xref: /openbmc/linux/drivers/md/dm-bufio.c (revision bc000245)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	struct hlist_head *cache_hash;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct hlist_node hash_list;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct list_head write_list;
149 	struct bio bio;
150 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
151 };
152 
153 /*----------------------------------------------------------------*/
154 
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
157 
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
159 {
160 	unsigned ret = c->blocks_per_page_bits - 1;
161 
162 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
163 
164 	return ret;
165 }
166 
167 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
169 
170 #define dm_bufio_in_request()	(!!current->bio_list)
171 
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
175 }
176 
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
178 {
179 	return mutex_trylock(&c->lock);
180 }
181 
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
183 {
184 	mutex_unlock(&c->lock);
185 }
186 
187 /*
188  * FIXME Move to sched.h?
189  */
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 #  define dm_bufio_cond_resched()		\
192 do {						\
193 	if (unlikely(need_resched()))		\
194 		_cond_resched();		\
195 } while (0)
196 #else
197 #  define dm_bufio_cond_resched()                do { } while (0)
198 #endif
199 
200 /*----------------------------------------------------------------*/
201 
202 /*
203  * Default cache size: available memory divided by the ratio.
204  */
205 static unsigned long dm_bufio_default_cache_size;
206 
207 /*
208  * Total cache size set by the user.
209  */
210 static unsigned long dm_bufio_cache_size;
211 
212 /*
213  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214  * at any time.  If it disagrees, the user has changed cache size.
215  */
216 static unsigned long dm_bufio_cache_size_latch;
217 
218 static DEFINE_SPINLOCK(param_spinlock);
219 
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 
225 static unsigned long dm_bufio_peak_allocated;
226 static unsigned long dm_bufio_allocated_kmem_cache;
227 static unsigned long dm_bufio_allocated_get_free_pages;
228 static unsigned long dm_bufio_allocated_vmalloc;
229 static unsigned long dm_bufio_current_allocated;
230 
231 /*----------------------------------------------------------------*/
232 
233 /*
234  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
235  */
236 static unsigned long dm_bufio_cache_size_per_client;
237 
238 /*
239  * The current number of clients.
240  */
241 static int dm_bufio_client_count;
242 
243 /*
244  * The list of all clients.
245  */
246 static LIST_HEAD(dm_bufio_all_clients);
247 
248 /*
249  * This mutex protects dm_bufio_cache_size_latch,
250  * dm_bufio_cache_size_per_client and dm_bufio_client_count
251  */
252 static DEFINE_MUTEX(dm_bufio_clients_lock);
253 
254 /*----------------------------------------------------------------*/
255 
256 static void adjust_total_allocated(enum data_mode data_mode, long diff)
257 {
258 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
259 		&dm_bufio_allocated_kmem_cache,
260 		&dm_bufio_allocated_get_free_pages,
261 		&dm_bufio_allocated_vmalloc,
262 	};
263 
264 	spin_lock(&param_spinlock);
265 
266 	*class_ptr[data_mode] += diff;
267 
268 	dm_bufio_current_allocated += diff;
269 
270 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
271 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
272 
273 	spin_unlock(&param_spinlock);
274 }
275 
276 /*
277  * Change the number of clients and recalculate per-client limit.
278  */
279 static void __cache_size_refresh(void)
280 {
281 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
282 	BUG_ON(dm_bufio_client_count < 0);
283 
284 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
285 
286 	/*
287 	 * Use default if set to 0 and report the actual cache size used.
288 	 */
289 	if (!dm_bufio_cache_size_latch) {
290 		(void)cmpxchg(&dm_bufio_cache_size, 0,
291 			      dm_bufio_default_cache_size);
292 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
293 	}
294 
295 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
296 					 (dm_bufio_client_count ? : 1);
297 }
298 
299 /*
300  * Allocating buffer data.
301  *
302  * Small buffers are allocated with kmem_cache, to use space optimally.
303  *
304  * For large buffers, we choose between get_free_pages and vmalloc.
305  * Each has advantages and disadvantages.
306  *
307  * __get_free_pages can randomly fail if the memory is fragmented.
308  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
309  * as low as 128M) so using it for caching is not appropriate.
310  *
311  * If the allocation may fail we use __get_free_pages. Memory fragmentation
312  * won't have a fatal effect here, but it just causes flushes of some other
313  * buffers and more I/O will be performed. Don't use __get_free_pages if it
314  * always fails (i.e. order >= MAX_ORDER).
315  *
316  * If the allocation shouldn't fail we use __vmalloc. This is only for the
317  * initial reserve allocation, so there's no risk of wasting all vmalloc
318  * space.
319  */
320 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
321 			       enum data_mode *data_mode)
322 {
323 	unsigned noio_flag;
324 	void *ptr;
325 
326 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
327 		*data_mode = DATA_MODE_SLAB;
328 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
329 	}
330 
331 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
332 	    gfp_mask & __GFP_NORETRY) {
333 		*data_mode = DATA_MODE_GET_FREE_PAGES;
334 		return (void *)__get_free_pages(gfp_mask,
335 						c->pages_per_block_bits);
336 	}
337 
338 	*data_mode = DATA_MODE_VMALLOC;
339 
340 	/*
341 	 * __vmalloc allocates the data pages and auxiliary structures with
342 	 * gfp_flags that were specified, but pagetables are always allocated
343 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
344 	 *
345 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
346 	 * all allocations done by this process (including pagetables) are done
347 	 * as if GFP_NOIO was specified.
348 	 */
349 
350 	if (gfp_mask & __GFP_NORETRY)
351 		noio_flag = memalloc_noio_save();
352 
353 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
354 
355 	if (gfp_mask & __GFP_NORETRY)
356 		memalloc_noio_restore(noio_flag);
357 
358 	return ptr;
359 }
360 
361 /*
362  * Free buffer's data.
