASK_UNINTERRUPTIBLE);
1548 	dm_bufio_unlock(c);
1549 
1550 	/*
1551 	 * It's possible to miss a wake up event since we don't always
1552 	 * hold c->lock when wake_up is called.  So we have a timeout here,
1553 	 * just in case.
1554 	 */
1555 	io_schedule_timeout(5 * HZ);
1556 
1557 	remove_wait_queue(&c->free_buffer_wait, &wait);
1558 
1559 	dm_bufio_lock(c);
1560 }
1561 
1562 enum new_flag {
1563 	NF_FRESH = 0,
1564 	NF_READ = 1,
1565 	NF_GET = 2,
1566 	NF_PREFETCH = 3
1567 };
1568 
1569 /*
1570  * Allocate a new buffer. If the allocation is not possible, wait until
1571  * some other thread frees a buffer.
1572  *
1573  * May drop the lock and regain it.
1574  */
1575 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1576 {
1577 	struct dm_buffer *b;
1578 	bool tried_noio_alloc = false;
1579 
1580 	/*
1581 	 * dm-bufio is resistant to allocation failures (it just keeps
1582 	 * one buffer reserved in cases all the allocations fail).
1583 	 * So set flags to not try too hard:
1584 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1585 	 *		    mutex and wait ourselves.
1586 	 *	__GFP_NORETRY: don't retry and rather return failure
1587 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1588 	 *	__GFP_NOWARN: don't print a warning in case of failure
1589 	 *
1590 	 * For debugging, if we set the cache size to 1, no new buffers will
1591 	 * be allocated.
1592 	 */
1593 	while (1) {
1594 		if (dm_bufio_cache_size_latch != 1) {
1595 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1596 			if (b)
1597 				return b;
1598 		}
1599 
1600 		if (nf == NF_PREFETCH)
1601 			return NULL;
1602 
1603 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1604 			dm_bufio_unlock(c);
1605 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1606 			dm_bufio_lock(c);
1607 			if (b)
1608 				return b;
1609 			tried_noio_alloc = true;
1610 		}
1611 
1612 		if (!list_empty(&c->reserved_buffers)) {
1613 			b = list_to_buffer(c->reserved_buffers.next);
1614 			list_del(&b->lru.list);
1615 			c->need_reserved_buffers++;
1616 
1617 			return b;
1618 		}
1619 
1620 		b = __get_unclaimed_buffer(c);
1621 		if (b)
1622 			return b;
1623 
1624 		__wait_for_free_buffer(c);
1625 	}
1626 }
1627 
1628 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1629 {
1630 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1631 
1632 	if (!b)
1633 		return NULL;
1634 
1635 	if (c->alloc_callback)
1636 		c->alloc_callback(b);
1637 
1638 	return b;
1639 }
1640 
1641 /*
1642  * Free a buffer and wake other threads waiting for free buffers.
1643  */
1644 static void __free_buffer_wake(struct dm_buffer *b)
1645 {
1646 	struct dm_bufio_client *c = b->c;
1647 
1648 	b->block = -1;
1649 	if (!c->need_reserved_buffers)
1650 		free_buffer(b);
1651 	else {
1652 		list_add(&b->lru.list, &c->reserved_buffers);
1653 		c->need_reserved_buffers--;
1654 	}
1655 
1656 	/*
1657 	 * We hold the bufio lock here, so no one can add entries to the
1658 	 * wait queue anyway.
1659 	 */
1660 	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1661 		wake_up(&c->free_buffer_wait);
1662 }
1663 
1664 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1665 {
1666 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1667 		return ER_DONT_EVICT; /* should never happen */
1668 
1669 	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1670 		return ER_DONT_EVICT;
1671 	else
1672 		return ER_EVICT;
1673 }
1674 
1675 static void __move_clean_buffers(struct dm_bufio_client *c)
1676 {
1677 	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1678 }
1679 
1680 struct write_context {
1681 	int no_wait;
1682 	struct list_head *write_list;
1683 };
1684 
1685 static enum it_action write_one(struct dm_buffer *b, void *context)
1686 {
1687 	struct write_context *wc = context;
1688 
1689 	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1690 		return IT_COMPLETE;
1691 
1692 	__write_dirty_buffer(b, wc->write_list);
1693 	return IT_NEXT;
1694 }
1695 
1696 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1697 					struct list_head *write_list)
1698 {
1699 	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1700 
1701 	__move_clean_buffers(c);
1702 	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1703 }
1704 
1705 /*
1706  * Check if we're over watermark.
1707  * If we are over threshold_buffers, start freeing buffers.
1708  * If we're over "limit_buffers", block until we get under the limit.
1709  */
1710 static void __check_watermark(struct dm_bufio_client *c,
1711 			      struct list_head *write_list)
1712 {
1713 	if (cache_count(&c->cache, LIST_DIRTY) >
1714 	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1715 		__write_dirty_buffers_async(c, 1, write_list);
1716 }
1717 
1718 /*
1719  *--------------------------------------------------------------
1720  * Getting a buffer
1721  *--------------------------------------------------------------
1722  */
1723 
1724 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1725 {
1726 	/*
1727 	 * Relying on waitqueue_active() is racey, but we sleep
1728 	 * with schedule_timeout anyway.
