xref: /openbmc/linux/drivers/md/dm-bufio.c (revision e1f7c9ee)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct hlist_head *cache_hash;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct hlist_node hash_list;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 };
154 
155 /*----------------------------------------------------------------*/
156 
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159 
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 {
162 	unsigned ret = c->blocks_per_page_bits - 1;
163 
164 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165 
166 	return ret;
167 }
168 
169 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
171 
172 #define dm_bufio_in_request()	(!!current->bio_list)
173 
174 static void dm_bufio_lock(struct dm_bufio_client *c)
175 {
176 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 }
178 
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 {
181 	return mutex_trylock(&c->lock);
182 }
183 
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 {
186 	mutex_unlock(&c->lock);
187 }
188 
189 /*
190  * FIXME Move to sched.h?
191  */
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 #  define dm_bufio_cond_resched()		\
194 do {						\
195 	if (unlikely(need_resched()))		\
196 		_cond_resched();		\
197 } while (0)
198 #else
199 #  define dm_bufio_cond_resched()                do { } while (0)
200 #endif
201 
202 /*----------------------------------------------------------------*/
203 
204 /*
205  * Default cache size: available memory divided by the ratio.
206  */
207 static unsigned long dm_bufio_default_cache_size;
208 
209 /*
210  * Total cache size set by the user.
211  */
212 static unsigned long dm_bufio_cache_size;
213 
214 /*
215  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216  * at any time.  If it disagrees, the user has changed cache size.
217  */
218 static unsigned long dm_bufio_cache_size_latch;
219 
220 static DEFINE_SPINLOCK(param_spinlock);
221 
222 /*
223  * Buffers are freed after this timeout
224  */
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
226 
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232 
233 /*----------------------------------------------------------------*/
234 
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239 
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244 
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249 
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255 
256 /*----------------------------------------------------------------*/
257 
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
259 {
260 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261 		&dm_bufio_allocated_kmem_cache,
262 		&dm_bufio_allocated_get_free_pages,
263 		&dm_bufio_allocated_vmalloc,
264 	};
265 
266 	spin_lock(&param_spinlock);
267 
268 	*class_ptr[data_mode] += diff;
269 
270 	dm_bufio_current_allocated += diff;
271 
272 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
274 
275 	spin_unlock(&param_spinlock);
276 }
277 
278 /*
279  * Change the number of clients and recalculate per-client limit.
280  */
281 static void __cache_size_refresh(void)
282 {
283 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284 	BUG_ON(dm_bufio_client_count < 0);
285 
286 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287 
288 	/*
289 	 * Use default if set to 0 and report the actual cache size used.
290 	 */
291 	if (!dm_bufio_cache_size_latch) {
292 		(void)cmpxchg(&dm_bufio_cache_size, 0,
293 			      dm_bufio_default_cache_size);
294 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295 	}
296 
297 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298 					 (dm_bufio_client_count ? : 1);
299 }
300 
301 /*
302  * Allocating buffer data.
303  *
304  * Small buffers are allocated with kmem_cache, to use space optimally.
305  *
306  * For large buffers, we choose between get_free_pages and vmalloc.
307  * Each has advantages and disadvantages.
308  *
309  * __get_free_pages can randomly fail if the memory is fragmented.
310  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311  * as low as 128M) so using it for caching is not appropriate.
312  *
313  * If the allocation may fail we use __get_free_pages. Memory fragmentation
314  * won't have a fatal effect here, but it just causes flushes of some other
315  * buffers and more I/O will be performed. Don't use __get_free_pages if it
316  * always fails (i.e. order >= MAX_ORDER).
317  *
318  * If the allocation shouldn't fail we use __vmalloc. This is only for the
319  * initial reserve allocation, so there's no risk of wasting all vmalloc
320  * space.
321  */
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323 			       enum data_mode *data_mode)
324 {
325 	unsigned noio_flag;
326 	void *ptr;
327 
328 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329 		*data_mode = DATA_MODE_SLAB;
330 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331 	}
332 
333 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334 	    gfp_mask & __GFP_NORETRY) {
335 		*data_mode = DATA_MODE_GET_FREE_PAGES;
336 		return (void *)__get_free_pages(gfp_mask,
337 						c->pages_per_block_bits);
338 	}
339 
340 	*data_mode = DATA_MODE_VMALLOC;
341 
342 	/*
343 	 * __vmalloc allocates the data pages and auxiliary structures with
344 	 * gfp_flags that were specified, but pagetables are always allocated
345 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
346 	 *
347 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348 	 * all allocations done by this process (including pagetables) are done
349 	 * as if GFP_NOIO was specified.
350 	 */
351 
352 	if (gfp_mask & __GFP_NORETRY)
353 		noio_flag = memalloc_noio_save();
354 
355 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
356 
357 	if (gfp_mask & __GFP_NORETRY)
358 		memalloc_noio_restore(noio_flag);
359 
360 	return ptr;
361 }
362 
363 /*
364  * Free buffer's data.
365  */
366 static void free_buffer_data(struct dm_bufio_client *c,
367 			     void *data, enum data_mode data_mode)
368 {
369 	switch (data_mode) {
370 	case DATA_MODE_SLAB:
371 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
372 		break;
373 
374 	case DATA_MODE_GET_FREE_PAGES:
375 		free_pages((unsigned long)data, c->pages_per_block_bits);
376 		break;
377 
378 	case DATA_MODE_VMALLOC:
379 		vfree(data);
380 		break;
381 
382 	default:
383 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384 		       data_mode);
385 		BUG();
386 	}
387 }
388 
389 /*
390  * Allocate buffer and its data.
391  */
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
393 {
394 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395 				      gfp_mask);
396 
397 	if (!b)
398 		return NULL;
399 
400 	b->c = c;
401 
402 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403 	if (!b->data) {
404 		kfree(b);
405 		return NULL;
406 	}
407 
408 	adjust_total_allocated(b->data_mode, (long)c->block_size);
409 
410 	return b;
411 }
412 
413 /*
414  * Free buffer and its data.
