1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * The number of bvec entries that are embedded directly in the buffer. 55 * If the chunk size is larger, dm-io is used to do the io. 56 */ 57 #define DM_BUFIO_INLINE_VECS 16 58 59 /* 60 * Don't try to use kmem_cache_alloc for blocks larger than this. 61 * For explanation, see alloc_buffer_data below. 62 */ 63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 65 66 /* 67 * dm_buffer->list_mode 68 */ 69 #define LIST_CLEAN 0 70 #define LIST_DIRTY 1 71 #define LIST_SIZE 2 72 73 /* 74 * Linking of buffers: 75 * All buffers are linked to cache_hash with their hash_list field. 76 * 77 * Clean buffers that are not being written (B_WRITING not set) 78 * are linked to lru[LIST_CLEAN] with their lru_list field. 79 * 80 * Dirty and clean buffers that are being written are linked to 81 * lru[LIST_DIRTY] with their lru_list field. When the write 82 * finishes, the buffer cannot be relinked immediately (because we 83 * are in an interrupt context and relinking requires process 84 * context), so some clean-not-writing buffers can be held on 85 * dirty_lru too. They are later added to lru in the process 86 * context. 87 */ 88 struct dm_bufio_client { 89 struct mutex lock; 90 91 struct list_head lru[LIST_SIZE]; 92 unsigned long n_buffers[LIST_SIZE]; 93 94 struct block_device *bdev; 95 unsigned block_size; 96 unsigned char sectors_per_block_bits; 97 unsigned char pages_per_block_bits; 98 unsigned char blocks_per_page_bits; 99 unsigned aux_size; 100 void (*alloc_callback)(struct dm_buffer *); 101 void (*write_callback)(struct dm_buffer *); 102 103 struct dm_io_client *dm_io; 104 105 struct list_head reserved_buffers; 106 unsigned need_reserved_buffers; 107 108 unsigned minimum_buffers; 109 110 struct rb_root buffer_tree; 111 wait_queue_head_t free_buffer_wait; 112 113 int async_write_error; 114 115 struct list_head client_list; 116 struct shrinker shrinker; 117 }; 118 119 /* 120 * Buffer state bits. 121 */ 122 #define B_READING 0 123 #define B_WRITING 1 124 #define B_DIRTY 2 125 126 /* 127 * Describes how the block was allocated: 128 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 129 * See the comment at alloc_buffer_data. 130 */ 131 enum data_mode { 132 DATA_MODE_SLAB = 0, 133 DATA_MODE_GET_FREE_PAGES = 1, 134 DATA_MODE_VMALLOC = 2, 135 DATA_MODE_LIMIT = 3 136 }; 137 138 struct dm_buffer { 139 struct rb_node node; 140 struct list_head lru_list; 141 sector_t block; 142 void *data; 143 enum data_mode data_mode; 144 unsigned char list_mode; /* LIST_* */ 145 unsigned hold_count; 146 int read_error; 147 int write_error; 148 unsigned long state; 149 unsigned long last_accessed; 150 struct dm_bufio_client *c; 151 struct list_head write_list; 152 struct bio bio; 153 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 155 #define MAX_STACK 10 156 struct stack_trace stack_trace; 157 unsigned long stack_entries[MAX_STACK]; 158 #endif 159 }; 160 161 /*----------------------------------------------------------------*/ 162 163 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 164 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 165 166 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 167 { 168 unsigned ret = c->blocks_per_page_bits - 1; 169 170 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 171 172 return ret; 173 } 174 175 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 176 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 177 178 #define dm_bufio_in_request() (!!current->bio_list) 179 180 static void dm_bufio_lock(struct dm_bufio_client *c) 181 { 182 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 183 } 184 185 static int dm_bufio_trylock(struct dm_bufio_client *c) 186 { 187 return mutex_trylock(&c->lock); 188 } 189 190 static void dm_bufio_unlock(struct dm_bufio_client *c) 191 { 192 mutex_unlock(&c->lock); 193 } 194 195 /*----------------------------------------------------------------*/ 196 197 /* 198 * Default cache size: available memory divided by the ratio. 199 */ 200 static unsigned long dm_bufio_default_cache_size; 201 202 /* 203 * Total cache size set by the user. 204 */ 205 static unsigned long dm_bufio_cache_size; 206 207 /* 208 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 209 * at any time. If it disagrees, the user has changed cache size. 210 */ 211 static unsigned long dm_bufio_cache_size_latch; 212 213 static DEFINE_SPINLOCK(param_spinlock); 214 215 /* 216 * Buffers are freed after this timeout 217 */ 218 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 219 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 220 221 static unsigned long dm_bufio_peak_allocated; 222 static unsigned long dm_bufio_allocated_kmem_cache; 223 static unsigned long dm_bufio_allocated_get_free_pages; 224 static unsigned long dm_bufio_allocated_vmalloc; 225 static unsigned long dm_bufio_current_allocated; 226 227 /*----------------------------------------------------------------*/ 228 229 /* 230 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 231 */ 232 static unsigned long dm_bufio_cache_size_per_client; 233 234 /* 235 * The current number of clients. 236 */ 237 static int dm_bufio_client_count; 238 239 /* 240 * The list of all clients. 241 */ 242 static LIST_HEAD(dm_bufio_all_clients); 243 244 /* 245 * This mutex protects dm_bufio_cache_size_latch, 246 * dm_bufio_cache_size_per_client and dm_bufio_client_count 247 */ 248 static DEFINE_MUTEX(dm_bufio_clients_lock); 249 250 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 251 static void buffer_record_stack(struct dm_buffer *b) 252 { 253 b->stack_trace.nr_entries = 0; 254 b->stack_trace.max_entries = MAX_STACK; 255 b->stack_trace.entries = b->stack_entries; 256 b->stack_trace.skip = 2; 257 save_stack_trace(&b->stack_trace); 258 } 259 #endif 260 261 /*---------------------------------------------------------------- 262 * A red/black tree acts as an index for all the buffers. 263 *--------------------------------------------------------------*/ 264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 265 { 266 struct rb_node *n = c->buffer_tree.rb_node; 267 struct dm_buffer *b; 268 269 while (n) { 270 b = container_of(n, struct dm_buffer, node); 271 272 if (b->block == block) 273 return b; 274 275 n = (b->block < block) ? n->rb_left : n->rb_right; 276 } 277 278 return NULL; 279 } 280 281 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 282 { 283 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 284 struct dm_buffer *found; 285 286 while (*new) { 287 found = container_of(*new, struct dm_buffer, node); 288 289 if (found->block == b->block) { 290 BUG_ON(found != b); 291 return; 292 } 293 294 parent = *new; 295 new = (found->block < b->block) ? 