1729 	 */
1730 	if (cache_put(&c->cache, b) &&
1731 	    unlikely(waitqueue_active(&c->free_buffer_wait)))
1732 		wake_up(&c->free_buffer_wait);
1733 }
1734 
1735 /*
1736  * This assumes you have already checked the cache to see if the buffer
1737  * is already present (it will recheck after dropping the lock for allocation).
1738  */
1739 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1740 				     enum new_flag nf, int *need_submit,
1741 				     struct list_head *write_list)
1742 {
1743 	struct dm_buffer *b, *new_b = NULL;
1744 
1745 	*need_submit = 0;
1746 
1747 	/* This can't be called with NF_GET */
1748 	if (WARN_ON_ONCE(nf == NF_GET))
1749 		return NULL;
1750 
1751 	new_b = __alloc_buffer_wait(c, nf);
1752 	if (!new_b)
1753 		return NULL;
1754 
1755 	/*
1756 	 * We've had a period where the mutex was unlocked, so need to
1757 	 * recheck the buffer tree.
1758 	 */
1759 	b = cache_get(&c->cache, block);
1760 	if (b) {
1761 		__free_buffer_wake(new_b);
1762 		goto found_buffer;
1763 	}
1764 
1765 	__check_watermark(c, write_list);
1766 
1767 	b = new_b;
1768 	atomic_set(&b->hold_count, 1);
1769 	WRITE_ONCE(b->last_accessed, jiffies);
1770 	b->block = block;
1771 	b->read_error = 0;
1772 	b->write_error = 0;
1773 	b->list_mode = LIST_CLEAN;
1774 
1775 	if (nf == NF_FRESH)
1776 		b->state = 0;
1777 	else {
1778 		b->state = 1 << B_READING;
1779 		*need_submit = 1;
1780 	}
1781 
1782 	/*
1783 	 * We mustn't insert into the cache until the B_READING state
1784 	 * is set.  Otherwise another thread could get it and use
1785 	 * it before it had been read.
1786 	 */
1787 	cache_insert(&c->cache, b);
1788 
1789 	return b;
1790 
1791 found_buffer:
1792 	if (nf == NF_PREFETCH) {
1793 		cache_put_and_wake(c, b);
1794 		return NULL;
1795 	}
1796 
1797 	/*
1798 	 * Note: it is essential that we don't wait for the buffer to be
1799 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1800 	 * dm_bufio_prefetch can be used in the driver request routine.
1801 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1802 	 * the same buffer, it would deadlock if we waited.
1803 	 */
1804 	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1805 		cache_put_and_wake(c, b);
1806 		return NULL;
1807 	}
1808 
1809 	return b;
1810 }
1811 
1812 /*
1813  * The endio routine for reading: set the error, clear the bit and wake up
1814  * anyone waiting on the buffer.
1815  */
1816 static void read_endio(struct dm_buffer *b, blk_status_t status)
1817 {
1818 	b->read_error = status;
1819 
1820 	BUG_ON(!test_bit(B_READING, &b->state));
1821 
1822 	smp_mb__before_atomic();
1823 	clear_bit(B_READING, &b->state);
1824 	smp_mb__after_atomic();
1825 
1826 	wake_up_bit(&b->state, B_READING);
1827 }
1828 
1829 /*
1830  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1831  * functions is similar except that dm_bufio_new doesn't read the
1832  * buffer from the disk (assuming that the caller overwrites all the data
1833  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1834  */
1835 static void *new_read(struct dm_bufio_client *c, sector_t block,
1836 		      enum new_flag nf, struct dm_buffer **bp)
1837 {
1838 	int need_submit = 0;
1839 	struct dm_buffer *b;
1840 
1841 	LIST_HEAD(write_list);
1842 
1843 	*bp = NULL;
1844 
1845 	/*
1846 	 * Fast path, hopefully the block is already in the cache.  No need
1847 	 * to get the client lock for this.
1848 	 */
1849 	b = cache_get(&c->cache, block);
1850 	if (b) {
1851 		if (nf == NF_PREFETCH) {
1852 			cache_put_and_wake(c, b);
1853 			return NULL;
1854 		}
1855 
1856 		/*
1857 		 * Note: it is essential that we don't wait for the buffer to be
1858 		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1859 		 * dm_bufio_prefetch can be used in the driver request routine.
1860 		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1861 		 * the same buffer, it would deadlock if we waited.