415  */
416 static void free_buffer(struct dm_buffer *b)
417 {
418 	struct dm_bufio_client *c = b->c;
419 
420 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
421 
422 	free_buffer_data(c, b->data, b->data_mode);
423 	kfree(b);
424 }
425 
426 /*
427  * Link buffer to the hash list and clean or dirty queue.
428  */
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
430 {
431 	struct dm_bufio_client *c = b->c;
432 
433 	c->n_buffers[dirty]++;
434 	b->block = block;
435 	b->list_mode = dirty;
436 	list_add(&b->lru_list, &c->lru[dirty]);
437 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438 	b->last_accessed = jiffies;
439 }
440 
441 /*
442  * Unlink buffer from the hash list and dirty or clean queue.
443  */
444 static void __unlink_buffer(struct dm_buffer *b)
445 {
446 	struct dm_bufio_client *c = b->c;
447 
448 	BUG_ON(!c->n_buffers[b->list_mode]);
449 
450 	c->n_buffers[b->list_mode]--;
451 	hlist_del(&b->hash_list);
452 	list_del(&b->lru_list);
453 }
454 
455 /*
456  * Place the buffer to the head of dirty or clean LRU queue.
457  */
458 static void __relink_lru(struct dm_buffer *b, int dirty)
459 {
460 	struct dm_bufio_client *c = b->c;
461 
462 	BUG_ON(!c->n_buffers[b->list_mode]);
463 
464 	c->n_buffers[b->list_mode]--;
465 	c->n_buffers[dirty]++;
466 	b->list_mode = dirty;
467 	list_move(&b->lru_list, &c->lru[dirty]);
468 	b->last_accessed = jiffies;
469 }
470 
471 /*----------------------------------------------------------------
472  * Submit I/O on the buffer.
473  *
474  * Bio interface is faster but it has some problems:
475  *	the vector list is limited (increasing this limit increases
476  *	memory-consumption per buffer, so it is not viable);
477  *
478  *	the memory must be direct-mapped, not vmalloced;
479  *
480  *	the I/O driver can reject requests spuriously if it thinks that
481  *	the requests are too big for the device or if they cross a
482  *	controller-defined memory boundary.
483  *
484  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
485  * it is not vmalloced, try using the bio interface.
486  *
487  * If the buffer is big, if it is vmalloced or if the underlying device
488  * rejects the bio because it is too large, use dm-io layer to do the I/O.
489  * The dm-io layer splits the I/O into multiple requests, avoiding the above
490  * shortcomings.
491  *--------------------------------------------------------------*/
492 
493 /*
494  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
495  * that the request was handled directly with bio interface.
496  */
497 static void dmio_complete(unsigned long error, void *context)
498 {
499 	struct dm_buffer *b = context;
500 
501 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
502 }
503 
504 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
505 		     bio_end_io_t *end_io)
506 {
507 	int r;
508 	struct dm_io_request io_req = {
509 		.bi_rw = rw,
510 		.notify.fn = dmio_complete,
511 		.notify.context = b,
512 		.client = b->c->dm_io,
513 	};
514 	struct dm_io_region region = {
515 		.bdev = b->c->bdev,
516 		.sector = block << b->c->sectors_per_block_bits,
517 		.count = b->c->block_size >> SECTOR_SHIFT,
518 	};
519 
520 	if (b->data_mode != DATA_MODE_VMALLOC) {
521 		io_req.mem.type = DM_IO_KMEM;
522 		io_req.mem.ptr.addr = b->data;
523 	} else {
524 		io_req.mem.type = DM_IO_VMA;
525 		io_req.mem.ptr.vma = b->data;
526 	}
527 
528 	b->bio.bi_end_io = end_io;
529 
530 	r = dm_io(&io_req, 1, &region, NULL);
531 	if (r)
532 		end_io(&b->bio, r);
533 }
534 
535 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
536 			   bio_end_io_t *end_io)
537 {
538 	char *ptr;
539 	int len;
540 
541 	bio_init(&b->bio);
542 	b->bio.bi_io_vec = b->bio_vec;
543 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
544 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
545 	b->bio.bi_bdev = b->c->bdev;
546 	b->bio.bi_end_io = end_io;
547 
548 	/*
549 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
550 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
551 	 */
552 	ptr = b->data;
553 	len = b->c->block_size;
554 
555 	if (len >= PAGE_SIZE)
556 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
557 	else
558 		BUG_ON((unsigned long)ptr & (len - 1));
559 
560 	do {
561 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
562 				  len < PAGE_SIZE ? len : PAGE_SIZE,
563 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
564 			BUG_ON(b->c->block_size <= PAGE_SIZE);
565 			use_dmio(b, rw, block, end_io);
566 			return;
567 		}
568 
569 		len -= PAGE_SIZE;
570 		ptr += PAGE_SIZE;
571 	} while (len > 0);
572 
573 	submit_bio(rw, &b->bio);
574 }
575 
576 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
577 		      bio_end_io_t *end_io)
578 {
579 	if (rw == WRITE && b->c->write_callback)
580 		b->c->write_callback(b);
581 
582 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
583 	    b->data_mode != DATA_MODE_VMALLOC)
584 		use_inline_bio(b, rw, block, end_io);
585 	else
586 		use_dmio(b, rw, block, end_io);
587 }
588 
589 /*----------------------------------------------------------------
590  * Writing dirty buffers
591  *--------------------------------------------------------------*/
592 
593 /*
594  * The endio routine for write.
595  *
596  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
597  * it.
598  */
599 static void write_endio(struct bio *bio, int error)
600 {
601 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
602 
603 	b->write_error = error;
604 	if (unlikely(error)) {
605 		struct dm_bufio_client *c = b->c;
606 		(void)cmpxchg(&c->async_write_error, 0, error);
607 	}
608 
609 	BUG_ON(!test_bit(B_WRITING, &b->state));
610 
611 	smp_mb__before_atomic();
612 	clear_bit(B_WRITING, &b->state);
613 	smp_mb__after_atomic();
614 
615 	wake_up_bit(&b->state, B_WRITING);
616 }
617 
618 /*
619  * Initiate a write on a dirty buffer, but don't wait for it.