363  */
364 static void free_buffer_data(struct dm_bufio_client *c,
365 			     void *data, enum data_mode data_mode)
366 {
367 	switch (data_mode) {
368 	case DATA_MODE_SLAB:
369 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
370 		break;
371 
372 	case DATA_MODE_GET_FREE_PAGES:
373 		free_pages((unsigned long)data, c->pages_per_block_bits);
374 		break;
375 
376 	case DATA_MODE_VMALLOC:
377 		vfree(data);
378 		break;
379 
380 	default:
381 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
382 		       data_mode);
383 		BUG();
384 	}
385 }
386 
387 /*
388  * Allocate buffer and its data.
389  */
390 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
391 {
392 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
393 				      gfp_mask);
394 
395 	if (!b)
396 		return NULL;
397 
398 	b->c = c;
399 
400 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
401 	if (!b->data) {
402 		kfree(b);
403 		return NULL;
404 	}
405 
406 	adjust_total_allocated(b->data_mode, (long)c->block_size);
407 
408 	return b;
409 }
410 
411 /*
412  * Free buffer and its data.
413  */
414 static void free_buffer(struct dm_buffer *b)
415 {
416 	struct dm_bufio_client *c = b->c;
417 
418 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
419 
420 	free_buffer_data(c, b->data, b->data_mode);
421 	kfree(b);
422 }
423 
424 /*
425  * Link buffer to the hash list and clean or dirty queue.
426  */
427 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
428 {
429 	struct dm_bufio_client *c = b->c;
430 
431 	c->n_buffers[dirty]++;
432 	b->block = block;
433 	b->list_mode = dirty;
434 	list_add(&b->lru_list, &c->lru[dirty]);
435 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
436 	b->last_accessed = jiffies;
437 }
438 
439 /*
440  * Unlink buffer from the hash list and dirty or clean queue.
441  */
442 static void __unlink_buffer(struct dm_buffer *b)
443 {
444 	struct dm_bufio_client *c = b->c;
445 
446 	BUG_ON(!c->n_buffers[b->list_mode]);
447 
448 	c->n_buffers[b->list_mode]--;
449 	hlist_del(&b->hash_list);
450 	list_del(&b->lru_list);
451 }
452 
453 /*
454  * Place the buffer to the head of dirty or clean LRU queue.
455  */
456 static void __relink_lru(struct dm_buffer *b, int dirty)
457 {
458 	struct dm_bufio_client *c = b->c;
459 
460 	BUG_ON(!c->n_buffers[b->list_mode]);
461 
462 	c->n_buffers[b->list_mode]--;
463 	c->n_buffers[dirty]++;
464 	b->list_mode = dirty;
465 	list_move(&b->lru_list, &c->lru[dirty]);
466 }
467 
468 /*----------------------------------------------------------------
469  * Submit I/O on the buffer.
470  *
471  * Bio interface is faster but it has some problems:
472  *	the vector list is limited (increasing this limit increases
473  *	memory-consumption per buffer, so it is not viable);
474  *
475  *	the memory must be direct-mapped, not vmalloced;
476  *
477  *	the I/O driver can reject requests spuriously if it thinks that
478  *	the requests are too big for the device or if they cross a
479  *	controller-defined memory boundary.
480  *
481  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
482  * it is not vmalloced, try using the bio interface.
483  *
484  * If the buffer is big, if it is vmalloced or if the underlying device
485  * rejects the bio because it is too large, use dm-io layer to do the I/O.
486  * The dm-io layer splits the I/O into multiple requests, avoiding the above
487  * shortcomings.
488  *--------------------------------------------------------------*/
489 
490 /*
491  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
492  * that the request was handled directly with bio interface.
493  */
494 static void dmio_complete(unsigned long error, void *context)
495 {
496 	struct dm_buffer *b = context;
497 
498 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
499 }
500 
501 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
502 		     bio_end_io_t *end_io)
503 {
504 	int r;
505 	struct dm_io_request io_req = {
506 		.bi_rw = rw,
507 		.notify.fn = dmio_complete,
508 		.notify.context = b,
509 		.client = b->c->dm_io,
510 	};
511 	struct dm_io_region region = {
512 		.bdev = b->c->bdev,
513 		.sector = block << b->c->sectors_per_block_bits,
514 		.count = b->c->block_size >> SECTOR_SHIFT,
515 	};
516 
517 	if (b->data_mode != DATA_MODE_VMALLOC) {
518 		io_req.mem.type = DM_IO_KMEM;
519 		io_req.mem.ptr.addr = b->data;
520 	} else {
521 		io_req.mem.type = DM_IO_VMA;
522 		io_req.mem.ptr.vma = b->data;
523 	}
524 
525 	b->bio.bi_end_io = end_io;
526 
527 	r = dm_io(&io_req, 1, &region, NULL);
528 	if (r)
529 		end_io(&b->bio, r);
530 }
531 
532 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
533 			   bio_end_io_t *end_io)
534 {
535 	char *ptr;
536 	int len;
537 
538 	bio_init(&b->bio);
539 	b->bio.bi_io_vec = b->bio_vec;
540 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
541 	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
542 	b->bio.bi_bdev = b->c->bdev;
543 	b->bio.bi_end_io = end_io;
544 
545 	/*
546 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
547 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
548 	 */
549 	ptr = b->data;
550 	len = b->c->block_size;
551 
552 	if (len >= PAGE_SIZE)
553 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
554 	else
555 		BUG_ON((unsigned long)ptr & (len - 1));
556 
557 	do {
558 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
559 				  len < PAGE_SIZE ? len : PAGE_SIZE,
560 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
561 			BUG_ON(b->c->block_size <= PAGE_SIZE);
562 			use_dmio(b, rw, block, end_io);
563 			return;
564 		}
565 
566 		len -= PAGE_SIZE;
567 		ptr += PAGE_SIZE;
568 	} while (len > 0);
569 
570 	submit_bio(rw, &b->bio);
571 }
572 
573 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
574 		      bio_end_io_t *end_io)
575 {
576 	if (rw == WRITE && b->c->write_callback)
577 		b->c->write_callback(b);
578 
579 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
580 	    b->data_mode != DATA_MODE_VMALLOC)
581 		use_inline_bio(b, rw, block, end_io);
582 	else
583 		use_dmio(b, rw, block, end_io);
584 }
585 
586 /*----------------------------------------------------------------
587  * Writing dirty buffers
588  *--------------------------------------------------------------*/
589 
590 /*
591  * The endio routine for write.