1862 		 */
1863 		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1864 			cache_put_and_wake(c, b);
1865 			return NULL;
1866 		}
1867 	}
1868 
1869 	if (!b) {
1870 		if (nf == NF_GET)
1871 			return NULL;
1872 
1873 		dm_bufio_lock(c);
1874 		b = __bufio_new(c, block, nf, &need_submit, &write_list);
1875 		dm_bufio_unlock(c);
1876 	}
1877 
1878 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1879 	if (b && (atomic_read(&b->hold_count) == 1))
1880 		buffer_record_stack(b);
1881 #endif
1882 
1883 	__flush_write_list(&write_list);
1884 
1885 	if (!b)
1886 		return NULL;
1887 
1888 	if (need_submit)
1889 		submit_io(b, REQ_OP_READ, read_endio);
1890 
1891 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1892 
1893 	if (b->read_error) {
1894 		int error = blk_status_to_errno(b->read_error);
1895 
1896 		dm_bufio_release(b);
1897 
1898 		return ERR_PTR(error);
1899 	}
1900 
1901 	*bp = b;
1902 
1903 	return b->data;
1904 }
1905 
1906 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1907 		   struct dm_buffer **bp)
1908 {
1909 	return new_read(c, block, NF_GET, bp);
1910 }
1911 EXPORT_SYMBOL_GPL(dm_bufio_get);
1912 
1913 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1914 		    struct dm_buffer **bp)
1915 {
1916 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1917 		return ERR_PTR(-EINVAL);
1918 
1919 	return new_read(c, block, NF_READ, bp);
1920 }
1921 EXPORT_SYMBOL_GPL(dm_bufio_read);
1922 
1923 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1924 		   struct dm_buffer **bp)
1925 {
1926 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1927 		return ERR_PTR(-EINVAL);
1928 
1929 	return new_read(c, block, NF_FRESH, bp);
1930 }
1931 EXPORT_SYMBOL_GPL(dm_bufio_new);
1932 
1933 void dm_bufio_prefetch(struct dm_bufio_client *c,
1934 		       sector_t block, unsigned int n_blocks)
1935 {
1936 	struct blk_plug plug;
1937 
1938 	LIST_HEAD(write_list);
1939 
1940 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1941 		return; /* should never happen */
1942 
1943 	blk_start_plug(&plug);
1944 
1945 	for (; n_blocks--; block++) {
1946 		int need_submit;
1947 		struct dm_buffer *b;
1948 
1949 		b = cache_get(&c->cache, block);
1950 		if (b) {
1951 			/* already in cache */
1952 			cache_put_and_wake(c, b);
1953 			continue;
1954 		}
1955 
1956 		dm_bufio_lock(c);
1957 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1958 				&write_list);
1959 		if (unlikely(!list_empty(&write_list))) {
1960 			dm_bufio_unlock(c);
1961 			blk_finish_plug(&plug);
1962 			__flush_write_list(&write_list);
1963 			blk_start_plug(&plug);
1964 			dm_bufio_lock(c);
1965 		}
1966 		if (unlikely(b != NULL)) {
1967 			dm_bufio_unlock(c);
1968 
1969 			if (need_submit)
1970 				submit_io(b, REQ_OP_READ, read_endio);
1971 			dm_bufio_release(b);
1972 
1973 			cond_resched();
1974 
1975 			if (!n_blocks)
1976 				goto flush_plug;
1977 			dm_bufio_lock(c);
1978 		}
1979 		dm_bufio_unlock(c);
1980 	}
1981 
1982 flush_plug:
1983 	blk_finish_plug(&plug);
1984 }
1985 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1986 
1987 void dm_bufio_release(struct dm_buffer *b)
1988 {
1989 	struct dm_bufio_client *c = b->c;
1990 
1991 	/*
1992 	 * If there were errors on the buffer, and the buffer is not
1993 	 * to be written, free the buffer. There is no point in caching
1994 	 * invalid buffer.
1995 	 */
1996 	if ((b->read_error || b->write_error) &&
1997 	    !test_bit_acquire(B_READING, &b->state) &&
1998 	    !test_bit(B_WRITING, &b->state) &&
1999 	    !test_bit(B_DIRTY, &b->state)) {
2000 		dm_bufio_lock(c);
2001 
2002 		/* cache remove can fail if there are other holders */
2003 		if (cache_remove(&c->cache, b)) {
2004 			__free_buffer_wake(b);
2005 			dm_bufio_unlock(c);
2006 			return;
2007 		}
2008 
2009 		dm_bufio_unlock(c);
2010 	}
2011 
2012 	cache_put_and_wake(c, b);
2013 }
2014 EXPORT_SYMBOL_GPL(dm_bufio_release);
2015 
2016 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2017 					unsigned int start, unsigned int end)
2018 {
2019 	struct dm_bufio_client *c = b->c;
2020 
2021 	BUG_ON(start >= end);
2022 	BUG_ON(end > b->c->block_size);
2023 
2024 	dm_bufio_lock(c);
2025 
2026 	BUG_ON(test_bit(B_READING, &b->state));
2027 
2028 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2029 		b->dirty_start = start;
2030 		b->dirty_end = end;
2031 		cache_mark(&c->cache, b, LIST_DIRTY);
2032 	} else {
2033 		if (start < b->dirty_start)
2034 			b->dirty_start = start;
2035 		if (end > b->dirty_end)
2036 			b->dirty_end = end;
2037 	}
2038 
2039 	dm_bufio_unlock(c);
2040 }
2041 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2042 
2043 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2044 {
2045 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2046 }
2047 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2048 
2049 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2050 {
2051 	LIST_HEAD(write_list);
2052 
2053 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2054 		return; /* should never happen */
2055 
2056 	dm_bufio_lock(c);
2057 	__write_dirty_buffers_async(c, 0, &write_list);
2058 	dm_bufio_unlock(c);
2059 	__flush_write_list(&write_list);
2060 }
2061 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2062 
2063 /*
2064  * For performance, it is essential that the buffers are written asynchronously
2065  * and simultaneously (so that the block layer can merge the writes) and then
2066  * waited upon.