620  *
621  * - If the buffer is not dirty, exit.
622  * - If there some previous write going on, wait for it to finish (we can't
623  *   have two writes on the same buffer simultaneously).
624  * - Submit our write and don't wait on it. We set B_WRITING indicating
625  *   that there is a write in progress.
626  */
627 static void __write_dirty_buffer(struct dm_buffer *b,
628 				 struct list_head *write_list)
629 {
630 	if (!test_bit(B_DIRTY, &b->state))
631 		return;
632 
633 	clear_bit(B_DIRTY, &b->state);
634 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
635 
636 	if (!write_list)
637 		submit_io(b, WRITE, b->block, write_endio);
638 	else
639 		list_add_tail(&b->write_list, write_list);
640 }
641 
642 static void __flush_write_list(struct list_head *write_list)
643 {
644 	struct blk_plug plug;
645 	blk_start_plug(&plug);
646 	while (!list_empty(write_list)) {
647 		struct dm_buffer *b =
648 			list_entry(write_list->next, struct dm_buffer, write_list);
649 		list_del(&b->write_list);
650 		submit_io(b, WRITE, b->block, write_endio);
651 		dm_bufio_cond_resched();
652 	}
653 	blk_finish_plug(&plug);
654 }
655 
656 /*
657  * Wait until any activity on the buffer finishes.  Possibly write the
658  * buffer if it is dirty.  When this function finishes, there is no I/O
659  * running on the buffer and the buffer is not dirty.
660  */
661 static void __make_buffer_clean(struct dm_buffer *b)
662 {
663 	BUG_ON(b->hold_count);
664 
665 	if (!b->state)	/* fast case */
666 		return;
667 
668 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
669 	__write_dirty_buffer(b, NULL);
670 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
671 }
672 
673 /*
674  * Find some buffer that is not held by anybody, clean it, unlink it and
675  * return it.
676  */
677 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
678 {
679 	struct dm_buffer *b;
680 
681 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
682 		BUG_ON(test_bit(B_WRITING, &b->state));
683 		BUG_ON(test_bit(B_DIRTY, &b->state));
684 
685 		if (!b->hold_count) {
686 			__make_buffer_clean(b);
687 			__unlink_buffer(b);
688 			return b;
689 		}
690 		dm_bufio_cond_resched();
691 	}
692 
693 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
694 		BUG_ON(test_bit(B_READING, &b->state));
695 
696 		if (!b->hold_count) {
697 			__make_buffer_clean(b);
698 			__unlink_buffer(b);
699 			return b;
700 		}
701 		dm_bufio_cond_resched();
702 	}
703 
704 	return NULL;
705 }
706 
707 /*
708  * Wait until some other threads free some buffer or release hold count on
709  * some buffer.
710  *
711  * This function is entered with c->lock held, drops it and regains it
712  * before exiting.
713  */
714 static void __wait_for_free_buffer(struct dm_bufio_client *c)
715 {
716 	DECLARE_WAITQUEUE(wait, current);
717 
718 	add_wait_queue(&c->free_buffer_wait, &wait);
719 	set_task_state(current, TASK_UNINTERRUPTIBLE);
720 	dm_bufio_unlock(c);
721 
722 	io_schedule();
723 
724 	remove_wait_queue(&c->free_buffer_wait, &wait);
725 
726 	dm_bufio_lock(c);
727 }
728 
729 enum new_flag {
730 	NF_FRESH = 0,
731 	NF_READ = 1,
732 	NF_GET = 2,
733 	NF_PREFETCH = 3
734 };
735 
736 /*
737  * Allocate a new buffer. If the allocation is not possible, wait until
738  * some other thread frees a buffer.
739  *
740  * May drop the lock and regain it.
741  */
742 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
743 {
744 	struct dm_buffer *b;
745 
746 	/*
747 	 * dm-bufio is resistant to allocation failures (it just keeps
748 	 * one buffer reserved in cases all the allocations fail).
749 	 * So set flags to not try too hard:
750 	 *	GFP_NOIO: don't recurse into the I/O layer
751 	 *	__GFP_NORETRY: don't retry and rather return failure
752 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
753 	 *	__GFP_NOWARN: don't print a warning in case of failure
754 	 *
755 	 * For debugging, if we set the cache size to 1, no new buffers will
756 	 * be allocated.
757 	 */
758 	while (1) {
759 		if (dm_bufio_cache_size_latch != 1) {
760 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
761 			if (b)
762 				return b;
763 		}
764 
765 		if (nf == NF_PREFETCH)
766 			return NULL;
767 
768 		if (!list_empty(&c->reserved_buffers)) {
769 			b = list_entry(c->reserved_buffers.next,
770 				       struct dm_buffer, lru_list);
771 			list_del(&b->lru_list);
772 			c->need_reserved_buffers++;
773 
774 			return b;
775 		}
776 
777 		b = __get_unclaimed_buffer(c);
778 		if (b)
779 			return b;
780 
781 		__wait_for_free_buffer(c);
782 	}
783 }
784 
785 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
786 {
787 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
788 
789 	if (!b)
790 		return NULL;
791 
792 	if (c->alloc_callback)
793 		c->alloc_callback(b);
794 
795 	return b;
796 }
797 
798 /*
799  * Free a buffer and wake other threads waiting for free buffers.
800  */
801 static void __free_buffer_wake(struct dm_buffer *b)
802 {
803 	struct dm_bufio_client *c = b->c;
804 
805 	if (!c->need_reserved_buffers)
806 		free_buffer(b);
807 	else {
808 		list_add(&b->lru_list, &c->reserved_buffers);
809 		c->need_reserved_buffers--;
810 	}
811 
812 	wake_up(&c->free_buffer_wait);
813 }
814 
815 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
816 					struct list_head *write_list)
817 {
818 	struct dm_buffer *b, *tmp;
819 
820 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
821 		BUG_ON(test_bit(B_READING, &b->state));
822 
823 		if (!test_bit(B_DIRTY, &b->state) &&
824 		    !test_bit(B_WRITING, &b->state)) {
825 			__relink_lru(b, LIST_CLEAN);
826 			continue;
827 		}
828 
829 		if (no_wait && test_bit(B_WRITING, &b->state))
830 			return;
831 
832 		__write_dirty_buffer(b, write_list);
833 		dm_bufio_cond_resched();
834 	}
835 }
836 
837 /*
838  * Get writeback threshold and buffer limit for a given client.
