xref: /openbmc/linux/drivers/md/dm-bufio.c (revision e2c75e76)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_PERCENT	75
37 
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS	30
42 
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS	300
47 
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52 
53 /*
54  * The number of bvec entries that are embedded directly in the buffer.
55  * If the chunk size is larger, dm-io is used to do the io.
56  */
57 #define DM_BUFIO_INLINE_VECS		16
58 
59 /*
60  * Don't try to use kmem_cache_alloc for blocks larger than this.
61  * For explanation, see alloc_buffer_data below.
62  */
63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
65 
66 /*
67  * Align buffer writes to this boundary.
68  * Tests show that SSDs have the highest IOPS when using 4k writes.
69  */
70 #define DM_BUFIO_WRITE_ALIGN		4096
71 
72 /*
73  * dm_buffer->list_mode
74  */
75 #define LIST_CLEAN	0
76 #define LIST_DIRTY	1
77 #define LIST_SIZE	2
78 
79 /*
80  * Linking of buffers:
81  *	All buffers are linked to cache_hash with their hash_list field.
82  *
83  *	Clean buffers that are not being written (B_WRITING not set)
84  *	are linked to lru[LIST_CLEAN] with their lru_list field.
85  *
86  *	Dirty and clean buffers that are being written are linked to
87  *	lru[LIST_DIRTY] with their lru_list field. When the write
88  *	finishes, the buffer cannot be relinked immediately (because we
89  *	are in an interrupt context and relinking requires process
90  *	context), so some clean-not-writing buffers can be held on
91  *	dirty_lru too.  They are later added to lru in the process
92  *	context.
93  */
94 struct dm_bufio_client {
95 	struct mutex lock;
96 
97 	struct list_head lru[LIST_SIZE];
98 	unsigned long n_buffers[LIST_SIZE];
99 
100 	struct block_device *bdev;
101 	unsigned block_size;
102 	unsigned char sectors_per_block_bits;
103 	unsigned char pages_per_block_bits;
104 	unsigned char blocks_per_page_bits;
105 	unsigned aux_size;
106 	void (*alloc_callback)(struct dm_buffer *);
107 	void (*write_callback)(struct dm_buffer *);
108 
109 	struct dm_io_client *dm_io;
110 
111 	struct list_head reserved_buffers;
112 	unsigned need_reserved_buffers;
113 
114 	unsigned minimum_buffers;
115 
116 	struct rb_root buffer_tree;
117 	wait_queue_head_t free_buffer_wait;
118 
119 	sector_t start;
120 
121 	int async_write_error;
122 
123 	struct list_head client_list;
124 	struct shrinker shrinker;
125 };
126 
127 /*
128  * Buffer state bits.
129  */
130 #define B_READING	0
131 #define B_WRITING	1
132 #define B_DIRTY		2
133 
134 /*
135  * Describes how the block was allocated:
136  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
137  * See the comment at alloc_buffer_data.
138  */
139 enum data_mode {
140 	DATA_MODE_SLAB = 0,
141 	DATA_MODE_GET_FREE_PAGES = 1,
142 	DATA_MODE_VMALLOC = 2,
143 	DATA_MODE_LIMIT = 3
144 };
145 
146 struct dm_buffer {
147 	struct rb_node node;
148 	struct list_head lru_list;
149 	sector_t block;
150 	void *data;
151 	enum data_mode data_mode;
152 	unsigned char list_mode;		/* LIST_* */
153 	unsigned hold_count;
154 	blk_status_t read_error;
155 	blk_status_t write_error;
156 	unsigned long state;
157 	unsigned long last_accessed;
158 	unsigned dirty_start;
159 	unsigned dirty_end;
160 	unsigned write_start;
161 	unsigned write_end;
162 	struct dm_bufio_client *c;
163 	struct list_head write_list;
164 	struct bio bio;
165 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
167 #define MAX_STACK 10
168 	struct stack_trace stack_trace;
169 	unsigned long stack_entries[MAX_STACK];
170 #endif
171 };
172 
173 /*----------------------------------------------------------------*/
174 
175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
177 
178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
179 {
180 	unsigned ret = c->blocks_per_page_bits - 1;
181 
182 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
183 
184 	return ret;
185 }
186 
187 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
188 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
189 
190 #define dm_bufio_in_request()	(!!current->bio_list)
191 
192 static void dm_bufio_lock(struct dm_bufio_client *c)
193 {
194 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
195 }
196 
197 static int dm_bufio_trylock(struct dm_bufio_client *c)
198 {
199 	return mutex_trylock(&c->lock);
200 }
201 
202 static void dm_bufio_unlock(struct dm_bufio_client *c)
203 {
204 	mutex_unlock(&c->lock);
205 }
206 
207 /*----------------------------------------------------------------*/
208 
209 /*
210  * Default cache size: available memory divided by the ratio.
211  */
212 static unsigned long dm_bufio_default_cache_size;
213 
214 /*
215  * Total cache size set by the user.
216  */
217 static unsigned long dm_bufio_cache_size;
218 
219 /*
220  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221  * at any time.  If it disagrees, the user has changed cache size.
222  */
223 static unsigned long dm_bufio_cache_size_latch;
224 
225 static DEFINE_SPINLOCK(param_spinlock);
226 
227 /*
228  * Buffers are freed after this timeout
229  */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232 
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238 
239 /*----------------------------------------------------------------*/
240 
241 /*
242  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243  */
244 static unsigned long dm_bufio_cache_size_per_client;
245 
246 /*
247  * The current number of clients.
248  */
249 static int dm_bufio_client_count;
250 
251 /*
252  * The list of all clients.
253  */
254 static LIST_HEAD(dm_bufio_all_clients);
255 
256 /*
257  * This mutex protects dm_bufio_cache_size_latch,
258  * dm_bufio_cache_size_per_client and dm_bufio_client_count
259  */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261 
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265 	b->stack_trace.nr_entries = 0;
266 	b->stack_trace.max_entries = MAX_STACK;
267 	b->stack_trace.entries = b->stack_entries;
268 	b->stack_trace.skip = 2;
269 	save_stack_trace(&b->stack_trace);
270 }
271 #endif
272 
273 /*----------------------------------------------------------------
274  * A red/black tree acts as an index for all the buffers.
275  *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278 	struct rb_node *n = c->buffer_tree.rb_node;
279 	struct dm_buffer *b;
280 
281 	while (n) {
282 		b = container_of(n, struct dm_buffer, node);
283 
284 		if (b->block == block)
285 			return b;
286 
287 		n = (b->block < block) ? n->rb_left : n->rb_right;
288 	}
289 
290 	return NULL;
291 }
292 
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 	struct dm_buffer *found;
297 
298 	while (*new) {
299 		found = container_of(*new, struct dm_buffer, node);
300 
301 		if (found->block == b->block) {
302 			BUG_ON(found != b);
303 			return;
304 		}
305 
306 		parent = *new;
307 		new = (found->block < b->block) ?
