xref: /openbmc/linux/drivers/md/dm-bufio.c (revision ca79522c)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	struct hlist_head *cache_hash;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct hlist_node hash_list;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct bio bio;
149 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
150 };
151 
152 /*----------------------------------------------------------------*/
153 
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
156 
157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
158 {
159 	unsigned ret = c->blocks_per_page_bits - 1;
160 
161 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
162 
163 	return ret;
164 }
165 
166 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
168 
169 #define dm_bufio_in_request()	(!!current->bio_list)
170 
171 static void dm_bufio_lock(struct dm_bufio_client *c)
172 {
173 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
174 }
175 
176 static int dm_bufio_trylock(struct dm_bufio_client *c)
177 {
178 	return mutex_trylock(&c->lock);
179 }
180 
181 static void dm_bufio_unlock(struct dm_bufio_client *c)
182 {
183 	mutex_unlock(&c->lock);
184 }
185 
186 /*
187  * FIXME Move to sched.h?
188  */
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 #  define dm_bufio_cond_resched()		\
191 do {						\
192 	if (unlikely(need_resched()))		\
193 		_cond_resched();		\
194 } while (0)
195 #else
196 #  define dm_bufio_cond_resched()                do { } while (0)
197 #endif
198 
199 /*----------------------------------------------------------------*/
200 
201 /*
202  * Default cache size: available memory divided by the ratio.
203  */
204 static unsigned long dm_bufio_default_cache_size;
205 
206 /*
207  * Total cache size set by the user.
208  */
209 static unsigned long dm_bufio_cache_size;
210 
211 /*
212  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213  * at any time.  If it disagrees, the user has changed cache size.
214  */
215 static unsigned long dm_bufio_cache_size_latch;
216 
217 static DEFINE_SPINLOCK(param_spinlock);
218 
219 /*
220  * Buffers are freed after this timeout
221  */
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
223 
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
234  */
235 static unsigned long dm_bufio_cache_size_per_client;
236 
237 /*
238  * The current number of clients.
239  */
240 static int dm_bufio_client_count;
241 
242 /*
243  * The list of all clients.
244  */
245 static LIST_HEAD(dm_bufio_all_clients);
246 
247 /*
248  * This mutex protects dm_bufio_cache_size_latch,
249  * dm_bufio_cache_size_per_client and dm_bufio_client_count
250  */
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
252 
253 /*----------------------------------------------------------------*/
254 
255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
256 {
257 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 		&dm_bufio_allocated_kmem_cache,
259 		&dm_bufio_allocated_get_free_pages,
260 		&dm_bufio_allocated_vmalloc,
261 	};
262 
263 	spin_lock(&param_spinlock);
264 
265 	*class_ptr[data_mode] += diff;
266 
267 	dm_bufio_current_allocated += diff;
268 
269 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
271 
272 	spin_unlock(&param_spinlock);
273 }
274 
275 /*
276  * Change the number of clients and recalculate per-client limit.
277  */
278 static void __cache_size_refresh(void)
279 {
280 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 	BUG_ON(dm_bufio_client_count < 0);
282 
283 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
284 
285 	/*
286 	 * Use default if set to 0 and report the actual cache size used.
287 	 */
288 	if (!dm_bufio_cache_size_latch) {
289 		(void)cmpxchg(&dm_bufio_cache_size, 0,
290 			      dm_bufio_default_cache_size);
291 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
292 	}
293 
294 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
295 					 (dm_bufio_client_count ? : 1);
296 }
297 
298 /*
299  * Allocating buffer data.
300  *
301  * Small buffers are allocated with kmem_cache, to use space optimally.
302  *
303  * For large buffers, we choose between get_free_pages and vmalloc.
304  * Each has advantages and disadvantages.
305  *
306  * __get_free_pages can randomly fail if the memory is fragmented.
307  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
308  * as low as 128M) so using it for caching is not appropriate.
309  *
310  * If the allocation may fail we use __get_free_pages. Memory fragmentation
311  * won't have a fatal effect here, but it just causes flushes of some other
312  * buffers and more I/O will be performed. Don't use __get_free_pages if it
313  * always fails (i.e. order >= MAX_ORDER).
314  *
315  * If the allocation shouldn't fail we use __vmalloc. This is only for the
316  * initial reserve allocation, so there's no risk of wasting all vmalloc
317  * space.
318  */
319 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
320 			       enum data_mode *data_mode)
321 {
322 	unsigned noio_flag;
323 	void *ptr;
324 
325 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
326 		*data_mode = DATA_MODE_SLAB;
327 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
328 	}
329 
330 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
331 	    gfp_mask & __GFP_NORETRY) {
332 		*data_mode = DATA_MODE_GET_FREE_PAGES;
333 		return (void *)__get_free_pages(gfp_mask,
334 						c->pages_per_block_bits);
335 	}
336 
337 	*data_mode = DATA_MODE_VMALLOC;
338 
339 	/*
340 	 * __vmalloc allocates the data pages and auxiliary structures with
341 	 * gfp_flags that were specified, but pagetables are always allocated
342 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
343 	 *
344 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
345 	 * all allocations done by this process (including pagetables) are done
346 	 * as if GFP_NOIO was specified.
347 	 */
348 
349 	if (gfp_mask & __GFP_NORETRY)
350 		noio_flag = memalloc_noio_save();
351 
352 	ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
353 
354 	if (gfp_mask & __GFP_NORETRY)
355 		memalloc_noio_restore(noio_flag);
356 
357 	return ptr;
358 }
359 
360 /*
361  * Free buffer's data.
362  */
363 static void free_buffer_data(struct dm_bufio_client *c,
364 			     void *data, enum data_mode data_mode)
365 {
366 	switch (data_mode) {
367 	case DATA_MODE_SLAB:
368 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
369 		break;
370 
371 	case DATA_MODE_GET_FREE_PAGES:
372 		free_pages((unsigned long)data, c->pages_per_block_bits);
373 		break;
374 
375 	case DATA_MODE_VMALLOC:
376 		vfree(data);
377 		break;
378 
379 	default:
380 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
381 		       data_mode);
382 		BUG();
383 	}
384 }
385 
386 /*
387  * Allocate buffer and its data.