592  *
593  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
594  * it.
595  */
596 static void write_endio(struct bio *bio, int error)
597 {
598 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
599 
600 	b->write_error = error;
601 	if (unlikely(error)) {
602 		struct dm_bufio_client *c = b->c;
603 		(void)cmpxchg(&c->async_write_error, 0, error);
604 	}
605 
606 	BUG_ON(!test_bit(B_WRITING, &b->state));
607 
608 	smp_mb__before_clear_bit();
609 	clear_bit(B_WRITING, &b->state);
610 	smp_mb__after_clear_bit();
611 
612 	wake_up_bit(&b->state, B_WRITING);
613 }
614 
615 /*
616  * This function is called when wait_on_bit is actually waiting.
617  */
618 static int do_io_schedule(void *word)
619 {
620 	io_schedule();
621 
622 	return 0;
623 }
624 
625 /*
626  * Initiate a write on a dirty buffer, but don't wait for it.
627  *
628  * - If the buffer is not dirty, exit.
629  * - If there some previous write going on, wait for it to finish (we can't
630  *   have two writes on the same buffer simultaneously).
631  * - Submit our write and don't wait on it. We set B_WRITING indicating
632  *   that there is a write in progress.
633  */
634 static void __write_dirty_buffer(struct dm_buffer *b,
635 				 struct list_head *write_list)
636 {
637 	if (!test_bit(B_DIRTY, &b->state))
638 		return;
639 
640 	clear_bit(B_DIRTY, &b->state);
641 	wait_on_bit_lock(&b->state, B_WRITING,
642 			 do_io_schedule, TASK_UNINTERRUPTIBLE);
643 
644 	if (!write_list)
645 		submit_io(b, WRITE, b->block, write_endio);
646 	else
647 		list_add_tail(&b->write_list, write_list);
648 }
649 
650 static void __flush_write_list(struct list_head *write_list)
651 {
652 	struct blk_plug plug;
653 	blk_start_plug(&plug);
654 	while (!list_empty(write_list)) {
655 		struct dm_buffer *b =
656 			list_entry(write_list->next, struct dm_buffer, write_list);
657 		list_del(&b->write_list);
658 		submit_io(b, WRITE, b->block, write_endio);
659 		dm_bufio_cond_resched();
660 	}
661 	blk_finish_plug(&plug);
662 }
663 
664 /*
665  * Wait until any activity on the buffer finishes.  Possibly write the
666  * buffer if it is dirty.  When this function finishes, there is no I/O
667  * running on the buffer and the buffer is not dirty.
668  */
669 static void __make_buffer_clean(struct dm_buffer *b)
670 {
671 	BUG_ON(b->hold_count);
672 
673 	if (!b->state)	/* fast case */
674 		return;
675 
676 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
677 	__write_dirty_buffer(b, NULL);
678 	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
679 }
680 
681 /*
682  * Find some buffer that is not held by anybody, clean it, unlink it and
683  * return it.
684  */
685 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
686 {
687 	struct dm_buffer *b;
688 
689 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
690 		BUG_ON(test_bit(B_WRITING, &b->state));
691 		BUG_ON(test_bit(B_DIRTY, &b->state));
692 
693 		if (!b->hold_count) {
694 			__make_buffer_clean(b);
695 			__unlink_buffer(b);
696 			return b;
697 		}
698 		dm_bufio_cond_resched();
699 	}
700 
701 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
702 		BUG_ON(test_bit(B_READING, &b->state));
703 
704 		if (!b->hold_count) {
705 			__make_buffer_clean(b);
706 			__unlink_buffer(b);
707 			return b;
708 		}
709 		dm_bufio_cond_resched();
710 	}
711 
712 	return NULL;
713 }
714 
715 /*
716  * Wait until some other threads free some buffer or release hold count on
717  * some buffer.
718  *
719  * This function is entered with c->lock held, drops it and regains it
720  * before exiting.
721  */
722 static void __wait_for_free_buffer(struct dm_bufio_client *c)
723 {
724 	DECLARE_WAITQUEUE(wait, current);
725 
726 	add_wait_queue(&c->free_buffer_wait, &wait);
727 	set_task_state(current, TASK_UNINTERRUPTIBLE);
728 	dm_bufio_unlock(c);
729 
730 	io_schedule();
731 
732 	set_task_state(current, TASK_RUNNING);
733 	remove_wait_queue(&c->free_buffer_wait, &wait);
734 
735 	dm_bufio_lock(c);
736 }
737 
738 enum new_flag {
739 	NF_FRESH = 0,
740 	NF_READ = 1,
741 	NF_GET = 2,
742 	NF_PREFETCH = 3
743 };
744 
745 /*
746  * Allocate a new buffer. If the allocation is not possible, wait until
747  * some other thread frees a buffer.
748  *
749  * May drop the lock and regain it.
750  */
751 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
752 {
753 	struct dm_buffer *b;
754 
755 	/*
756 	 * dm-bufio is resistant to allocation failures (it just keeps
757 	 * one buffer reserved in cases all the allocations fail).
758 	 * So set flags to not try too hard:
759 	 *	GFP_NOIO: don't recurse into the I/O layer
760 	 *	__GFP_NORETRY: don't retry and rather return failure
761 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
762 	 *	__GFP_NOWARN: don't print a warning in case of failure
763 	 *
764 	 * For debugging, if we set the cache size to 1, no new buffers will
765 	 * be allocated.
766 	 */
767 	while (1) {
768 		if (dm_bufio_cache_size_latch != 1) {
769 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
770 			if (b)
771 				return b;
772 		}
773 
774 		if (nf == NF_PREFETCH)
775 			return NULL;
776 
777 		if (!list_empty(&c->reserved_buffers)) {
778 			b = list_entry(c->reserved_buffers.next,
779 				       struct dm_buffer, lru_list);
780 			list_del(&b->lru_list);
781 			c->need_reserved_buffers++;
782 
783 			return b;
784 		}
785 
786 		b = __get_unclaimed_buffer(c);
787 		if (b)
788 			return b;
789 
790 		__wait_for_free_buffer(c);
791 	}
792 }
793 
794 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
795 {
796 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
797 
798 	if (!b)
799 		return NULL;
800 
801 	if (c->alloc_callback)
802 		c->alloc_callback(b);
803 
804 	return b;
805 }
806 
807 /*
808  * Free a buffer and wake other threads waiting for free buffers.
