1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * The number of bvec entries that are embedded directly in the buffer. 55 * If the chunk size is larger, dm-io is used to do the io. 56 */ 57 #define DM_BUFIO_INLINE_VECS 16 58 59 /* 60 * Don't try to use kmem_cache_alloc for blocks larger than this. 61 * For explanation, see alloc_buffer_data below. 62 */ 63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 65 66 /* 67 * Align buffer writes to this boundary. 68 * Tests show that SSDs have the highest IOPS when using 4k writes. 69 */ 70 #define DM_BUFIO_WRITE_ALIGN 4096 71 72 /* 73 * dm_buffer->list_mode 74 */ 75 #define LIST_CLEAN 0 76 #define LIST_DIRTY 1 77 #define LIST_SIZE 2 78 79 /* 80 * Linking of buffers: 81 * All buffers are linked to cache_hash with their hash_list field. 82 * 83 * Clean buffers that are not being written (B_WRITING not set) 84 * are linked to lru[LIST_CLEAN] with their lru_list field. 85 * 86 * Dirty and clean buffers that are being written are linked to 87 * lru[LIST_DIRTY] with their lru_list field. When the write 88 * finishes, the buffer cannot be relinked immediately (because we 89 * are in an interrupt context and relinking requires process 90 * context), so some clean-not-writing buffers can be held on 91 * dirty_lru too. They are later added to lru in the process 92 * context. 93 */ 94 struct dm_bufio_client { 95 struct mutex lock; 96 97 struct list_head lru[LIST_SIZE]; 98 unsigned long n_buffers[LIST_SIZE]; 99 100 struct block_device *bdev; 101 unsigned block_size; 102 unsigned char sectors_per_block_bits; 103 unsigned char pages_per_block_bits; 104 unsigned char blocks_per_page_bits; 105 unsigned aux_size; 106 void (*alloc_callback)(struct dm_buffer *); 107 void (*write_callback)(struct dm_buffer *); 108 109 struct dm_io_client *dm_io; 110 111 struct list_head reserved_buffers; 112 unsigned need_reserved_buffers; 113 114 unsigned minimum_buffers; 115 116 struct rb_root buffer_tree; 117 wait_queue_head_t free_buffer_wait; 118 119 sector_t start; 120 121 int async_write_error; 122 123 struct list_head client_list; 124 struct shrinker shrinker; 125 }; 126 127 /* 128 * Buffer state bits. 129 */ 130 #define B_READING 0 131 #define B_WRITING 1 132 #define B_DIRTY 2 133 134 /* 135 * Describes how the block was allocated: 136 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 137 * See the comment at alloc_buffer_data. 138 */ 139 enum data_mode { 140 DATA_MODE_SLAB = 0, 141 DATA_MODE_GET_FREE_PAGES = 1, 142 DATA_MODE_VMALLOC = 2, 143 DATA_MODE_LIMIT = 3 144 }; 145 146 struct dm_buffer { 147 struct rb_node node; 148 struct list_head lru_list; 149 sector_t block; 150 void *data; 151 enum data_mode data_mode; 152 unsigned char list_mode; /* LIST_* */ 153 unsigned hold_count; 154 blk_status_t read_error; 155 blk_status_t write_error; 156 unsigned long state; 157 unsigned long last_accessed; 158 unsigned dirty_start; 159 unsigned dirty_end; 160 unsigned write_start; 161 unsigned write_end; 162 struct dm_bufio_client *c; 163 struct list_head write_list; 164 struct bio bio; 165 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 167 #define MAX_STACK 10 168 struct stack_trace stack_trace; 169 unsigned long stack_entries[MAX_STACK]; 170 #endif 171 }; 172 173 /*----------------------------------------------------------------*/ 174 175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 177 178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 179 { 180 unsigned ret = c->blocks_per_page_bits - 1; 181 182 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 183 184 return ret; 185 } 186 187 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 188 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 189 190 #define dm_bufio_in_request() (!!current->bio_list) 191 192 static void dm_bufio_lock(struct dm_bufio_client *c) 193 { 194 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 195 } 196 197 static int dm_bufio_trylock(struct dm_bufio_client *c) 198 { 199 return mutex_trylock(&c->lock); 200 } 201 202 static void dm_bufio_unlock(struct dm_bufio_client *c) 203 { 204 mutex_unlock(&c->lock); 205 } 206 207 /*----------------------------------------------------------------*/ 208 209 /* 210 * Default cache size: available memory divided by the ratio. 211 */ 212 static unsigned long dm_bufio_default_cache_size; 213 214 /* 215 * Total cache size set by the user. 216 */ 217 static unsigned long dm_bufio_cache_size; 218 219 /* 220 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 221 * at any time. If it disagrees, the user has changed cache size. 222 */ 223 static unsigned long dm_bufio_cache_size_latch; 224 225 static DEFINE_SPINLOCK(param_spinlock); 226 227 /* 228 * Buffers are freed after this timeout 229 */ 230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 232 233 static unsigned long dm_bufio_peak_allocated; 234 static unsigned long dm_bufio_allocated_kmem_cache; 235 static unsigned long dm_bufio_allocated_get_free_pages; 236 static unsigned long dm_bufio_allocated_vmalloc; 237 static unsigned long dm_bufio_current_allocated; 238 239 /*----------------------------------------------------------------*/ 240 241 /* 242 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 243 */ 244 static unsigned long dm_bufio_cache_size_per_client; 245 246 /* 247 * The current number of clients. 248 */ 249 static int dm_bufio_client_count; 250 251 /* 252 * The list of all clients. 253 */ 254 static LIST_HEAD(dm_bufio_all_clients); 255 256 /* 257 * This mutex protects dm_bufio_cache_size_latch, 258 * dm_bufio_cache_size_per_client and dm_bufio_client_count 259 */ 260 static DEFINE_MUTEX(dm_bufio_clients_lock); 261 262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 263 static void buffer_record_stack(struct dm_buffer *b) 264 { 265 b->stack_trace.nr_entries = 0; 266 b->stack_trace.max_entries = MAX_STACK; 267 b->stack_trace.entries = b->stack_entries; 268 b->stack_trace.skip = 2; 269 save_stack_trace(&b->stack_trace); 270 } 271 #endif 272 273 /*---------------------------------------------------------------- 274 * A red/black tree acts as an index for all the buffers. 275 *--------------------------------------------------------------*/ 276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 277 { 278 struct rb_node *n = c->buffer_tree.rb_node; 279 struct dm_buffer *b; 280 281 while (n) { 282 b = container_of(n, struct dm_buffer, node); 283 284 if (b->block == block) 285 return b; 286 287 n = (b->block < block) ? n->rb_left : n->rb_right; 288 } 289 290 return NULL; 291 } 292 293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 294 { 295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 296 struct dm_buffer *found; 297 298 while (*new) { 299 found = container_of(*new, struct dm_buffer, node); 300 301 if (found->block == b->block) { 302 BUG_ON(found != b); 303 return; 304 } 305 306 parent = *new; 307 new = (found->block < b->block) ? 