296 &((*new)->rb_left) : &((*new)->rb_right); 297 } 298 299 rb_link_node(&b->node, parent, new); 300 rb_insert_color(&b->node, &c->buffer_tree); 301 } 302 303 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 304 { 305 rb_erase(&b->node, &c->buffer_tree); 306 } 307 308 /*----------------------------------------------------------------*/ 309 310 static void adjust_total_allocated(enum data_mode data_mode, long diff) 311 { 312 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 313 &dm_bufio_allocated_kmem_cache, 314 &dm_bufio_allocated_get_free_pages, 315 &dm_bufio_allocated_vmalloc, 316 }; 317 318 spin_lock(¶m_spinlock); 319 320 *class_ptr[data_mode] += diff; 321 322 dm_bufio_current_allocated += diff; 323 324 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 325 dm_bufio_peak_allocated = dm_bufio_current_allocated; 326 327 spin_unlock(¶m_spinlock); 328 } 329 330 /* 331 * Change the number of clients and recalculate per-client limit. 332 */ 333 static void __cache_size_refresh(void) 334 { 335 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 336 BUG_ON(dm_bufio_client_count < 0); 337 338 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 339 340 /* 341 * Use default if set to 0 and report the actual cache size used. 342 */ 343 if (!dm_bufio_cache_size_latch) { 344 (void)cmpxchg(&dm_bufio_cache_size, 0, 345 dm_bufio_default_cache_size); 346 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 347 } 348 349 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 350 (dm_bufio_client_count ? : 1); 351 } 352 353 /* 354 * Allocating buffer data. 355 * 356 * Small buffers are allocated with kmem_cache, to use space optimally. 357 * 358 * For large buffers, we choose between get_free_pages and vmalloc. 359 * Each has advantages and disadvantages. 360 * 361 * __get_free_pages can randomly fail if the memory is fragmented. 362 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 363 * as low as 128M) so using it for caching is not appropriate. 364 * 365 * If the allocation may fail we use __get_free_pages. Memory fragmentation 366 * won't have a fatal effect here, but it just causes flushes of some other 367 * buffers and more I/O will be performed. Don't use __get_free_pages if it 368 * always fails (i.e. order >= MAX_ORDER). 369 * 370 * If the allocation shouldn't fail we use __vmalloc. This is only for the 371 * initial reserve allocation, so there's no risk of wasting all vmalloc 372 * space. 373 */ 374 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 375 enum data_mode *data_mode) 376 { 377 unsigned noio_flag; 378 void *ptr; 379 380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 381 *data_mode = DATA_MODE_SLAB; 382 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 383 } 384 385 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 386 gfp_mask & __GFP_NORETRY) { 387 *data_mode = DATA_MODE_GET_FREE_PAGES; 388 return (void *)__get_free_pages(gfp_mask, 389 c->pages_per_block_bits); 390 } 391 392 *data_mode = DATA_MODE_VMALLOC; 393 394 /* 395 * __vmalloc allocates the data pages and auxiliary structures with 396 * gfp_flags that were specified, but pagetables are always allocated 397 * with GFP_KERNEL, no matter what was specified as gfp_mask. 398 * 399 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 400 * all allocations done by this process (including pagetables) are done 401 * as if GFP_NOIO was specified. 402 */ 403 404 if (gfp_mask & __GFP_NORETRY) 405 noio_flag = memalloc_noio_save(); 406 407 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL); 408 409 if (gfp_mask & __GFP_NORETRY) 410 memalloc_noio_restore(noio_flag); 411 412 return ptr; 413 } 414 415 /* 416 * Free buffer's data. 417 */ 418 static void free_buffer_data(struct dm_bufio_client *c, 419 void *data, enum data_mode data_mode) 420 { 421 switch (data_mode) { 422 case DATA_MODE_SLAB: 423 kmem_cache_free(DM_BUFIO_CACHE(c), data); 424 break; 425 426 case DATA_MODE_GET_FREE_PAGES: 427 free_pages((unsigned long)data, c->pages_per_block_bits); 428 break; 429 430 case DATA_MODE_VMALLOC: 431 vfree(data); 432 break; 433 434 default: 435 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 436 data_mode); 437 BUG(); 438 } 439 } 440 441 /* 442 * Allocate buffer and its data. 443 */ 444 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 445 { 446 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 447 gfp_mask); 448 449 if (!b) 450 return NULL; 451 452 b->c = c; 453 454 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 455 if (!b->data) { 456 kfree(b); 457 return NULL; 458 } 459 460 adjust_total_allocated(b->data_mode, (long)c->block_size); 461 462 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 463 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 464 #endif 465 return b; 466 } 467 468 /* 469 * Free buffer and its data. 470 */ 471 static void free_buffer(struct dm_buffer *b) 472 { 473 struct dm_bufio_client *c = b->c; 474 475 adjust_total_allocated(b->data_mode, -(long)c->block_size); 476 477 free_buffer_data(c, b->data, b->data_mode); 478 kfree(b); 479 } 480 481 /* 482 * Link buffer to the hash list and clean or dirty queue. 483 */ 484 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 485 { 486 struct dm_bufio_client *c = b->c; 487 488 c->n_buffers[dirty]++; 489 b->block = block; 490 b->list_mode = dirty; 491 list_add(&b->lru_list, &c->lru[dirty]); 492 __insert(b->c, b); 493 b->last_accessed = jiffies; 494 } 495 496 /* 497 * Unlink buffer from the hash list and dirty or clean queue. 498 */ 499 static void __unlink_buffer(struct dm_buffer *b) 500 { 501 struct dm_bufio_client *c = b->c; 502 503 BUG_ON(!c->n_buffers[b->list_mode]); 504 505 c->n_buffers[b->list_mode]--; 506 __remove(b->c, b); 507 list_del(&b->lru_list); 508 } 509 510 /* 511 * Place the buffer to the head of dirty or clean LRU queue. 512 */ 513 static void __relink_lru(struct dm_buffer *b, int dirty) 514 { 515 struct dm_bufio_client *c = b->c; 516 517 BUG_ON(!c->n_buffers[b->list_mode]); 518 519 c->n_buffers[b->list_mode]--; 520 c->n_buffers[dirty]++; 521 b->list_mode = dirty; 522 list_move(&b->lru_list, &c->lru[dirty]); 523 b->last_accessed = jiffies; 524 } 525 526 /*---------------------------------------------------------------- 527 * Submit I/O on the buffer. 