308 			&((*new)->rb_left) : &((*new)->rb_right);
309 	}
310 
311 	rb_link_node(&b->node, parent, new);
312 	rb_insert_color(&b->node, &c->buffer_tree);
313 }
314 
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 	rb_erase(&b->node, &c->buffer_tree);
318 }
319 
320 /*----------------------------------------------------------------*/
321 
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 		&dm_bufio_allocated_kmem_cache,
326 		&dm_bufio_allocated_get_free_pages,
327 		&dm_bufio_allocated_vmalloc,
328 	};
329 
330 	spin_lock(&param_spinlock);
331 
332 	*class_ptr[data_mode] += diff;
333 
334 	dm_bufio_current_allocated += diff;
335 
336 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
338 
339 	spin_unlock(&param_spinlock);
340 }
341 
342 /*
343  * Change the number of clients and recalculate per-client limit.
344  */
345 static void __cache_size_refresh(void)
346 {
347 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 	BUG_ON(dm_bufio_client_count < 0);
349 
350 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
351 
352 	/*
353 	 * Use default if set to 0 and report the actual cache size used.
354 	 */
355 	if (!dm_bufio_cache_size_latch) {
356 		(void)cmpxchg(&dm_bufio_cache_size, 0,
357 			      dm_bufio_default_cache_size);
358 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359 	}
360 
361 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 					 (dm_bufio_client_count ? : 1);
363 }
364 
365 /*
366  * Allocating buffer data.
367  *
368  * Small buffers are allocated with kmem_cache, to use space optimally.
369  *
370  * For large buffers, we choose between get_free_pages and vmalloc.
371  * Each has advantages and disadvantages.
372  *
373  * __get_free_pages can randomly fail if the memory is fragmented.
374  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375  * as low as 128M) so using it for caching is not appropriate.
376  *
377  * If the allocation may fail we use __get_free_pages. Memory fragmentation
378  * won't have a fatal effect here, but it just causes flushes of some other
379  * buffers and more I/O will be performed. Don't use __get_free_pages if it
380  * always fails (i.e. order >= MAX_ORDER).
381  *
382  * If the allocation shouldn't fail we use __vmalloc. This is only for the
383  * initial reserve allocation, so there's no risk of wasting all vmalloc
384  * space.
385  */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 			       enum data_mode *data_mode)
388 {
389 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
390 		*data_mode = DATA_MODE_SLAB;
391 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
392 	}
393 
394 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
395 	    gfp_mask & __GFP_NORETRY) {
396 		*data_mode = DATA_MODE_GET_FREE_PAGES;
397 		return (void *)__get_free_pages(gfp_mask,
398 						c->pages_per_block_bits);
399 	}
400 
401 	*data_mode = DATA_MODE_VMALLOC;
402 
403 	/*
404 	 * __vmalloc allocates the data pages and auxiliary structures with
405 	 * gfp_flags that were specified, but pagetables are always allocated
406 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
407 	 *
408 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
409 	 * all allocations done by this process (including pagetables) are done
410 	 * as if GFP_NOIO was specified.
411 	 */
412 	if (gfp_mask & __GFP_NORETRY) {
413 		unsigned noio_flag = memalloc_noio_save();
414 		void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
415 
416 		memalloc_noio_restore(noio_flag);
417 		return ptr;
418 	}
419 
420 	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
421 }
422 
423 /*
424  * Free buffer's data.
425  */
426 static void free_buffer_data(struct dm_bufio_client *c,
427 			     void *data, enum data_mode data_mode)
428 {
429 	switch (data_mode) {
430 	case DATA_MODE_SLAB:
431 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
432 		break;
433 
434 	case DATA_MODE_GET_FREE_PAGES:
435 		free_pages((unsigned long)data, c->pages_per_block_bits);
436 		break;
437 
438 	case DATA_MODE_VMALLOC:
439 		vfree(data);
440 		break;
441 
442 	default:
443 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
444 		       data_mode);
445 		BUG();
446 	}
447 }
448 
449 /*
450  * Allocate buffer and its data.
451  */
452 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
453 {
454 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
455 				      gfp_mask);
456 
457 	if (!b)
458 		return NULL;
459 
460 	b->c = c;
461 
462 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
463 	if (!b->data) {
464 		kfree(b);
465 		return NULL;
466 	}
467 
468 	adjust_total_allocated(b->data_mode, (long)c->block_size);
469 
470 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
471 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
472 #endif
473 	return b;
474 }
475 
476 /*
477  * Free buffer and its data.
478  */
479 static void free_buffer(struct dm_buffer *b)
480 {
481 	struct dm_bufio_client *c = b->c;
482 
483 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
484 
485 	free_buffer_data(c, b->data, b->data_mode);
486 	kfree(b);
487 }
488 
489 /*
490  * Link buffer to the hash list and clean or dirty queue.
491  */
492 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
493 {
494 	struct dm_bufio_client *c = b->c;
495 
496 	c->n_buffers[dirty]++;
497 	b->block = block;
498 	b->list_mode = dirty;
499 	list_add(&b->lru_list, &c->lru[dirty]);
500 	__insert(b->c, b);
501 	b->last_accessed = jiffies;
502 }
503 
504 /*
505  * Unlink buffer from the hash list and dirty or clean queue.
506  */
507 static void __unlink_buffer(struct dm_buffer *b)
508 {
509 	struct dm_bufio_client *c = b->c;
510 
511 	BUG_ON(!c->n_buffers[b->list_mode]);
512 
513 	c->n_buffers[b->list_mode]--;
514 	__remove(b->c, b);
515 	list_del(&b->lru_list);
516 }
517 
518 /*
519  * Place the buffer to the head of dirty or clean LRU queue.
520  */
521 static void __relink_lru(struct dm_buffer *b, int dirty)
522 {
523 	struct dm_bufio_client *c = b->c;
524 
525 	BUG_ON(!c->n_buffers[b->list_mode]);
526 
527 	c->n_buffers[b->list_mode]--;
528 	c->n_buffers[dirty]++;
529 	b->list_mode = dirty;
530 	list_move(&b->lru_list, &c->lru[dirty]);
531 	b->last_accessed = jiffies;
532 }
533 
534 /*----------------------------------------------------------------
535  * Submit I/O on the buffer.
536  *
537  * Bio interface is faster but it has some problems:
538  *	the vector list is limited (increasing this limit increases
539  *	memory-consumption per buffer, so it is not viable);
540  *
541  *	the memory must be direct-mapped, not vmalloced;
542  *
543  *	the I/O driver can reject requests spuriously if it thinks that
544  *	the requests are too big for the device or if they cross a
545  *	controller-defined memory boundary.
546  *
547  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
548  * it is not vmalloced, try using the bio interface.
549  *
550  * If the buffer is big, if it is vmalloced or if the underlying device
551  * rejects the bio because it is too large, use dm-io layer to do the I/O.
552  * The dm-io layer splits the I/O into multiple requests, avoiding the above
553  * shortcomings.
554  *--------------------------------------------------------------*/
555 
556 /*
557  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
558  * that the request was handled directly with bio interface.