839  */
840 static void __get_memory_limit(struct dm_bufio_client *c,
841 			       unsigned long *threshold_buffers,
842 			       unsigned long *limit_buffers)
843 {
844 	unsigned long buffers;
845 
846 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
847 		mutex_lock(&dm_bufio_clients_lock);
848 		__cache_size_refresh();
849 		mutex_unlock(&dm_bufio_clients_lock);
850 	}
851 
852 	buffers = dm_bufio_cache_size_per_client >>
853 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
854 
855 	if (buffers < c->minimum_buffers)
856 		buffers = c->minimum_buffers;
857 
858 	*limit_buffers = buffers;
859 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
860 }
861 
862 /*
863  * Check if we're over watermark.
864  * If we are over threshold_buffers, start freeing buffers.
865  * If we're over "limit_buffers", block until we get under the limit.
866  */
867 static void __check_watermark(struct dm_bufio_client *c,
868 			      struct list_head *write_list)
869 {
870 	unsigned long threshold_buffers, limit_buffers;
871 
872 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
873 
874 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
875 	       limit_buffers) {
876 
877 		struct dm_buffer *b = __get_unclaimed_buffer(c);
878 
879 		if (!b)
880 			return;
881 
882 		__free_buffer_wake(b);
883 		dm_bufio_cond_resched();
884 	}
885 
886 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
887 		__write_dirty_buffers_async(c, 1, write_list);
888 }
889 
890 /*
891  * Find a buffer in the hash.
892  */
893 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
894 {
895 	struct dm_buffer *b;
896 
897 	hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
898 			     hash_list) {
899 		dm_bufio_cond_resched();
900 		if (b->block == block)
901 			return b;
902 	}
903 
904 	return NULL;
905 }
906 
907 /*----------------------------------------------------------------
908  * Getting a buffer
909  *--------------------------------------------------------------*/
910 
911 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
912 				     enum new_flag nf, int *need_submit,
913 				     struct list_head *write_list)
914 {
915 	struct dm_buffer *b, *new_b = NULL;
916 
917 	*need_submit = 0;
918 
919 	b = __find(c, block);
920 	if (b)
921 		goto found_buffer;
922 
923 	if (nf == NF_GET)
924 		return NULL;
925 
926 	new_b = __alloc_buffer_wait(c, nf);
927 	if (!new_b)
928 		return NULL;
929 
930 	/*
931 	 * We've had a period where the mutex was unlocked, so need to
932 	 * recheck the hash table.
933 	 */
934 	b = __find(c, block);
935 	if (b) {
936 		__free_buffer_wake(new_b);
937 		goto found_buffer;
938 	}
939 
940 	__check_watermark(c, write_list);
941 
942 	b = new_b;
943 	b->hold_count = 1;
944 	b->read_error = 0;
945 	b->write_error = 0;
946 	__link_buffer(b, block, LIST_CLEAN);
947 
948 	if (nf == NF_FRESH) {
949 		b->state = 0;
950 		return b;
951 	}
952 
953 	b->state = 1 << B_READING;
954 	*need_submit = 1;
955 
956 	return b;
957 
958 found_buffer:
959 	if (nf == NF_PREFETCH)
960 		return NULL;
961 	/*
962 	 * Note: it is essential that we don't wait for the buffer to be
963 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
964 	 * dm_bufio_prefetch can be used in the driver request routine.
965 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
966 	 * the same buffer, it would deadlock if we waited.
967 	 */
968 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
969 		return NULL;
970 
971 	b->hold_count++;
972 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
973 		     test_bit(B_WRITING, &b->state));
974 	return b;
975 }
976 
977 /*
978  * The endio routine for reading: set the error, clear the bit and wake up
979  * anyone waiting on the buffer.
980  */
981 static void read_endio(struct bio *bio, int error)
982 {
983 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
984 
985 	b->read_error = error;
986 
987 	BUG_ON(!test_bit(B_READING, &b->state));
988 
989 	smp_mb__before_atomic();
990 	clear_bit(B_READING, &b->state);
991 	smp_mb__after_atomic();
992 
993 	wake_up_bit(&b->state, B_READING);
994 }
995 
996 /*
997  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
998  * functions is similar except that dm_bufio_new doesn't read the
999  * buffer from the disk (assuming that the caller overwrites all the data
1000  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1001  */
1002 static void *new_read(struct dm_bufio_client *c, sector_t block,
1003 		      enum new_flag nf, struct dm_buffer **bp)
1004 {
1005 	int need_submit;
1006 	struct dm_buffer *b;
1007 
1008 	LIST_HEAD(write_list);
1009 
1010 	dm_bufio_lock(c);
1011 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1012 	dm_bufio_unlock(c);
1013 
1014 	__flush_write_list(&write_list);
1015 
1016 	if (!b)
1017 		return b;
1018 
1019 	if (need_submit)
1020 		submit_io(b, READ, b->block, read_endio);
1021 
1022 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1023 
1024 	if (b->read_error) {
1025 		int error = b->read_error;
1026 
1027 		dm_bufio_release(b);
1028 
1029 		return ERR_PTR(error);
1030 	}
1031 
1032 	*bp = b;
1033 
1034 	return b->data;
1035 }
1036 
1037 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1038 		   struct dm_buffer **bp)
1039 {
1040 	return new_read(c, block, NF_GET, bp);
1041 }