528 * 529 * Bio interface is faster but it has some problems: 530 * the vector list is limited (increasing this limit increases 531 * memory-consumption per buffer, so it is not viable); 532 * 533 * the memory must be direct-mapped, not vmalloced; 534 * 535 * the I/O driver can reject requests spuriously if it thinks that 536 * the requests are too big for the device or if they cross a 537 * controller-defined memory boundary. 538 * 539 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 540 * it is not vmalloced, try using the bio interface. 541 * 542 * If the buffer is big, if it is vmalloced or if the underlying device 543 * rejects the bio because it is too large, use dm-io layer to do the I/O. 544 * The dm-io layer splits the I/O into multiple requests, avoiding the above 545 * shortcomings. 546 *--------------------------------------------------------------*/ 547 548 /* 549 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 550 * that the request was handled directly with bio interface. 551 */ 552 static void dmio_complete(unsigned long error, void *context) 553 { 554 struct dm_buffer *b = context; 555 556 b->bio.bi_error = error ? -EIO : 0; 557 b->bio.bi_end_io(&b->bio); 558 } 559 560 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 561 bio_end_io_t *end_io) 562 { 563 int r; 564 struct dm_io_request io_req = { 565 .bi_op = rw, 566 .bi_op_flags = 0, 567 .notify.fn = dmio_complete, 568 .notify.context = b, 569 .client = b->c->dm_io, 570 }; 571 struct dm_io_region region = { 572 .bdev = b->c->bdev, 573 .sector = block << b->c->sectors_per_block_bits, 574 .count = b->c->block_size >> SECTOR_SHIFT, 575 }; 576 577 if (b->data_mode != DATA_MODE_VMALLOC) { 578 io_req.mem.type = DM_IO_KMEM; 579 io_req.mem.ptr.addr = b->data; 580 } else { 581 io_req.mem.type = DM_IO_VMA; 582 io_req.mem.ptr.vma = b->data; 583 } 584 585 b->bio.bi_end_io = end_io; 586 587 r = dm_io(&io_req, 1, ®ion, NULL); 588 if (r) { 589 b->bio.bi_error = r; 590 end_io(&b->bio); 591 } 592 } 593 594 static void inline_endio(struct bio *bio) 595 { 596 bio_end_io_t *end_fn = bio->bi_private; 597 int error = bio->bi_error; 598 599 /* 600 * Reset the bio to free any attached resources 601 * (e.g. bio integrity profiles). 602 */ 603 bio_reset(bio); 604 605 bio->bi_error = error; 606 end_fn(bio); 607 } 608 609 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 610 bio_end_io_t *end_io) 611 { 612 char *ptr; 613 int len; 614 615 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 616 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits; 617 b->bio.bi_bdev = b->c->bdev; 618 b->bio.bi_end_io = inline_endio; 619 /* 620 * Use of .bi_private isn't a problem here because 621 * the dm_buffer's inline bio is local to bufio. 622 */ 623 b->bio.bi_private = end_io; 624 bio_set_op_attrs(&b->bio, rw, 0); 625 626 /* 627 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 628 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 629 */ 630 ptr = b->data; 631 len = b->c->block_size; 632 633 if (len >= PAGE_SIZE) 634 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 635 else 636 BUG_ON((unsigned long)ptr & (len - 1)); 637 638 do { 639 if (!bio_add_page(&b->bio, virt_to_page(ptr), 640 len < PAGE_SIZE ? len : PAGE_SIZE, 641 offset_in_page(ptr))) { 642 BUG_ON(b->c->block_size <= PAGE_SIZE); 643 use_dmio(b, rw, block, end_io); 644 return; 645 } 646 647 len -= PAGE_SIZE; 648 ptr += PAGE_SIZE; 649 } while (len > 0); 650 651 submit_bio(&b->bio); 652 } 653 654 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 655 bio_end_io_t *end_io) 656 { 657 if (rw == WRITE && b->c->write_callback) 658 b->c->write_callback(b); 659 660 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 661 b->data_mode != DATA_MODE_VMALLOC) 662 use_inline_bio(b, rw, block, end_io); 663 else 664 use_dmio(b, rw, block, end_io); 665 } 666 667 /*---------------------------------------------------------------- 668 * Writing dirty buffers 669 *--------------------------------------------------------------*/ 670 671 /* 672 * The endio routine for write. 673 * 674 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 675 * it. 676 */ 677 static void write_endio(struct bio *bio) 678 { 679 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 680 681 b->write_error = bio->bi_error; 682 if (unlikely(bio->bi_error)) { 683 struct dm_bufio_client *c = b->c; 684 int error = bio->bi_error; 685 (void)cmpxchg(&c->async_write_error, 0, error); 686 } 687 688 BUG_ON(!test_bit(B_WRITING, &b->state)); 689 690 smp_mb__before_atomic(); 691 clear_bit(B_WRITING, &b->state); 692 smp_mb__after_atomic(); 693 694 wake_up_bit(&b->state, B_WRITING); 695 } 696 697 /* 698 * Initiate a write on a dirty buffer, but don't wait for it. 699 * 700 * - If the buffer is not dirty, exit. 701 * - If there some previous write going on, wait for it to finish (we can't 702 * have two writes on the same buffer simultaneously). 703 * - Submit our write and don't wait on it. We set B_WRITING indicating 704 * that there is a write in progress. 705 */ 706 static void __write_dirty_buffer(struct dm_buffer *b, 707 struct list_head *write_list) 708 { 709 if (!test_bit(B_DIRTY, &b->state)) 710 return; 711 712 clear_bit(B_DIRTY, &b->state); 713 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 714 715 if (!write_list) 716 submit_io(b, WRITE, b->block, write_endio); 717 else 718 list_add_tail(&b->write_list, write_list); 719 } 720 721 static void __flush_write_list(struct list_head *write_list) 722 { 723 struct blk_plug plug; 724 blk_start_plug(&plug); 725 while (!list_empty(write_list)) { 726 struct dm_buffer *b = 727 list_entry(write_list->next, struct dm_buffer, write_list); 728 list_del(&b->write_list); 729 submit_io(b, WRITE, b->block, write_endio); 730 cond_resched(); 731 } 732 blk_finish_plug(&plug); 733 } 734 735 /* 736 * Wait until any activity on the buffer finishes. Possibly write the 737 * buffer if it is dirty. When this function finishes, there is no I/O 738 * running on the buffer and the buffer is not dirty. 