559  */
560 static void dmio_complete(unsigned long error, void *context)
561 {
562 	struct dm_buffer *b = context;
563 
564 	b->bio.bi_status = error ? BLK_STS_IOERR : 0;
565 	b->bio.bi_end_io(&b->bio);
566 }
567 
568 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
569 		     unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
570 {
571 	int r;
572 	struct dm_io_request io_req = {
573 		.bi_op = rw,
574 		.bi_op_flags = 0,
575 		.notify.fn = dmio_complete,
576 		.notify.context = b,
577 		.client = b->c->dm_io,
578 	};
579 	struct dm_io_region region = {
580 		.bdev = b->c->bdev,
581 		.sector = sector,
582 		.count = n_sectors,
583 	};
584 
585 	if (b->data_mode != DATA_MODE_VMALLOC) {
586 		io_req.mem.type = DM_IO_KMEM;
587 		io_req.mem.ptr.addr = (char *)b->data + offset;
588 	} else {
589 		io_req.mem.type = DM_IO_VMA;
590 		io_req.mem.ptr.vma = (char *)b->data + offset;
591 	}
592 
593 	b->bio.bi_end_io = end_io;
594 
595 	r = dm_io(&io_req, 1, &region, NULL);
596 	if (r) {
597 		b->bio.bi_status = errno_to_blk_status(r);
598 		end_io(&b->bio);
599 	}
600 }
601 
602 static void inline_endio(struct bio *bio)
603 {
604 	bio_end_io_t *end_fn = bio->bi_private;
605 	blk_status_t status = bio->bi_status;
606 
607 	/*
608 	 * Reset the bio to free any attached resources
609 	 * (e.g. bio integrity profiles).
610 	 */
611 	bio_reset(bio);
612 
613 	bio->bi_status = status;
614 	end_fn(bio);
615 }
616 
617 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector,
618 			   unsigned n_sectors, unsigned offset, bio_end_io_t *end_io)
619 {
620 	char *ptr;
621 	unsigned len;
622 
623 	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
624 	b->bio.bi_iter.bi_sector = sector;
625 	bio_set_dev(&b->bio, b->c->bdev);
626 	b->bio.bi_end_io = inline_endio;
627 	/*
628 	 * Use of .bi_private isn't a problem here because
629 	 * the dm_buffer's inline bio is local to bufio.
630 	 */
631 	b->bio.bi_private = end_io;
632 	bio_set_op_attrs(&b->bio, rw, 0);
633 
634 	ptr = (char *)b->data + offset;
635 	len = n_sectors << SECTOR_SHIFT;
636 
637 	do {
638 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
639 		if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step,
640 				  offset_in_page(ptr))) {
641 			BUG_ON(b->c->block_size <= PAGE_SIZE);
642 			use_dmio(b, rw, sector, n_sectors, offset, end_io);
643 			return;
644 		}
645 
646 		len -= this_step;
647 		ptr += this_step;
648 	} while (len > 0);
649 
650 	submit_bio(&b->bio);
651 }
652 
653 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io)
654 {
655 	unsigned n_sectors;
656 	sector_t sector;
657 	unsigned offset, end;
658 
659 	sector = (b->block << b->c->sectors_per_block_bits) + b->c->start;
660 
661 	if (rw != REQ_OP_WRITE) {
662 		n_sectors = 1 << b->c->sectors_per_block_bits;
663 		offset = 0;
664 	} else {
665 		if (b->c->write_callback)
666 			b->c->write_callback(b);
667 		offset = b->write_start;
668 		end = b->write_end;
669 		offset &= -DM_BUFIO_WRITE_ALIGN;
670 		end += DM_BUFIO_WRITE_ALIGN - 1;
671 		end &= -DM_BUFIO_WRITE_ALIGN;
672 		if (unlikely(end > b->c->block_size))
673 			end = b->c->block_size;
674 
675 		sector += offset >> SECTOR_SHIFT;
676 		n_sectors = (end - offset) >> SECTOR_SHIFT;
677 	}
678 
679 	if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) &&
680 	    b->data_mode != DATA_MODE_VMALLOC)
681 		use_inline_bio(b, rw, sector, n_sectors, offset, end_io);
682 	else
683 		use_dmio(b, rw, sector, n_sectors, offset, end_io);
684 }
685 
686 /*----------------------------------------------------------------
687  * Writing dirty buffers
688  *--------------------------------------------------------------*/
689 
690 /*
691  * The endio routine for write.
692  *
693  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
694  * it.
695  */
696 static void write_endio(struct bio *bio)
697 {
698 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
699 
700 	b->write_error = bio->bi_status;
701 	if (unlikely(bio->bi_status)) {
702 		struct dm_bufio_client *c = b->c;
703 
704 		(void)cmpxchg(&c->async_write_error, 0,
705 				blk_status_to_errno(bio->bi_status));
706 	}
707 
708 	BUG_ON(!test_bit(B_WRITING, &b->state));
709 
710 	smp_mb__before_atomic();
711 	clear_bit(B_WRITING, &b->state);
712 	smp_mb__after_atomic();
713 
714 	wake_up_bit(&b->state, B_WRITING);
715 }
716 
717 /*
718  * Initiate a write on a dirty buffer, but don't wait for it.
719  *
720  * - If the buffer is not dirty, exit.
721  * - If there some previous write going on, wait for it to finish (we can't
722  *   have two writes on the same buffer simultaneously).
723  * - Submit our write and don't wait on it. We set B_WRITING indicating
724  *   that there is a write in progress.
725  */
726 static void __write_dirty_buffer(struct dm_buffer *b,
727 				 struct list_head *write_list)
728 {
729 	if (!test_bit(B_DIRTY, &b->state))
730 		return;
731 
732 	clear_bit(B_DIRTY, &b->state);
733 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
734 
735 	b->write_start = b->dirty_start;
736 	b->write_end = b->dirty_end;
737 
738 	if (!write_list)
739 		submit_io(b, REQ_OP_WRITE, write_endio);
740 	else
741 		list_add_tail(&b->write_list, write_list);
742 }
743 
744 static void __flush_write_list(struct list_head *write_list)
745 {
746 	struct blk_plug plug;
747 	blk_start_plug(&plug);
748 	while (!list_empty(write_list)) {
749 		struct dm_buffer *b =
750 			list_entry(write_list->next, struct dm_buffer, write_list);
751 		list_del(&b->write_list);
752 		submit_io(b, REQ_OP_WRITE, write_endio);
753 		cond_resched();
754 	}
755 	blk_finish_plug(&plug);
756 }
757 
758 /*
759  * Wait until any activity on the buffer finishes.  Possibly write the
760  * buffer if it is dirty.  When this function finishes, there is no I/O
761  * running on the buffer and the buffer is not dirty.
762  */
763 static void __make_buffer_clean(struct dm_buffer *b)
764 {
765 	BUG_ON(b->hold_count);
766 
767 	if (!b->state)	/* fast case */
768 		return;
769 
770 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
771 	__write_dirty_buffer(b, NULL);
772 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
773 }
774 
775 /*
776  * Find some buffer that is not held by anybody, clean it, unlink it and
777  * return it.