388  */
389 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
390 {
391 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
392 				      gfp_mask);
393 
394 	if (!b)
395 		return NULL;
396 
397 	b->c = c;
398 
399 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
400 	if (!b->data) {
401 		kfree(b);
402 		return NULL;
403 	}
404 
405 	adjust_total_allocated(b->data_mode, (long)c->block_size);
406 
407 	return b;
408 }
409 
410 /*
411  * Free buffer and its data.
412  */
413 static void free_buffer(struct dm_buffer *b)
414 {
415 	struct dm_bufio_client *c = b->c;
416 
417 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
418 
419 	free_buffer_data(c, b->data, b->data_mode);
420 	kfree(b);
421 }
422 
423 /*
424  * Link buffer to the hash list and clean or dirty queue.
425  */
426 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
427 {
428 	struct dm_bufio_client *c = b->c;
429 
430 	c->n_buffers[dirty]++;
431 	b->block = block;
432 	b->list_mode = dirty;
433 	list_add(&b->lru_list, &c->lru[dirty]);
434 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
435 	b->last_accessed = jiffies;
436 }
437 
438 /*
439  * Unlink buffer from the hash list and dirty or clean queue.
440  */
441 static void __unlink_buffer(struct dm_buffer *b)
442 {
443 	struct dm_bufio_client *c = b->c;
444 
445 	BUG_ON(!c->n_buffers[b->list_mode]);
446 
447 	c->n_buffers[b->list_mode]--;
448 	hlist_del(&b->hash_list);
449 	list_del(&b->lru_list);
450 }
451 
452 /*
453  * Place the buffer to the head of dirty or clean LRU queue.
454  */
455 static void __relink_lru(struct dm_buffer *b, int dirty)
456 {
457 	struct dm_bufio_client *c = b->c;
458 
459 	BUG_ON(!c->n_buffers[b->list_mode]);
460 
461 	c->n_buffers[b->list_mode]--;
462 	c->n_buffers[dirty]++;
463 	b->list_mode = dirty;
464 	list_move(&b->lru_list, &c->lru[dirty]);
465 }
466 
467 /*----------------------------------------------------------------
468  * Submit I/O on the buffer.
469  *
470  * Bio interface is faster but it has some problems:
471  *	the vector list is limited (increasing this limit increases
472  *	memory-consumption per buffer, so it is not viable);
473  *
474  *	the memory must be direct-mapped, not vmalloced;
475  *
476  *	the I/O driver can reject requests spuriously if it thinks that
477  *	the requests are too big for the device or if they cross a
478  *	controller-defined memory boundary.
479  *
480  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
481  * it is not vmalloced, try using the bio interface.
482  *
483  * If the buffer is big, if it is vmalloced or if the underlying device
484  * rejects the bio because it is too large, use dm-io layer to do the I/O.
485  * The dm-io layer splits the I/O into multiple requests, avoiding the above
486  * shortcomings.
487  *--------------------------------------------------------------*/
488 
489 /*
490  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
491  * that the request was handled directly with bio interface.
492  */
493 static void dmio_complete(unsigned long error, void *context)
494 {
495 	struct dm_buffer *b = context;
496 
497 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
498 }
499 
500 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
501 		     bio_end_io_t *end_io)
502 {
503 	int r;
504 	struct dm_io_request io_req = {
505 		.bi_rw = rw,
506 		.notify.fn = dmio_complete,
507 		.notify.context = b,
508 		.client = b->c->dm_io,
509 	};
510 	struct dm_io_region region = {
511 		.bdev = b->c->bdev,
512 		.sector = block << b->c->sectors_per_block_bits,
513 		.count = b->c->block_size >> SECTOR_SHIFT,
514 	};
515 
516 	if (b->data_mode != DATA_MODE_VMALLOC) {
517 		io_req.mem.type = DM_IO_KMEM;
518 		io_req.mem.ptr.addr = b->data;
519 	} else {
520 		io_req.mem.type = DM_IO_VMA;
521 		io_req.mem.ptr.vma = b->data;
522 	}
523 
524 	b->bio.bi_end_io = end_io;
525 
526 	r = dm_io(&io_req, 1, &region, NULL);
527 	if (r)
528 		end_io(&b->bio, r);
529 }
530 
531 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
532 			   bio_end_io_t *end_io)
533 {
534 	char *ptr;
535 	int len;
536 
537 	bio_init(&b->bio);
538 	b->bio.bi_io_vec = b->bio_vec;
539 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
540 	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
541 	b->bio.bi_bdev = b->c->bdev;
542 	b->bio.bi_end_io = end_io;
543 
544 	/*
545 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
546 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
547 	 */
548 	ptr = b->data;
549 	len = b->c->block_size;
550 
551 	if (len >= PAGE_SIZE)
552 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
553 	else
554 		BUG_ON((unsigned long)ptr & (len - 1));
555 
556 	do {
557 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
558 				  len < PAGE_SIZE ? len : PAGE_SIZE,
559 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
560 			BUG_ON(b->c->block_size <= PAGE_SIZE);
561 			use_dmio(b, rw, block, end_io);
562 			return;
563 		}
564 
565 		len -= PAGE_SIZE;
566 		ptr += PAGE_SIZE;
567 	} while (len > 0);
568 
569 	submit_bio(rw, &b->bio);
570 }
571 
572 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
573 		      bio_end_io_t *end_io)
574 {
575 	if (rw == WRITE && b->c->write_callback)
576 		b->c->write_callback(b);
577 
578 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
579 	    b->data_mode != DATA_MODE_VMALLOC)
580 		use_inline_bio(b, rw, block, end_io);
581 	else
582 		use_dmio(b, rw, block, end_io);
583 }
584 
585 /*----------------------------------------------------------------
586  * Writing dirty buffers
587  *--------------------------------------------------------------*/
588 
589 /*
590  * The endio routine for write.