308 &((*new)->rb_left) : &((*new)->rb_right); 309 } 310 311 rb_link_node(&b->node, parent, new); 312 rb_insert_color(&b->node, &c->buffer_tree); 313 } 314 315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 316 { 317 rb_erase(&b->node, &c->buffer_tree); 318 } 319 320 /*----------------------------------------------------------------*/ 321 322 static void adjust_total_allocated(enum data_mode data_mode, long diff) 323 { 324 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 325 &dm_bufio_allocated_kmem_cache, 326 &dm_bufio_allocated_get_free_pages, 327 &dm_bufio_allocated_vmalloc, 328 }; 329 330 spin_lock(¶m_spinlock); 331 332 *class_ptr[data_mode] += diff; 333 334 dm_bufio_current_allocated += diff; 335 336 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 337 dm_bufio_peak_allocated = dm_bufio_current_allocated; 338 339 spin_unlock(¶m_spinlock); 340 } 341 342 /* 343 * Change the number of clients and recalculate per-client limit. 344 */ 345 static void __cache_size_refresh(void) 346 { 347 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 348 BUG_ON(dm_bufio_client_count < 0); 349 350 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 351 352 /* 353 * Use default if set to 0 and report the actual cache size used. 354 */ 355 if (!dm_bufio_cache_size_latch) { 356 (void)cmpxchg(&dm_bufio_cache_size, 0, 357 dm_bufio_default_cache_size); 358 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 359 } 360 361 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 362 (dm_bufio_client_count ? : 1); 363 } 364 365 /* 366 * Allocating buffer data. 367 * 368 * Small buffers are allocated with kmem_cache, to use space optimally. 369 * 370 * For large buffers, we choose between get_free_pages and vmalloc. 371 * Each has advantages and disadvantages. 372 * 373 * __get_free_pages can randomly fail if the memory is fragmented. 374 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 375 * as low as 128M) so using it for caching is not appropriate. 376 * 377 * If the allocation may fail we use __get_free_pages. Memory fragmentation 378 * won't have a fatal effect here, but it just causes flushes of some other 379 * buffers and more I/O will be performed. Don't use __get_free_pages if it 380 * always fails (i.e. order >= MAX_ORDER). 381 * 382 * If the allocation shouldn't fail we use __vmalloc. This is only for the 383 * initial reserve allocation, so there's no risk of wasting all vmalloc 384 * space. 385 */ 386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 387 enum data_mode *data_mode) 388 { 389 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 390 *data_mode = DATA_MODE_SLAB; 391 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 392 } 393 394 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 395 gfp_mask & __GFP_NORETRY) { 396 *data_mode = DATA_MODE_GET_FREE_PAGES; 397 return (void *)__get_free_pages(gfp_mask, 398 c->pages_per_block_bits); 399 } 400 401 *data_mode = DATA_MODE_VMALLOC; 402 403 /* 404 * __vmalloc allocates the data pages and auxiliary structures with 405 * gfp_flags that were specified, but pagetables are always allocated 406 * with GFP_KERNEL, no matter what was specified as gfp_mask. 407 * 408 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 409 * all allocations done by this process (including pagetables) are done 410 * as if GFP_NOIO was specified. 411 */ 412 if (gfp_mask & __GFP_NORETRY) { 413 unsigned noio_flag = memalloc_noio_save(); 414 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 415 416 memalloc_noio_restore(noio_flag); 417 return ptr; 418 } 419 420 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 421 } 422 423 /* 424 * Free buffer's data. 425 */ 426 static void free_buffer_data(struct dm_bufio_client *c, 427 void *data, enum data_mode data_mode) 428 { 429 switch (data_mode) { 430 case DATA_MODE_SLAB: 431 kmem_cache_free(DM_BUFIO_CACHE(c), data); 432 break; 433 434 case DATA_MODE_GET_FREE_PAGES: 435 free_pages((unsigned long)data, c->pages_per_block_bits); 436 break; 437 438 case DATA_MODE_VMALLOC: 439 vfree(data); 440 break; 441 442 default: 443 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 444 data_mode); 445 BUG(); 446 } 447 } 448 449 /* 450 * Allocate buffer and its data. 451 */ 452 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 453 { 454 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 455 gfp_mask); 456 457 if (!b) 458 return NULL; 459 460 b->c = c; 461 462 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 463 if (!b->data) { 464 kfree(b); 465 return NULL; 466 } 467 468 adjust_total_allocated(b->data_mode, (long)c->block_size); 469 470 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 471 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 472 #endif 473 return b; 474 } 475 476 /* 477 * Free buffer and its data. 478 */ 479 static void free_buffer(struct dm_buffer *b) 480 { 481 struct dm_bufio_client *c = b->c; 482 483 adjust_total_allocated(b->data_mode, -(long)c->block_size); 484 485 free_buffer_data(c, b->data, b->data_mode); 486 kfree(b); 487 } 488 489 /* 490 * Link buffer to the hash list and clean or dirty queue. 491 */ 492 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 493 { 494 struct dm_bufio_client *c = b->c; 495 496 c->n_buffers[dirty]++; 497 b->block = block; 498 b->list_mode = dirty; 499 list_add(&b->lru_list, &c->lru[dirty]); 500 __insert(b->c, b); 501 b->last_accessed = jiffies; 502 } 503 504 /* 505 * Unlink buffer from the hash list and dirty or clean queue. 506 */ 507 static void __unlink_buffer(struct dm_buffer *b) 508 { 509 struct dm_bufio_client *c = b->c; 510 511 BUG_ON(!c->n_buffers[b->list_mode]); 512 513 c->n_buffers[b->list_mode]--; 514 __remove(b->c, b); 515 list_del(&b->lru_list); 516 } 517 518 /* 519 * Place the buffer to the head of dirty or clean LRU queue. 520 */ 521 static void __relink_lru(struct dm_buffer *b, int dirty) 522 { 523 struct dm_bufio_client *c = b->c; 524 525 BUG_ON(!c->n_buffers[b->list_mode]); 526 527 c->n_buffers[b->list_mode]--; 528 c->n_buffers[dirty]++; 529 b->list_mode = dirty; 530 list_move(&b->lru_list, &c->lru[dirty]); 531 b->last_accessed = jiffies; 532 } 533 534 /*---------------------------------------------------------------- 535 * Submit I/O on the buffer. 