1042 EXPORT_SYMBOL_GPL(dm_bufio_get);
1043 
1044 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1045 		    struct dm_buffer **bp)
1046 {
1047 	BUG_ON(dm_bufio_in_request());
1048 
1049 	return new_read(c, block, NF_READ, bp);
1050 }
1051 EXPORT_SYMBOL_GPL(dm_bufio_read);
1052 
1053 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1054 		   struct dm_buffer **bp)
1055 {
1056 	BUG_ON(dm_bufio_in_request());
1057 
1058 	return new_read(c, block, NF_FRESH, bp);
1059 }
1060 EXPORT_SYMBOL_GPL(dm_bufio_new);
1061 
1062 void dm_bufio_prefetch(struct dm_bufio_client *c,
1063 		       sector_t block, unsigned n_blocks)
1064 {
1065 	struct blk_plug plug;
1066 
1067 	LIST_HEAD(write_list);
1068 
1069 	BUG_ON(dm_bufio_in_request());
1070 
1071 	blk_start_plug(&plug);
1072 	dm_bufio_lock(c);
1073 
1074 	for (; n_blocks--; block++) {
1075 		int need_submit;
1076 		struct dm_buffer *b;
1077 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1078 				&write_list);
1079 		if (unlikely(!list_empty(&write_list))) {
1080 			dm_bufio_unlock(c);
1081 			blk_finish_plug(&plug);
1082 			__flush_write_list(&write_list);
1083 			blk_start_plug(&plug);
1084 			dm_bufio_lock(c);
1085 		}
1086 		if (unlikely(b != NULL)) {
1087 			dm_bufio_unlock(c);
1088 
1089 			if (need_submit)
1090 				submit_io(b, READ, b->block, read_endio);
1091 			dm_bufio_release(b);
1092 
1093 			dm_bufio_cond_resched();
1094 
1095 			if (!n_blocks)
1096 				goto flush_plug;
1097 			dm_bufio_lock(c);
1098 		}
1099 	}
1100 
1101 	dm_bufio_unlock(c);
1102 
1103 flush_plug:
1104 	blk_finish_plug(&plug);
1105 }
1106 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1107 
1108 void dm_bufio_release(struct dm_buffer *b)
1109 {
1110 	struct dm_bufio_client *c = b->c;
1111 
1112 	dm_bufio_lock(c);
1113 
1114 	BUG_ON(!b->hold_count);
1115 
1116 	b->hold_count--;
1117 	if (!b->hold_count) {
1118 		wake_up(&c->free_buffer_wait);
1119 
1120 		/*
1121 		 * If there were errors on the buffer, and the buffer is not
1122 		 * to be written, free the buffer. There is no point in caching
1123 		 * invalid buffer.
1124 		 */
1125 		if ((b->read_error || b->write_error) &&
1126 		    !test_bit(B_READING, &b->state) &&
1127 		    !test_bit(B_WRITING, &b->state) &&
1128 		    !test_bit(B_DIRTY, &b->state)) {
1129 			__unlink_buffer(b);
1130 			__free_buffer_wake(b);
1131 		}
1132 	}
1133 
1134 	dm_bufio_unlock(c);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_release);
1137 
1138 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1139 {
1140 	struct dm_bufio_client *c = b->c;
1141 
1142 	dm_bufio_lock(c);
1143 
1144 	BUG_ON(test_bit(B_READING, &b->state));
1145 
1146 	if (!test_and_set_bit(B_DIRTY, &b->state))
1147 		__relink_lru(b, LIST_DIRTY);
1148 
1149 	dm_bufio_unlock(c);
1150 }
1151 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1152 
1153 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1154 {
1155 	LIST_HEAD(write_list);
1156 
1157 	BUG_ON(dm_bufio_in_request());
1158 
1159 	dm_bufio_lock(c);
1160 	__write_dirty_buffers_async(c, 0, &write_list);
1161 	dm_bufio_unlock(c);
1162 	__flush_write_list(&write_list);
1163 }
1164 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1165 
1166 /*
1167  * For performance, it is essential that the buffers are written asynchronously
1168  * and simultaneously (so that the block layer can merge the writes) and then
1169  * waited upon.
1170  *
1171  * Finally, we flush hardware disk cache.
1172  */
1173 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1174 {
1175 	int a, f;
1176 	unsigned long buffers_processed = 0;
1177 	struct dm_buffer *b, *tmp;
1178 
1179 	LIST_HEAD(write_list);
1180 
1181 	dm_bufio_lock(c);
1182 	__write_dirty_buffers_async(c, 0, &write_list);
1183 	dm_bufio_unlock(c);
1184 	__flush_write_list(&write_list);
1185 	dm_bufio_lock(c);
1186 
1187 again:
1188 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1189 		int dropped_lock = 0;
1190 
1191 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1192 			buffers_processed++;
1193 
1194 		BUG_ON(test_bit(B_READING, &b->state));
1195 
1196 		if (test_bit(B_WRITING, &b->state)) {
1197 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1198 				dropped_lock = 1;
1199 				b->hold_count++;
1200 				dm_bufio_unlock(c);
1201 				wait_on_bit_io(&b->state, B_WRITING,
1202 					       TASK_UNINTERRUPTIBLE);
1203 				dm_bufio_lock(c);
1204 				b->hold_count--;
1205 			} else
1206 				wait_on_bit_io(&b->state, B_WRITING,
1207 					       TASK_UNINTERRUPTIBLE);
1208 		}
1209 
1210 		if (!test_bit(B_DIRTY, &b->state) &&
1211 		    !test_bit(B_WRITING, &b->state))
1212 			__relink_lru(b, LIST_CLEAN);
1213 
1214 		dm_bufio_cond_resched();
1215 
1216 		/*
1217 		 * If we dropped the lock, the list is no longer consistent,
1218 		 * so we must restart the search.
1219 		 *
1220 		 * In the most common case, the buffer just processed is
1221 		 * relinked to the clean list, so we won't loop scanning the
1222 		 * same buffer again and again.
1223 		 *
1224 		 * This may livelock if there is another thread simultaneously
1225 		 * dirtying buffers, so we count the number of buffers walked
1226 		 * and if it exceeds the total number of buffers, it means that
1227 		 * someone is doing some writes simultaneously with us.  In
1228 		 * this case, stop, dropping the lock.