778  */
779 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
780 {
781 	struct dm_buffer *b;
782 
783 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
784 		BUG_ON(test_bit(B_WRITING, &b->state));
785 		BUG_ON(test_bit(B_DIRTY, &b->state));
786 
787 		if (!b->hold_count) {
788 			__make_buffer_clean(b);
789 			__unlink_buffer(b);
790 			return b;
791 		}
792 		cond_resched();
793 	}
794 
795 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
796 		BUG_ON(test_bit(B_READING, &b->state));
797 
798 		if (!b->hold_count) {
799 			__make_buffer_clean(b);
800 			__unlink_buffer(b);
801 			return b;
802 		}
803 		cond_resched();
804 	}
805 
806 	return NULL;
807 }
808 
809 /*
810  * Wait until some other threads free some buffer or release hold count on
811  * some buffer.
812  *
813  * This function is entered with c->lock held, drops it and regains it
814  * before exiting.
815  */
816 static void __wait_for_free_buffer(struct dm_bufio_client *c)
817 {
818 	DECLARE_WAITQUEUE(wait, current);
819 
820 	add_wait_queue(&c->free_buffer_wait, &wait);
821 	set_current_state(TASK_UNINTERRUPTIBLE);
822 	dm_bufio_unlock(c);
823 
824 	io_schedule();
825 
826 	remove_wait_queue(&c->free_buffer_wait, &wait);
827 
828 	dm_bufio_lock(c);
829 }
830 
831 enum new_flag {
832 	NF_FRESH = 0,
833 	NF_READ = 1,
834 	NF_GET = 2,
835 	NF_PREFETCH = 3
836 };
837 
838 /*
839  * Allocate a new buffer. If the allocation is not possible, wait until
840  * some other thread frees a buffer.
841  *
842  * May drop the lock and regain it.
843  */
844 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
845 {
846 	struct dm_buffer *b;
847 	bool tried_noio_alloc = false;
848 
849 	/*
850 	 * dm-bufio is resistant to allocation failures (it just keeps
851 	 * one buffer reserved in cases all the allocations fail).
852 	 * So set flags to not try too hard:
853 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
854 	 *		    mutex and wait ourselves.
855 	 *	__GFP_NORETRY: don't retry and rather return failure
856 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
857 	 *	__GFP_NOWARN: don't print a warning in case of failure
858 	 *
859 	 * For debugging, if we set the cache size to 1, no new buffers will
860 	 * be allocated.
861 	 */
862 	while (1) {
863 		if (dm_bufio_cache_size_latch != 1) {
864 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
865 			if (b)
866 				return b;
867 		}
868 
869 		if (nf == NF_PREFETCH)
870 			return NULL;
871 
872 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
873 			dm_bufio_unlock(c);
874 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
875 			dm_bufio_lock(c);
876 			if (b)
877 				return b;
878 			tried_noio_alloc = true;
879 		}
880 
881 		if (!list_empty(&c->reserved_buffers)) {
882 			b = list_entry(c->reserved_buffers.next,
883 				       struct dm_buffer, lru_list);
884 			list_del(&b->lru_list);
885 			c->need_reserved_buffers++;
886 
887 			return b;
888 		}
889 
890 		b = __get_unclaimed_buffer(c);
891 		if (b)
892 			return b;
893 
894 		__wait_for_free_buffer(c);
895 	}
896 }
897 
898 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
899 {
900 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
901 
902 	if (!b)
903 		return NULL;
904 
905 	if (c->alloc_callback)
906 		c->alloc_callback(b);
907 
908 	return b;
909 }
910 
911 /*
912  * Free a buffer and wake other threads waiting for free buffers.
913  */
914 static void __free_buffer_wake(struct dm_buffer *b)
915 {
916 	struct dm_bufio_client *c = b->c;
917 
918 	if (!c->need_reserved_buffers)
919 		free_buffer(b);
920 	else {
921 		list_add(&b->lru_list, &c->reserved_buffers);
922 		c->need_reserved_buffers--;
923 	}
924 
925 	wake_up(&c->free_buffer_wait);
926 }
927 
928 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
929 					struct list_head *write_list)
930 {
931 	struct dm_buffer *b, *tmp;
932 
933 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
934 		BUG_ON(test_bit(B_READING, &b->state));
935 
936 		if (!test_bit(B_DIRTY, &b->state) &&
937 		    !test_bit(B_WRITING, &b->state)) {
938 			__relink_lru(b, LIST_CLEAN);
939 			continue;
940 		}
941 
942 		if (no_wait && test_bit(B_WRITING, &b->state))
943 			return;
944 
945 		__write_dirty_buffer(b, write_list);
946 		cond_resched();
947 	}
948 }
949 
950 /*
951  * Get writeback threshold and buffer limit for a given client.
952  */
953 static void __get_memory_limit(struct dm_bufio_client *c,
954 			       unsigned long *threshold_buffers,
955 			       unsigned long *limit_buffers)
956 {
957 	unsigned long buffers;
958 
959 	if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
960 		if (mutex_trylock(&dm_bufio_clients_lock)) {
961 			__cache_size_refresh();
962 			mutex_unlock(&dm_bufio_clients_lock);
963 		}
964 	}
965 
966 	buffers = dm_bufio_cache_size_per_client >>
967 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
968 
969 	if (buffers < c->minimum_buffers)
970 		buffers = c->minimum_buffers;
971 
972 	*limit_buffers = buffers;
973 	*threshold_buffers = mult_frac(buffers,
974 				       DM_BUFIO_WRITEBACK_PERCENT, 100);
975 }
976 
977 /*
978  * Check if we're over watermark.
979  * If we are over threshold_buffers, start freeing buffers.
980  * If we're over "limit_buffers", block until we get under the limit.
981  */
982 static void __check_watermark(struct dm_bufio_client *c,
983 			      struct list_head *write_list)
984 {
985 	unsigned long threshold_buffers, limit_buffers;
986 
987 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
988 
989 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
990 	       limit_buffers) {
991 
992 		struct dm_buffer *b = __get_unclaimed_buffer(c);
993 
994 		if (!b)
995 			return;
996 
997 		__free_buffer_wake(b);
998 		cond_resched();
999 	}
1000 
1001 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
1002 		__write_dirty_buffers_async(c, 1, write_list);
1003 }
1004 
1005 /*----------------------------------------------------------------
1006  * Getting a buffer
1007  *--------------------------------------------------------------*/
1008 
1009 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1010 				     enum new_flag nf, int *need_submit,
1011 				     struct list_head *write_list)
1012 {
1013 	struct dm_buffer *b, *new_b = NULL;
1014 
1015 	*need_submit = 0;
1016 
1017 	b = __find(c, block);
1018 	if (b)
1019 		goto found_buffer;
1020 
1021 	if (nf == NF_GET)
1022 		return NULL;
1023 
1024 	new_b = __alloc_buffer_wait(c, nf);
1025 	if (!new_b)
1026 		return NULL;
1027 
1028 	/*
1029 	 * We've had a period where the mutex was unlocked, so need to
1030 	 * recheck the hash table.
1031 	 */
1032 	b = __find(c, block);
1033 	if (b) {
1034 		__free_buffer_wake(new_b);
1035 		goto found_buffer;
1036 	}
1037 
1038 	__check_watermark(c, write_list);
1039 
1040 	b = new_b;
1041 	b->hold_count = 1;
1042 	b->read_error = 0;
1043 	b->write_error = 0;
1044 	__link_buffer(b, block, LIST_CLEAN);
1045 
1046 	if (nf == NF_FRESH) {
1047 		b->state = 0;
1048 		return b;
1049 	}
1050 
1051 	b->state = 1 << B_READING;
1052 	*need_submit = 1;
1053 
1054 	return b;
1055 
1056 found_buffer:
1057 	if (nf == NF_PREFETCH)
1058 		return NULL;
1059 	/*
1060 	 * Note: it is essential that we don't wait for the buffer to be
1061 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1062 	 * dm_bufio_prefetch can be used in the driver request routine.