591  *
592  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
593  * it.
594  */
595 static void write_endio(struct bio *bio, int error)
596 {
597 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
598 
599 	b->write_error = error;
600 	if (unlikely(error)) {
601 		struct dm_bufio_client *c = b->c;
602 		(void)cmpxchg(&c->async_write_error, 0, error);
603 	}
604 
605 	BUG_ON(!test_bit(B_WRITING, &b->state));
606 
607 	smp_mb__before_clear_bit();
608 	clear_bit(B_WRITING, &b->state);
609 	smp_mb__after_clear_bit();
610 
611 	wake_up_bit(&b->state, B_WRITING);
612 }
613 
614 /*
615  * This function is called when wait_on_bit is actually waiting.
616  */
617 static int do_io_schedule(void *word)
618 {
619 	io_schedule();
620 
621 	return 0;
622 }
623 
624 /*
625  * Initiate a write on a dirty buffer, but don't wait for it.
626  *
627  * - If the buffer is not dirty, exit.
628  * - If there some previous write going on, wait for it to finish (we can't
629  *   have two writes on the same buffer simultaneously).
630  * - Submit our write and don't wait on it. We set B_WRITING indicating
631  *   that there is a write in progress.
632  */
633 static void __write_dirty_buffer(struct dm_buffer *b)
634 {
635 	if (!test_bit(B_DIRTY, &b->state))
636 		return;
637 
638 	clear_bit(B_DIRTY, &b->state);
639 	wait_on_bit_lock(&b->state, B_WRITING,
640 			 do_io_schedule, TASK_UNINTERRUPTIBLE);
641 
642 	submit_io(b, WRITE, b->block, write_endio);
643 }
644 
645 /*
646  * Wait until any activity on the buffer finishes.  Possibly write the
647  * buffer if it is dirty.  When this function finishes, there is no I/O
648  * running on the buffer and the buffer is not dirty.
649  */
650 static void __make_buffer_clean(struct dm_buffer *b)
651 {
652 	BUG_ON(b->hold_count);
653 
654 	if (!b->state)	/* fast case */
655 		return;
656 
657 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
658 	__write_dirty_buffer(b);
659 	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
660 }
661 
662 /*
663  * Find some buffer that is not held by anybody, clean it, unlink it and
664  * return it.
665  */
666 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
667 {
668 	struct dm_buffer *b;
669 
670 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
671 		BUG_ON(test_bit(B_WRITING, &b->state));
672 		BUG_ON(test_bit(B_DIRTY, &b->state));
673 
674 		if (!b->hold_count) {
675 			__make_buffer_clean(b);
676 			__unlink_buffer(b);
677 			return b;
678 		}
679 		dm_bufio_cond_resched();
680 	}
681 
682 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
683 		BUG_ON(test_bit(B_READING, &b->state));
684 
685 		if (!b->hold_count) {
686 			__make_buffer_clean(b);
687 			__unlink_buffer(b);
688 			return b;
689 		}
690 		dm_bufio_cond_resched();
691 	}
692 
693 	return NULL;
694 }
695 
696 /*
697  * Wait until some other threads free some buffer or release hold count on
698  * some buffer.
699  *
700  * This function is entered with c->lock held, drops it and regains it
701  * before exiting.
702  */
703 static void __wait_for_free_buffer(struct dm_bufio_client *c)
704 {
705 	DECLARE_WAITQUEUE(wait, current);
706 
707 	add_wait_queue(&c->free_buffer_wait, &wait);
708 	set_task_state(current, TASK_UNINTERRUPTIBLE);
709 	dm_bufio_unlock(c);
710 
711 	io_schedule();
712 
713 	set_task_state(current, TASK_RUNNING);
714 	remove_wait_queue(&c->free_buffer_wait, &wait);
715 
716 	dm_bufio_lock(c);
717 }
718 
719 enum new_flag {
720 	NF_FRESH = 0,
721 	NF_READ = 1,
722 	NF_GET = 2,
723 	NF_PREFETCH = 3
724 };
725 
726 /*
727  * Allocate a new buffer. If the allocation is not possible, wait until
728  * some other thread frees a buffer.
729  *
730  * May drop the lock and regain it.
731  */
732 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
733 {
734 	struct dm_buffer *b;
735 
736 	/*
737 	 * dm-bufio is resistant to allocation failures (it just keeps
738 	 * one buffer reserved in cases all the allocations fail).
739 	 * So set flags to not try too hard:
740 	 *	GFP_NOIO: don't recurse into the I/O layer
741 	 *	__GFP_NORETRY: don't retry and rather return failure
742 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
743 	 *	__GFP_NOWARN: don't print a warning in case of failure
744 	 *
745 	 * For debugging, if we set the cache size to 1, no new buffers will
746 	 * be allocated.
747 	 */
748 	while (1) {
749 		if (dm_bufio_cache_size_latch != 1) {
750 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
751 			if (b)
752 				return b;
753 		}
754 
755 		if (nf == NF_PREFETCH)
756 			return NULL;
757 
758 		if (!list_empty(&c->reserved_buffers)) {
759 			b = list_entry(c->reserved_buffers.next,
760 				       struct dm_buffer, lru_list);
761 			list_del(&b->lru_list);
762 			c->need_reserved_buffers++;
763 
764 			return b;
765 		}
766 
767 		b = __get_unclaimed_buffer(c);
768 		if (b)
769 			return b;
770 
771 		__wait_for_free_buffer(c);
772 	}
773 }
774 
775 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
776 {
777 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
778 
779 	if (!b)
780 		return NULL;
781 
782 	if (c->alloc_callback)
783 		c->alloc_callback(b);
784 
785 	return b;
786 }
787 
788 /*
789  * Free a buffer and wake other threads waiting for free buffers.