1229 		 */
1230 		if (dropped_lock)
1231 			goto again;
1232 	}
1233 	wake_up(&c->free_buffer_wait);
1234 	dm_bufio_unlock(c);
1235 
1236 	a = xchg(&c->async_write_error, 0);
1237 	f = dm_bufio_issue_flush(c);
1238 	if (a)
1239 		return a;
1240 
1241 	return f;
1242 }
1243 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1244 
1245 /*
1246  * Use dm-io to send and empty barrier flush the device.
1247  */
1248 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1249 {
1250 	struct dm_io_request io_req = {
1251 		.bi_rw = WRITE_FLUSH,
1252 		.mem.type = DM_IO_KMEM,
1253 		.mem.ptr.addr = NULL,
1254 		.client = c->dm_io,
1255 	};
1256 	struct dm_io_region io_reg = {
1257 		.bdev = c->bdev,
1258 		.sector = 0,
1259 		.count = 0,
1260 	};
1261 
1262 	BUG_ON(dm_bufio_in_request());
1263 
1264 	return dm_io(&io_req, 1, &io_reg, NULL);
1265 }
1266 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1267 
1268 /*
1269  * We first delete any other buffer that may be at that new location.
1270  *
1271  * Then, we write the buffer to the original location if it was dirty.
1272  *
1273  * Then, if we are the only one who is holding the buffer, relink the buffer
1274  * in the hash queue for the new location.
1275  *
1276  * If there was someone else holding the buffer, we write it to the new
1277  * location but not relink it, because that other user needs to have the buffer
1278  * at the same place.
1279  */
1280 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1281 {
1282 	struct dm_bufio_client *c = b->c;
1283 	struct dm_buffer *new;
1284 
1285 	BUG_ON(dm_bufio_in_request());
1286 
1287 	dm_bufio_lock(c);
1288 
1289 retry:
1290 	new = __find(c, new_block);
1291 	if (new) {
1292 		if (new->hold_count) {
1293 			__wait_for_free_buffer(c);
1294 			goto retry;
1295 		}
1296 
1297 		/*
1298 		 * FIXME: Is there any point waiting for a write that's going
1299 		 * to be overwritten in a bit?
1300 		 */
1301 		__make_buffer_clean(new);
1302 		__unlink_buffer(new);
1303 		__free_buffer_wake(new);
1304 	}
1305 
1306 	BUG_ON(!b->hold_count);
1307 	BUG_ON(test_bit(B_READING, &b->state));
1308 
1309 	__write_dirty_buffer(b, NULL);
1310 	if (b->hold_count == 1) {
1311 		wait_on_bit_io(&b->state, B_WRITING,
1312 			       TASK_UNINTERRUPTIBLE);
1313 		set_bit(B_DIRTY, &b->state);
1314 		__unlink_buffer(b);
1315 		__link_buffer(b, new_block, LIST_DIRTY);
1316 	} else {
1317 		sector_t old_block;
1318 		wait_on_bit_lock_io(&b->state, B_WRITING,
1319 				    TASK_UNINTERRUPTIBLE);
1320 		/*
1321 		 * Relink buffer to "new_block" so that write_callback
1322 		 * sees "new_block" as a block number.
1323 		 * After the write, link the buffer back to old_block.
1324 		 * All this must be done in bufio lock, so that block number
1325 		 * change isn't visible to other threads.
1326 		 */
1327 		old_block = b->block;
1328 		__unlink_buffer(b);
1329 		__link_buffer(b, new_block, b->list_mode);
1330 		submit_io(b, WRITE, new_block, write_endio);
1331 		wait_on_bit_io(&b->state, B_WRITING,
1332 			       TASK_UNINTERRUPTIBLE);
1333 		__unlink_buffer(b);
1334 		__link_buffer(b, old_block, b->list_mode);
1335 	}
1336 
1337 	dm_bufio_unlock(c);
1338 	dm_bufio_release(b);
1339 }
1340 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1341 
1342 /*
1343  * Free the given buffer.
1344  *
1345  * This is just a hint, if the buffer is in use or dirty, this function
1346  * does nothing.
1347  */
1348 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1349 {
1350 	struct dm_buffer *b;
1351 
1352 	dm_bufio_lock(c);
1353 
1354 	b = __find(c, block);
1355 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1356 		__unlink_buffer(b);
1357 		__free_buffer_wake(b);
1358 	}
1359 
1360 	dm_bufio_unlock(c);
1361 }
1362 EXPORT_SYMBOL(dm_bufio_forget);
1363 
1364 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1365 {
1366 	c->minimum_buffers = n;
1367 }
1368 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1369 
1370 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1371 {
1372 	return c->block_size;
1373 }
1374 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1375 
1376 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1377 {
1378 	return i_size_read(c->bdev->bd_inode) >>
1379 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1380 }
1381 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1382 
1383 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1384 {
1385 	return b->block;
1386 }
1387 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1388 
1389 void *dm_bufio_get_block_data(struct dm_buffer *b)
1390 {
1391 	return b->data;
1392 }
1393 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1394 
1395 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1396 {
1397 	return b + 1;
1398 }
1399 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1400 
1401 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1402 {
1403 	return b->c;
1404 }
1405 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1406 
1407 static void drop_buffers(struct dm_bufio_client *c)
1408 {
1409 	struct dm_buffer *b;
1410 	int i;
1411 
1412 	BUG_ON(dm_bufio_in_request());
1413 
1414 	/*
1415 	 * An optimization so that the buffers are not written one-by-one.
1416 	 */
1417 	dm_bufio_write_dirty_buffers_async(c);
1418 
1419 	dm_bufio_lock(c);
1420 
1421 	while ((b = __get_unclaimed_buffer(c)))
1422 		__free_buffer_wake(b);
1423 
1424 	for (i = 0; i < LIST_SIZE; i++)
1425 		list_for_each_entry(b, &c->lru[i], lru_list)
1426 			DMERR("leaked buffer %llx, hold count %u, list %d",
1427 			      (unsigned long long)b->block, b->hold_count, i);
1428 
1429 	for (i = 0; i < LIST_SIZE; i++)
1430 		BUG_ON(!list_empty(&c->lru[i]));
1431 
1432 	dm_bufio_unlock(c);
1433 }
1434 
1435 /*
1436  * Test if the buffer is unused and too old, and commit it.