2067  *
2068  * Finally, we flush hardware disk cache.
2069  */
2070 static bool is_writing(struct lru_entry *e, void *context)
2071 {
2072 	struct dm_buffer *b = le_to_buffer(e);
2073 
2074 	return test_bit(B_WRITING, &b->state);
2075 }
2076 
2077 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2078 {
2079 	int a, f;
2080 	unsigned long nr_buffers;
2081 	struct lru_entry *e;
2082 	struct lru_iter it;
2083 
2084 	LIST_HEAD(write_list);
2085 
2086 	dm_bufio_lock(c);
2087 	__write_dirty_buffers_async(c, 0, &write_list);
2088 	dm_bufio_unlock(c);
2089 	__flush_write_list(&write_list);
2090 	dm_bufio_lock(c);
2091 
2092 	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2093 	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2094 	while ((e = lru_iter_next(&it, is_writing, c))) {
2095 		struct dm_buffer *b = le_to_buffer(e);
2096 		__cache_inc_buffer(b);
2097 
2098 		BUG_ON(test_bit(B_READING, &b->state));
2099 
2100 		if (nr_buffers) {
2101 			nr_buffers--;
2102 			dm_bufio_unlock(c);
2103 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2104 			dm_bufio_lock(c);
2105 		} else {
2106 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2107 		}
2108 
2109 		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2110 			cache_mark(&c->cache, b, LIST_CLEAN);
2111 
2112 		cache_put_and_wake(c, b);
2113 
2114 		cond_resched();
2115 	}
2116 	lru_iter_end(&it);
2117 
2118 	wake_up(&c->free_buffer_wait);
2119 	dm_bufio_unlock(c);
2120 
2121 	a = xchg(&c->async_write_error, 0);
2122 	f = dm_bufio_issue_flush(c);
2123 	if (a)
2124 		return a;
2125 
2126 	return f;
2127 }
2128 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2129 
2130 /*
2131  * Use dm-io to send an empty barrier to flush the device.
2132  */
2133 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2134 {
2135 	struct dm_io_request io_req = {
2136 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2137 		.mem.type = DM_IO_KMEM,
2138 		.mem.ptr.addr = NULL,
2139 		.client = c->dm_io,
2140 	};
2141 	struct dm_io_region io_reg = {
2142 		.bdev = c->bdev,
2143 		.sector = 0,
2144 		.count = 0,
2145 	};
2146 
2147 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2148 		return -EINVAL;
2149 
2150 	return dm_io(&io_req, 1, &io_reg, NULL);
2151 }
2152 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2153 
2154 /*
2155  * Use dm-io to send a discard request to flush the device.
2156  */
2157 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2158 {
2159 	struct dm_io_request io_req = {
2160 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2161 		.mem.type = DM_IO_KMEM,
2162 		.mem.ptr.addr = NULL,
2163 		.client = c->dm_io,
2164 	};
2165 	struct dm_io_region io_reg = {
2166 		.bdev = c->bdev,
2167 		.sector = block_to_sector(c, block),
2168 		.count = block_to_sector(c, count),
2169 	};
2170 
2171 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2172 		return -EINVAL; /* discards are optional */
2173 
2174 	return dm_io(&io_req, 1, &io_reg, NULL);
2175 }
2176 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2177 
2178 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2179 {
2180 	struct dm_buffer *b;
2181 
2182 	b = cache_get(&c->cache, block);
2183 	if (b) {
2184 		if (likely(!smp_load_acquire(&b->state))) {
2185 			if (cache_remove(&c->cache, b))
2186 				__free_buffer_wake(b);
2187 			else
2188 				cache_put_and_wake(c, b);
2189 		} else {
2190 			cache_put_and_wake(c, b);
2191 		}
2192 	}
2193 
2194 	return b ? true : false;
2195 }
2196 
2197 /*
2198  * Free the given buffer.
2199  *
2200  * This is just a hint, if the buffer is in use or dirty, this function
2201  * does nothing.