790  */
791 static void __free_buffer_wake(struct dm_buffer *b)
792 {
793 	struct dm_bufio_client *c = b->c;
794 
795 	if (!c->need_reserved_buffers)
796 		free_buffer(b);
797 	else {
798 		list_add(&b->lru_list, &c->reserved_buffers);
799 		c->need_reserved_buffers--;
800 	}
801 
802 	wake_up(&c->free_buffer_wait);
803 }
804 
805 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
806 {
807 	struct dm_buffer *b, *tmp;
808 
809 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
810 		BUG_ON(test_bit(B_READING, &b->state));
811 
812 		if (!test_bit(B_DIRTY, &b->state) &&
813 		    !test_bit(B_WRITING, &b->state)) {
814 			__relink_lru(b, LIST_CLEAN);
815 			continue;
816 		}
817 
818 		if (no_wait && test_bit(B_WRITING, &b->state))
819 			return;
820 
821 		__write_dirty_buffer(b);
822 		dm_bufio_cond_resched();
823 	}
824 }
825 
826 /*
827  * Get writeback threshold and buffer limit for a given client.
828  */
829 static void __get_memory_limit(struct dm_bufio_client *c,
830 			       unsigned long *threshold_buffers,
831 			       unsigned long *limit_buffers)
832 {
833 	unsigned long buffers;
834 
835 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
836 		mutex_lock(&dm_bufio_clients_lock);
837 		__cache_size_refresh();
838 		mutex_unlock(&dm_bufio_clients_lock);
839 	}
840 
841 	buffers = dm_bufio_cache_size_per_client >>
842 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
843 
844 	if (buffers < DM_BUFIO_MIN_BUFFERS)
845 		buffers = DM_BUFIO_MIN_BUFFERS;
846 
847 	*limit_buffers = buffers;
848 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
849 }
850 
851 /*
852  * Check if we're over watermark.
853  * If we are over threshold_buffers, start freeing buffers.
854  * If we're over "limit_buffers", block until we get under the limit.
855  */
856 static void __check_watermark(struct dm_bufio_client *c)
857 {
858 	unsigned long threshold_buffers, limit_buffers;
859 
860 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
861 
862 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
863 	       limit_buffers) {
864 
865 		struct dm_buffer *b = __get_unclaimed_buffer(c);
866 
867 		if (!b)
868 			return;
869 
870 		__free_buffer_wake(b);
871 		dm_bufio_cond_resched();
872 	}
873 
874 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
875 		__write_dirty_buffers_async(c, 1);
876 }
877 
878 /*
879  * Find a buffer in the hash.
880  */
881 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
882 {
883 	struct dm_buffer *b;
884 
885 	hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
886 			     hash_list) {
887 		dm_bufio_cond_resched();
888 		if (b->block == block)
889 			return b;
890 	}
891 
892 	return NULL;
893 }
894 
895 /*----------------------------------------------------------------
896  * Getting a buffer
897  *--------------------------------------------------------------*/
898 
899 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
900 				     enum new_flag nf, int *need_submit)
901 {
902 	struct dm_buffer *b, *new_b = NULL;
903 
904 	*need_submit = 0;
905 
906 	b = __find(c, block);
907 	if (b)
908 		goto found_buffer;
909 
910 	if (nf == NF_GET)
911 		return NULL;
912 
913 	new_b = __alloc_buffer_wait(c, nf);
914 	if (!new_b)
915 		return NULL;
916 
917 	/*
918 	 * We've had a period where the mutex was unlocked, so need to
919 	 * recheck the hash table.
920 	 */
921 	b = __find(c, block);
922 	if (b) {
923 		__free_buffer_wake(new_b);
924 		goto found_buffer;
925 	}
926 
927 	__check_watermark(c);
928 
929 	b = new_b;
930 	b->hold_count = 1;
931 	b->read_error = 0;
932 	b->write_error = 0;
933 	__link_buffer(b, block, LIST_CLEAN);
934 
935 	if (nf == NF_FRESH) {
936 		b->state = 0;
937 		return b;
938 	}
939 
940 	b->state = 1 << B_READING;
941 	*need_submit = 1;
942 
943 	return b;
944 
945 found_buffer:
946 	if (nf == NF_PREFETCH)
947 		return NULL;
948 	/*
949 	 * Note: it is essential that we don't wait for the buffer to be
950 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
951 	 * dm_bufio_prefetch can be used in the driver request routine.
952 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
953 	 * the same buffer, it would deadlock if we waited.
954 	 */
955 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
956 		return NULL;
957 
958 	b->hold_count++;
959 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
960 		     test_bit(B_WRITING, &b->state));
961 	return b;
962 }
963 
964 /*
965  * The endio routine for reading: set the error, clear the bit and wake up
966  * anyone waiting on the buffer.
967  */
968 static void read_endio(struct bio *bio, int error)
969 {
970 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
971 
972 	b->read_error = error;
973 
974 	BUG_ON(!test_bit(B_READING, &b->state));
975 
976 	smp_mb__before_clear_bit();
977 	clear_bit(B_READING, &b->state);
978 	smp_mb__after_clear_bit();
979 
980 	wake_up_bit(&b->state, B_READING);
981 }
982 
983 /*
984  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
985  * functions is similar except that dm_bufio_new doesn't read the
986  * buffer from the disk (assuming that the caller overwrites all the data
987  * and uses dm_bufio_mark_buffer_dirty to write new data back).