809  */
810 static void __free_buffer_wake(struct dm_buffer *b)
811 {
812 	struct dm_bufio_client *c = b->c;
813 
814 	if (!c->need_reserved_buffers)
815 		free_buffer(b);
816 	else {
817 		list_add(&b->lru_list, &c->reserved_buffers);
818 		c->need_reserved_buffers--;
819 	}
820 
821 	wake_up(&c->free_buffer_wait);
822 }
823 
824 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
825 					struct list_head *write_list)
826 {
827 	struct dm_buffer *b, *tmp;
828 
829 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
830 		BUG_ON(test_bit(B_READING, &b->state));
831 
832 		if (!test_bit(B_DIRTY, &b->state) &&
833 		    !test_bit(B_WRITING, &b->state)) {
834 			__relink_lru(b, LIST_CLEAN);
835 			continue;
836 		}
837 
838 		if (no_wait && test_bit(B_WRITING, &b->state))
839 			return;
840 
841 		__write_dirty_buffer(b, write_list);
842 		dm_bufio_cond_resched();
843 	}
844 }
845 
846 /*
847  * Get writeback threshold and buffer limit for a given client.
848  */
849 static void __get_memory_limit(struct dm_bufio_client *c,
850 			       unsigned long *threshold_buffers,
851 			       unsigned long *limit_buffers)
852 {
853 	unsigned long buffers;
854 
855 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
856 		mutex_lock(&dm_bufio_clients_lock);
857 		__cache_size_refresh();
858 		mutex_unlock(&dm_bufio_clients_lock);
859 	}
860 
861 	buffers = dm_bufio_cache_size_per_client >>
862 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
863 
864 	if (buffers < DM_BUFIO_MIN_BUFFERS)
865 		buffers = DM_BUFIO_MIN_BUFFERS;
866 
867 	*limit_buffers = buffers;
868 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
869 }
870 
871 /*
872  * Check if we're over watermark.
873  * If we are over threshold_buffers, start freeing buffers.
874  * If we're over "limit_buffers", block until we get under the limit.
875  */
876 static void __check_watermark(struct dm_bufio_client *c,
877 			      struct list_head *write_list)
878 {
879 	unsigned long threshold_buffers, limit_buffers;
880 
881 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
882 
883 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
884 	       limit_buffers) {
885 
886 		struct dm_buffer *b = __get_unclaimed_buffer(c);
887 
888 		if (!b)
889 			return;
890 
891 		__free_buffer_wake(b);
892 		dm_bufio_cond_resched();
893 	}
894 
895 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
896 		__write_dirty_buffers_async(c, 1, write_list);
897 }
898 
899 /*
900  * Find a buffer in the hash.
901  */
902 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
903 {
904 	struct dm_buffer *b;
905 
906 	hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
907 			     hash_list) {
908 		dm_bufio_cond_resched();
909 		if (b->block == block)
910 			return b;
911 	}
912 
913 	return NULL;
914 }
915 
916 /*----------------------------------------------------------------
917  * Getting a buffer
918  *--------------------------------------------------------------*/
919 
920 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
921 				     enum new_flag nf, int *need_submit,
922 				     struct list_head *write_list)
923 {
924 	struct dm_buffer *b, *new_b = NULL;
925 
926 	*need_submit = 0;
927 
928 	b = __find(c, block);
929 	if (b)
930 		goto found_buffer;
931 
932 	if (nf == NF_GET)
933 		return NULL;
934 
935 	new_b = __alloc_buffer_wait(c, nf);
936 	if (!new_b)
937 		return NULL;
938 
939 	/*
940 	 * We've had a period where the mutex was unlocked, so need to
941 	 * recheck the hash table.
942 	 */
943 	b = __find(c, block);
944 	if (b) {
945 		__free_buffer_wake(new_b);
946 		goto found_buffer;
947 	}
948 
949 	__check_watermark(c, write_list);
950 
951 	b = new_b;
952 	b->hold_count = 1;
953 	b->read_error = 0;
954 	b->write_error = 0;
955 	__link_buffer(b, block, LIST_CLEAN);
956 
957 	if (nf == NF_FRESH) {
958 		b->state = 0;
959 		return b;
960 	}
961 
962 	b->state = 1 << B_READING;
963 	*need_submit = 1;
964 
965 	return b;
966 
967 found_buffer:
968 	if (nf == NF_PREFETCH)
969 		return NULL;
970 	/*
971 	 * Note: it is essential that we don't wait for the buffer to be
972 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
973 	 * dm_bufio_prefetch can be used in the driver request routine.
974 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
975 	 * the same buffer, it would deadlock if we waited.
976 	 */
977 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
978 		return NULL;
979 
980 	b->hold_count++;
981 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
982 		     test_bit(B_WRITING, &b->state));
983 	return b;
984 }
985 
986 /*
987  * The endio routine for reading: set the error, clear the bit and wake up
988  * anyone waiting on the buffer.