739 */ 740 static void __make_buffer_clean(struct dm_buffer *b) 741 { 742 BUG_ON(b->hold_count); 743 744 if (!b->state) /* fast case */ 745 return; 746 747 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 748 __write_dirty_buffer(b, NULL); 749 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 750 } 751 752 /* 753 * Find some buffer that is not held by anybody, clean it, unlink it and 754 * return it. 755 */ 756 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 757 { 758 struct dm_buffer *b; 759 760 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 761 BUG_ON(test_bit(B_WRITING, &b->state)); 762 BUG_ON(test_bit(B_DIRTY, &b->state)); 763 764 if (!b->hold_count) { 765 __make_buffer_clean(b); 766 __unlink_buffer(b); 767 return b; 768 } 769 cond_resched(); 770 } 771 772 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 773 BUG_ON(test_bit(B_READING, &b->state)); 774 775 if (!b->hold_count) { 776 __make_buffer_clean(b); 777 __unlink_buffer(b); 778 return b; 779 } 780 cond_resched(); 781 } 782 783 return NULL; 784 } 785 786 /* 787 * Wait until some other threads free some buffer or release hold count on 788 * some buffer. 789 * 790 * This function is entered with c->lock held, drops it and regains it 791 * before exiting. 792 */ 793 static void __wait_for_free_buffer(struct dm_bufio_client *c) 794 { 795 DECLARE_WAITQUEUE(wait, current); 796 797 add_wait_queue(&c->free_buffer_wait, &wait); 798 set_current_state(TASK_UNINTERRUPTIBLE); 799 dm_bufio_unlock(c); 800 801 io_schedule(); 802 803 remove_wait_queue(&c->free_buffer_wait, &wait); 804 805 dm_bufio_lock(c); 806 } 807 808 enum new_flag { 809 NF_FRESH = 0, 810 NF_READ = 1, 811 NF_GET = 2, 812 NF_PREFETCH = 3 813 }; 814 815 /* 816 * Allocate a new buffer. If the allocation is not possible, wait until 817 * some other thread frees a buffer. 818 * 819 * May drop the lock and regain it. 820 */ 821 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 822 { 823 struct dm_buffer *b; 824 bool tried_noio_alloc = false; 825 826 /* 827 * dm-bufio is resistant to allocation failures (it just keeps 828 * one buffer reserved in cases all the allocations fail). 829 * So set flags to not try too hard: 830 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 831 * mutex and wait ourselves. 832 * __GFP_NORETRY: don't retry and rather return failure 833 * __GFP_NOMEMALLOC: don't use emergency reserves 834 * __GFP_NOWARN: don't print a warning in case of failure 835 * 836 * For debugging, if we set the cache size to 1, no new buffers will 837 * be allocated. 838 */ 839 while (1) { 840 if (dm_bufio_cache_size_latch != 1) { 841 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 842 if (b) 843 return b; 844 } 845 846 if (nf == NF_PREFETCH) 847 return NULL; 848 849 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 850 dm_bufio_unlock(c); 851 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 852 dm_bufio_lock(c); 853 if (b) 854 return b; 855 tried_noio_alloc = true; 856 } 857 858 if (!list_empty(&c->reserved_buffers)) { 859 b = list_entry(c->reserved_buffers.next, 860 struct dm_buffer, lru_list); 861 list_del(&b->lru_list); 862 c->need_reserved_buffers++; 863 864 return b; 865 } 866 867 b = __get_unclaimed_buffer(c); 868 if (b) 869 return b; 870 871 __wait_for_free_buffer(c); 872 } 873 } 874 875 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 876 { 877 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 878 879 if (!b) 880 return NULL; 881 882 if (c->alloc_callback) 883 c->alloc_callback(b); 884 885 return b; 886 } 887 888 /* 889 * Free a buffer and wake other threads waiting for free buffers. 890 */ 891 static void __free_buffer_wake(struct dm_buffer *b) 892 { 893 struct dm_bufio_client *c = b->c; 894 895 if (!c->need_reserved_buffers) 896 free_buffer(b); 897 else { 898 list_add(&b->lru_list, &c->reserved_buffers); 899 c->need_reserved_buffers--; 900 } 901 902 wake_up(&c->free_buffer_wait); 903 } 904 905 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 906 struct list_head *write_list) 907 { 908 struct dm_buffer *b, *tmp; 909 910 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 911 BUG_ON(test_bit(B_READING, &b->state)); 912 913 if (!test_bit(B_DIRTY, &b->state) && 914 !test_bit(B_WRITING, &b->state)) { 915 __relink_lru(b, LIST_CLEAN); 916 continue; 917 } 918 919 if (no_wait && test_bit(B_WRITING, &b->state)) 920 return; 921 922 __write_dirty_buffer(b, write_list); 923 cond_resched(); 924 } 925 } 926 927 /* 928 * Get writeback threshold and buffer limit for a given client. 929 */ 930 static void __get_memory_limit(struct dm_bufio_client *c, 931 unsigned long *threshold_buffers, 932 unsigned long *limit_buffers) 933 { 934 unsigned long buffers; 935 936 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) { 937 mutex_lock(&dm_bufio_clients_lock); 938 __cache_size_refresh(); 939 mutex_unlock(&dm_bufio_clients_lock); 940 } 941 942 buffers = dm_bufio_cache_size_per_client >> 943 (c->sectors_per_block_bits + SECTOR_SHIFT); 944 945 if (buffers < c->minimum_buffers) 946 buffers = c->minimum_buffers; 947 948 *limit_buffers = buffers; 949 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 950 } 951 952 /* 953 * Check if we're over watermark. 954 * If we are over threshold_buffers, start freeing buffers. 955 * If we're over "limit_buffers", block until we get under the limit. 956 */ 957 static void __check_watermark(struct dm_bufio_client *c, 958 struct list_head *write_list) 959 { 960 unsigned long threshold_buffers, limit_buffers; 961 962 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 963 964 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 965 limit_buffers) { 966 967 struct dm_buffer *b = __get_unclaimed_buffer(c); 968 969 if (!b) 970 return; 971 972 __free_buffer_wake(b); 973 cond_resched(); 974 } 975 976 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 977 __write_dirty_buffers_async(c, 1, write_list); 978 } 979 980 /*---------------------------------------------------------------- 981 * Getting a buffer 982 *--------------------------------------------------------------*/ 983 984 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 985 enum new_flag nf, int *need_submit, 986 struct list_head *write_list) 987 { 988 struct dm_buffer *b, *new_b = NULL; 989 990 *need_submit = 0; 991 992 b = __find(c, block); 993 if (b) 994 goto found_buffer; 995 996 if (nf == NF_GET) 997 return NULL; 998 999 new_b = __alloc_buffer_wait(c, nf); 1000 if (!new_b) 1001 return NULL; 1002 1003 /* 1004 * We've had a period where the mutex was unlocked, so need to 1005 * recheck the hash table. 