536 * 537 * Bio interface is faster but it has some problems: 538 * the vector list is limited (increasing this limit increases 539 * memory-consumption per buffer, so it is not viable); 540 * 541 * the memory must be direct-mapped, not vmalloced; 542 * 543 * the I/O driver can reject requests spuriously if it thinks that 544 * the requests are too big for the device or if they cross a 545 * controller-defined memory boundary. 546 * 547 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 548 * it is not vmalloced, try using the bio interface. 549 * 550 * If the buffer is big, if it is vmalloced or if the underlying device 551 * rejects the bio because it is too large, use dm-io layer to do the I/O. 552 * The dm-io layer splits the I/O into multiple requests, avoiding the above 553 * shortcomings. 554 *--------------------------------------------------------------*/ 555 556 /* 557 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 558 * that the request was handled directly with bio interface. 559 */ 560 static void dmio_complete(unsigned long error, void *context) 561 { 562 struct dm_buffer *b = context; 563 564 b->bio.bi_status = error ? BLK_STS_IOERR : 0; 565 b->bio.bi_end_io(&b->bio); 566 } 567 568 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 569 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io) 570 { 571 int r; 572 struct dm_io_request io_req = { 573 .bi_op = rw, 574 .bi_op_flags = 0, 575 .notify.fn = dmio_complete, 576 .notify.context = b, 577 .client = b->c->dm_io, 578 }; 579 struct dm_io_region region = { 580 .bdev = b->c->bdev, 581 .sector = sector, 582 .count = n_sectors, 583 }; 584 585 if (b->data_mode != DATA_MODE_VMALLOC) { 586 io_req.mem.type = DM_IO_KMEM; 587 io_req.mem.ptr.addr = (char *)b->data + offset; 588 } else { 589 io_req.mem.type = DM_IO_VMA; 590 io_req.mem.ptr.vma = (char *)b->data + offset; 591 } 592 593 b->bio.bi_end_io = end_io; 594 595 r = dm_io(&io_req, 1, ®ion, NULL); 596 if (r) { 597 b->bio.bi_status = errno_to_blk_status(r); 598 end_io(&b->bio); 599 } 600 } 601 602 static void inline_endio(struct bio *bio) 603 { 604 bio_end_io_t *end_fn = bio->bi_private; 605 blk_status_t status = bio->bi_status; 606 607 /* 608 * Reset the bio to free any attached resources 609 * (e.g. bio integrity profiles). 610 */ 611 bio_reset(bio); 612 613 bio->bi_status = status; 614 end_fn(bio); 615 } 616 617 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector, 618 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io) 619 { 620 char *ptr; 621 unsigned len; 622 623 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 624 b->bio.bi_iter.bi_sector = sector; 625 bio_set_dev(&b->bio, b->c->bdev); 626 b->bio.bi_end_io = inline_endio; 627 /* 628 * Use of .bi_private isn't a problem here because 629 * the dm_buffer's inline bio is local to bufio. 630 */ 631 b->bio.bi_private = end_io; 632 bio_set_op_attrs(&b->bio, rw, 0); 633 634 ptr = (char *)b->data + offset; 635 len = n_sectors << SECTOR_SHIFT; 636 637 do { 638 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 639 if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step, 640 offset_in_page(ptr))) { 641 BUG_ON(b->c->block_size <= PAGE_SIZE); 642 use_dmio(b, rw, sector, n_sectors, offset, end_io); 643 return; 644 } 645 646 len -= this_step; 647 ptr += this_step; 648 } while (len > 0); 649 650 submit_bio(&b->bio); 651 } 652 653 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io) 654 { 655 unsigned n_sectors; 656 sector_t sector; 657 unsigned offset, end; 658 659 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start; 660 661 if (rw != REQ_OP_WRITE) { 662 n_sectors = 1 << b->c->sectors_per_block_bits; 663 offset = 0; 664 } else { 665 if (b->c->write_callback) 666 b->c->write_callback(b); 667 offset = b->write_start; 668 end = b->write_end; 669 offset &= -DM_BUFIO_WRITE_ALIGN; 670 end += DM_BUFIO_WRITE_ALIGN - 1; 671 end &= -DM_BUFIO_WRITE_ALIGN; 672 if (unlikely(end > b->c->block_size)) 673 end = b->c->block_size; 674 675 sector += offset >> SECTOR_SHIFT; 676 n_sectors = (end - offset) >> SECTOR_SHIFT; 677 } 678 679 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) && 680 b->data_mode != DATA_MODE_VMALLOC) 681 use_inline_bio(b, rw, sector, n_sectors, offset, end_io); 682 else 683 use_dmio(b, rw, sector, n_sectors, offset, end_io); 684 } 685 686 /*---------------------------------------------------------------- 687 * Writing dirty buffers 688 *--------------------------------------------------------------*/ 689 690 /* 691 * The endio routine for write. 692 * 693 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 694 * it. 695 */ 696 static void write_endio(struct bio *bio) 697 { 698 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 699 700 b->write_error = bio->bi_status; 701 if (unlikely(bio->bi_status)) { 702 struct dm_bufio_client *c = b->c; 703 704 (void)cmpxchg(&c->async_write_error, 0, 705 blk_status_to_errno(bio->bi_status)); 706 } 707 708 BUG_ON(!test_bit(B_WRITING, &b->state)); 709 710 smp_mb__before_atomic(); 711 clear_bit(B_WRITING, &b->state); 712 smp_mb__after_atomic(); 713 714 wake_up_bit(&b->state, B_WRITING); 715 } 716 717 /* 718 * Initiate a write on a dirty buffer, but don't wait for it. 719 * 720 * - If the buffer is not dirty, exit. 721 * - If there some previous write going on, wait for it to finish (we can't 722 * have two writes on the same buffer simultaneously). 723 * - Submit our write and don't wait on it. We set B_WRITING indicating 724 * that there is a write in progress. 725 */ 726 static void __write_dirty_buffer(struct dm_buffer *b, 727 struct list_head *write_list) 728 { 729 if (!test_bit(B_DIRTY, &b->state)) 730 return; 731 732 clear_bit(B_DIRTY, &b->state); 733 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 734 735 b->write_start = b->dirty_start; 736 b->write_end = b->dirty_end; 737 738 if (!write_list) 739 submit_io(b, REQ_OP_WRITE, write_endio); 740 else 741 list_add_tail(&b->write_list, write_list); 742 } 743 744 static void __flush_write_list(struct list_head *write_list) 745 { 746 struct blk_plug plug; 747 blk_start_plug(&plug); 748 while (!list_empty(write_list)) { 749 struct dm_buffer *b = 750 list_entry(write_list->next, struct dm_buffer, write_list); 751 list_del(&b->write_list); 752 submit_io(b, REQ_OP_WRITE, write_endio); 753 cond_resched(); 754 } 755 blk_finish_plug(&plug); 756 } 757 758 /* 759 * Wait until any activity on the buffer finishes. Possibly write the 760 * buffer if it is dirty. When this function finishes, there is no I/O 761 * running on the buffer and the buffer is not dirty. 