2202  */
2203 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2204 {
2205 	dm_bufio_lock(c);
2206 	forget_buffer(c, block);
2207 	dm_bufio_unlock(c);
2208 }
2209 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2210 
2211 static enum evict_result idle(struct dm_buffer *b, void *context)
2212 {
2213 	return b->state ? ER_DONT_EVICT : ER_EVICT;
2214 }
2215 
2216 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2217 {
2218 	dm_bufio_lock(c);
2219 	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2220 	dm_bufio_unlock(c);
2221 }
2222 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2223 
2224 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2225 {
2226 	c->minimum_buffers = n;
2227 }
2228 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2229 
2230 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2231 {
2232 	return c->block_size;
2233 }
2234 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2235 
2236 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2237 {
2238 	sector_t s = bdev_nr_sectors(c->bdev);
2239 
2240 	if (s >= c->start)
2241 		s -= c->start;
2242 	else
2243 		s = 0;
2244 	if (likely(c->sectors_per_block_bits >= 0))
2245 		s >>= c->sectors_per_block_bits;
2246 	else
2247 		sector_div(s, c->block_size >> SECTOR_SHIFT);
2248 	return s;
2249 }
2250 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2251 
2252 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2253 {
2254 	return c->dm_io;
2255 }
2256 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2257 
2258 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2259 {
2260 	return b->block;
2261 }
2262 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2263 
2264 void *dm_bufio_get_block_data(struct dm_buffer *b)
2265 {
2266 	return b->data;
2267 }
2268 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2269 
2270 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2271 {
2272 	return b + 1;
2273 }
2274 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2275 
2276 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2277 {
2278 	return b->c;
2279 }
2280 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2281 
2282 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2283 {
2284 	bool *warned = context;
2285 
2286 	WARN_ON(!(*warned));
2287 	*warned = true;
2288 	DMERR("leaked buffer %llx, hold count %u, list %d",
2289 	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2290 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2291 	stack_trace_print(b->stack_entries, b->stack_len, 1);
2292 	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2293 	atomic_set(&b->hold_count, 0);
2294 #endif
2295 	return IT_NEXT;
2296 }
2297 
2298 static void drop_buffers(struct dm_bufio_client *c)
2299 {
2300 	int i;
2301 	struct dm_buffer *b;
2302 
2303 	if (WARN_ON(dm_bufio_in_request()))
2304 		return; /* should never happen */
2305 
2306 	/*
2307 	 * An optimization so that the buffers are not written one-by-one.
2308 	 */
2309 	dm_bufio_write_dirty_buffers_async(c);
2310 
2311 	dm_bufio_lock(c);
2312 
2313 	while ((b = __get_unclaimed_buffer(c)))
2314 		__free_buffer_wake(b);
2315 
2316 	for (i = 0; i < LIST_SIZE; i++) {
2317 		bool warned = false;
2318 
2319 		cache_iterate(&c->cache, i, warn_leak, &warned);
2320 	}
2321 
2322 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2323 	while ((b = __get_unclaimed_buffer(c)))
2324 		__free_buffer_wake(b);
2325 #endif
2326 
2327 	for (i = 0; i < LIST_SIZE; i++)
2328 		WARN_ON(cache_count(&c->cache, i));
2329 
2330 	dm_bufio_unlock(c);
2331 }
2332 
2333 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2334 {
2335 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2336 
2337 	if (likely(c->sectors_per_block_bits >= 0))
2338 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2339 	else
2340 		retain_bytes /= c->block_size;
2341 
2342 	return retain_bytes;
2343 }
2344 
2345 static void __scan(struct dm_bufio_client *c)
2346 {
2347 	int l;
2348 	struct dm_buffer *b;
2349 	unsigned long freed = 0;
2350 	unsigned long retain_target = get_retain_buffers(c);
2351 	unsigned long count = cache_total(&c->cache);
2352 
2353 	for (l = 0; l < LIST_SIZE; l++) {
2354 		while (true) {
2355 			if (count - freed <= retain_target)
2356 				atomic_long_set(&c->need_shrink, 0);
2357 			if (!atomic_long_read(&c->need_shrink))
2358 				break;
2359 
2360 			b = cache_evict(&c->cache, l,
2361 					l == LIST_CLEAN ? is_clean : is_dirty, c);
2362 			if (!b)
2363 				break;
2364 
2365 			__make_buffer_clean(b);
2366 			__free_buffer_wake(b);
2367 
2368 			atomic_long_dec(&c->need_shrink);
2369 			freed++;
2370 			cond_resched();
2371 		}
2372 	}
2373 }
2374 
2375 static void shrink_work(struct work_struct *w)
2376 {
2377 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2378 
2379 	dm_bufio_lock(c);
2380 	__scan(c);
2381 	dm_bufio_unlock(c);
2382 }
2383 