988  */
989 static void *new_read(struct dm_bufio_client *c, sector_t block,
990 		      enum new_flag nf, struct dm_buffer **bp)
991 {
992 	int need_submit;
993 	struct dm_buffer *b;
994 
995 	dm_bufio_lock(c);
996 	b = __bufio_new(c, block, nf, &need_submit);
997 	dm_bufio_unlock(c);
998 
999 	if (!b)
1000 		return b;
1001 
1002 	if (need_submit)
1003 		submit_io(b, READ, b->block, read_endio);
1004 
1005 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1006 
1007 	if (b->read_error) {
1008 		int error = b->read_error;
1009 
1010 		dm_bufio_release(b);
1011 
1012 		return ERR_PTR(error);
1013 	}
1014 
1015 	*bp = b;
1016 
1017 	return b->data;
1018 }
1019 
1020 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1021 		   struct dm_buffer **bp)
1022 {
1023 	return new_read(c, block, NF_GET, bp);
1024 }
1025 EXPORT_SYMBOL_GPL(dm_bufio_get);
1026 
1027 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1028 		    struct dm_buffer **bp)
1029 {
1030 	BUG_ON(dm_bufio_in_request());
1031 
1032 	return new_read(c, block, NF_READ, bp);
1033 }
1034 EXPORT_SYMBOL_GPL(dm_bufio_read);
1035 
1036 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1037 		   struct dm_buffer **bp)
1038 {
1039 	BUG_ON(dm_bufio_in_request());
1040 
1041 	return new_read(c, block, NF_FRESH, bp);
1042 }
1043 EXPORT_SYMBOL_GPL(dm_bufio_new);
1044 
1045 void dm_bufio_prefetch(struct dm_bufio_client *c,
1046 		       sector_t block, unsigned n_blocks)
1047 {
1048 	struct blk_plug plug;
1049 
1050 	BUG_ON(dm_bufio_in_request());
1051 
1052 	blk_start_plug(&plug);
1053 	dm_bufio_lock(c);
1054 
1055 	for (; n_blocks--; block++) {
1056 		int need_submit;
1057 		struct dm_buffer *b;
1058 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
1059 		if (unlikely(b != NULL)) {
1060 			dm_bufio_unlock(c);
1061 
1062 			if (need_submit)
1063 				submit_io(b, READ, b->block, read_endio);
1064 			dm_bufio_release(b);
1065 
1066 			dm_bufio_cond_resched();
1067 
1068 			if (!n_blocks)
1069 				goto flush_plug;
1070 			dm_bufio_lock(c);
1071 		}
1072 
1073 	}
1074 
1075 	dm_bufio_unlock(c);
1076 
1077 flush_plug:
1078 	blk_finish_plug(&plug);
1079 }
1080 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1081 
1082 void dm_bufio_release(struct dm_buffer *b)
1083 {
1084 	struct dm_bufio_client *c = b->c;
1085 
1086 	dm_bufio_lock(c);
1087 
1088 	BUG_ON(!b->hold_count);
1089 
1090 	b->hold_count--;
1091 	if (!b->hold_count) {
1092 		wake_up(&c->free_buffer_wait);
1093 
1094 		/*
1095 		 * If there were errors on the buffer, and the buffer is not
1096 		 * to be written, free the buffer. There is no point in caching
1097 		 * invalid buffer.
1098 		 */
1099 		if ((b->read_error || b->write_error) &&
1100 		    !test_bit(B_READING, &b->state) &&
1101 		    !test_bit(B_WRITING, &b->state) &&
1102 		    !test_bit(B_DIRTY, &b->state)) {
1103 			__unlink_buffer(b);
1104 			__free_buffer_wake(b);
1105 		}
1106 	}
1107 
1108 	dm_bufio_unlock(c);
1109 }
1110 EXPORT_SYMBOL_GPL(dm_bufio_release);
1111 
1112 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1113 {
1114 	struct dm_bufio_client *c = b->c;
1115 
1116 	dm_bufio_lock(c);
1117 
1118 	BUG_ON(test_bit(B_READING, &b->state));
1119 
1120 	if (!test_and_set_bit(B_DIRTY, &b->state))
1121 		__relink_lru(b, LIST_DIRTY);
1122 
1123 	dm_bufio_unlock(c);
1124 }
1125 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1126 
1127 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1128 {
1129 	BUG_ON(dm_bufio_in_request());
1130 
1131 	dm_bufio_lock(c);
1132 	__write_dirty_buffers_async(c, 0);
1133 	dm_bufio_unlock(c);
1134 }
1135 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1136 
1137 /*
1138  * For performance, it is essential that the buffers are written asynchronously
1139  * and simultaneously (so that the block layer can merge the writes) and then
1140  * waited upon.
1141  *
1142  * Finally, we flush hardware disk cache.
1143  */
1144 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1145 {
1146 	int a, f;
1147 	unsigned long buffers_processed = 0;
1148 	struct dm_buffer *b, *tmp;
1149 
1150 	dm_bufio_lock(c);
1151 	__write_dirty_buffers_async(c, 0);
1152 
1153 again:
1154 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1155 		int dropped_lock = 0;
1156 
1157 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1158 			buffers_processed++;
1159 
1160 		BUG_ON(test_bit(B_READING, &b->state));
1161 
1162 		if (test_bit(B_WRITING, &b->state)) {
1163 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1164 				dropped_lock = 1;
1165 				b->hold_count++;
1166 				dm_bufio_unlock(c);
1167 				wait_on_bit(&b->state, B_WRITING,
1168 					    do_io_schedule,
1169 					    TASK_UNINTERRUPTIBLE);
1170 				dm_bufio_lock(c);
1171 				b->hold_count--;
1172 			} else
1173 				wait_on_bit(&b->state, B_WRITING,
1174 					    do_io_schedule,
1175 					    TASK_UNINTERRUPTIBLE);
1176 		}
1177 
1178 		if (!test_bit(B_DIRTY, &b->state) &&
1179 		    !test_bit(B_WRITING, &b->state))
1180 			__relink_lru(b, LIST_CLEAN);
1181 
1182 		dm_bufio_cond_resched();
1183 
1184 		/*
1185 		 * If we dropped the lock, the list is no longer consistent,
1186 		 * so we must restart the search.