989  */
990 static void read_endio(struct bio *bio, int error)
991 {
992 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
993 
994 	b->read_error = error;
995 
996 	BUG_ON(!test_bit(B_READING, &b->state));
997 
998 	smp_mb__before_clear_bit();
999 	clear_bit(B_READING, &b->state);
1000 	smp_mb__after_clear_bit();
1001 
1002 	wake_up_bit(&b->state, B_READING);
1003 }
1004 
1005 /*
1006  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1007  * functions is similar except that dm_bufio_new doesn't read the
1008  * buffer from the disk (assuming that the caller overwrites all the data
1009  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1010  */
1011 static void *new_read(struct dm_bufio_client *c, sector_t block,
1012 		      enum new_flag nf, struct dm_buffer **bp)
1013 {
1014 	int need_submit;
1015 	struct dm_buffer *b;
1016 
1017 	LIST_HEAD(write_list);
1018 
1019 	dm_bufio_lock(c);
1020 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1021 	dm_bufio_unlock(c);
1022 
1023 	__flush_write_list(&write_list);
1024 
1025 	if (!b)
1026 		return b;
1027 
1028 	if (need_submit)
1029 		submit_io(b, READ, b->block, read_endio);
1030 
1031 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1032 
1033 	if (b->read_error) {
1034 		int error = b->read_error;
1035 
1036 		dm_bufio_release(b);
1037 
1038 		return ERR_PTR(error);
1039 	}
1040 
1041 	*bp = b;
1042 
1043 	return b->data;
1044 }
1045 
1046 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1047 		   struct dm_buffer **bp)
1048 {
1049 	return new_read(c, block, NF_GET, bp);
1050 }
1051 EXPORT_SYMBOL_GPL(dm_bufio_get);
1052 
1053 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1054 		    struct dm_buffer **bp)
1055 {
1056 	BUG_ON(dm_bufio_in_request());
1057 
1058 	return new_read(c, block, NF_READ, bp);
1059 }
1060 EXPORT_SYMBOL_GPL(dm_bufio_read);
1061 
1062 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1063 		   struct dm_buffer **bp)
1064 {
1065 	BUG_ON(dm_bufio_in_request());
1066 
1067 	return new_read(c, block, NF_FRESH, bp);
1068 }
1069 EXPORT_SYMBOL_GPL(dm_bufio_new);
1070 
1071 void dm_bufio_prefetch(struct dm_bufio_client *c,
1072 		       sector_t block, unsigned n_blocks)
1073 {
1074 	struct blk_plug plug;
1075 
1076 	LIST_HEAD(write_list);
1077 
1078 	BUG_ON(dm_bufio_in_request());
1079 
1080 	blk_start_plug(&plug);
1081 	dm_bufio_lock(c);
1082 
1083 	for (; n_blocks--; block++) {
1084 		int need_submit;
1085 		struct dm_buffer *b;
1086 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1087 				&write_list);
1088 		if (unlikely(!list_empty(&write_list))) {
1089 			dm_bufio_unlock(c);
1090 			blk_finish_plug(&plug);
1091 			__flush_write_list(&write_list);
1092 			blk_start_plug(&plug);
1093 			dm_bufio_lock(c);
1094 		}
1095 		if (unlikely(b != NULL)) {
1096 			dm_bufio_unlock(c);
1097 
1098 			if (need_submit)
1099 				submit_io(b, READ, b->block, read_endio);
1100 			dm_bufio_release(b);
1101 
1102 			dm_bufio_cond_resched();
1103 
1104 			if (!n_blocks)
1105 				goto flush_plug;
1106 			dm_bufio_lock(c);
1107 		}
1108 	}
1109 
1110 	dm_bufio_unlock(c);
1111 
1112 flush_plug:
1113 	blk_finish_plug(&plug);
1114 }
1115 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1116 
1117 void dm_bufio_release(struct dm_buffer *b)
1118 {
1119 	struct dm_bufio_client *c = b->c;
1120 
1121 	dm_bufio_lock(c);
1122 
1123 	BUG_ON(!b->hold_count);
1124 
1125 	b->hold_count--;
1126 	if (!b->hold_count) {
1127 		wake_up(&c->free_buffer_wait);
1128 
1129 		/*
1130 		 * If there were errors on the buffer, and the buffer is not
1131 		 * to be written, free the buffer. There is no point in caching
1132 		 * invalid buffer.
1133 		 */
1134 		if ((b->read_error || b->write_error) &&
1135 		    !test_bit(B_READING, &b->state) &&
1136 		    !test_bit(B_WRITING, &b->state) &&
1137 		    !test_bit(B_DIRTY, &b->state)) {
1138 			__unlink_buffer(b);
1139 			__free_buffer_wake(b);
1140 		}
1141 	}
1142 
1143 	dm_bufio_unlock(c);
1144 }
1145 EXPORT_SYMBOL_GPL(dm_bufio_release);
1146 
1147 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1148 {
1149 	struct dm_bufio_client *c = b->c;
1150 
1151 	dm_bufio_lock(c);
1152 
1153 	BUG_ON(test_bit(B_READING, &b->state));
1154 
1155 	if (!test_and_set_bit(B_DIRTY, &b->state))
1156 		__relink_lru(b, LIST_DIRTY);
1157 
1158 	dm_bufio_unlock(c);
1159 }
1160 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1161 
1162 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1163 {
1164 	LIST_HEAD(write_list);
1165 
1166 	BUG_ON(dm_bufio_in_request());
1167 
1168 	dm_bufio_lock(c);
1169 	__write_dirty_buffers_async(c, 0, &write_list);
1170 	dm_bufio_unlock(c);
1171 	__flush_write_list(&write_list);
1172 }
1173 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1174 
1175 /*
1176  * For performance, it is essential that the buffers are written asynchronously
1177  * and simultaneously (so that the block layer can merge the writes) and then
1178  * waited upon.
1179  *
1180  * Finally, we flush hardware disk cache.
1181  */
1182 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1183 {
1184 	int a, f;
1185 	unsigned long buffers_processed = 0;
1186 	struct dm_buffer *b, *tmp;
1187 
1188 	LIST_HEAD(write_list);
1189 
1190 	dm_bufio_lock(c);
1191 	__write_dirty_buffers_async(c, 0, &write_list);
1192 	dm_bufio_unlock(c);
1193 	__flush_write_list(&write_list);
1194 	dm_bufio_lock(c);
1195 
1196 again:
1197 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1198 		int dropped_lock = 0;
1199 
1200 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1201 			buffers_processed++;
1202 
1203 		BUG_ON(test_bit(B_READING, &b->state));
1204 
1205 		if (test_bit(B_WRITING, &b->state)) {
1206 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1207 				dropped_lock = 1;
1208 				b->hold_count++;
1209 				dm_bufio_unlock(c);
1210 				wait_on_bit(&b->state, B_WRITING,
1211 					    do_io_schedule,
1212 					    TASK_UNINTERRUPTIBLE);
1213 				dm_bufio_lock(c);
1214 				b->hold_count--;
1215 			} else
1216 				wait_on_bit(&b->state, B_WRITING,
1217 					    do_io_schedule,
1218 					    TASK_UNINTERRUPTIBLE);
1219 		}
1220 
1221 		if (!test_bit(B_DIRTY, &b->state) &&
1222 		    !test_bit(B_WRITING, &b->state))
1223 			__relink_lru(b, LIST_CLEAN);
1224 
1225 		dm_bufio_cond_resched();
1226 
1227 		/*
1228 		 * If we dropped the lock, the list is no longer consistent,
1229 		 * so we must restart the search.