2384 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2385 {
2386 	struct dm_bufio_client *c;
2387 
2388 	c = container_of(shrink, struct dm_bufio_client, shrinker);
2389 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2390 	queue_work(dm_bufio_wq, &c->shrink_work);
2391 
2392 	return sc->nr_to_scan;
2393 }
2394 
2395 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2396 {
2397 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
2398 	unsigned long count = cache_total(&c->cache);
2399 	unsigned long retain_target = get_retain_buffers(c);
2400 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2401 
2402 	if (unlikely(count < retain_target))
2403 		count = 0;
2404 	else
2405 		count -= retain_target;
2406 
2407 	if (unlikely(count < queued_for_cleanup))
2408 		count = 0;
2409 	else
2410 		count -= queued_for_cleanup;
2411 
2412 	return count;
2413 }
2414 
2415 /*
2416  * Create the buffering interface
2417  */
2418 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2419 					       unsigned int reserved_buffers, unsigned int aux_size,
2420 					       void (*alloc_callback)(struct dm_buffer *),
2421 					       void (*write_callback)(struct dm_buffer *),
2422 					       unsigned int flags)
2423 {
2424 	int r;
2425 	unsigned int num_locks;
2426 	struct dm_bufio_client *c;
2427 	char slab_name[27];
2428 
2429 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2430 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2431 		r = -EINVAL;
2432 		goto bad_client;
2433 	}
2434 
2435 	num_locks = dm_num_hash_locks();
2436 	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2437 	if (!c) {
2438 		r = -ENOMEM;
2439 		goto bad_client;
2440 	}
2441 	cache_init(&c->cache, num_locks);
2442 
2443 	c->bdev = bdev;
2444 	c->block_size = block_size;
2445 	if (is_power_of_2(block_size))
2446 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2447 	else
2448 		c->sectors_per_block_bits = -1;
2449 
2450 	c->alloc_callback = alloc_callback;
2451 	c->write_callback = write_callback;
2452 
2453 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2454 		c->no_sleep = true;
2455 		static_branch_inc(&no_sleep_enabled);
2456 	}
2457 
2458 	mutex_init(&c->lock);
2459 	spin_lock_init(&c->spinlock);
2460 	INIT_LIST_HEAD(&c->reserved_buffers);
2461 	c->need_reserved_buffers = reserved_buffers;
2462 
2463 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2464 
2465 	init_waitqueue_head(&c->free_buffer_wait);
2466 	c->async_write_error = 0;
2467 
2468 	c->dm_io = dm_io_client_create();
2469 	if (IS_ERR(c->dm_io)) {
2470 		r = PTR_ERR(c->dm_io);
2471 		goto bad_dm_io;
2472 	}
2473 
2474 	if (block_size <= KMALLOC_MAX_SIZE &&
2475 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
2476 		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2477 
2478 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size);
2479 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2480 						  SLAB_RECLAIM_ACCOUNT, NULL);
2481 		if (!c->slab_cache) {
2482 			r = -ENOMEM;
2483 			goto bad;
2484 		}
2485 	}
2486 	if (aux_size)
2487 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size);
2488 	else
2489 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer");
2490 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2491 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2492 	if (!c->slab_buffer) {
2493 		r = -ENOMEM;
2494 		goto bad;
2495 	}
2496 
2497 	while (c->need_reserved_buffers) {
2498 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2499 
2500 		if (!b) {
2501 			r = -ENOMEM;
2502 			goto bad;
2503 		}
2504 		__free_buffer_wake(b);
2505 	}
2506 
2507 	INIT_WORK(&c->shrink_work, shrink_work);
2508 	atomic_long_set(&c->need_shrink, 0);
2509 
2510 	c->shrinker.count_objects = dm_bufio_shrink_count;
2511 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
2512 	c->shrinker.seeks = 1;
2513 	c->shrinker.batch = 0;
2514 	r = register_shrinker(&c->shrinker, "dm-bufio:(%u:%u)",
2515 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2516 	if (r)
2517 		goto bad;
2518 
2519 	mutex_lock(&dm_bufio_clients_lock);
2520 	dm_bufio_client_count++;
2521 	list_add(&c->client_list, &dm_bufio_all_clients);
2522 	__cache_size_refresh();
2523 	mutex_unlock(&dm_bufio_clients_lock);
2524 
2525 	return c;
2526 
2527 bad:
2528 	while (!list_empty(&c->reserved_buffers)) {
2529 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2530 
2531 		list_del(&b->lru.list);
2532 		free_buffer(b);
2533 	}
2534 	kmem_cache_destroy(c->slab_cache);
2535 	kmem_cache_destroy(c->slab_buffer);
2536 	dm_io_client_destroy(c->dm_io);
2537 bad_dm_io:
2538 	mutex_destroy(&c->lock);
2539 	if (c->no_sleep)
2540 		static_branch_dec(&no_sleep_enabled);
2541 	kfree(c);
2542 bad_client:
2543 	return ERR_PTR(r);
2544 }
2545 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2546 
2547 /*
2548  * Free the buffering interface.
2549  * It is required that there are no references on any buffers.