1006 */ 1007 b = __find(c, block); 1008 if (b) { 1009 __free_buffer_wake(new_b); 1010 goto found_buffer; 1011 } 1012 1013 __check_watermark(c, write_list); 1014 1015 b = new_b; 1016 b->hold_count = 1; 1017 b->read_error = 0; 1018 b->write_error = 0; 1019 __link_buffer(b, block, LIST_CLEAN); 1020 1021 if (nf == NF_FRESH) { 1022 b->state = 0; 1023 return b; 1024 } 1025 1026 b->state = 1 << B_READING; 1027 *need_submit = 1; 1028 1029 return b; 1030 1031 found_buffer: 1032 if (nf == NF_PREFETCH) 1033 return NULL; 1034 /* 1035 * Note: it is essential that we don't wait for the buffer to be 1036 * read if dm_bufio_get function is used. Both dm_bufio_get and 1037 * dm_bufio_prefetch can be used in the driver request routine. 1038 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1039 * the same buffer, it would deadlock if we waited. 1040 */ 1041 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1042 return NULL; 1043 1044 b->hold_count++; 1045 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1046 test_bit(B_WRITING, &b->state)); 1047 return b; 1048 } 1049 1050 /* 1051 * The endio routine for reading: set the error, clear the bit and wake up 1052 * anyone waiting on the buffer. 1053 */ 1054 static void read_endio(struct bio *bio) 1055 { 1056 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1057 1058 b->read_error = bio->bi_error; 1059 1060 BUG_ON(!test_bit(B_READING, &b->state)); 1061 1062 smp_mb__before_atomic(); 1063 clear_bit(B_READING, &b->state); 1064 smp_mb__after_atomic(); 1065 1066 wake_up_bit(&b->state, B_READING); 1067 } 1068 1069 /* 1070 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1071 * functions is similar except that dm_bufio_new doesn't read the 1072 * buffer from the disk (assuming that the caller overwrites all the data 1073 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1074 */ 1075 static void *new_read(struct dm_bufio_client *c, sector_t block, 1076 enum new_flag nf, struct dm_buffer **bp) 1077 { 1078 int need_submit; 1079 struct dm_buffer *b; 1080 1081 LIST_HEAD(write_list); 1082 1083 dm_bufio_lock(c); 1084 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1085 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1086 if (b && b->hold_count == 1) 1087 buffer_record_stack(b); 1088 #endif 1089 dm_bufio_unlock(c); 1090 1091 __flush_write_list(&write_list); 1092 1093 if (!b) 1094 return NULL; 1095 1096 if (need_submit) 1097 submit_io(b, READ, b->block, read_endio); 1098 1099 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1100 1101 if (b->read_error) { 1102 int error = b->read_error; 1103 1104 dm_bufio_release(b); 1105 1106 return ERR_PTR(error); 1107 } 1108 1109 *bp = b; 1110 1111 return b->data; 1112 } 1113 1114 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1115 struct dm_buffer **bp) 1116 { 1117 return new_read(c, block, NF_GET, bp); 1118 } 1119 EXPORT_SYMBOL_GPL(dm_bufio_get); 1120 1121 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1122 struct dm_buffer **bp) 1123 { 1124 BUG_ON(dm_bufio_in_request()); 1125 1126 return new_read(c, block, NF_READ, bp); 1127 } 1128 EXPORT_SYMBOL_GPL(dm_bufio_read); 1129 1130 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1131 struct dm_buffer **bp) 1132 { 1133 BUG_ON(dm_bufio_in_request()); 1134 1135 return new_read(c, block, NF_FRESH, bp); 1136 } 1137 EXPORT_SYMBOL_GPL(dm_bufio_new); 1138 1139 void dm_bufio_prefetch(struct dm_bufio_client *c, 1140 sector_t block, unsigned n_blocks) 1141 { 1142 struct blk_plug plug; 1143 1144 LIST_HEAD(write_list); 1145 1146 BUG_ON(dm_bufio_in_request()); 1147 1148 blk_start_plug(&plug); 1149 dm_bufio_lock(c); 1150 1151 for (; n_blocks--; block++) { 1152 int need_submit; 1153 struct dm_buffer *b; 1154 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1155 &write_list); 1156 if (unlikely(!list_empty(&write_list))) { 1157 dm_bufio_unlock(c); 1158 blk_finish_plug(&plug); 1159 __flush_write_list(&write_list); 1160 blk_start_plug(&plug); 1161 dm_bufio_lock(c); 1162 } 1163 if (unlikely(b != NULL)) { 1164 dm_bufio_unlock(c); 1165 1166 if (need_submit) 1167 submit_io(b, READ, b->block, read_endio); 1168 dm_bufio_release(b); 1169 1170 cond_resched(); 1171 1172 if (!n_blocks) 1173 goto flush_plug; 1174 dm_bufio_lock(c); 1175 } 1176 } 1177 1178 dm_bufio_unlock(c); 1179 1180 flush_plug: 1181 blk_finish_plug(&plug); 1182 } 1183 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1184 1185 void dm_bufio_release(struct dm_buffer *b) 1186 { 1187 struct dm_bufio_client *c = b->c; 1188 1189 dm_bufio_lock(c); 1190 1191 BUG_ON(!b->hold_count); 1192 1193 b->hold_count--; 1194 if (!b->hold_count) { 1195 wake_up(&c->free_buffer_wait); 1196 1197 /* 1198 * If there were errors on the buffer, and the buffer is not 1199 * to be written, free the buffer. There is no point in caching 1200 * invalid buffer. 1201 */ 1202 if ((b->read_error || b->write_error) && 1203 !test_bit(B_READING, &b->state) && 1204 !test_bit(B_WRITING, &b->state) && 1205 !test_bit(B_DIRTY, &b->state)) { 1206 __unlink_buffer(b); 1207 __free_buffer_wake(b); 1208 } 1209 } 1210 1211 dm_bufio_unlock(c); 1212 } 1213 EXPORT_SYMBOL_GPL(dm_bufio_release); 1214 1215 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1216 { 1217 struct dm_bufio_client *c = b->c; 1218 1219 dm_bufio_lock(c); 1220 1221 BUG_ON(test_bit(B_READING, &b->state)); 1222 1223 if (!test_and_set_bit(B_DIRTY, &b->state)) 1224 __relink_lru(b, LIST_DIRTY); 1225 1226 dm_bufio_unlock(c); 1227 } 1228 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1229 1230 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1231 { 1232 LIST_HEAD(write_list); 1233 1234 BUG_ON(dm_bufio_in_request()); 1235 1236 dm_bufio_lock(c); 1237 __write_dirty_buffers_async(c, 0, &write_list); 1238 dm_bufio_unlock(c); 1239 __flush_write_list(&write_list); 1240 } 1241 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1242 1243 /* 1244 * For performance, it is essential that the buffers are written asynchronously 1245 * and simultaneously (so that the block layer can merge the writes) and then 1246 * waited upon. 1247 * 1248 * Finally, we flush hardware disk cache. 