1187 		 *
1188 		 * In the most common case, the buffer just processed is
1189 		 * relinked to the clean list, so we won't loop scanning the
1190 		 * same buffer again and again.
1191 		 *
1192 		 * This may livelock if there is another thread simultaneously
1193 		 * dirtying buffers, so we count the number of buffers walked
1194 		 * and if it exceeds the total number of buffers, it means that
1195 		 * someone is doing some writes simultaneously with us.  In
1196 		 * this case, stop, dropping the lock.
1197 		 */
1198 		if (dropped_lock)
1199 			goto again;
1200 	}
1201 	wake_up(&c->free_buffer_wait);
1202 	dm_bufio_unlock(c);
1203 
1204 	a = xchg(&c->async_write_error, 0);
1205 	f = dm_bufio_issue_flush(c);
1206 	if (a)
1207 		return a;
1208 
1209 	return f;
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1212 
1213 /*
1214  * Use dm-io to send and empty barrier flush the device.
1215  */
1216 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1217 {
1218 	struct dm_io_request io_req = {
1219 		.bi_rw = WRITE_FLUSH,
1220 		.mem.type = DM_IO_KMEM,
1221 		.mem.ptr.addr = NULL,
1222 		.client = c->dm_io,
1223 	};
1224 	struct dm_io_region io_reg = {
1225 		.bdev = c->bdev,
1226 		.sector = 0,
1227 		.count = 0,
1228 	};
1229 
1230 	BUG_ON(dm_bufio_in_request());
1231 
1232 	return dm_io(&io_req, 1, &io_reg, NULL);
1233 }
1234 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1235 
1236 /*
1237  * We first delete any other buffer that may be at that new location.
1238  *
1239  * Then, we write the buffer to the original location if it was dirty.
1240  *
1241  * Then, if we are the only one who is holding the buffer, relink the buffer
1242  * in the hash queue for the new location.
1243  *
1244  * If there was someone else holding the buffer, we write it to the new
1245  * location but not relink it, because that other user needs to have the buffer
1246  * at the same place.
1247  */
1248 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1249 {
1250 	struct dm_bufio_client *c = b->c;
1251 	struct dm_buffer *new;
1252 
1253 	BUG_ON(dm_bufio_in_request());
1254 
1255 	dm_bufio_lock(c);
1256 
1257 retry:
1258 	new = __find(c, new_block);
1259 	if (new) {
1260 		if (new->hold_count) {
1261 			__wait_for_free_buffer(c);
1262 			goto retry;
1263 		}
1264 
1265 		/*
1266 		 * FIXME: Is there any point waiting for a write that's going
1267 		 * to be overwritten in a bit?
1268 		 */
1269 		__make_buffer_clean(new);
1270 		__unlink_buffer(new);
1271 		__free_buffer_wake(new);
1272 	}
1273 
1274 	BUG_ON(!b->hold_count);
1275 	BUG_ON(test_bit(B_READING, &b->state));
1276 
1277 	__write_dirty_buffer(b);
1278 	if (b->hold_count == 1) {
1279 		wait_on_bit(&b->state, B_WRITING,
1280 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1281 		set_bit(B_DIRTY, &b->state);
1282 		__unlink_buffer(b);
1283 		__link_buffer(b, new_block, LIST_DIRTY);
1284 	} else {
1285 		sector_t old_block;
1286 		wait_on_bit_lock(&b->state, B_WRITING,
1287 				 do_io_schedule, TASK_UNINTERRUPTIBLE);
1288 		/*
1289 		 * Relink buffer to "new_block" so that write_callback
1290 		 * sees "new_block" as a block number.
1291 		 * After the write, link the buffer back to old_block.
1292 		 * All this must be done in bufio lock, so that block number
1293 		 * change isn't visible to other threads.
1294 		 */
1295 		old_block = b->block;
1296 		__unlink_buffer(b);
1297 		__link_buffer(b, new_block, b->list_mode);
1298 		submit_io(b, WRITE, new_block, write_endio);
1299 		wait_on_bit(&b->state, B_WRITING,
1300 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1301 		__unlink_buffer(b);
1302 		__link_buffer(b, old_block, b->list_mode);
1303 	}
1304 
1305 	dm_bufio_unlock(c);
1306 	dm_bufio_release(b);
1307 }
1308 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1309 
1310 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1311 {
1312 	return c->block_size;
1313 }
1314 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1315 
1316 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1317 {
1318 	return i_size_read(c->bdev->bd_inode) >>
1319 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1320 }
1321 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1322 
1323 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1324 {
1325 	return b->block;
1326 }
1327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1328 
1329 void *dm_bufio_get_block_data(struct dm_buffer *b)
1330 {
1331 	return b->data;
1332 }
1333 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1334 
1335 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1336 {
1337 	return b + 1;
1338 }
1339 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1340 
1341 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1342 {
1343 	return b->c;
1344 }
1345 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1346 
1347 static void drop_buffers(struct dm_bufio_client *c)
1348 {
1349 	struct dm_buffer *b;
1350 	int i;
1351 
1352 	BUG_ON(dm_bufio_in_request());
1353 
1354 	/*
1355 	 * An optimization so that the buffers are not written one-by-one.
1356 	 */
1357 	dm_bufio_write_dirty_buffers_async(c);
1358 
1359 	dm_bufio_lock(c);
1360 
1361 	while ((b = __get_unclaimed_buffer(c)))
1362 		__free_buffer_wake(b);
1363 
1364 	for (i = 0; i < LIST_SIZE; i++)
1365 		list_for_each_entry(b, &c->lru[i], lru_list)
1366 			DMERR("leaked buffer %llx, hold count %u, list %d",
1367 			      (unsigned long long)b->block, b->hold_count, i);
1368 
1369 	for (i = 0; i < LIST_SIZE; i++)
1370 		BUG_ON(!list_empty(&c->lru[i]));
1371 
1372 	dm_bufio_unlock(c);
1373 }
1374 
1375 /*
1376  * Test if the buffer is unused and too old, and commit it.