2550  */
2551 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2552 {
2553 	unsigned int i;
2554 
2555 	drop_buffers(c);
2556 
2557 	unregister_shrinker(&c->shrinker);
2558 	flush_work(&c->shrink_work);
2559 
2560 	mutex_lock(&dm_bufio_clients_lock);
2561 
2562 	list_del(&c->client_list);
2563 	dm_bufio_client_count--;
2564 	__cache_size_refresh();
2565 
2566 	mutex_unlock(&dm_bufio_clients_lock);
2567 
2568 	WARN_ON(c->need_reserved_buffers);
2569 
2570 	while (!list_empty(&c->reserved_buffers)) {
2571 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2572 
2573 		list_del(&b->lru.list);
2574 		free_buffer(b);
2575 	}
2576 
2577 	for (i = 0; i < LIST_SIZE; i++)
2578 		if (cache_count(&c->cache, i))
2579 			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2580 
2581 	for (i = 0; i < LIST_SIZE; i++)
2582 		WARN_ON(cache_count(&c->cache, i));
2583 
2584 	cache_destroy(&c->cache);
2585 	kmem_cache_destroy(c->slab_cache);
2586 	kmem_cache_destroy(c->slab_buffer);
2587 	dm_io_client_destroy(c->dm_io);
2588 	mutex_destroy(&c->lock);
2589 	if (c->no_sleep)
2590 		static_branch_dec(&no_sleep_enabled);
2591 	kfree(c);
2592 }
2593 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2594 
2595 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2596 {
2597 	c->start = start;
2598 }
2599 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2600 
2601 /*--------------------------------------------------------------*/
2602 
2603 static unsigned int get_max_age_hz(void)
2604 {
2605 	unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2606 
2607 	if (max_age > UINT_MAX / HZ)
2608 		max_age = UINT_MAX / HZ;
2609 
2610 	return max_age * HZ;
2611 }
2612 
2613 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2614 {
2615 	return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2616 }
2617 
2618 struct evict_params {
2619 	gfp_t gfp;
2620 	unsigned long age_hz;
2621 
2622 	/*
2623 	 * This gets updated with the largest last_accessed (ie. most
2624 	 * recently used) of the evicted buffers.  It will not be reinitialised
2625 	 * by __evict_many(), so you can use it across multiple invocations.
2626 	 */
2627 	unsigned long last_accessed;
2628 };
2629 
2630 /*
2631  * We may not be able to evict this buffer if IO pending or the client
2632  * is still using it.
2633  *
2634  * And if GFP_NOFS is used, we must not do any I/O because we hold
2635  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2636  * rerouted to different bufio client.
2637  */
2638 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2639 {
2640 	struct evict_params *params = context;
2641 
2642 	if (!(params->gfp & __GFP_FS) ||
2643 	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2644 		if (test_bit_acquire(B_READING, &b->state) ||
2645 		    test_bit(B_WRITING, &b->state) ||
2646 		    test_bit(B_DIRTY, &b->state))
2647 			return ER_DONT_EVICT;
2648 	}
2649 
2650 	return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2651 }
2652 
2653 static unsigned long __evict_many(struct dm_bufio_client *c,
2654 				  struct evict_params *params,
2655 				  int list_mode, unsigned long max_count)
2656 {
2657 	unsigned long count;
2658 	unsigned long last_accessed;
2659 	struct dm_buffer *b;
2660 
2661 	for (count = 0; count < max_count; count++) {
2662 		b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2663 		if (!b)
2664 			break;
2665 
2666 		last_accessed = READ_ONCE(b->last_accessed);
2667 		if (time_after_eq(params->last_accessed, last_accessed))
2668 			params->last_accessed = last_accessed;
2669 
2670 		__make_buffer_clean(b);
2671 		__free_buffer_wake(b);
2672 
2673 		cond_resched();
2674 	}
2675 
2676 	return count;
2677 }
2678 
2679 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2680 {
2681 	struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2682 	unsigned long retain = get_retain_buffers(c);
2683 	unsigned long count;
2684 	LIST_HEAD(write_list);
2685 
2686 	dm_bufio_lock(c);
2687 
2688 	__check_watermark(c, &write_list);
2689 	if (unlikely(!list_empty(&write_list))) {
2690 		dm_bufio_unlock(c);
2691 		__flush_write_list(&write_list);
2692 		dm_bufio_lock(c);
2693 	}
2694 
2695 	count = cache_total(&c->cache);
2696 	if (count > retain)
2697 		__evict_many(c, &params, LIST_CLEAN, count - retain);
2698 
2699 	dm_bufio_unlock(c);
2700 }
2701 
2702 static void cleanup_old_buffers(void)
2703 {
2704 	unsigned long max_age_hz = get_max_age_hz();
2705 	struct dm_bufio_client *c;
2706 
2707 	mutex_lock(&dm_bufio_clients_lock);
2708 
2709 	__cache_size_refresh();
2710 
2711 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2712 		evict_old_buffers(c, max_age_hz);
2713 
2714 	mutex_unlock(&dm_bufio_clients_lock);
2715 }
2716 
2717 static void work_fn(struct work_struct *w)
2718 {
2719 	cleanup_old_buffers();
2720 
2721 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2722 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2723 }
2724 
2725 /*--------------------------------------------------------------*/
2726 
2727 /*
2728  * Global cleanup tries to evict the oldest buffers from across _all_
2729  * the clients.  It does this by repeatedly evicting a few buffers from
2730  * the client that holds the oldest buffer.  It's approximate, but hopefully
2731  * good enough.
2732  */
2733 static struct dm_bufio_client *__pop_client(void)
2734 {
2735 	struct list_head *h;
2736 
2737 	if (list_empty(&dm_bufio_all_clients))
2738 		return NULL;
2739 
2740 	h = dm_bufio_all_clients.next;
2741 	list_del(h);
2742 	return container_of(h, struct dm_bufio_client, client_list);
2743 }
2744 
2745 /*
2746  * Inserts the client in the global client list based on its
2747  * 'oldest_buffer' field.
