xref: /openbmc/linux/drivers/md/dm-bufio.c (revision b96fc2f3)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 
20 #define DM_MSG_PREFIX "bufio"
21 
22 /*
23  * Memory management policy:
24  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28  *	dirty buffers.
29  */
30 #define DM_BUFIO_MIN_BUFFERS		8
31 
32 #define DM_BUFIO_MEMORY_PERCENT		2
33 #define DM_BUFIO_VMALLOC_PERCENT	25
34 #define DM_BUFIO_WRITEBACK_PERCENT	75
35 
36 /*
37  * Check buffer ages in this interval (seconds)
38  */
39 #define DM_BUFIO_WORK_TIMER_SECS	30
40 
41 /*
42  * Free buffers when they are older than this (seconds)
43  */
44 #define DM_BUFIO_DEFAULT_AGE_SECS	300
45 
46 /*
47  * The nr of bytes of cached data to keep around.
48  */
49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
50 
51 /*
52  * The number of bvec entries that are embedded directly in the buffer.
53  * If the chunk size is larger, dm-io is used to do the io.
54  */
55 #define DM_BUFIO_INLINE_VECS		16
56 
57 /*
58  * Don't try to use kmem_cache_alloc for blocks larger than this.
59  * For explanation, see alloc_buffer_data below.
60  */
61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*
72  * Linking of buffers:
73  *	All buffers are linked to cache_hash with their hash_list field.
74  *
75  *	Clean buffers that are not being written (B_WRITING not set)
76  *	are linked to lru[LIST_CLEAN] with their lru_list field.
77  *
78  *	Dirty and clean buffers that are being written are linked to
79  *	lru[LIST_DIRTY] with their lru_list field. When the write
80  *	finishes, the buffer cannot be relinked immediately (because we
81  *	are in an interrupt context and relinking requires process
82  *	context), so some clean-not-writing buffers can be held on
83  *	dirty_lru too.  They are later added to lru in the process
84  *	context.
85  */
86 struct dm_bufio_client {
87 	struct mutex lock;
88 
89 	struct list_head lru[LIST_SIZE];
90 	unsigned long n_buffers[LIST_SIZE];
91 
92 	struct block_device *bdev;
93 	unsigned block_size;
94 	unsigned char sectors_per_block_bits;
95 	unsigned char pages_per_block_bits;
96 	unsigned char blocks_per_page_bits;
97 	unsigned aux_size;
98 	void (*alloc_callback)(struct dm_buffer *);
99 	void (*write_callback)(struct dm_buffer *);
100 
101 	struct dm_io_client *dm_io;
102 
103 	struct list_head reserved_buffers;
104 	unsigned need_reserved_buffers;
105 
106 	unsigned minimum_buffers;
107 
108 	struct rb_root buffer_tree;
109 	wait_queue_head_t free_buffer_wait;
110 
111 	int async_write_error;
112 
113 	struct list_head client_list;
114 	struct shrinker shrinker;
115 };
116 
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING	0
121 #define B_WRITING	1
122 #define B_DIRTY		2
123 
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130 	DATA_MODE_SLAB = 0,
131 	DATA_MODE_GET_FREE_PAGES = 1,
132 	DATA_MODE_VMALLOC = 2,
133 	DATA_MODE_LIMIT = 3
134 };
135 
136 struct dm_buffer {
137 	struct rb_node node;
138 	struct list_head lru_list;
139 	sector_t block;
140 	void *data;
141 	enum data_mode data_mode;
142 	unsigned char list_mode;		/* LIST_* */
143 	unsigned hold_count;
144 	int read_error;
145 	int write_error;
146 	unsigned long state;
147 	unsigned long last_accessed;
148 	struct dm_bufio_client *c;
149 	struct list_head write_list;
150 	struct bio bio;
151 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152 };
153 
154 /*----------------------------------------------------------------*/
155 
156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158 
159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 {
161 	unsigned ret = c->blocks_per_page_bits - 1;
162 
163 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164 
165 	return ret;
166 }
167 
168 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
169 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
170 
171 #define dm_bufio_in_request()	(!!current->bio_list)
172 
173 static void dm_bufio_lock(struct dm_bufio_client *c)
174 {
175 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
176 }
177 
178 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 {
180 	return mutex_trylock(&c->lock);
181 }
182 
183 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 {
185 	mutex_unlock(&c->lock);
186 }
187 
188 /*
189  * FIXME Move to sched.h?
190  */
191 #ifdef CONFIG_PREEMPT_VOLUNTARY
192 #  define dm_bufio_cond_resched()		\
193 do {						\
194 	if (unlikely(need_resched()))		\
195 		_cond_resched();		\
196 } while (0)
197 #else
198 #  define dm_bufio_cond_resched()                do { } while (0)
199 #endif
200 
201 /*----------------------------------------------------------------*/
202 
203 /*
204  * Default cache size: available memory divided by the ratio.
205  */
206 static unsigned long dm_bufio_default_cache_size;
207 
208 /*
209  * Total cache size set by the user.
210  */
211 static unsigned long dm_bufio_cache_size;
212 
213 /*
214  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215  * at any time.  If it disagrees, the user has changed cache size.
216  */
217 static unsigned long dm_bufio_cache_size_latch;
218 
219 static DEFINE_SPINLOCK(param_spinlock);
220 
221 /*
222  * Buffers are freed after this timeout
223  */
224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226 
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232 
233 /*----------------------------------------------------------------*/
234 
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239 
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244 
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249 
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255 
256 /*----------------------------------------------------------------
257  * A red/black tree acts as an index for all the buffers.