1249 */ 1250 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1251 { 1252 int a, f; 1253 unsigned long buffers_processed = 0; 1254 struct dm_buffer *b, *tmp; 1255 1256 LIST_HEAD(write_list); 1257 1258 dm_bufio_lock(c); 1259 __write_dirty_buffers_async(c, 0, &write_list); 1260 dm_bufio_unlock(c); 1261 __flush_write_list(&write_list); 1262 dm_bufio_lock(c); 1263 1264 again: 1265 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1266 int dropped_lock = 0; 1267 1268 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1269 buffers_processed++; 1270 1271 BUG_ON(test_bit(B_READING, &b->state)); 1272 1273 if (test_bit(B_WRITING, &b->state)) { 1274 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1275 dropped_lock = 1; 1276 b->hold_count++; 1277 dm_bufio_unlock(c); 1278 wait_on_bit_io(&b->state, B_WRITING, 1279 TASK_UNINTERRUPTIBLE); 1280 dm_bufio_lock(c); 1281 b->hold_count--; 1282 } else 1283 wait_on_bit_io(&b->state, B_WRITING, 1284 TASK_UNINTERRUPTIBLE); 1285 } 1286 1287 if (!test_bit(B_DIRTY, &b->state) && 1288 !test_bit(B_WRITING, &b->state)) 1289 __relink_lru(b, LIST_CLEAN); 1290 1291 cond_resched(); 1292 1293 /* 1294 * If we dropped the lock, the list is no longer consistent, 1295 * so we must restart the search. 1296 * 1297 * In the most common case, the buffer just processed is 1298 * relinked to the clean list, so we won't loop scanning the 1299 * same buffer again and again. 1300 * 1301 * This may livelock if there is another thread simultaneously 1302 * dirtying buffers, so we count the number of buffers walked 1303 * and if it exceeds the total number of buffers, it means that 1304 * someone is doing some writes simultaneously with us. In 1305 * this case, stop, dropping the lock. 1306 */ 1307 if (dropped_lock) 1308 goto again; 1309 } 1310 wake_up(&c->free_buffer_wait); 1311 dm_bufio_unlock(c); 1312 1313 a = xchg(&c->async_write_error, 0); 1314 f = dm_bufio_issue_flush(c); 1315 if (a) 1316 return a; 1317 1318 return f; 1319 } 1320 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1321 1322 /* 1323 * Use dm-io to send and empty barrier flush the device. 1324 */ 1325 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1326 { 1327 struct dm_io_request io_req = { 1328 .bi_op = REQ_OP_WRITE, 1329 .bi_op_flags = REQ_PREFLUSH, 1330 .mem.type = DM_IO_KMEM, 1331 .mem.ptr.addr = NULL, 1332 .client = c->dm_io, 1333 }; 1334 struct dm_io_region io_reg = { 1335 .bdev = c->bdev, 1336 .sector = 0, 1337 .count = 0, 1338 }; 1339 1340 BUG_ON(dm_bufio_in_request()); 1341 1342 return dm_io(&io_req, 1, &io_reg, NULL); 1343 } 1344 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1345 1346 /* 1347 * We first delete any other buffer that may be at that new location. 1348 * 1349 * Then, we write the buffer to the original location if it was dirty. 1350 * 1351 * Then, if we are the only one who is holding the buffer, relink the buffer 1352 * in the hash queue for the new location. 1353 * 1354 * If there was someone else holding the buffer, we write it to the new 1355 * location but not relink it, because that other user needs to have the buffer 1356 * at the same place. 1357 */ 1358 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1359 { 1360 struct dm_bufio_client *c = b->c; 1361 struct dm_buffer *new; 1362 1363 BUG_ON(dm_bufio_in_request()); 1364 1365 dm_bufio_lock(c); 1366 1367 retry: 1368 new = __find(c, new_block); 1369 if (new) { 1370 if (new->hold_count) { 1371 __wait_for_free_buffer(c); 1372 goto retry; 1373 } 1374 1375 /* 1376 * FIXME: Is there any point waiting for a write that's going 1377 * to be overwritten in a bit? 1378 */ 1379 __make_buffer_clean(new); 1380 __unlink_buffer(new); 1381 __free_buffer_wake(new); 1382 } 1383 1384 BUG_ON(!b->hold_count); 1385 BUG_ON(test_bit(B_READING, &b->state)); 1386 1387 __write_dirty_buffer(b, NULL); 1388 if (b->hold_count == 1) { 1389 wait_on_bit_io(&b->state, B_WRITING, 1390 TASK_UNINTERRUPTIBLE); 1391 set_bit(B_DIRTY, &b->state); 1392 __unlink_buffer(b); 1393 __link_buffer(b, new_block, LIST_DIRTY); 1394 } else { 1395 sector_t old_block; 1396 wait_on_bit_lock_io(&b->state, B_WRITING, 1397 TASK_UNINTERRUPTIBLE); 1398 /* 1399 * Relink buffer to "new_block" so that write_callback 1400 * sees "new_block" as a block number. 1401 * After the write, link the buffer back to old_block. 1402 * All this must be done in bufio lock, so that block number 1403 * change isn't visible to other threads. 1404 */ 1405 old_block = b->block; 1406 __unlink_buffer(b); 1407 __link_buffer(b, new_block, b->list_mode); 1408 submit_io(b, WRITE, new_block, write_endio); 1409 wait_on_bit_io(&b->state, B_WRITING, 1410 TASK_UNINTERRUPTIBLE); 1411 __unlink_buffer(b); 1412 __link_buffer(b, old_block, b->list_mode); 1413 } 1414 1415 dm_bufio_unlock(c); 1416 dm_bufio_release(b); 1417 } 1418 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1419 1420 /* 1421 * Free the given buffer. 1422 * 1423 * This is just a hint, if the buffer is in use or dirty, this function 1424 * does nothing. 1425 */ 1426 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1427 { 1428 struct dm_buffer *b; 1429 1430 dm_bufio_lock(c); 1431 1432 b = __find(c, block); 1433 if (b && likely(!b->hold_count) && likely(!b->state)) { 1434 __unlink_buffer(b); 1435 __free_buffer_wake(b); 1436 } 1437 1438 dm_bufio_unlock(c); 1439 } 1440 EXPORT_SYMBOL(dm_bufio_forget); 1441 1442 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1443 { 1444 c->minimum_buffers = n; 1445 } 1446 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1447 1448 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1449 { 1450 return c->block_size; 1451 } 1452 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1453 1454 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1455 { 1456 return i_size_read(c->bdev->bd_inode) >> 1457 (SECTOR_SHIFT + c->sectors_per_block_bits); 1458 } 1459 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1460 1461 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1462 { 1463 return b->block; 1464 } 1465 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1466 1467 void *dm_bufio_get_block_data(struct dm_buffer *b) 1468 { 1469 return b->data; 1470 } 1471 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1472 1473 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1474 { 1475 return b + 1; 1476 } 1477 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1478 1479 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1480 { 1481 return b->c; 1482 } 1483 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1484 1485 static void drop_buffers(struct dm_bufio_client *c) 1486 { 1487 struct dm_buffer *b; 1488 int i; 1489 bool warned = false; 1490 1491 BUG_ON(dm_bufio_in_request()); 1492 1493 /* 1494 * An optimization