2748  */
2749 static void __insert_client(struct dm_bufio_client *new_client)
2750 {
2751 	struct dm_bufio_client *c;
2752 	struct list_head *h = dm_bufio_all_clients.next;
2753 
2754 	while (h != &dm_bufio_all_clients) {
2755 		c = container_of(h, struct dm_bufio_client, client_list);
2756 		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2757 			break;
2758 		h = h->next;
2759 	}
2760 
2761 	list_add_tail(&new_client->client_list, h);
2762 }
2763 
2764 static unsigned long __evict_a_few(unsigned long nr_buffers)
2765 {
2766 	unsigned long count;
2767 	struct dm_bufio_client *c;
2768 	struct evict_params params = {
2769 		.gfp = GFP_KERNEL,
2770 		.age_hz = 0,
2771 		/* set to jiffies in case there are no buffers in this client */
2772 		.last_accessed = jiffies
2773 	};
2774 
2775 	c = __pop_client();
2776 	if (!c)
2777 		return 0;
2778 
2779 	dm_bufio_lock(c);
2780 	count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2781 	dm_bufio_unlock(c);
2782 
2783 	if (count)
2784 		c->oldest_buffer = params.last_accessed;
2785 	__insert_client(c);
2786 
2787 	return count;
2788 }
2789 
2790 static void check_watermarks(void)
2791 {
2792 	LIST_HEAD(write_list);
2793 	struct dm_bufio_client *c;
2794 
2795 	mutex_lock(&dm_bufio_clients_lock);
2796 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2797 		dm_bufio_lock(c);
2798 		__check_watermark(c, &write_list);
2799 		dm_bufio_unlock(c);
2800 	}
2801 	mutex_unlock(&dm_bufio_clients_lock);
2802 
2803 	__flush_write_list(&write_list);
2804 }
2805 
2806 static void evict_old(void)
2807 {
2808 	unsigned long threshold = dm_bufio_cache_size -
2809 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2810 
2811 	mutex_lock(&dm_bufio_clients_lock);
2812 	while (dm_bufio_current_allocated > threshold) {
2813 		if (!__evict_a_few(64))
2814 			break;
2815 		cond_resched();
2816 	}
2817 	mutex_unlock(&dm_bufio_clients_lock);
2818 }
2819 
2820 static void do_global_cleanup(struct work_struct *w)
2821 {
2822 	check_watermarks();
2823 	evict_old();
2824 }
2825 
2826 /*
2827  *--------------------------------------------------------------
2828  * Module setup
2829  *--------------------------------------------------------------
2830  */
2831 
2832 /*
2833  * This is called only once for the whole dm_bufio module.
2834  * It initializes memory limit.
2835  */
2836 static int __init dm_bufio_init(void)
2837 {
2838 	__u64 mem;
2839 
2840 	dm_bufio_allocated_kmem_cache = 0;
2841 	dm_bufio_allocated_get_free_pages = 0;
2842 	dm_bufio_allocated_vmalloc = 0;
2843 	dm_bufio_current_allocated = 0;
2844 
2845 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2846 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2847 
2848 	if (mem > ULONG_MAX)
2849 		mem = ULONG_MAX;
2850 
2851 #ifdef CONFIG_MMU
2852 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2853 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2854 #endif
2855 
2856 	dm_bufio_default_cache_size = mem;
2857 
2858 	mutex_lock(&dm_bufio_clients_lock);
2859 	__cache_size_refresh();
2860 	mutex_unlock(&dm_bufio_clients_lock);
2861 
2862 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2863 	if (!dm_bufio_wq)
2864 		return -ENOMEM;
2865 
2866 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2867 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2868 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2869 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2870 
2871 	return 0;
2872 }
2873 
2874 /*
2875  * This is called once when unloading the dm_bufio module.
2876  */
2877 static void __exit dm_bufio_exit(void)
2878 {
2879 	int bug = 0;
2880 
2881 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2882 	destroy_workqueue(dm_bufio_wq);
2883 
2884 	if (dm_bufio_client_count) {
2885 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2886 			__func__, dm_bufio_client_count);
2887 		bug = 1;
2888 	}
2889 
2890 	if (dm_bufio_current_allocated) {
2891 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2892 			__func__, dm_bufio_current_allocated);
2893 		bug = 1;
2894 	}
2895 
2896 	if (dm_bufio_allocated_get_free_pages) {
2897 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2898 		       __func__, dm_bufio_allocated_get_free_pages);
2899 		bug = 1;
2900 	}
2901 
2902 	if (dm_bufio_allocated_vmalloc) {
2903 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2904 		       __func__, dm_bufio_allocated_vmalloc);
2905 		bug = 1;
2906 	}
2907 
2908 	WARN_ON(bug); /* leaks are not worth crashing the system */
2909 }
2910 
2911 module_init(dm_bufio_init)
2912 module_exit(dm_bufio_exit)
2913 
2914 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2915 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2916 
2917 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2918 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2919 
2920 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2921 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2922 
2923 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2924 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2925 
2926 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2927 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2928 
2929 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2930 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2931 
2932 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2933 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2934 
2935 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2936 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2937 
2938 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2939 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2940 MODULE_LICENSE("GPL");
2941