1063 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1064 	 * the same buffer, it would deadlock if we waited.
1065 	 */
1066 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1067 		return NULL;
1068 
1069 	b->hold_count++;
1070 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1071 		     test_bit(B_WRITING, &b->state));
1072 	return b;
1073 }
1074 
1075 /*
1076  * The endio routine for reading: set the error, clear the bit and wake up
1077  * anyone waiting on the buffer.
1078  */
1079 static void read_endio(struct bio *bio)
1080 {
1081 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1082 
1083 	b->read_error = bio->bi_status;
1084 
1085 	BUG_ON(!test_bit(B_READING, &b->state));
1086 
1087 	smp_mb__before_atomic();
1088 	clear_bit(B_READING, &b->state);
1089 	smp_mb__after_atomic();
1090 
1091 	wake_up_bit(&b->state, B_READING);
1092 }
1093 
1094 /*
1095  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1096  * functions is similar except that dm_bufio_new doesn't read the
1097  * buffer from the disk (assuming that the caller overwrites all the data
1098  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1099  */
1100 static void *new_read(struct dm_bufio_client *c, sector_t block,
1101 		      enum new_flag nf, struct dm_buffer **bp)
1102 {
1103 	int need_submit;
1104 	struct dm_buffer *b;
1105 
1106 	LIST_HEAD(write_list);
1107 
1108 	dm_bufio_lock(c);
1109 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1110 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1111 	if (b && b->hold_count == 1)
1112 		buffer_record_stack(b);
1113 #endif
1114 	dm_bufio_unlock(c);
1115 
1116 	__flush_write_list(&write_list);
1117 
1118 	if (!b)
1119 		return NULL;
1120 
1121 	if (need_submit)
1122 		submit_io(b, REQ_OP_READ, read_endio);
1123 
1124 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1125 
1126 	if (b->read_error) {
1127 		int error = blk_status_to_errno(b->read_error);
1128 
1129 		dm_bufio_release(b);
1130 
1131 		return ERR_PTR(error);
1132 	}
1133 
1134 	*bp = b;
1135 
1136 	return b->data;
1137 }
1138 
1139 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1140 		   struct dm_buffer **bp)
1141 {
1142 	return new_read(c, block, NF_GET, bp);
1143 }
1144 EXPORT_SYMBOL_GPL(dm_bufio_get);
1145 
1146 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1147 		    struct dm_buffer **bp)
1148 {
1149 	BUG_ON(dm_bufio_in_request());
1150 
1151 	return new_read(c, block, NF_READ, bp);
1152 }
1153 EXPORT_SYMBOL_GPL(dm_bufio_read);
1154 
1155 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1156 		   struct dm_buffer **bp)
1157 {
1158 	BUG_ON(dm_bufio_in_request());
1159 
1160 	return new_read(c, block, NF_FRESH, bp);
1161 }
1162 EXPORT_SYMBOL_GPL(dm_bufio_new);
1163 
1164 void dm_bufio_prefetch(struct dm_bufio_client *c,
1165 		       sector_t block, unsigned n_blocks)
1166 {
1167 	struct blk_plug plug;
1168 
1169 	LIST_HEAD(write_list);
1170 
1171 	BUG_ON(dm_bufio_in_request());
1172 
1173 	blk_start_plug(&plug);
1174 	dm_bufio_lock(c);
1175 
1176 	for (; n_blocks--; block++) {
1177 		int need_submit;
1178 		struct dm_buffer *b;
1179 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1180 				&write_list);
1181 		if (unlikely(!list_empty(&write_list))) {
1182 			dm_bufio_unlock(c);
1183 			blk_finish_plug(&plug);
1184 			__flush_write_list(&write_list);
1185 			blk_start_plug(&plug);
1186 			dm_bufio_lock(c);
1187 		}
1188 		if (unlikely(b != NULL)) {
1189 			dm_bufio_unlock(c);
1190 
1191 			if (need_submit)
1192 				submit_io(b, REQ_OP_READ, read_endio);
1193 			dm_bufio_release(b);
1194 
1195 			cond_resched();
1196 
1197 			if (!n_blocks)
1198 				goto flush_plug;
1199 			dm_bufio_lock(c);
1200 		}
1201 	}
1202 
1203 	dm_bufio_unlock(c);
1204 
1205 flush_plug:
1206 	blk_finish_plug(&plug);
1207 }
1208 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1209 
1210 void dm_bufio_release(struct dm_buffer *b)
1211 {
1212 	struct dm_bufio_client *c = b->c;
1213 
1214 	dm_bufio_lock(c);
1215 
1216 	BUG_ON(!b->hold_count);
1217 
1218 	b->hold_count--;
1219 	if (!b->hold_count) {
1220 		wake_up(&c->free_buffer_wait);
1221 
1222 		/*
1223 		 * If there were errors on the buffer, and the buffer is not
1224 		 * to be written, free the buffer. There is no point in caching
1225 		 * invalid buffer.
1226 		 */
1227 		if ((b->read_error || b->write_error) &&
1228 		    !test_bit(B_READING, &b->state) &&
1229 		    !test_bit(B_WRITING, &b->state) &&
1230 		    !test_bit(B_DIRTY, &b->state)) {
1231 			__unlink_buffer(b);
1232 			__free_buffer_wake(b);
1233 		}
1234 	}
1235 
1236 	dm_bufio_unlock(c);
1237 }
1238 EXPORT_SYMBOL_GPL(dm_bufio_release);
1239 
1240 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1241 					unsigned start, unsigned end)
1242 {
1243 	struct dm_bufio_client *c = b->c;
1244 
1245 	BUG_ON(start >= end);
1246 	BUG_ON(end > b->c->block_size);
1247 
1248 	dm_bufio_lock(c);
1249 
1250 	BUG_ON(test_bit(B_READING, &b->state));
1251 
1252 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1253 		b->dirty_start = start;
1254 		b->dirty_end = end;
1255 		__relink_lru(b, LIST_DIRTY);
1256 	} else {
1257 		if (start < b->dirty_start)
1258 			b->dirty_start = start;
1259 		if (end > b->dirty_end)
1260 			b->dirty_end = end;
1261 	}
1262 
1263 	dm_bufio_unlock(c);
1264 }
1265 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1266 
1267 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1268 {
1269 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1270 }
1271 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1272 
1273 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1274 {
1275 	LIST_HEAD(write_list);
1276 
1277 	BUG_ON(dm_bufio_in_request());
1278 
1279 	dm_bufio_lock(c);
1280 	__write_dirty_buffers_async(c, 0, &write_list);
1281 	dm_bufio_unlock(c);
1282 	__flush_write_list(&write_list);
1283 }
1284 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1285 
1286 /*
1287  * For performance, it is essential that the buffers are written asynchronously
1288  * and simultaneously (so that the block layer can merge the writes) and then
1289  * waited upon.