762 */ 763 static void __make_buffer_clean(struct dm_buffer *b) 764 { 765 BUG_ON(b->hold_count); 766 767 if (!b->state) /* fast case */ 768 return; 769 770 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 771 __write_dirty_buffer(b, NULL); 772 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 773 } 774 775 /* 776 * Find some buffer that is not held by anybody, clean it, unlink it and 777 * return it. 778 */ 779 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 780 { 781 struct dm_buffer *b; 782 783 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 784 BUG_ON(test_bit(B_WRITING, &b->state)); 785 BUG_ON(test_bit(B_DIRTY, &b->state)); 786 787 if (!b->hold_count) { 788 __make_buffer_clean(b); 789 __unlink_buffer(b); 790 return b; 791 } 792 cond_resched(); 793 } 794 795 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 796 BUG_ON(test_bit(B_READING, &b->state)); 797 798 if (!b->hold_count) { 799 __make_buffer_clean(b); 800 __unlink_buffer(b); 801 return b; 802 } 803 cond_resched(); 804 } 805 806 return NULL; 807 } 808 809 /* 810 * Wait until some other threads free some buffer or release hold count on 811 * some buffer. 812 * 813 * This function is entered with c->lock held, drops it and regains it 814 * before exiting. 815 */ 816 static void __wait_for_free_buffer(struct dm_bufio_client *c) 817 { 818 DECLARE_WAITQUEUE(wait, current); 819 820 add_wait_queue(&c->free_buffer_wait, &wait); 821 set_current_state(TASK_UNINTERRUPTIBLE); 822 dm_bufio_unlock(c); 823 824 io_schedule(); 825 826 remove_wait_queue(&c->free_buffer_wait, &wait); 827 828 dm_bufio_lock(c); 829 } 830 831 enum new_flag { 832 NF_FRESH = 0, 833 NF_READ = 1, 834 NF_GET = 2, 835 NF_PREFETCH = 3 836 }; 837 838 /* 839 * Allocate a new buffer. If the allocation is not possible, wait until 840 * some other thread frees a buffer. 841 * 842 * May drop the lock and regain it. 843 */ 844 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 845 { 846 struct dm_buffer *b; 847 bool tried_noio_alloc = false; 848 849 /* 850 * dm-bufio is resistant to allocation failures (it just keeps 851 * one buffer reserved in cases all the allocations fail). 852 * So set flags to not try too hard: 853 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 854 * mutex and wait ourselves. 855 * __GFP_NORETRY: don't retry and rather return failure 856 * __GFP_NOMEMALLOC: don't use emergency reserves 857 * __GFP_NOWARN: don't print a warning in case of failure 858 * 859 * For debugging, if we set the cache size to 1, no new buffers will 860 * be allocated. 861 */ 862 while (1) { 863 if (dm_bufio_cache_size_latch != 1) { 864 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 865 if (b) 866 return b; 867 } 868 869 if (nf == NF_PREFETCH) 870 return NULL; 871 872 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 873 dm_bufio_unlock(c); 874 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 875 dm_bufio_lock(c); 876 if (b) 877 return b; 878 tried_noio_alloc = true; 879 } 880 881 if (!list_empty(&c->reserved_buffers)) { 882 b = list_entry(c->reserved_buffers.next, 883 struct dm_buffer, lru_list); 884 list_del(&b->lru_list); 885 c->need_reserved_buffers++; 886 887 return b; 888 } 889 890 b = __get_unclaimed_buffer(c); 891 if (b) 892 return b; 893 894 __wait_for_free_buffer(c); 895 } 896 } 897 898 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 899 { 900 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 901 902 if (!b) 903 return NULL; 904 905 if (c->alloc_callback) 906 c->alloc_callback(b); 907 908 return b; 909 } 910 911 /* 912 * Free a buffer and wake other threads waiting for free buffers. 913 */ 914 static void __free_buffer_wake(struct dm_buffer *b) 915 { 916 struct dm_bufio_client *c = b->c; 917 918 if (!c->need_reserved_buffers) 919 free_buffer(b); 920 else { 921 list_add(&b->lru_list, &c->reserved_buffers); 922 c->need_reserved_buffers--; 923 } 924 925 wake_up(&c->free_buffer_wait); 926 } 927 928 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 929 struct list_head *write_list) 930 { 931 struct dm_buffer *b, *tmp; 932 933 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 934 BUG_ON(test_bit(B_READING, &b->state)); 935 936 if (!test_bit(B_DIRTY, &b->state) && 937 !test_bit(B_WRITING, &b->state)) { 938 __relink_lru(b, LIST_CLEAN); 939 continue; 940 } 941 942 if (no_wait && test_bit(B_WRITING, &b->state)) 943 return; 944 945 __write_dirty_buffer(b, write_list); 946 cond_resched(); 947 } 948 } 949 950 /* 951 * Get writeback threshold and buffer limit for a given client. 952 */ 953 static void __get_memory_limit(struct dm_bufio_client *c, 954 unsigned long *threshold_buffers, 955 unsigned long *limit_buffers) 956 { 957 unsigned long buffers; 958 959 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) { 960 if (mutex_trylock(&dm_bufio_clients_lock)) { 961 __cache_size_refresh(); 962 mutex_unlock(&dm_bufio_clients_lock); 963 } 964 } 965 966 buffers = dm_bufio_cache_size_per_client >> 967 (c->sectors_per_block_bits + SECTOR_SHIFT); 968 969 if (buffers < c->minimum_buffers) 970 buffers = c->minimum_buffers; 971 972 *limit_buffers = buffers; 973 *threshold_buffers = mult_frac(buffers, 974 DM_BUFIO_WRITEBACK_PERCENT, 100); 975 } 976 977 /* 978 * Check if we're over watermark. 979 * If we are over threshold_buffers, start freeing buffers. 980 * If we're over "limit_buffers", block until we get under the limit. 981 */ 982 static void __check_watermark(struct dm_bufio_client *c, 983 struct list_head *write_list) 984 { 985 unsigned long threshold_buffers, limit_buffers; 986 987 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 988 989 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 990 limit_buffers) { 991 992 struct dm_buffer *b = __get_unclaimed_buffer(c); 993 994 if (!b) 995 return; 996 997 __free_buffer_wake(b); 998 cond_resched(); 999 } 1000 1001 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 1002 __write_dirty_buffers_async(c, 1, write_list); 1003 } 1004 1005 /*---------------------------------------------------------------- 1006 * Getting a buffer 1007 *--------------------------------------------------------------*/ 1008 1009 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1010 enum new_flag nf, int *need_submit, 1011 struct list_head *write_list) 1012 { 1013 struct dm_buffer *b, *new_b = NULL; 1014 1015 *need_submit = 0; 1016 1017 b = __find(c, block); 1018 if (b) 1019 goto found_buffer; 1020 1021 if (nf == NF_GET) 1022 return NULL; 1023 1024 new_b = __alloc_buffer_wait(c, nf); 1025 if (!new_b) 1026 return NULL; 1027 1028 /* 1029 * We've had a period where the mutex was unlocked, so need to 1030 * recheck the hash table. 