so that the buffers are not written one-by-one. 1495 */ 1496 dm_bufio_write_dirty_buffers_async(c); 1497 1498 dm_bufio_lock(c); 1499 1500 while ((b = __get_unclaimed_buffer(c))) 1501 __free_buffer_wake(b); 1502 1503 for (i = 0; i < LIST_SIZE; i++) 1504 list_for_each_entry(b, &c->lru[i], lru_list) { 1505 WARN_ON(!warned); 1506 warned = true; 1507 DMERR("leaked buffer %llx, hold count %u, list %d", 1508 (unsigned long long)b->block, b->hold_count, i); 1509 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1510 print_stack_trace(&b->stack_trace, 1); 1511 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1512 #endif 1513 } 1514 1515 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1516 while ((b = __get_unclaimed_buffer(c))) 1517 __free_buffer_wake(b); 1518 #endif 1519 1520 for (i = 0; i < LIST_SIZE; i++) 1521 BUG_ON(!list_empty(&c->lru[i])); 1522 1523 dm_bufio_unlock(c); 1524 } 1525 1526 /* 1527 * We may not be able to evict this buffer if IO pending or the client 1528 * is still using it. Caller is expected to know buffer is too old. 1529 * 1530 * And if GFP_NOFS is used, we must not do any I/O because we hold 1531 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1532 * rerouted to different bufio client. 1533 */ 1534 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1535 { 1536 if (!(gfp & __GFP_FS)) { 1537 if (test_bit(B_READING, &b->state) || 1538 test_bit(B_WRITING, &b->state) || 1539 test_bit(B_DIRTY, &b->state)) 1540 return false; 1541 } 1542 1543 if (b->hold_count) 1544 return false; 1545 1546 __make_buffer_clean(b); 1547 __unlink_buffer(b); 1548 __free_buffer_wake(b); 1549 1550 return true; 1551 } 1552 1553 static unsigned get_retain_buffers(struct dm_bufio_client *c) 1554 { 1555 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1556 return retain_bytes / c->block_size; 1557 } 1558 1559 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1560 gfp_t gfp_mask) 1561 { 1562 int l; 1563 struct dm_buffer *b, *tmp; 1564 unsigned long freed = 0; 1565 unsigned long count = nr_to_scan; 1566 unsigned retain_target = get_retain_buffers(c); 1567 1568 for (l = 0; l < LIST_SIZE; l++) { 1569 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1570 if (__try_evict_buffer(b, gfp_mask)) 1571 freed++; 1572 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1573 return freed; 1574 cond_resched(); 1575 } 1576 } 1577 return freed; 1578 } 1579 1580 static unsigned long 1581 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1582 { 1583 struct dm_bufio_client *c; 1584 unsigned long freed; 1585 1586 c = container_of(shrink, struct dm_bufio_client, shrinker); 1587 if (sc->gfp_mask & __GFP_FS) 1588 dm_bufio_lock(c); 1589 else if (!dm_bufio_trylock(c)) 1590 return SHRINK_STOP; 1591 1592 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1593 dm_bufio_unlock(c); 1594 return freed; 1595 } 1596 1597 static unsigned long 1598 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1599 { 1600 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1601 1602 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]); 1603 } 1604 1605 /* 1606 * Create the buffering interface 1607 */ 1608 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1609 unsigned reserved_buffers, unsigned aux_size, 1610 void (*alloc_callback)(struct dm_buffer *), 1611 void (*write_callback)(struct dm_buffer *)) 1612 { 1613 int r; 1614 struct dm_bufio_client *c; 1615 unsigned i; 1616 1617 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1618 (block_size & (block_size - 1))); 1619 1620 c = kzalloc(sizeof(*c), GFP_KERNEL); 1621 if (!c) { 1622 r = -ENOMEM; 1623 goto bad_client; 1624 } 1625 c->buffer_tree = RB_ROOT; 1626 1627 c->bdev = bdev; 1628 c->block_size = block_size; 1629 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1630 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1631 __ffs(block_size) - PAGE_SHIFT : 0; 1632 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1633 PAGE_SHIFT - __ffs(block_size) : 0); 1634 1635 c->aux_size = aux_size; 1636 c->alloc_callback = alloc_callback; 1637 c->write_callback = write_callback; 1638 1639 for (i = 0; i < LIST_SIZE; i++) { 1640 INIT_LIST_HEAD(&c->lru[i]); 1641 c->n_buffers[i] = 0; 1642 } 1643 1644 mutex_init(&c->lock); 1645 INIT_LIST_HEAD(&c->reserved_buffers); 1646 c->need_reserved_buffers = reserved_buffers; 1647 1648 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1649 1650 init_waitqueue_head(&c->free_buffer_wait); 1651 c->async_write_error = 0; 1652 1653 c->dm_io = dm_io_client_create(); 1654 if (IS_ERR(c->dm_io)) { 1655 r = PTR_ERR(c->dm_io); 1656 goto bad_dm_io; 1657 } 1658 1659 mutex_lock(&dm_bufio_clients_lock); 1660 if (c->blocks_per_page_bits) { 1661 if (!DM_BUFIO_CACHE_NAME(c)) { 1662 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1663 if (!DM_BUFIO_CACHE_NAME(c)) { 1664 r = -ENOMEM; 1665 mutex_unlock(&dm_bufio_clients_lock); 1666 goto bad_cache; 1667 } 1668 } 1669 1670 if (!DM_BUFIO_CACHE(c)) { 1671 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1672 c->block_size, 1673 c->block_size, 0, NULL); 1674 if (!DM_BUFIO_CACHE(c)) { 1675 r = -ENOMEM; 1676 mutex_unlock(&dm_bufio_clients_lock); 1677 goto bad_cache; 1678 } 1679 } 1680 } 1681 mutex_unlock(&dm_bufio_clients_lock); 1682 1683 while (c->need_reserved_buffers) { 1684 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1685 1686 if (!b) { 1687 r = -ENOMEM; 1688 goto bad_buffer; 1689 } 1690 __free_buffer_wake(b); 1691 } 1692 1693 mutex_lock(&dm_bufio_clients_lock); 1694 dm_bufio_client_count++; 1695 list_add(&c->client_list, &dm_bufio_all_clients); 1696 __cache_size_refresh(); 1697 mutex_unlock(&dm_bufio_clients_lock); 1698 1699 c->shrinker.count_objects = dm_bufio_shrink_count; 1700 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1701 c->shrinker.seeks = 1; 1702 c->shrinker.batch = 0; 1703 register_shrinker(&c->shrinker); 1704 1705 return c; 1706 1707 bad_buffer: 1708 bad_cache: 1709 while (!list_empty(&c->reserved_buffers)) { 1710 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1711 struct dm_buffer, lru_list); 1712 list_del(&b->lru_list); 1713 free_buffer(b); 1714 } 1715 dm_io_client_destroy(c->dm_io); 1716 bad_dm_io: 1717 kfree(c); 1718 bad_client: 1719 return ERR_PTR(r); 1720 } 1721 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1722 1723 /* 1724 * Free the buffering interface. 1725 * It is required that there are no references on any buffers. 