1290  *
1291  * Finally, we flush hardware disk cache.
1292  */
1293 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1294 {
1295 	int a, f;
1296 	unsigned long buffers_processed = 0;
1297 	struct dm_buffer *b, *tmp;
1298 
1299 	LIST_HEAD(write_list);
1300 
1301 	dm_bufio_lock(c);
1302 	__write_dirty_buffers_async(c, 0, &write_list);
1303 	dm_bufio_unlock(c);
1304 	__flush_write_list(&write_list);
1305 	dm_bufio_lock(c);
1306 
1307 again:
1308 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1309 		int dropped_lock = 0;
1310 
1311 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1312 			buffers_processed++;
1313 
1314 		BUG_ON(test_bit(B_READING, &b->state));
1315 
1316 		if (test_bit(B_WRITING, &b->state)) {
1317 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1318 				dropped_lock = 1;
1319 				b->hold_count++;
1320 				dm_bufio_unlock(c);
1321 				wait_on_bit_io(&b->state, B_WRITING,
1322 					       TASK_UNINTERRUPTIBLE);
1323 				dm_bufio_lock(c);
1324 				b->hold_count--;
1325 			} else
1326 				wait_on_bit_io(&b->state, B_WRITING,
1327 					       TASK_UNINTERRUPTIBLE);
1328 		}
1329 
1330 		if (!test_bit(B_DIRTY, &b->state) &&
1331 		    !test_bit(B_WRITING, &b->state))
1332 			__relink_lru(b, LIST_CLEAN);
1333 
1334 		cond_resched();
1335 
1336 		/*
1337 		 * If we dropped the lock, the list is no longer consistent,
1338 		 * so we must restart the search.
1339 		 *
1340 		 * In the most common case, the buffer just processed is
1341 		 * relinked to the clean list, so we won't loop scanning the
1342 		 * same buffer again and again.
1343 		 *
1344 		 * This may livelock if there is another thread simultaneously
1345 		 * dirtying buffers, so we count the number of buffers walked
1346 		 * and if it exceeds the total number of buffers, it means that
1347 		 * someone is doing some writes simultaneously with us.  In
1348 		 * this case, stop, dropping the lock.
1349 		 */
1350 		if (dropped_lock)
1351 			goto again;
1352 	}
1353 	wake_up(&c->free_buffer_wait);
1354 	dm_bufio_unlock(c);
1355 
1356 	a = xchg(&c->async_write_error, 0);
1357 	f = dm_bufio_issue_flush(c);
1358 	if (a)
1359 		return a;
1360 
1361 	return f;
1362 }
1363 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1364 
1365 /*
1366  * Use dm-io to send and empty barrier flush the device.
1367  */
1368 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1369 {
1370 	struct dm_io_request io_req = {
1371 		.bi_op = REQ_OP_WRITE,
1372 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1373 		.mem.type = DM_IO_KMEM,
1374 		.mem.ptr.addr = NULL,
1375 		.client = c->dm_io,
1376 	};
1377 	struct dm_io_region io_reg = {
1378 		.bdev = c->bdev,
1379 		.sector = 0,
1380 		.count = 0,
1381 	};
1382 
1383 	BUG_ON(dm_bufio_in_request());
1384 
1385 	return dm_io(&io_req, 1, &io_reg, NULL);
1386 }
1387 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1388 
1389 /*
1390  * We first delete any other buffer that may be at that new location.
1391  *
1392  * Then, we write the buffer to the original location if it was dirty.
1393  *
1394  * Then, if we are the only one who is holding the buffer, relink the buffer
1395  * in the hash queue for the new location.
1396  *
1397  * If there was someone else holding the buffer, we write it to the new
1398  * location but not relink it, because that other user needs to have the buffer
1399  * at the same place.
1400  */
1401 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1402 {
1403 	struct dm_bufio_client *c = b->c;
1404 	struct dm_buffer *new;
1405 
1406 	BUG_ON(dm_bufio_in_request());
1407 
1408 	dm_bufio_lock(c);
1409 
1410 retry:
1411 	new = __find(c, new_block);
1412 	if (new) {
1413 		if (new->hold_count) {
1414 			__wait_for_free_buffer(c);
1415 			goto retry;
1416 		}
1417 
1418 		/*
1419 		 * FIXME: Is there any point waiting for a write that's going
1420 		 * to be overwritten in a bit?
1421 		 */
1422 		__make_buffer_clean(new);
1423 		__unlink_buffer(new);
1424 		__free_buffer_wake(new);
1425 	}
1426 
1427 	BUG_ON(!b->hold_count);
1428 	BUG_ON(test_bit(B_READING, &b->state));
1429 
1430 	__write_dirty_buffer(b, NULL);
1431 	if (b->hold_count == 1) {
1432 		wait_on_bit_io(&b->state, B_WRITING,
1433 			       TASK_UNINTERRUPTIBLE);
1434 		set_bit(B_DIRTY, &b->state);
1435 		b->dirty_start = 0;
1436 		b->dirty_end = c->block_size;
1437 		__unlink_buffer(b);
1438 		__link_buffer(b, new_block, LIST_DIRTY);
1439 	} else {
1440 		sector_t old_block;
1441 		wait_on_bit_lock_io(&b->state, B_WRITING,
1442 				    TASK_UNINTERRUPTIBLE);
1443 		/*
1444 		 * Relink buffer to "new_block" so that write_callback
1445 		 * sees "new_block" as a block number.
1446 		 * After the write, link the buffer back to old_block.
1447 		 * All this must be done in bufio lock, so that block number
1448 		 * change isn't visible to other threads.
1449 		 */
1450 		old_block = b->block;
1451 		__unlink_buffer(b);
1452 		__link_buffer(b, new_block, b->list_mode);
1453 		submit_io(b, REQ_OP_WRITE, write_endio);
1454 		wait_on_bit_io(&b->state, B_WRITING,
1455 			       TASK_UNINTERRUPTIBLE);
1456 		__unlink_buffer(b);
1457 		__link_buffer(b, old_block, b->list_mode);
1458 	}
1459 
1460 	dm_bufio_unlock(c);
1461 	dm_bufio_release(b);
1462 }
1463 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1464 
1465 /*
1466  * Free the given buffer.
1467  *
1468  * This is just a hint, if the buffer is in use or dirty, this function
1469  * does nothing.
1470  */
1471 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1472 {
1473 	struct dm_buffer *b;
1474 
1475 	dm_bufio_lock(c);
1476 
1477 	b = __find(c, block);
1478 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1479 		__unlink_buffer(b);
1480 		__free_buffer_wake(b);
1481 	}
1482 
1483 	dm_bufio_unlock(c);
1484 }
1485 EXPORT_SYMBOL(dm_bufio_forget);
1486 
1487 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1488 {
1489 	c->minimum_buffers = n;
1490 }
1491 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1492 
1493 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1494 {
1495 	return c->block_size;
1496 }
1497 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1498 
1499 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1500 {
1501 	return i_size_read(c->bdev->bd_inode) >>
1502 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1503 }
1504 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1505 
1506 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1507 {
1508 	return b->block;
1509 }
1510 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1511 
1512 void *dm_bufio_get_block_data(struct dm_buffer *b)
1513 {
1514 	return b->data;
1515 }
1516 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1517 
1518 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1519 {
1520 	return b + 1;
1521 }
1522 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1523 
1524 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1525 {
1526 	return b->c;
1527 }
1528 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1529 
1530 static void drop_buffers(struct dm_bufio_client *c)
1531 {
1532 	struct dm_buffer *b;
1533 	int i;
1534 	bool warned = false;
1535 
1536 	BUG_ON(dm_bufio_in_request());
1537 
1538 	/*
1539 	 * An optimization so that the buffers are not written one-by-one.