1031 */ 1032 b = __find(c, block); 1033 if (b) { 1034 __free_buffer_wake(new_b); 1035 goto found_buffer; 1036 } 1037 1038 __check_watermark(c, write_list); 1039 1040 b = new_b; 1041 b->hold_count = 1; 1042 b->read_error = 0; 1043 b->write_error = 0; 1044 __link_buffer(b, block, LIST_CLEAN); 1045 1046 if (nf == NF_FRESH) { 1047 b->state = 0; 1048 return b; 1049 } 1050 1051 b->state = 1 << B_READING; 1052 *need_submit = 1; 1053 1054 return b; 1055 1056 found_buffer: 1057 if (nf == NF_PREFETCH) 1058 return NULL; 1059 /* 1060 * Note: it is essential that we don't wait for the buffer to be 1061 * read if dm_bufio_get function is used. Both dm_bufio_get and 1062 * dm_bufio_prefetch can be used in the driver request routine. 1063 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1064 * the same buffer, it would deadlock if we waited. 1065 */ 1066 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1067 return NULL; 1068 1069 b->hold_count++; 1070 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1071 test_bit(B_WRITING, &b->state)); 1072 return b; 1073 } 1074 1075 /* 1076 * The endio routine for reading: set the error, clear the bit and wake up 1077 * anyone waiting on the buffer. 1078 */ 1079 static void read_endio(struct bio *bio) 1080 { 1081 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1082 1083 b->read_error = bio->bi_status; 1084 1085 BUG_ON(!test_bit(B_READING, &b->state)); 1086 1087 smp_mb__before_atomic(); 1088 clear_bit(B_READING, &b->state); 1089 smp_mb__after_atomic(); 1090 1091 wake_up_bit(&b->state, B_READING); 1092 } 1093 1094 /* 1095 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1096 * functions is similar except that dm_bufio_new doesn't read the 1097 * buffer from the disk (assuming that the caller overwrites all the data 1098 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1099 */ 1100 static void *new_read(struct dm_bufio_client *c, sector_t block, 1101 enum new_flag nf, struct dm_buffer **bp) 1102 { 1103 int need_submit; 1104 struct dm_buffer *b; 1105 1106 LIST_HEAD(write_list); 1107 1108 dm_bufio_lock(c); 1109 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1110 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1111 if (b && b->hold_count == 1) 1112 buffer_record_stack(b); 1113 #endif 1114 dm_bufio_unlock(c); 1115 1116 __flush_write_list(&write_list); 1117 1118 if (!b) 1119 return NULL; 1120 1121 if (need_submit) 1122 submit_io(b, REQ_OP_READ, read_endio); 1123 1124 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1125 1126 if (b->read_error) { 1127 int error = blk_status_to_errno(b->read_error); 1128 1129 dm_bufio_release(b); 1130 1131 return ERR_PTR(error); 1132 } 1133 1134 *bp = b; 1135 1136 return b->data; 1137 } 1138 1139 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1140 struct dm_buffer **bp) 1141 { 1142 return new_read(c, block, NF_GET, bp); 1143 } 1144 EXPORT_SYMBOL_GPL(dm_bufio_get); 1145 1146 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1147 struct dm_buffer **bp) 1148 { 1149 BUG_ON(dm_bufio_in_request()); 1150 1151 return new_read(c, block, NF_READ, bp); 1152 } 1153 EXPORT_SYMBOL_GPL(dm_bufio_read); 1154 1155 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1156 struct dm_buffer **bp) 1157 { 1158 BUG_ON(dm_bufio_in_request()); 1159 1160 return new_read(c, block, NF_FRESH, bp); 1161 } 1162 EXPORT_SYMBOL_GPL(dm_bufio_new); 1163 1164 void dm_bufio_prefetch(struct dm_bufio_client *c, 1165 sector_t block, unsigned n_blocks) 1166 { 1167 struct blk_plug plug; 1168 1169 LIST_HEAD(write_list); 1170 1171 BUG_ON(dm_bufio_in_request()); 1172 1173 blk_start_plug(&plug); 1174 dm_bufio_lock(c); 1175 1176 for (; n_blocks--; block++) { 1177 int need_submit; 1178 struct dm_buffer *b; 1179 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1180 &write_list); 1181 if (unlikely(!list_empty(&write_list))) { 1182 dm_bufio_unlock(c); 1183 blk_finish_plug(&plug); 1184 __flush_write_list(&write_list); 1185 blk_start_plug(&plug); 1186 dm_bufio_lock(c); 1187 } 1188 if (unlikely(b != NULL)) { 1189 dm_bufio_unlock(c); 1190 1191 if (need_submit) 1192 submit_io(b, REQ_OP_READ, read_endio); 1193 dm_bufio_release(b); 1194 1195 cond_resched(); 1196 1197 if (!n_blocks) 1198 goto flush_plug; 1199 dm_bufio_lock(c); 1200 } 1201 } 1202 1203 dm_bufio_unlock(c); 1204 1205 flush_plug: 1206 blk_finish_plug(&plug); 1207 } 1208 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1209 1210 void dm_bufio_release(struct dm_buffer *b) 1211 { 1212 struct dm_bufio_client *c = b->c; 1213 1214 dm_bufio_lock(c); 1215 1216 BUG_ON(!b->hold_count); 1217 1218 b->hold_count--; 1219 if (!b->hold_count) { 1220 wake_up(&c->free_buffer_wait); 1221 1222 /* 1223 * If there were errors on the buffer, and the buffer is not 1224 * to be written, free the buffer. There is no point in caching 1225 * invalid buffer. 1226 */ 1227 if ((b->read_error || b->write_error) && 1228 !test_bit(B_READING, &b->state) && 1229 !test_bit(B_WRITING, &b->state) && 1230 !test_bit(B_DIRTY, &b->state)) { 1231 __unlink_buffer(b); 1232 __free_buffer_wake(b); 1233 } 1234 } 1235 1236 dm_bufio_unlock(c); 1237 } 1238 EXPORT_SYMBOL_GPL(dm_bufio_release); 1239 1240 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1241 unsigned start, unsigned end) 1242 { 1243 struct dm_bufio_client *c = b->c; 1244 1245 BUG_ON(start >= end); 1246 BUG_ON(end > b->c->block_size); 1247 1248 dm_bufio_lock(c); 1249 1250 BUG_ON(test_bit(B_READING, &b->state)); 1251 1252 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1253 b->dirty_start = start; 1254 b->dirty_end = end; 1255 __relink_lru(b, LIST_DIRTY); 1256 } else { 1257 if (start < b->dirty_start) 1258 b->dirty_start = start; 1259 if (end > b->dirty_end) 1260 b->dirty_end = end; 1261 } 1262 1263 dm_bufio_unlock(c); 1264 } 1265 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1266 1267 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1268 { 1269 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1270 } 1271 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1272 1273 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1274 { 1275 LIST_HEAD(write_list); 1276 1277 BUG_ON(dm_bufio_in_request()); 1278 1279 dm_bufio_lock(c); 1280 __write_dirty_buffers_async(c, 0, &write_list); 1281 dm_bufio_unlock(c); 1282 __flush_write_list(&write_list); 1283 } 1284 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1285 1286 /* 1287 * For performance, it is essential that the buffers are written asynchronously 1288 * and simultaneously (so that the block layer can merge the writes) and then 1289 * waited upon. 1290 * 1291 * Finally, we flush hardware disk cache. 