1377  * At if noio is set, we must not do any I/O because we hold
1378  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1379  * different bufio client.
1380  */
1381 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1382 				unsigned long max_jiffies)
1383 {
1384 	if (jiffies - b->last_accessed < max_jiffies)
1385 		return 1;
1386 
1387 	if (!(gfp & __GFP_IO)) {
1388 		if (test_bit(B_READING, &b->state) ||
1389 		    test_bit(B_WRITING, &b->state) ||
1390 		    test_bit(B_DIRTY, &b->state))
1391 			return 1;
1392 	}
1393 
1394 	if (b->hold_count)
1395 		return 1;
1396 
1397 	__make_buffer_clean(b);
1398 	__unlink_buffer(b);
1399 	__free_buffer_wake(b);
1400 
1401 	return 0;
1402 }
1403 
1404 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1405 		   struct shrink_control *sc)
1406 {
1407 	int l;
1408 	struct dm_buffer *b, *tmp;
1409 
1410 	for (l = 0; l < LIST_SIZE; l++) {
1411 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1412 			if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1413 			    !--nr_to_scan)
1414 				return;
1415 		dm_bufio_cond_resched();
1416 	}
1417 }
1418 
1419 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1420 {
1421 	struct dm_bufio_client *c =
1422 	    container_of(shrinker, struct dm_bufio_client, shrinker);
1423 	unsigned long r;
1424 	unsigned long nr_to_scan = sc->nr_to_scan;
1425 
1426 	if (sc->gfp_mask & __GFP_IO)
1427 		dm_bufio_lock(c);
1428 	else if (!dm_bufio_trylock(c))
1429 		return !nr_to_scan ? 0 : -1;
1430 
1431 	if (nr_to_scan)
1432 		__scan(c, nr_to_scan, sc);
1433 
1434 	r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1435 	if (r > INT_MAX)
1436 		r = INT_MAX;
1437 
1438 	dm_bufio_unlock(c);
1439 
1440 	return r;
1441 }
1442 
1443 /*
1444  * Create the buffering interface
1445  */
1446 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1447 					       unsigned reserved_buffers, unsigned aux_size,
1448 					       void (*alloc_callback)(struct dm_buffer *),
1449 					       void (*write_callback)(struct dm_buffer *))
1450 {
1451 	int r;
1452 	struct dm_bufio_client *c;
1453 	unsigned i;
1454 
1455 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1456 	       (block_size & (block_size - 1)));
1457 
1458 	c = kmalloc(sizeof(*c), GFP_KERNEL);
1459 	if (!c) {
1460 		r = -ENOMEM;
1461 		goto bad_client;
1462 	}
1463 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1464 	if (!c->cache_hash) {
1465 		r = -ENOMEM;
1466 		goto bad_hash;
1467 	}
1468 
1469 	c->bdev = bdev;
1470 	c->block_size = block_size;
1471 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1472 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1473 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1474 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1475 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1476 
1477 	c->aux_size = aux_size;
1478 	c->alloc_callback = alloc_callback;
1479 	c->write_callback = write_callback;
1480 
1481 	for (i = 0; i < LIST_SIZE; i++) {
1482 		INIT_LIST_HEAD(&c->lru[i]);
1483 		c->n_buffers[i] = 0;
1484 	}
1485 
1486 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1487 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1488 
1489 	mutex_init(&c->lock);
1490 	INIT_LIST_HEAD(&c->reserved_buffers);
1491 	c->need_reserved_buffers = reserved_buffers;
1492 
1493 	init_waitqueue_head(&c->free_buffer_wait);
1494 	c->async_write_error = 0;
1495 
1496 	c->dm_io = dm_io_client_create();
1497 	if (IS_ERR(c->dm_io)) {
1498 		r = PTR_ERR(c->dm_io);
1499 		goto bad_dm_io;
1500 	}
1501 
1502 	mutex_lock(&dm_bufio_clients_lock);
1503 	if (c->blocks_per_page_bits) {
1504 		if (!DM_BUFIO_CACHE_NAME(c)) {
1505 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1506 			if (!DM_BUFIO_CACHE_NAME(c)) {
1507 				r = -ENOMEM;
1508 				mutex_unlock(&dm_bufio_clients_lock);
1509 				goto bad_cache;
1510 			}
1511 		}
1512 
1513 		if (!DM_BUFIO_CACHE(c)) {
1514 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1515 							      c->block_size,
1516 							      c->block_size, 0, NULL);
1517 			if (!DM_BUFIO_CACHE(c)) {
1518 				r = -ENOMEM;
1519 				mutex_unlock(&dm_bufio_clients_lock);
1520 				goto bad_cache;
1521 			}
1522 		}
1523 	}
1524 	mutex_unlock(&dm_bufio_clients_lock);
1525 
1526 	while (c->need_reserved_buffers) {
1527 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1528 
1529 		if (!b) {
1530 			r = -ENOMEM;
1531 			goto bad_buffer;
1532 		}
1533 		__free_buffer_wake(b);
1534 	}
1535 
1536 	mutex_lock(&dm_bufio_clients_lock);
1537 	dm_bufio_client_count++;
1538 	list_add(&c->client_list, &dm_bufio_all_clients);
1539 	__cache_size_refresh();
1540 	mutex_unlock(&dm_bufio_clients_lock);
1541 
1542 	c->shrinker.shrink = shrink;
1543 	c->shrinker.seeks = 1;
1544 	c->shrinker.batch = 0;
1545 	register_shrinker(&c->shrinker);
1546 
1547 	return c;
1548 
1549 bad_buffer:
1550 bad_cache:
1551 	while (!list_empty(&c->reserved_buffers)) {
1552 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1553 						 struct dm_buffer, lru_list);
1554 		list_del(&b->lru_list);
1555 		free_buffer(b);
1556 	}
1557 	dm_io_client_destroy(c->dm_io);
1558 bad_dm_io:
1559 	vfree(c->cache_hash);
1560 bad_hash:
1561 	kfree(c);
1562 bad_client:
1563 	return ERR_PTR(r);
1564 }
1565 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1566 
1567 /*
1568  * Free the buffering interface.