1230 		 *
1231 		 * In the most common case, the buffer just processed is
1232 		 * relinked to the clean list, so we won't loop scanning the
1233 		 * same buffer again and again.
1234 		 *
1235 		 * This may livelock if there is another thread simultaneously
1236 		 * dirtying buffers, so we count the number of buffers walked
1237 		 * and if it exceeds the total number of buffers, it means that
1238 		 * someone is doing some writes simultaneously with us.  In
1239 		 * this case, stop, dropping the lock.
1240 		 */
1241 		if (dropped_lock)
1242 			goto again;
1243 	}
1244 	wake_up(&c->free_buffer_wait);
1245 	dm_bufio_unlock(c);
1246 
1247 	a = xchg(&c->async_write_error, 0);
1248 	f = dm_bufio_issue_flush(c);
1249 	if (a)
1250 		return a;
1251 
1252 	return f;
1253 }
1254 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1255 
1256 /*
1257  * Use dm-io to send and empty barrier flush the device.
1258  */
1259 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1260 {
1261 	struct dm_io_request io_req = {
1262 		.bi_rw = WRITE_FLUSH,
1263 		.mem.type = DM_IO_KMEM,
1264 		.mem.ptr.addr = NULL,
1265 		.client = c->dm_io,
1266 	};
1267 	struct dm_io_region io_reg = {
1268 		.bdev = c->bdev,
1269 		.sector = 0,
1270 		.count = 0,
1271 	};
1272 
1273 	BUG_ON(dm_bufio_in_request());
1274 
1275 	return dm_io(&io_req, 1, &io_reg, NULL);
1276 }
1277 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1278 
1279 /*
1280  * We first delete any other buffer that may be at that new location.
1281  *
1282  * Then, we write the buffer to the original location if it was dirty.
1283  *
1284  * Then, if we are the only one who is holding the buffer, relink the buffer
1285  * in the hash queue for the new location.
1286  *
1287  * If there was someone else holding the buffer, we write it to the new
1288  * location but not relink it, because that other user needs to have the buffer
1289  * at the same place.
1290  */
1291 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1292 {
1293 	struct dm_bufio_client *c = b->c;
1294 	struct dm_buffer *new;
1295 
1296 	BUG_ON(dm_bufio_in_request());
1297 
1298 	dm_bufio_lock(c);
1299 
1300 retry:
1301 	new = __find(c, new_block);
1302 	if (new) {
1303 		if (new->hold_count) {
1304 			__wait_for_free_buffer(c);
1305 			goto retry;
1306 		}
1307 
1308 		/*
1309 		 * FIXME: Is there any point waiting for a write that's going
1310 		 * to be overwritten in a bit?
1311 		 */
1312 		__make_buffer_clean(new);
1313 		__unlink_buffer(new);
1314 		__free_buffer_wake(new);
1315 	}
1316 
1317 	BUG_ON(!b->hold_count);
1318 	BUG_ON(test_bit(B_READING, &b->state));
1319 
1320 	__write_dirty_buffer(b, NULL);
1321 	if (b->hold_count == 1) {
1322 		wait_on_bit(&b->state, B_WRITING,
1323 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1324 		set_bit(B_DIRTY, &b->state);
1325 		__unlink_buffer(b);
1326 		__link_buffer(b, new_block, LIST_DIRTY);
1327 	} else {
1328 		sector_t old_block;
1329 		wait_on_bit_lock(&b->state, B_WRITING,
1330 				 do_io_schedule, TASK_UNINTERRUPTIBLE);
1331 		/*
1332 		 * Relink buffer to "new_block" so that write_callback
1333 		 * sees "new_block" as a block number.
1334 		 * After the write, link the buffer back to old_block.
1335 		 * All this must be done in bufio lock, so that block number
1336 		 * change isn't visible to other threads.
1337 		 */
1338 		old_block = b->block;
1339 		__unlink_buffer(b);
1340 		__link_buffer(b, new_block, b->list_mode);
1341 		submit_io(b, WRITE, new_block, write_endio);
1342 		wait_on_bit(&b->state, B_WRITING,
1343 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1344 		__unlink_buffer(b);
1345 		__link_buffer(b, old_block, b->list_mode);
1346 	}
1347 
1348 	dm_bufio_unlock(c);
1349 	dm_bufio_release(b);
1350 }
1351 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1352 
1353 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1354 {
1355 	return c->block_size;
1356 }
1357 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1358 
1359 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1360 {
1361 	return i_size_read(c->bdev->bd_inode) >>
1362 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1363 }
1364 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1365 
1366 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1367 {
1368 	return b->block;
1369 }
1370 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1371 
1372 void *dm_bufio_get_block_data(struct dm_buffer *b)
1373 {
1374 	return b->data;
1375 }
1376 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1377 
1378 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1379 {
1380 	return b + 1;
1381 }
1382 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1383 
1384 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1385 {
1386 	return b->c;
1387 }
1388 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1389 
1390 static void drop_buffers(struct dm_bufio_client *c)
1391 {
1392 	struct dm_buffer *b;
1393 	int i;
1394 
1395 	BUG_ON(dm_bufio_in_request());
1396 
1397 	/*
1398 	 * An optimization so that the buffers are not written one-by-one.
1399 	 */
1400 	dm_bufio_write_dirty_buffers_async(c);
1401 
1402 	dm_bufio_lock(c);
1403 
1404 	while ((b = __get_unclaimed_buffer(c)))
1405 		__free_buffer_wake(b);
1406 
1407 	for (i = 0; i < LIST_SIZE; i++)
1408 		list_for_each_entry(b, &c->lru[i], lru_list)
1409 			DMERR("leaked buffer %llx, hold count %u, list %d",
1410 			      (unsigned long long)b->block, b->hold_count, i);
1411 
1412 	for (i = 0; i < LIST_SIZE; i++)
1413 		BUG_ON(!list_empty(&c->lru[i]));
1414 
1415 	dm_bufio_unlock(c);
1416 }
1417 
1418 /*
1419  * Test if the buffer is unused and too old, and commit it.