1726 */ 1727 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1728 { 1729 unsigned i; 1730 1731 drop_buffers(c); 1732 1733 unregister_shrinker(&c->shrinker); 1734 1735 mutex_lock(&dm_bufio_clients_lock); 1736 1737 list_del(&c->client_list); 1738 dm_bufio_client_count--; 1739 __cache_size_refresh(); 1740 1741 mutex_unlock(&dm_bufio_clients_lock); 1742 1743 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1744 BUG_ON(c->need_reserved_buffers); 1745 1746 while (!list_empty(&c->reserved_buffers)) { 1747 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1748 struct dm_buffer, lru_list); 1749 list_del(&b->lru_list); 1750 free_buffer(b); 1751 } 1752 1753 for (i = 0; i < LIST_SIZE; i++) 1754 if (c->n_buffers[i]) 1755 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1756 1757 for (i = 0; i < LIST_SIZE; i++) 1758 BUG_ON(c->n_buffers[i]); 1759 1760 dm_io_client_destroy(c->dm_io); 1761 kfree(c); 1762 } 1763 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1764 1765 static unsigned get_max_age_hz(void) 1766 { 1767 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1768 1769 if (max_age > UINT_MAX / HZ) 1770 max_age = UINT_MAX / HZ; 1771 1772 return max_age * HZ; 1773 } 1774 1775 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1776 { 1777 return time_after_eq(jiffies, b->last_accessed + age_hz); 1778 } 1779 1780 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1781 { 1782 struct dm_buffer *b, *tmp; 1783 unsigned retain_target = get_retain_buffers(c); 1784 unsigned count; 1785 1786 dm_bufio_lock(c); 1787 1788 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1789 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1790 if (count <= retain_target) 1791 break; 1792 1793 if (!older_than(b, age_hz)) 1794 break; 1795 1796 if (__try_evict_buffer(b, 0)) 1797 count--; 1798 1799 cond_resched(); 1800 } 1801 1802 dm_bufio_unlock(c); 1803 } 1804 1805 static void cleanup_old_buffers(void) 1806 { 1807 unsigned long max_age_hz = get_max_age_hz(); 1808 struct dm_bufio_client *c; 1809 1810 mutex_lock(&dm_bufio_clients_lock); 1811 1812 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1813 __evict_old_buffers(c, max_age_hz); 1814 1815 mutex_unlock(&dm_bufio_clients_lock); 1816 } 1817 1818 static struct workqueue_struct *dm_bufio_wq; 1819 static struct delayed_work dm_bufio_work; 1820 1821 static void work_fn(struct work_struct *w) 1822 { 1823 cleanup_old_buffers(); 1824 1825 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1826 DM_BUFIO_WORK_TIMER_SECS * HZ); 1827 } 1828 1829 /*---------------------------------------------------------------- 1830 * Module setup 1831 *--------------------------------------------------------------*/ 1832 1833 /* 1834 * This is called only once for the whole dm_bufio module. 1835 * It initializes memory limit. 1836 */ 1837 static int __init dm_bufio_init(void) 1838 { 1839 __u64 mem; 1840 1841 dm_bufio_allocated_kmem_cache = 0; 1842 dm_bufio_allocated_get_free_pages = 0; 1843 dm_bufio_allocated_vmalloc = 0; 1844 dm_bufio_current_allocated = 0; 1845 1846 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1847 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1848 1849 mem = (__u64)((totalram_pages - totalhigh_pages) * 1850 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1851 1852 if (mem > ULONG_MAX) 1853 mem = ULONG_MAX; 1854 1855 #ifdef CONFIG_MMU 1856 /* 1857 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1858 * in fs/proc/internal.h 1859 */ 1860 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1861 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1862 #endif 1863 1864 dm_bufio_default_cache_size = mem; 1865 1866 mutex_lock(&dm_bufio_clients_lock); 1867 __cache_size_refresh(); 1868 mutex_unlock(&dm_bufio_clients_lock); 1869 1870 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1871 if (!dm_bufio_wq) 1872 return -ENOMEM; 1873 1874 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1875 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1876 DM_BUFIO_WORK_TIMER_SECS * HZ); 1877 1878 return 0; 1879 } 1880 1881 /* 1882 * This is called once when unloading the dm_bufio module. 1883 */ 1884 static void __exit dm_bufio_exit(void) 1885 { 1886 int bug = 0; 1887 int i; 1888 1889 cancel_delayed_work_sync(&dm_bufio_work); 1890 destroy_workqueue(dm_bufio_wq); 1891 1892 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1893 kmem_cache_destroy(dm_bufio_caches[i]); 1894 1895 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1896 kfree(dm_bufio_cache_names[i]); 1897 1898 if (dm_bufio_client_count) { 1899 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1900 __func__, dm_bufio_client_count); 1901 bug = 1; 1902 } 1903 1904 if (dm_bufio_current_allocated) { 1905 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1906 __func__, dm_bufio_current_allocated); 1907 bug = 1; 1908 } 1909 1910 if (dm_bufio_allocated_get_free_pages) { 1911 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1912 __func__, dm_bufio_allocated_get_free_pages); 1913 bug = 1; 1914 } 1915 1916 if (dm_bufio_allocated_vmalloc) { 1917 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1918 __func__, dm_bufio_allocated_vmalloc); 1919 bug = 1; 1920 } 1921 1922 BUG_ON(bug); 1923 } 1924 1925 module_init(dm_bufio_init) 1926 module_exit(dm_bufio_exit) 1927 1928 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1929 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1930 1931 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1932 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1933 1934 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR); 1935 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1936 1937 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1938 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1939 1940 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1941 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1942 1943 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1944 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1945 1946 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1947 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1948 1949 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1950 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1951 1952 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1953 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1954 MODULE_LICENSE("GPL"); 1955