1569  * It is required that there are no references on any buffers.
1570  */
1571 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1572 {
1573 	unsigned i;
1574 
1575 	drop_buffers(c);
1576 
1577 	unregister_shrinker(&c->shrinker);
1578 
1579 	mutex_lock(&dm_bufio_clients_lock);
1580 
1581 	list_del(&c->client_list);
1582 	dm_bufio_client_count--;
1583 	__cache_size_refresh();
1584 
1585 	mutex_unlock(&dm_bufio_clients_lock);
1586 
1587 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1588 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1589 
1590 	BUG_ON(c->need_reserved_buffers);
1591 
1592 	while (!list_empty(&c->reserved_buffers)) {
1593 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1594 						 struct dm_buffer, lru_list);
1595 		list_del(&b->lru_list);
1596 		free_buffer(b);
1597 	}
1598 
1599 	for (i = 0; i < LIST_SIZE; i++)
1600 		if (c->n_buffers[i])
1601 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1602 
1603 	for (i = 0; i < LIST_SIZE; i++)
1604 		BUG_ON(c->n_buffers[i]);
1605 
1606 	dm_io_client_destroy(c->dm_io);
1607 	vfree(c->cache_hash);
1608 	kfree(c);
1609 }
1610 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1611 
1612 static void cleanup_old_buffers(void)
1613 {
1614 	unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1615 	struct dm_bufio_client *c;
1616 
1617 	if (max_age > ULONG_MAX / HZ)
1618 		max_age = ULONG_MAX / HZ;
1619 
1620 	mutex_lock(&dm_bufio_clients_lock);
1621 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1622 		if (!dm_bufio_trylock(c))
1623 			continue;
1624 
1625 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1626 			struct dm_buffer *b;
1627 			b = list_entry(c->lru[LIST_CLEAN].prev,
1628 				       struct dm_buffer, lru_list);
1629 			if (__cleanup_old_buffer(b, 0, max_age * HZ))
1630 				break;
1631 			dm_bufio_cond_resched();
1632 		}
1633 
1634 		dm_bufio_unlock(c);
1635 		dm_bufio_cond_resched();
1636 	}
1637 	mutex_unlock(&dm_bufio_clients_lock);
1638 }
1639 
1640 static struct workqueue_struct *dm_bufio_wq;
1641 static struct delayed_work dm_bufio_work;
1642 
1643 static void work_fn(struct work_struct *w)
1644 {
1645 	cleanup_old_buffers();
1646 
1647 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1648 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1649 }
1650 
1651 /*----------------------------------------------------------------
1652  * Module setup
1653  *--------------------------------------------------------------*/
1654 
1655 /*
1656  * This is called only once for the whole dm_bufio module.
1657  * It initializes memory limit.
1658  */
1659 static int __init dm_bufio_init(void)
1660 {
1661 	__u64 mem;
1662 
1663 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1664 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1665 
1666 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1667 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1668 
1669 	if (mem > ULONG_MAX)
1670 		mem = ULONG_MAX;
1671 
1672 #ifdef CONFIG_MMU
1673 	/*
1674 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1675 	 * in fs/proc/internal.h
1676 	 */
1677 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1678 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1679 #endif
1680 
1681 	dm_bufio_default_cache_size = mem;
1682 
1683 	mutex_lock(&dm_bufio_clients_lock);
1684 	__cache_size_refresh();
1685 	mutex_unlock(&dm_bufio_clients_lock);
1686 
1687 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1688 	if (!dm_bufio_wq)
1689 		return -ENOMEM;
1690 
1691 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1692 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1693 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1694 
1695 	return 0;
1696 }
1697 
1698 /*
1699  * This is called once when unloading the dm_bufio module.
1700  */
1701 static void __exit dm_bufio_exit(void)
1702 {
1703 	int bug = 0;
1704 	int i;
1705 
1706 	cancel_delayed_work_sync(&dm_bufio_work);
1707 	destroy_workqueue(dm_bufio_wq);
1708 
1709 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1710 		struct kmem_cache *kc = dm_bufio_caches[i];
1711 
1712 		if (kc)
1713 			kmem_cache_destroy(kc);
1714 	}
1715 
1716 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1717 		kfree(dm_bufio_cache_names[i]);
1718 
1719 	if (dm_bufio_client_count) {
1720 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1721 			__func__, dm_bufio_client_count);
1722 		bug = 1;
1723 	}
1724 
1725 	if (dm_bufio_current_allocated) {
1726 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1727 			__func__, dm_bufio_current_allocated);
1728 		bug = 1;
1729 	}
1730 
1731 	if (dm_bufio_allocated_get_free_pages) {
1732 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1733 		       __func__, dm_bufio_allocated_get_free_pages);
1734 		bug = 1;
1735 	}
1736 
1737 	if (dm_bufio_allocated_vmalloc) {
1738 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1739 		       __func__, dm_bufio_allocated_vmalloc);
1740 		bug = 1;
1741 	}
1742 
1743 	if (bug)
1744 		BUG();
1745 }
1746 
1747 module_init(dm_bufio_init)
1748 module_exit(dm_bufio_exit)
1749 
1750 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1751 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1752 
1753 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1754 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1755 
1756 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1757 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1758 
1759 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1760 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1761 
1762 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1763 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1764 
1765 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1766 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1767 
1768 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1769 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1770 
1771 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1772 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1773 MODULE_LICENSE("GPL");
1774