1437  * At if noio is set, we must not do any I/O because we hold
1438  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1439  * different bufio client.
1440  */
1441 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1442 				unsigned long max_jiffies)
1443 {
1444 	if (jiffies - b->last_accessed < max_jiffies)
1445 		return 0;
1446 
1447 	if (!(gfp & __GFP_IO)) {
1448 		if (test_bit(B_READING, &b->state) ||
1449 		    test_bit(B_WRITING, &b->state) ||
1450 		    test_bit(B_DIRTY, &b->state))
1451 			return 0;
1452 	}
1453 
1454 	if (b->hold_count)
1455 		return 0;
1456 
1457 	__make_buffer_clean(b);
1458 	__unlink_buffer(b);
1459 	__free_buffer_wake(b);
1460 
1461 	return 1;
1462 }
1463 
1464 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1465 		   gfp_t gfp_mask)
1466 {
1467 	int l;
1468 	struct dm_buffer *b, *tmp;
1469 	long freed = 0;
1470 
1471 	for (l = 0; l < LIST_SIZE; l++) {
1472 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1473 			freed += __cleanup_old_buffer(b, gfp_mask, 0);
1474 			if (!--nr_to_scan)
1475 				return freed;
1476 			dm_bufio_cond_resched();
1477 		}
1478 	}
1479 	return freed;
1480 }
1481 
1482 static unsigned long
1483 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1484 {
1485 	struct dm_bufio_client *c;
1486 	unsigned long freed;
1487 
1488 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1489 	if (sc->gfp_mask & __GFP_IO)
1490 		dm_bufio_lock(c);
1491 	else if (!dm_bufio_trylock(c))
1492 		return SHRINK_STOP;
1493 
1494 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1495 	dm_bufio_unlock(c);
1496 	return freed;
1497 }
1498 
1499 static unsigned long
1500 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1501 {
1502 	struct dm_bufio_client *c;
1503 	unsigned long count;
1504 
1505 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1506 	if (sc->gfp_mask & __GFP_IO)
1507 		dm_bufio_lock(c);
1508 	else if (!dm_bufio_trylock(c))
1509 		return 0;
1510 
1511 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1512 	dm_bufio_unlock(c);
1513 	return count;
1514 }
1515 
1516 /*
1517  * Create the buffering interface
1518  */
1519 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1520 					       unsigned reserved_buffers, unsigned aux_size,
1521 					       void (*alloc_callback)(struct dm_buffer *),
1522 					       void (*write_callback)(struct dm_buffer *))
1523 {
1524 	int r;
1525 	struct dm_bufio_client *c;
1526 	unsigned i;
1527 
1528 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1529 	       (block_size & (block_size - 1)));
1530 
1531 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1532 	if (!c) {
1533 		r = -ENOMEM;
1534 		goto bad_client;
1535 	}
1536 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1537 	if (!c->cache_hash) {
1538 		r = -ENOMEM;
1539 		goto bad_hash;
1540 	}
1541 
1542 	c->bdev = bdev;
1543 	c->block_size = block_size;
1544 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1545 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1546 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1547 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1548 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1549 
1550 	c->aux_size = aux_size;
1551 	c->alloc_callback = alloc_callback;
1552 	c->write_callback = write_callback;
1553 
1554 	for (i = 0; i < LIST_SIZE; i++) {
1555 		INIT_LIST_HEAD(&c->lru[i]);
1556 		c->n_buffers[i] = 0;
1557 	}
1558 
1559 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1560 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1561 
1562 	mutex_init(&c->lock);
1563 	INIT_LIST_HEAD(&c->reserved_buffers);
1564 	c->need_reserved_buffers = reserved_buffers;
1565 
1566 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1567 
1568 	init_waitqueue_head(&c->free_buffer_wait);
1569 	c->async_write_error = 0;
1570 
1571 	c->dm_io = dm_io_client_create();
1572 	if (IS_ERR(c->dm_io)) {
1573 		r = PTR_ERR(c->dm_io);
1574 		goto bad_dm_io;
1575 	}
1576 
1577 	mutex_lock(&dm_bufio_clients_lock);
1578 	if (c->blocks_per_page_bits) {
1579 		if (!DM_BUFIO_CACHE_NAME(c)) {
1580 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1581 			if (!DM_BUFIO_CACHE_NAME(c)) {
1582 				r = -ENOMEM;
1583 				mutex_unlock(&dm_bufio_clients_lock);
1584 				goto bad_cache;
1585 			}
1586 		}
1587 
1588 		if (!DM_BUFIO_CACHE(c)) {
1589 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1590 							      c->block_size,
1591 							      c->block_size, 0, NULL);
1592 			if (!DM_BUFIO_CACHE(c)) {
1593 				r = -ENOMEM;
1594 				mutex_unlock(&dm_bufio_clients_lock);
1595 				goto bad_cache;
1596 			}
1597 		}
1598 	}
1599 	mutex_unlock(&dm_bufio_clients_lock);
1600 
1601 	while (c->need_reserved_buffers) {
1602 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1603 
1604 		if (!b) {
1605 			r = -ENOMEM;
1606 			goto bad_buffer;
1607 		}
1608 		__free_buffer_wake(b);
1609 	}
1610 
1611 	mutex_lock(&dm_bufio_clients_lock);
1612 	dm_bufio_client_count++;
1613 	list_add(&c->client_list, &dm_bufio_all_clients);
1614 	__cache_size_refresh();
1615 	mutex_unlock(&dm_bufio_clients_lock);
1616 
1617 	c->shrinker.count_objects = dm_bufio_shrink_count;
1618 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1619 	c->shrinker.seeks = 1;
1620 	c->shrinker.batch = 0;
1621 	register_shrinker(&c->shrinker);
1622 
1623 	return c;
1624 
1625 bad_buffer:
1626 bad_cache:
1627 	while (!list_empty(&c->reserved_buffers)) {
1628 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1629 						 struct dm_buffer, lru_list);
1630 		list_del(&b->lru_list);
1631 		free_buffer(b);
1632 	}
1633 	dm_io_client_destroy(c->dm_io);
1634 bad_dm_io:
1635 	vfree(c->cache_hash);
1636 bad_hash:
1637 	kfree(c);
1638 bad_client:
1639 	return ERR_PTR(r);
1640 }
1641 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1642 
1643 /*
1644  * Free the buffering interface.