1292 */ 1293 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1294 { 1295 int a, f; 1296 unsigned long buffers_processed = 0; 1297 struct dm_buffer *b, *tmp; 1298 1299 LIST_HEAD(write_list); 1300 1301 dm_bufio_lock(c); 1302 __write_dirty_buffers_async(c, 0, &write_list); 1303 dm_bufio_unlock(c); 1304 __flush_write_list(&write_list); 1305 dm_bufio_lock(c); 1306 1307 again: 1308 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1309 int dropped_lock = 0; 1310 1311 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1312 buffers_processed++; 1313 1314 BUG_ON(test_bit(B_READING, &b->state)); 1315 1316 if (test_bit(B_WRITING, &b->state)) { 1317 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1318 dropped_lock = 1; 1319 b->hold_count++; 1320 dm_bufio_unlock(c); 1321 wait_on_bit_io(&b->state, B_WRITING, 1322 TASK_UNINTERRUPTIBLE); 1323 dm_bufio_lock(c); 1324 b->hold_count--; 1325 } else 1326 wait_on_bit_io(&b->state, B_WRITING, 1327 TASK_UNINTERRUPTIBLE); 1328 } 1329 1330 if (!test_bit(B_DIRTY, &b->state) && 1331 !test_bit(B_WRITING, &b->state)) 1332 __relink_lru(b, LIST_CLEAN); 1333 1334 cond_resched(); 1335 1336 /* 1337 * If we dropped the lock, the list is no longer consistent, 1338 * so we must restart the search. 1339 * 1340 * In the most common case, the buffer just processed is 1341 * relinked to the clean list, so we won't loop scanning the 1342 * same buffer again and again. 1343 * 1344 * This may livelock if there is another thread simultaneously 1345 * dirtying buffers, so we count the number of buffers walked 1346 * and if it exceeds the total number of buffers, it means that 1347 * someone is doing some writes simultaneously with us. In 1348 * this case, stop, dropping the lock. 1349 */ 1350 if (dropped_lock) 1351 goto again; 1352 } 1353 wake_up(&c->free_buffer_wait); 1354 dm_bufio_unlock(c); 1355 1356 a = xchg(&c->async_write_error, 0); 1357 f = dm_bufio_issue_flush(c); 1358 if (a) 1359 return a; 1360 1361 return f; 1362 } 1363 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1364 1365 /* 1366 * Use dm-io to send and empty barrier flush the device. 1367 */ 1368 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1369 { 1370 struct dm_io_request io_req = { 1371 .bi_op = REQ_OP_WRITE, 1372 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1373 .mem.type = DM_IO_KMEM, 1374 .mem.ptr.addr = NULL, 1375 .client = c->dm_io, 1376 }; 1377 struct dm_io_region io_reg = { 1378 .bdev = c->bdev, 1379 .sector = 0, 1380 .count = 0, 1381 }; 1382 1383 BUG_ON(dm_bufio_in_request()); 1384 1385 return dm_io(&io_req, 1, &io_reg, NULL); 1386 } 1387 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1388 1389 /* 1390 * We first delete any other buffer that may be at that new location. 1391 * 1392 * Then, we write the buffer to the original location if it was dirty. 1393 * 1394 * Then, if we are the only one who is holding the buffer, relink the buffer 1395 * in the hash queue for the new location. 1396 * 1397 * If there was someone else holding the buffer, we write it to the new 1398 * location but not relink it, because that other user needs to have the buffer 1399 * at the same place. 1400 */ 1401 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1402 { 1403 struct dm_bufio_client *c = b->c; 1404 struct dm_buffer *new; 1405 1406 BUG_ON(dm_bufio_in_request()); 1407 1408 dm_bufio_lock(c); 1409 1410 retry: 1411 new = __find(c, new_block); 1412 if (new) { 1413 if (new->hold_count) { 1414 __wait_for_free_buffer(c); 1415 goto retry; 1416 } 1417 1418 /* 1419 * FIXME: Is there any point waiting for a write that's going 1420 * to be overwritten in a bit? 1421 */ 1422 __make_buffer_clean(new); 1423 __unlink_buffer(new); 1424 __free_buffer_wake(new); 1425 } 1426 1427 BUG_ON(!b->hold_count); 1428 BUG_ON(test_bit(B_READING, &b->state)); 1429 1430 __write_dirty_buffer(b, NULL); 1431 if (b->hold_count == 1) { 1432 wait_on_bit_io(&b->state, B_WRITING, 1433 TASK_UNINTERRUPTIBLE); 1434 set_bit(B_DIRTY, &b->state); 1435 b->dirty_start = 0; 1436 b->dirty_end = c->block_size; 1437 __unlink_buffer(b); 1438 __link_buffer(b, new_block, LIST_DIRTY); 1439 } else { 1440 sector_t old_block; 1441 wait_on_bit_lock_io(&b->state, B_WRITING, 1442 TASK_UNINTERRUPTIBLE); 1443 /* 1444 * Relink buffer to "new_block" so that write_callback 1445 * sees "new_block" as a block number. 1446 * After the write, link the buffer back to old_block. 1447 * All this must be done in bufio lock, so that block number 1448 * change isn't visible to other threads. 1449 */ 1450 old_block = b->block; 1451 __unlink_buffer(b); 1452 __link_buffer(b, new_block, b->list_mode); 1453 submit_io(b, REQ_OP_WRITE, write_endio); 1454 wait_on_bit_io(&b->state, B_WRITING, 1455 TASK_UNINTERRUPTIBLE); 1456 __unlink_buffer(b); 1457 __link_buffer(b, old_block, b->list_mode); 1458 } 1459 1460 dm_bufio_unlock(c); 1461 dm_bufio_release(b); 1462 } 1463 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1464 1465 /* 1466 * Free the given buffer. 1467 * 1468 * This is just a hint, if the buffer is in use or dirty, this function 1469 * does nothing. 1470 */ 1471 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1472 { 1473 struct dm_buffer *b; 1474 1475 dm_bufio_lock(c); 1476 1477 b = __find(c, block); 1478 if (b && likely(!b->hold_count) && likely(!b->state)) { 1479 __unlink_buffer(b); 1480 __free_buffer_wake(b); 1481 } 1482 1483 dm_bufio_unlock(c); 1484 } 1485 EXPORT_SYMBOL(dm_bufio_forget); 1486 1487 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1488 { 1489 c->minimum_buffers = n; 1490 } 1491 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1492 1493 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1494 { 1495 return c->block_size; 1496 } 1497 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1498 1499 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1500 { 1501 return i_size_read(c->bdev->bd_inode) >> 1502 (SECTOR_SHIFT + c->sectors_per_block_bits); 1503 } 1504 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1505 1506 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1507 { 1508 return b->block; 1509 } 1510 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1511 1512 void *dm_bufio_get_block_data(struct dm_buffer *b) 1513 { 1514 return b->data; 1515 } 1516 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1517 1518 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1519 { 1520 return b + 1; 1521 } 1522 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1523 1524 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1525 { 1526 return b->c; 1527 } 1528 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1529 1530 static void drop_buffers(struct dm_bufio_client *c) 1531 { 1532 struct dm_buffer *b; 1533 int i; 1534 bool warned = false; 1535 1536 BUG_ON(dm_bufio_in_request()); 1537 1538 /* 1539 * An optimization so that the buffers are not written one-by-one. 1540 */ 1541 dm_bufio_write_dirty_buffers_async(c); 1542 