1420  * At if noio is set, we must not do any I/O because we hold
1421  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1422  * different bufio client.
1423  */
1424 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1425 				unsigned long max_jiffies)
1426 {
1427 	if (jiffies - b->last_accessed < max_jiffies)
1428 		return 0;
1429 
1430 	if (!(gfp & __GFP_IO)) {
1431 		if (test_bit(B_READING, &b->state) ||
1432 		    test_bit(B_WRITING, &b->state) ||
1433 		    test_bit(B_DIRTY, &b->state))
1434 			return 0;
1435 	}
1436 
1437 	if (b->hold_count)
1438 		return 0;
1439 
1440 	__make_buffer_clean(b);
1441 	__unlink_buffer(b);
1442 	__free_buffer_wake(b);
1443 
1444 	return 1;
1445 }
1446 
1447 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1448 		   gfp_t gfp_mask)
1449 {
1450 	int l;
1451 	struct dm_buffer *b, *tmp;
1452 	long freed = 0;
1453 
1454 	for (l = 0; l < LIST_SIZE; l++) {
1455 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1456 			freed += __cleanup_old_buffer(b, gfp_mask, 0);
1457 			if (!--nr_to_scan)
1458 				break;
1459 		}
1460 		dm_bufio_cond_resched();
1461 	}
1462 	return freed;
1463 }
1464 
1465 static unsigned long
1466 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1467 {
1468 	struct dm_bufio_client *c;
1469 	unsigned long freed;
1470 
1471 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1472 	if (sc->gfp_mask & __GFP_IO)
1473 		dm_bufio_lock(c);
1474 	else if (!dm_bufio_trylock(c))
1475 		return SHRINK_STOP;
1476 
1477 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1478 	dm_bufio_unlock(c);
1479 	return freed;
1480 }
1481 
1482 static unsigned long
1483 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1484 {
1485 	struct dm_bufio_client *c;
1486 	unsigned long count;
1487 
1488 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1489 	if (sc->gfp_mask & __GFP_IO)
1490 		dm_bufio_lock(c);
1491 	else if (!dm_bufio_trylock(c))
1492 		return 0;
1493 
1494 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1495 	dm_bufio_unlock(c);
1496 	return count;
1497 }
1498 
1499 /*
1500  * Create the buffering interface
1501  */
1502 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1503 					       unsigned reserved_buffers, unsigned aux_size,
1504 					       void (*alloc_callback)(struct dm_buffer *),
1505 					       void (*write_callback)(struct dm_buffer *))
1506 {
1507 	int r;
1508 	struct dm_bufio_client *c;
1509 	unsigned i;
1510 
1511 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1512 	       (block_size & (block_size - 1)));
1513 
1514 	c = kmalloc(sizeof(*c), GFP_KERNEL);
1515 	if (!c) {
1516 		r = -ENOMEM;
1517 		goto bad_client;
1518 	}
1519 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1520 	if (!c->cache_hash) {
1521 		r = -ENOMEM;
1522 		goto bad_hash;
1523 	}
1524 
1525 	c->bdev = bdev;
1526 	c->block_size = block_size;
1527 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1528 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1529 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1530 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1531 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1532 
1533 	c->aux_size = aux_size;
1534 	c->alloc_callback = alloc_callback;
1535 	c->write_callback = write_callback;
1536 
1537 	for (i = 0; i < LIST_SIZE; i++) {
1538 		INIT_LIST_HEAD(&c->lru[i]);
1539 		c->n_buffers[i] = 0;
1540 	}
1541 
1542 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1543 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1544 
1545 	mutex_init(&c->lock);
1546 	INIT_LIST_HEAD(&c->reserved_buffers);
1547 	c->need_reserved_buffers = reserved_buffers;
1548 
1549 	init_waitqueue_head(&c->free_buffer_wait);
1550 	c->async_write_error = 0;
1551 
1552 	c->dm_io = dm_io_client_create();
1553 	if (IS_ERR(c->dm_io)) {
1554 		r = PTR_ERR(c->dm_io);
1555 		goto bad_dm_io;
1556 	}
1557 
1558 	mutex_lock(&dm_bufio_clients_lock);
1559 	if (c->blocks_per_page_bits) {
1560 		if (!DM_BUFIO_CACHE_NAME(c)) {
1561 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1562 			if (!DM_BUFIO_CACHE_NAME(c)) {
1563 				r = -ENOMEM;
1564 				mutex_unlock(&dm_bufio_clients_lock);
1565 				goto bad_cache;
1566 			}
1567 		}
1568 
1569 		if (!DM_BUFIO_CACHE(c)) {
1570 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1571 							      c->block_size,
1572 							      c->block_size, 0, NULL);
1573 			if (!DM_BUFIO_CACHE(c)) {
1574 				r = -ENOMEM;
1575 				mutex_unlock(&dm_bufio_clients_lock);
1576 				goto bad_cache;
1577 			}
1578 		}
1579 	}
1580 	mutex_unlock(&dm_bufio_clients_lock);
1581 
1582 	while (c->need_reserved_buffers) {
1583 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1584 
1585 		if (!b) {
1586 			r = -ENOMEM;
1587 			goto bad_buffer;
1588 		}
1589 		__free_buffer_wake(b);
1590 	}
1591 
1592 	mutex_lock(&dm_bufio_clients_lock);
1593 	dm_bufio_client_count++;
1594 	list_add(&c->client_list, &dm_bufio_all_clients);
1595 	__cache_size_refresh();
1596 	mutex_unlock(&dm_bufio_clients_lock);
1597 
1598 	c->shrinker.count_objects = dm_bufio_shrink_count;
1599 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1600 	c->shrinker.seeks = 1;
1601 	c->shrinker.batch = 0;
1602 	register_shrinker(&c->shrinker);
1603 
1604 	return c;
1605 
1606 bad_buffer:
1607 bad_cache:
1608 	while (!list_empty(&c->reserved_buffers)) {
1609 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1610 						 struct dm_buffer, lru_list);
1611 		list_del(&b->lru_list);
1612 		free_buffer(b);
1613 	}
1614 	dm_io_client_destroy(c->dm_io);
1615 bad_dm_io:
1616 	vfree(c->cache_hash);
1617 bad_hash:
1618 	kfree(c);
1619 bad_client:
1620 	return ERR_PTR(r);
1621 }
1622 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1623 
1624 /*
1625  * Free the buffering interface.