1645  * It is required that there are no references on any buffers.
1646  */
1647 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1648 {
1649 	unsigned i;
1650 
1651 	drop_buffers(c);
1652 
1653 	unregister_shrinker(&c->shrinker);
1654 
1655 	mutex_lock(&dm_bufio_clients_lock);
1656 
1657 	list_del(&c->client_list);
1658 	dm_bufio_client_count--;
1659 	__cache_size_refresh();
1660 
1661 	mutex_unlock(&dm_bufio_clients_lock);
1662 
1663 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1664 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1665 
1666 	BUG_ON(c->need_reserved_buffers);
1667 
1668 	while (!list_empty(&c->reserved_buffers)) {
1669 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1670 						 struct dm_buffer, lru_list);
1671 		list_del(&b->lru_list);
1672 		free_buffer(b);
1673 	}
1674 
1675 	for (i = 0; i < LIST_SIZE; i++)
1676 		if (c->n_buffers[i])
1677 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1678 
1679 	for (i = 0; i < LIST_SIZE; i++)
1680 		BUG_ON(c->n_buffers[i]);
1681 
1682 	dm_io_client_destroy(c->dm_io);
1683 	vfree(c->cache_hash);
1684 	kfree(c);
1685 }
1686 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1687 
1688 static void cleanup_old_buffers(void)
1689 {
1690 	unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1691 	struct dm_bufio_client *c;
1692 
1693 	if (max_age > ULONG_MAX / HZ)
1694 		max_age = ULONG_MAX / HZ;
1695 
1696 	mutex_lock(&dm_bufio_clients_lock);
1697 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1698 		if (!dm_bufio_trylock(c))
1699 			continue;
1700 
1701 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1702 			struct dm_buffer *b;
1703 			b = list_entry(c->lru[LIST_CLEAN].prev,
1704 				       struct dm_buffer, lru_list);
1705 			if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1706 				break;
1707 			dm_bufio_cond_resched();
1708 		}
1709 
1710 		dm_bufio_unlock(c);
1711 		dm_bufio_cond_resched();
1712 	}
1713 	mutex_unlock(&dm_bufio_clients_lock);
1714 }
1715 
1716 static struct workqueue_struct *dm_bufio_wq;
1717 static struct delayed_work dm_bufio_work;
1718 
1719 static void work_fn(struct work_struct *w)
1720 {
1721 	cleanup_old_buffers();
1722 
1723 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1724 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1725 }
1726 
1727 /*----------------------------------------------------------------
1728  * Module setup
1729  *--------------------------------------------------------------*/
1730 
1731 /*
1732  * This is called only once for the whole dm_bufio module.
1733  * It initializes memory limit.
1734  */
1735 static int __init dm_bufio_init(void)
1736 {
1737 	__u64 mem;
1738 
1739 	dm_bufio_allocated_kmem_cache = 0;
1740 	dm_bufio_allocated_get_free_pages = 0;
1741 	dm_bufio_allocated_vmalloc = 0;
1742 	dm_bufio_current_allocated = 0;
1743 
1744 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1745 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1746 
1747 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1748 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1749 
1750 	if (mem > ULONG_MAX)
1751 		mem = ULONG_MAX;
1752 
1753 #ifdef CONFIG_MMU
1754 	/*
1755 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1756 	 * in fs/proc/internal.h
1757 	 */
1758 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1759 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1760 #endif
1761 
1762 	dm_bufio_default_cache_size = mem;
1763 
1764 	mutex_lock(&dm_bufio_clients_lock);
1765 	__cache_size_refresh();
1766 	mutex_unlock(&dm_bufio_clients_lock);
1767 
1768 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1769 	if (!dm_bufio_wq)
1770 		return -ENOMEM;
1771 
1772 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1773 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1774 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1775 
1776 	return 0;
1777 }
1778 
1779 /*
1780  * This is called once when unloading the dm_bufio module.
1781  */
1782 static void __exit dm_bufio_exit(void)
1783 {
1784 	int bug = 0;
1785 	int i;
1786 
1787 	cancel_delayed_work_sync(&dm_bufio_work);
1788 	destroy_workqueue(dm_bufio_wq);
1789 
1790 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1791 		struct kmem_cache *kc = dm_bufio_caches[i];
1792 
1793 		if (kc)
1794 			kmem_cache_destroy(kc);
1795 	}
1796 
1797 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1798 		kfree(dm_bufio_cache_names[i]);
1799 
1800 	if (dm_bufio_client_count) {
1801 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1802 			__func__, dm_bufio_client_count);
1803 		bug = 1;
1804 	}
1805 
1806 	if (dm_bufio_current_allocated) {
1807 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1808 			__func__, dm_bufio_current_allocated);
1809 		bug = 1;
1810 	}
1811 
1812 	if (dm_bufio_allocated_get_free_pages) {
1813 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1814 		       __func__, dm_bufio_allocated_get_free_pages);
1815 		bug = 1;
1816 	}
1817 
1818 	if (dm_bufio_allocated_vmalloc) {
1819 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1820 		       __func__, dm_bufio_allocated_vmalloc);
1821 		bug = 1;
1822 	}
1823 
1824 	if (bug)
1825 		BUG();
1826 }
1827 
1828 module_init(dm_bufio_init)
1829 module_exit(dm_bufio_exit)
1830 
1831 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1832 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1833 
1834 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1835 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1836 
1837 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1838 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1839 
1840 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1841 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1842 
1843 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1844 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1845 
1846 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1847 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1848 
1849 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1850 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1851 
1852 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1853 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1854 MODULE_LICENSE("GPL");
1855