1543 dm_bufio_lock(c); 1544 1545 while ((b = __get_unclaimed_buffer(c))) 1546 __free_buffer_wake(b); 1547 1548 for (i = 0; i < LIST_SIZE; i++) 1549 list_for_each_entry(b, &c->lru[i], lru_list) { 1550 WARN_ON(!warned); 1551 warned = true; 1552 DMERR("leaked buffer %llx, hold count %u, list %d", 1553 (unsigned long long)b->block, b->hold_count, i); 1554 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1555 print_stack_trace(&b->stack_trace, 1); 1556 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1557 #endif 1558 } 1559 1560 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1561 while ((b = __get_unclaimed_buffer(c))) 1562 __free_buffer_wake(b); 1563 #endif 1564 1565 for (i = 0; i < LIST_SIZE; i++) 1566 BUG_ON(!list_empty(&c->lru[i])); 1567 1568 dm_bufio_unlock(c); 1569 } 1570 1571 /* 1572 * We may not be able to evict this buffer if IO pending or the client 1573 * is still using it. Caller is expected to know buffer is too old. 1574 * 1575 * And if GFP_NOFS is used, we must not do any I/O because we hold 1576 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1577 * rerouted to different bufio client. 1578 */ 1579 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1580 { 1581 if (!(gfp & __GFP_FS)) { 1582 if (test_bit(B_READING, &b->state) || 1583 test_bit(B_WRITING, &b->state) || 1584 test_bit(B_DIRTY, &b->state)) 1585 return false; 1586 } 1587 1588 if (b->hold_count) 1589 return false; 1590 1591 __make_buffer_clean(b); 1592 __unlink_buffer(b); 1593 __free_buffer_wake(b); 1594 1595 return true; 1596 } 1597 1598 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1599 { 1600 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1601 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT); 1602 } 1603 1604 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1605 gfp_t gfp_mask) 1606 { 1607 int l; 1608 struct dm_buffer *b, *tmp; 1609 unsigned long freed = 0; 1610 unsigned long count = c->n_buffers[LIST_CLEAN] + 1611 c->n_buffers[LIST_DIRTY]; 1612 unsigned long retain_target = get_retain_buffers(c); 1613 1614 for (l = 0; l < LIST_SIZE; l++) { 1615 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1616 if (__try_evict_buffer(b, gfp_mask)) 1617 freed++; 1618 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1619 return freed; 1620 cond_resched(); 1621 } 1622 } 1623 return freed; 1624 } 1625 1626 static unsigned long 1627 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1628 { 1629 struct dm_bufio_client *c; 1630 unsigned long freed; 1631 1632 c = container_of(shrink, struct dm_bufio_client, shrinker); 1633 if (sc->gfp_mask & __GFP_FS) 1634 dm_bufio_lock(c); 1635 else if (!dm_bufio_trylock(c)) 1636 return SHRINK_STOP; 1637 1638 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1639 dm_bufio_unlock(c); 1640 return freed; 1641 } 1642 1643 static unsigned long 1644 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1645 { 1646 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1647 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1648 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1649 unsigned long retain_target = get_retain_buffers(c); 1650 1651 return (count < retain_target) ? 0 : (count - retain_target); 1652 } 1653 1654 /* 1655 * Create the buffering interface 1656 */ 1657 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1658 unsigned reserved_buffers, unsigned aux_size, 1659 void (*alloc_callback)(struct dm_buffer *), 1660 void (*write_callback)(struct dm_buffer *)) 1661 { 1662 int r; 1663 struct dm_bufio_client *c; 1664 unsigned i; 1665 1666 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1667 (block_size & (block_size - 1))); 1668 1669 c = kzalloc(sizeof(*c), GFP_KERNEL); 1670 if (!c) { 1671 r = -ENOMEM; 1672 goto bad_client; 1673 } 1674 c->buffer_tree = RB_ROOT; 1675 1676 c->bdev = bdev; 1677 c->block_size = block_size; 1678 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1679 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1680 __ffs(block_size) - PAGE_SHIFT : 0; 1681 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1682 PAGE_SHIFT - __ffs(block_size) : 0); 1683 1684 c->aux_size = aux_size; 1685 c->alloc_callback = alloc_callback; 1686 c->write_callback = write_callback; 1687 1688 for (i = 0; i < LIST_SIZE; i++) { 1689 INIT_LIST_HEAD(&c->lru[i]); 1690 c->n_buffers[i] = 0; 1691 } 1692 1693 mutex_init(&c->lock); 1694 INIT_LIST_HEAD(&c->reserved_buffers); 1695 c->need_reserved_buffers = reserved_buffers; 1696 1697 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1698 1699 init_waitqueue_head(&c->free_buffer_wait); 1700 c->async_write_error = 0; 1701 1702 c->dm_io = dm_io_client_create(); 1703 if (IS_ERR(c->dm_io)) { 1704 r = PTR_ERR(c->dm_io); 1705 goto bad_dm_io; 1706 } 1707 1708 mutex_lock(&dm_bufio_clients_lock); 1709 if (c->blocks_per_page_bits) { 1710 if (!DM_BUFIO_CACHE_NAME(c)) { 1711 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1712 if (!DM_BUFIO_CACHE_NAME(c)) { 1713 r = -ENOMEM; 1714 mutex_unlock(&dm_bufio_clients_lock); 1715 goto bad; 1716 } 1717 } 1718 1719 if (!DM_BUFIO_CACHE(c)) { 1720 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1721 c->block_size, 1722 c->block_size, 0, NULL); 1723 if (!DM_BUFIO_CACHE(c)) { 1724 r = -ENOMEM; 1725 mutex_unlock(&dm_bufio_clients_lock); 1726 goto bad; 1727 } 1728 } 1729 } 1730 mutex_unlock(&dm_bufio_clients_lock); 1731 1732 while (c->need_reserved_buffers) { 1733 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1734 1735 if (!b) { 1736 r = -ENOMEM; 1737 goto bad; 1738 } 1739 __free_buffer_wake(b); 1740 } 1741 1742 c->shrinker.count_objects = dm_bufio_shrink_count; 1743 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1744 c->shrinker.seeks = 1; 1745 c->shrinker.batch = 0; 1746 r = register_shrinker(&c->shrinker); 1747 if (r) 1748 goto bad; 1749 1750 mutex_lock(&dm_bufio_clients_lock); 1751 dm_bufio_client_count++; 1752 list_add(&c->client_list, &dm_bufio_all_clients); 1753 __cache_size_refresh(); 1754 mutex_unlock(&dm_bufio_clients_lock); 1755 1756 return c; 1757 1758 bad: 1759 while (!list_empty(&c->reserved_buffers)) { 1760 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1761 struct dm_buffer, lru_list); 1762 list_del(&b->lru_list); 1763 free_buffer(b); 1764 } 1765 dm_io_client_destroy(c->dm_io); 1766 bad_dm_io: 1767 mutex_destroy(&c->lock); 1768 kfree(c); 1769 bad_client: 1770 return ERR_PTR(r); 1771 } 1772 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1773 1774 /* 1775 * Free the buffering interface. 1776 * It is required that there are no references on any buffers. 