1540 	 */
1541 	dm_bufio_write_dirty_buffers_async(c);
1542 
1543 	dm_bufio_lock(c);
1544 
1545 	while ((b = __get_unclaimed_buffer(c)))
1546 		__free_buffer_wake(b);
1547 
1548 	for (i = 0; i < LIST_SIZE; i++)
1549 		list_for_each_entry(b, &c->lru[i], lru_list) {
1550 			WARN_ON(!warned);
1551 			warned = true;
1552 			DMERR("leaked buffer %llx, hold count %u, list %d",
1553 			      (unsigned long long)b->block, b->hold_count, i);
1554 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1555 			print_stack_trace(&b->stack_trace, 1);
1556 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1557 #endif
1558 		}
1559 
1560 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1561 	while ((b = __get_unclaimed_buffer(c)))
1562 		__free_buffer_wake(b);
1563 #endif
1564 
1565 	for (i = 0; i < LIST_SIZE; i++)
1566 		BUG_ON(!list_empty(&c->lru[i]));
1567 
1568 	dm_bufio_unlock(c);
1569 }
1570 
1571 /*
1572  * We may not be able to evict this buffer if IO pending or the client
1573  * is still using it.  Caller is expected to know buffer is too old.
1574  *
1575  * And if GFP_NOFS is used, we must not do any I/O because we hold
1576  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1577  * rerouted to different bufio client.
1578  */
1579 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1580 {
1581 	if (!(gfp & __GFP_FS)) {
1582 		if (test_bit(B_READING, &b->state) ||
1583 		    test_bit(B_WRITING, &b->state) ||
1584 		    test_bit(B_DIRTY, &b->state))
1585 			return false;
1586 	}
1587 
1588 	if (b->hold_count)
1589 		return false;
1590 
1591 	__make_buffer_clean(b);
1592 	__unlink_buffer(b);
1593 	__free_buffer_wake(b);
1594 
1595 	return true;
1596 }
1597 
1598 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1599 {
1600         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1601         return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT);
1602 }
1603 
1604 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1605 			    gfp_t gfp_mask)
1606 {
1607 	int l;
1608 	struct dm_buffer *b, *tmp;
1609 	unsigned long freed = 0;
1610 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1611 			      c->n_buffers[LIST_DIRTY];
1612 	unsigned long retain_target = get_retain_buffers(c);
1613 
1614 	for (l = 0; l < LIST_SIZE; l++) {
1615 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1616 			if (__try_evict_buffer(b, gfp_mask))
1617 				freed++;
1618 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1619 				return freed;
1620 			cond_resched();
1621 		}
1622 	}
1623 	return freed;
1624 }
1625 
1626 static unsigned long
1627 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1628 {
1629 	struct dm_bufio_client *c;
1630 	unsigned long freed;
1631 
1632 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1633 	if (sc->gfp_mask & __GFP_FS)
1634 		dm_bufio_lock(c);
1635 	else if (!dm_bufio_trylock(c))
1636 		return SHRINK_STOP;
1637 
1638 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1639 	dm_bufio_unlock(c);
1640 	return freed;
1641 }
1642 
1643 static unsigned long
1644 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1645 {
1646 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1647 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1648 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1649 	unsigned long retain_target = get_retain_buffers(c);
1650 
1651 	return (count < retain_target) ? 0 : (count - retain_target);
1652 }
1653 
1654 /*
1655  * Create the buffering interface
1656  */
1657 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1658 					       unsigned reserved_buffers, unsigned aux_size,
1659 					       void (*alloc_callback)(struct dm_buffer *),
1660 					       void (*write_callback)(struct dm_buffer *))
1661 {
1662 	int r;
1663 	struct dm_bufio_client *c;
1664 	unsigned i;
1665 
1666 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1667 	       (block_size & (block_size - 1)));
1668 
1669 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1670 	if (!c) {
1671 		r = -ENOMEM;
1672 		goto bad_client;
1673 	}
1674 	c->buffer_tree = RB_ROOT;
1675 
1676 	c->bdev = bdev;
1677 	c->block_size = block_size;
1678 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1679 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1680 				  __ffs(block_size) - PAGE_SHIFT : 0;
1681 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1682 				  PAGE_SHIFT - __ffs(block_size) : 0);
1683 
1684 	c->aux_size = aux_size;
1685 	c->alloc_callback = alloc_callback;
1686 	c->write_callback = write_callback;
1687 
1688 	for (i = 0; i < LIST_SIZE; i++) {
1689 		INIT_LIST_HEAD(&c->lru[i]);
1690 		c->n_buffers[i] = 0;
1691 	}
1692 
1693 	mutex_init(&c->lock);
1694 	INIT_LIST_HEAD(&c->reserved_buffers);
1695 	c->need_reserved_buffers = reserved_buffers;
1696 
1697 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1698 
1699 	init_waitqueue_head(&c->free_buffer_wait);
1700 	c->async_write_error = 0;
1701 
1702 	c->dm_io = dm_io_client_create();
1703 	if (IS_ERR(c->dm_io)) {
1704 		r = PTR_ERR(c->dm_io);
1705 		goto bad_dm_io;
1706 	}
1707 
1708 	mutex_lock(&dm_bufio_clients_lock);
1709 	if (c->blocks_per_page_bits) {
1710 		if (!DM_BUFIO_CACHE_NAME(c)) {
1711 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1712 			if (!DM_BUFIO_CACHE_NAME(c)) {
1713 				r = -ENOMEM;
1714 				mutex_unlock(&dm_bufio_clients_lock);
1715 				goto bad;
1716 			}
1717 		}
1718 
1719 		if (!DM_BUFIO_CACHE(c)) {
1720 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1721 							      c->block_size,
1722 							      c->block_size, 0, NULL);
1723 			if (!DM_BUFIO_CACHE(c)) {
1724 				r = -ENOMEM;
1725 				mutex_unlock(&dm_bufio_clients_lock);
1726 				goto bad;
1727 			}
1728 		}
1729 	}
1730 	mutex_unlock(&dm_bufio_clients_lock);
1731 
1732 	while (c->need_reserved_buffers) {
1733 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1734 
1735 		if (!b) {
1736 			r = -ENOMEM;
1737 			goto bad;
1738 		}
1739 		__free_buffer_wake(b);
1740 	}
1741 
1742 	c->shrinker.count_objects = dm_bufio_shrink_count;
1743 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1744 	c->shrinker.seeks = 1;
1745 	c->shrinker.batch = 0;
1746 	r = register_shrinker(&c->shrinker);
1747 	if (r)
1748 		goto bad;
1749 
1750 	mutex_lock(&dm_bufio_clients_lock);
1751 	dm_bufio_client_count++;
1752 	list_add(&c->client_list, &dm_bufio_all_clients);
1753 	__cache_size_refresh();
1754 	mutex_unlock(&dm_bufio_clients_lock);
1755 
1756 	return c;
1757 
1758 bad:
1759 	while (!list_empty(&c->reserved_buffers)) {
1760 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1761 						 struct dm_buffer, lru_list);
1762 		list_del(&b->lru_list);
1763 		free_buffer(b);
1764 	}
1765 	dm_io_client_destroy(c->dm_io);
1766 bad_dm_io:
1767 	mutex_destroy(&c->lock);
1768 	kfree(c);
1769 bad_client:
1770 	return ERR_PTR(r);
1771 }
1772 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1773 
1774 /*
1775  * Free the buffering interface.