1626  * It is required that there are no references on any buffers.
1627  */
1628 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1629 {
1630 	unsigned i;
1631 
1632 	drop_buffers(c);
1633 
1634 	unregister_shrinker(&c->shrinker);
1635 
1636 	mutex_lock(&dm_bufio_clients_lock);
1637 
1638 	list_del(&c->client_list);
1639 	dm_bufio_client_count--;
1640 	__cache_size_refresh();
1641 
1642 	mutex_unlock(&dm_bufio_clients_lock);
1643 
1644 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1645 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1646 
1647 	BUG_ON(c->need_reserved_buffers);
1648 
1649 	while (!list_empty(&c->reserved_buffers)) {
1650 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1651 						 struct dm_buffer, lru_list);
1652 		list_del(&b->lru_list);
1653 		free_buffer(b);
1654 	}
1655 
1656 	for (i = 0; i < LIST_SIZE; i++)
1657 		if (c->n_buffers[i])
1658 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1659 
1660 	for (i = 0; i < LIST_SIZE; i++)
1661 		BUG_ON(c->n_buffers[i]);
1662 
1663 	dm_io_client_destroy(c->dm_io);
1664 	vfree(c->cache_hash);
1665 	kfree(c);
1666 }
1667 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1668 
1669 static void cleanup_old_buffers(void)
1670 {
1671 	unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1672 	struct dm_bufio_client *c;
1673 
1674 	if (max_age > ULONG_MAX / HZ)
1675 		max_age = ULONG_MAX / HZ;
1676 
1677 	mutex_lock(&dm_bufio_clients_lock);
1678 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1679 		if (!dm_bufio_trylock(c))
1680 			continue;
1681 
1682 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1683 			struct dm_buffer *b;
1684 			b = list_entry(c->lru[LIST_CLEAN].prev,
1685 				       struct dm_buffer, lru_list);
1686 			if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1687 				break;
1688 			dm_bufio_cond_resched();
1689 		}
1690 
1691 		dm_bufio_unlock(c);
1692 		dm_bufio_cond_resched();
1693 	}
1694 	mutex_unlock(&dm_bufio_clients_lock);
1695 }
1696 
1697 static struct workqueue_struct *dm_bufio_wq;
1698 static struct delayed_work dm_bufio_work;
1699 
1700 static void work_fn(struct work_struct *w)
1701 {
1702 	cleanup_old_buffers();
1703 
1704 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1705 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1706 }
1707 
1708 /*----------------------------------------------------------------
1709  * Module setup
1710  *--------------------------------------------------------------*/
1711 
1712 /*
1713  * This is called only once for the whole dm_bufio module.
1714  * It initializes memory limit.
1715  */
1716 static int __init dm_bufio_init(void)
1717 {
1718 	__u64 mem;
1719 
1720 	dm_bufio_allocated_kmem_cache = 0;
1721 	dm_bufio_allocated_get_free_pages = 0;
1722 	dm_bufio_allocated_vmalloc = 0;
1723 	dm_bufio_current_allocated = 0;
1724 
1725 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1726 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1727 
1728 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1729 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1730 
1731 	if (mem > ULONG_MAX)
1732 		mem = ULONG_MAX;
1733 
1734 #ifdef CONFIG_MMU
1735 	/*
1736 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1737 	 * in fs/proc/internal.h
1738 	 */
1739 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1740 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1741 #endif
1742 
1743 	dm_bufio_default_cache_size = mem;
1744 
1745 	mutex_lock(&dm_bufio_clients_lock);
1746 	__cache_size_refresh();
1747 	mutex_unlock(&dm_bufio_clients_lock);
1748 
1749 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1750 	if (!dm_bufio_wq)
1751 		return -ENOMEM;
1752 
1753 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1754 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1755 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * This is called once when unloading the dm_bufio module.
1762  */
1763 static void __exit dm_bufio_exit(void)
1764 {
1765 	int bug = 0;
1766 	int i;
1767 
1768 	cancel_delayed_work_sync(&dm_bufio_work);
1769 	destroy_workqueue(dm_bufio_wq);
1770 
1771 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1772 		struct kmem_cache *kc = dm_bufio_caches[i];
1773 
1774 		if (kc)
1775 			kmem_cache_destroy(kc);
1776 	}
1777 
1778 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1779 		kfree(dm_bufio_cache_names[i]);
1780 
1781 	if (dm_bufio_client_count) {
1782 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1783 			__func__, dm_bufio_client_count);
1784 		bug = 1;
1785 	}
1786 
1787 	if (dm_bufio_current_allocated) {
1788 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1789 			__func__, dm_bufio_current_allocated);
1790 		bug = 1;
1791 	}
1792 
1793 	if (dm_bufio_allocated_get_free_pages) {
1794 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1795 		       __func__, dm_bufio_allocated_get_free_pages);
1796 		bug = 1;
1797 	}
1798 
1799 	if (dm_bufio_allocated_vmalloc) {
1800 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1801 		       __func__, dm_bufio_allocated_vmalloc);
1802 		bug = 1;
1803 	}
1804 
1805 	if (bug)
1806 		BUG();
1807 }
1808 
1809 module_init(dm_bufio_init)
1810 module_exit(dm_bufio_exit)
1811 
1812 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1813 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1814 
1815 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1816 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1817 
1818 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1819 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1820 
1821 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1822 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1823 
1824 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1825 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1826 
1827 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1828 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1829 
1830 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1831 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1832 
1833 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1834 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1835 MODULE_LICENSE("GPL");
1836