1777 */ 1778 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1779 { 1780 unsigned i; 1781 1782 drop_buffers(c); 1783 1784 unregister_shrinker(&c->shrinker); 1785 1786 mutex_lock(&dm_bufio_clients_lock); 1787 1788 list_del(&c->client_list); 1789 dm_bufio_client_count--; 1790 __cache_size_refresh(); 1791 1792 mutex_unlock(&dm_bufio_clients_lock); 1793 1794 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1795 BUG_ON(c->need_reserved_buffers); 1796 1797 while (!list_empty(&c->reserved_buffers)) { 1798 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1799 struct dm_buffer, lru_list); 1800 list_del(&b->lru_list); 1801 free_buffer(b); 1802 } 1803 1804 for (i = 0; i < LIST_SIZE; i++) 1805 if (c->n_buffers[i]) 1806 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1807 1808 for (i = 0; i < LIST_SIZE; i++) 1809 BUG_ON(c->n_buffers[i]); 1810 1811 dm_io_client_destroy(c->dm_io); 1812 mutex_destroy(&c->lock); 1813 kfree(c); 1814 } 1815 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1816 1817 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1818 { 1819 c->start = start; 1820 } 1821 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1822 1823 static unsigned get_max_age_hz(void) 1824 { 1825 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1826 1827 if (max_age > UINT_MAX / HZ) 1828 max_age = UINT_MAX / HZ; 1829 1830 return max_age * HZ; 1831 } 1832 1833 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1834 { 1835 return time_after_eq(jiffies, b->last_accessed + age_hz); 1836 } 1837 1838 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1839 { 1840 struct dm_buffer *b, *tmp; 1841 unsigned long retain_target = get_retain_buffers(c); 1842 unsigned long count; 1843 LIST_HEAD(write_list); 1844 1845 dm_bufio_lock(c); 1846 1847 __check_watermark(c, &write_list); 1848 if (unlikely(!list_empty(&write_list))) { 1849 dm_bufio_unlock(c); 1850 __flush_write_list(&write_list); 1851 dm_bufio_lock(c); 1852 } 1853 1854 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1855 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1856 if (count <= retain_target) 1857 break; 1858 1859 if (!older_than(b, age_hz)) 1860 break; 1861 1862 if (__try_evict_buffer(b, 0)) 1863 count--; 1864 1865 cond_resched(); 1866 } 1867 1868 dm_bufio_unlock(c); 1869 } 1870 1871 static void cleanup_old_buffers(void) 1872 { 1873 unsigned long max_age_hz = get_max_age_hz(); 1874 struct dm_bufio_client *c; 1875 1876 mutex_lock(&dm_bufio_clients_lock); 1877 1878 __cache_size_refresh(); 1879 1880 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1881 __evict_old_buffers(c, max_age_hz); 1882 1883 mutex_unlock(&dm_bufio_clients_lock); 1884 } 1885 1886 static struct workqueue_struct *dm_bufio_wq; 1887 static struct delayed_work dm_bufio_work; 1888 1889 static void work_fn(struct work_struct *w) 1890 { 1891 cleanup_old_buffers(); 1892 1893 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1894 DM_BUFIO_WORK_TIMER_SECS * HZ); 1895 } 1896 1897 /*---------------------------------------------------------------- 1898 * Module setup 1899 *--------------------------------------------------------------*/ 1900 1901 /* 1902 * This is called only once for the whole dm_bufio module. 1903 * It initializes memory limit. 1904 */ 1905 static int __init dm_bufio_init(void) 1906 { 1907 __u64 mem; 1908 1909 dm_bufio_allocated_kmem_cache = 0; 1910 dm_bufio_allocated_get_free_pages = 0; 1911 dm_bufio_allocated_vmalloc = 0; 1912 dm_bufio_current_allocated = 0; 1913 1914 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1915 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1916 1917 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages, 1918 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 1919 1920 if (mem > ULONG_MAX) 1921 mem = ULONG_MAX; 1922 1923 #ifdef CONFIG_MMU 1924 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 1925 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 1926 #endif 1927 1928 dm_bufio_default_cache_size = mem; 1929 1930 mutex_lock(&dm_bufio_clients_lock); 1931 __cache_size_refresh(); 1932 mutex_unlock(&dm_bufio_clients_lock); 1933 1934 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1935 if (!dm_bufio_wq) 1936 return -ENOMEM; 1937 1938 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1939 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1940 DM_BUFIO_WORK_TIMER_SECS * HZ); 1941 1942 return 0; 1943 } 1944 1945 /* 1946 * This is called once when unloading the dm_bufio module. 1947 */ 1948 static void __exit dm_bufio_exit(void) 1949 { 1950 int bug = 0; 1951 int i; 1952 1953 cancel_delayed_work_sync(&dm_bufio_work); 1954 destroy_workqueue(dm_bufio_wq); 1955 1956 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1957 kmem_cache_destroy(dm_bufio_caches[i]); 1958 1959 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1960 kfree(dm_bufio_cache_names[i]); 1961 1962 if (dm_bufio_client_count) { 1963 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1964 __func__, dm_bufio_client_count); 1965 bug = 1; 1966 } 1967 1968 if (dm_bufio_current_allocated) { 1969 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1970 __func__, dm_bufio_current_allocated); 1971 bug = 1; 1972 } 1973 1974 if (dm_bufio_allocated_get_free_pages) { 1975 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1976 __func__, dm_bufio_allocated_get_free_pages); 1977 bug = 1; 1978 } 1979 1980 if (dm_bufio_allocated_vmalloc) { 1981 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1982 __func__, dm_bufio_allocated_vmalloc); 1983 bug = 1; 1984 } 1985 1986 BUG_ON(bug); 1987 } 1988 1989 module_init(dm_bufio_init) 1990 module_exit(dm_bufio_exit) 1991 1992 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1993 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1994 1995 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1996 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1997 1998 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 1999 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2000 2001 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2002 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2003 2004 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2005 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2006 2007 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2008 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2009 2010 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2011 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2012 2013 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2014 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2015 2016 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2017 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2018 MODULE_LICENSE("GPL"); 2019