1776  * It is required that there are no references on any buffers.
1777  */
1778 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1779 {
1780 	unsigned i;
1781 
1782 	drop_buffers(c);
1783 
1784 	unregister_shrinker(&c->shrinker);
1785 
1786 	mutex_lock(&dm_bufio_clients_lock);
1787 
1788 	list_del(&c->client_list);
1789 	dm_bufio_client_count--;
1790 	__cache_size_refresh();
1791 
1792 	mutex_unlock(&dm_bufio_clients_lock);
1793 
1794 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1795 	BUG_ON(c->need_reserved_buffers);
1796 
1797 	while (!list_empty(&c->reserved_buffers)) {
1798 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1799 						 struct dm_buffer, lru_list);
1800 		list_del(&b->lru_list);
1801 		free_buffer(b);
1802 	}
1803 
1804 	for (i = 0; i < LIST_SIZE; i++)
1805 		if (c->n_buffers[i])
1806 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1807 
1808 	for (i = 0; i < LIST_SIZE; i++)
1809 		BUG_ON(c->n_buffers[i]);
1810 
1811 	dm_io_client_destroy(c->dm_io);
1812 	mutex_destroy(&c->lock);
1813 	kfree(c);
1814 }
1815 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1816 
1817 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1818 {
1819 	c->start = start;
1820 }
1821 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1822 
1823 static unsigned get_max_age_hz(void)
1824 {
1825 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1826 
1827 	if (max_age > UINT_MAX / HZ)
1828 		max_age = UINT_MAX / HZ;
1829 
1830 	return max_age * HZ;
1831 }
1832 
1833 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1834 {
1835 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1836 }
1837 
1838 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1839 {
1840 	struct dm_buffer *b, *tmp;
1841 	unsigned long retain_target = get_retain_buffers(c);
1842 	unsigned long count;
1843 	LIST_HEAD(write_list);
1844 
1845 	dm_bufio_lock(c);
1846 
1847 	__check_watermark(c, &write_list);
1848 	if (unlikely(!list_empty(&write_list))) {
1849 		dm_bufio_unlock(c);
1850 		__flush_write_list(&write_list);
1851 		dm_bufio_lock(c);
1852 	}
1853 
1854 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1855 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1856 		if (count <= retain_target)
1857 			break;
1858 
1859 		if (!older_than(b, age_hz))
1860 			break;
1861 
1862 		if (__try_evict_buffer(b, 0))
1863 			count--;
1864 
1865 		cond_resched();
1866 	}
1867 
1868 	dm_bufio_unlock(c);
1869 }
1870 
1871 static void cleanup_old_buffers(void)
1872 {
1873 	unsigned long max_age_hz = get_max_age_hz();
1874 	struct dm_bufio_client *c;
1875 
1876 	mutex_lock(&dm_bufio_clients_lock);
1877 
1878 	__cache_size_refresh();
1879 
1880 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1881 		__evict_old_buffers(c, max_age_hz);
1882 
1883 	mutex_unlock(&dm_bufio_clients_lock);
1884 }
1885 
1886 static struct workqueue_struct *dm_bufio_wq;
1887 static struct delayed_work dm_bufio_work;
1888 
1889 static void work_fn(struct work_struct *w)
1890 {
1891 	cleanup_old_buffers();
1892 
1893 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1894 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1895 }
1896 
1897 /*----------------------------------------------------------------
1898  * Module setup
1899  *--------------------------------------------------------------*/
1900 
1901 /*
1902  * This is called only once for the whole dm_bufio module.
1903  * It initializes memory limit.
1904  */
1905 static int __init dm_bufio_init(void)
1906 {
1907 	__u64 mem;
1908 
1909 	dm_bufio_allocated_kmem_cache = 0;
1910 	dm_bufio_allocated_get_free_pages = 0;
1911 	dm_bufio_allocated_vmalloc = 0;
1912 	dm_bufio_current_allocated = 0;
1913 
1914 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1915 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1916 
1917 	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1918 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1919 
1920 	if (mem > ULONG_MAX)
1921 		mem = ULONG_MAX;
1922 
1923 #ifdef CONFIG_MMU
1924 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1925 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1926 #endif
1927 
1928 	dm_bufio_default_cache_size = mem;
1929 
1930 	mutex_lock(&dm_bufio_clients_lock);
1931 	__cache_size_refresh();
1932 	mutex_unlock(&dm_bufio_clients_lock);
1933 
1934 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1935 	if (!dm_bufio_wq)
1936 		return -ENOMEM;
1937 
1938 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1939 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1940 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1941 
1942 	return 0;
1943 }
1944 
1945 /*
1946  * This is called once when unloading the dm_bufio module.
1947  */
1948 static void __exit dm_bufio_exit(void)
1949 {
1950 	int bug = 0;
1951 	int i;
1952 
1953 	cancel_delayed_work_sync(&dm_bufio_work);
1954 	destroy_workqueue(dm_bufio_wq);
1955 
1956 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1957 		kmem_cache_destroy(dm_bufio_caches[i]);
1958 
1959 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1960 		kfree(dm_bufio_cache_names[i]);
1961 
1962 	if (dm_bufio_client_count) {
1963 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1964 			__func__, dm_bufio_client_count);
1965 		bug = 1;
1966 	}
1967 
1968 	if (dm_bufio_current_allocated) {
1969 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1970 			__func__, dm_bufio_current_allocated);
1971 		bug = 1;
1972 	}
1973 
1974 	if (dm_bufio_allocated_get_free_pages) {
1975 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1976 		       __func__, dm_bufio_allocated_get_free_pages);
1977 		bug = 1;
1978 	}
1979 
1980 	if (dm_bufio_allocated_vmalloc) {
1981 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1982 		       __func__, dm_bufio_allocated_vmalloc);
1983 		bug = 1;
1984 	}
1985 
1986 	BUG_ON(bug);
1987 }
1988 
1989 module_init(dm_bufio_init)
1990 module_exit(dm_bufio_exit)
1991 
1992 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1993 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1994 
1995 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1996 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1997 
1998 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1999 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2000 
2001 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2002 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2003 
2004 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2005 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2006 
2007 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2008 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2009 
2010 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2011 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2012 
2013 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2014 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2015 
2016 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2017 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2018 MODULE_LICENSE("GPL");
2019