258  *--------------------------------------------------------------*/
259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260 {
261 	struct rb_node *n = c->buffer_tree.rb_node;
262 	struct dm_buffer *b;
263 
264 	while (n) {
265 		b = container_of(n, struct dm_buffer, node);
266 
267 		if (b->block == block)
268 			return b;
269 
270 		n = (b->block < block) ? n->rb_left : n->rb_right;
271 	}
272 
273 	return NULL;
274 }
275 
276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277 {
278 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279 	struct dm_buffer *found;
280 
281 	while (*new) {
282 		found = container_of(*new, struct dm_buffer, node);
283 
284 		if (found->block == b->block) {
285 			BUG_ON(found != b);
286 			return;
287 		}
288 
289 		parent = *new;
290 		new = (found->block < b->block) ?
291 			&((*new)->rb_left) : &((*new)->rb_right);
292 	}
293 
294 	rb_link_node(&b->node, parent, new);
295 	rb_insert_color(&b->node, &c->buffer_tree);
296 }
297 
298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299 {
300 	rb_erase(&b->node, &c->buffer_tree);
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 static void adjust_total_allocated(enum data_mode data_mode, long diff)
306 {
307 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308 		&dm_bufio_allocated_kmem_cache,
309 		&dm_bufio_allocated_get_free_pages,
310 		&dm_bufio_allocated_vmalloc,
311 	};
312 
313 	spin_lock(&param_spinlock);
314 
315 	*class_ptr[data_mode] += diff;
316 
317 	dm_bufio_current_allocated += diff;
318 
319 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
321 
322 	spin_unlock(&param_spinlock);
323 }
324 
325 /*
326  * Change the number of clients and recalculate per-client limit.
327  */
328 static void __cache_size_refresh(void)
329 {
330 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331 	BUG_ON(dm_bufio_client_count < 0);
332 
333 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334 
335 	/*
336 	 * Use default if set to 0 and report the actual cache size used.
337 	 */
338 	if (!dm_bufio_cache_size_latch) {
339 		(void)cmpxchg(&dm_bufio_cache_size, 0,
340 			      dm_bufio_default_cache_size);
341 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342 	}
343 
344 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345 					 (dm_bufio_client_count ? : 1);
346 }
347 
348 /*
349  * Allocating buffer data.
350  *
351  * Small buffers are allocated with kmem_cache, to use space optimally.
352  *
353  * For large buffers, we choose between get_free_pages and vmalloc.
354  * Each has advantages and disadvantages.
355  *
356  * __get_free_pages can randomly fail if the memory is fragmented.
357  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358  * as low as 128M) so using it for caching is not appropriate.
359  *
360  * If the allocation may fail we use __get_free_pages. Memory fragmentation
361  * won't have a fatal effect here, but it just causes flushes of some other
362  * buffers and more I/O will be performed. Don't use __get_free_pages if it
363  * always fails (i.e. order >= MAX_ORDER).
364  *
365  * If the allocation shouldn't fail we use __vmalloc. This is only for the
366  * initial reserve allocation, so there's no risk of wasting all vmalloc
367  * space.
368  */
369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370 			       enum data_mode *data_mode)
371 {
372 	unsigned noio_flag;
373 	void *ptr;
374 
375 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376 		*data_mode = DATA_MODE_SLAB;
377 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378 	}
379 
380 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381 	    gfp_mask & __GFP_NORETRY) {
382 		*data_mode = DATA_MODE_GET_FREE_PAGES;
383 		return (void *)__get_free_pages(gfp_mask,
384 						c->pages_per_block_bits);
385 	}
386 
387 	*data_mode = DATA_MODE_VMALLOC;
388 
389 	/*
390 	 * __vmalloc allocates the data pages and auxiliary structures with
391 	 * gfp_flags that were specified, but pagetables are always allocated
392 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
393 	 *
394 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395 	 * all allocations done by this process (including pagetables) are done
396 	 * as if GFP_NOIO was specified.
397 	 */
398 
399 	if (gfp_mask & __GFP_NORETRY)
400 		noio_flag = memalloc_noio_save();
401 
402 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403 
404 	if (gfp_mask & __GFP_NORETRY)
405 		memalloc_noio_restore(noio_flag);
406 
407 	return ptr;
408 }
409 
410 /*
411  * Free buffer's data.
412  */
413 static void free_buffer_data(struct dm_bufio_client *c,
414 			     void *data, enum data_mode data_mode)
415 {
416 	switch (data_mode) {
417 	case DATA_MODE_SLAB:
418 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
419 		break;
420 
421 	case DATA_MODE_GET_FREE_PAGES:
422 		free_pages((unsigned long)data, c->pages_per_block_bits);
423 		break;
424 
425 	case DATA_MODE_VMALLOC:
426 		vfree(data);
427 		break;
428 
429 	default:
430 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431 		       data_mode);
432 		BUG();
433 	}
434 }
435 
436 /*
437  * Allocate buffer and its data.
438  */
439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440 {
441 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442 				      gfp_mask);
443 
444 	if (!b)
445 		return NULL;
446 
447 	b->c = c;
448 
449 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450 	if (!b->data) {
451 		kfree(b);
452 		return NULL;
453 	}
454 
455 	adjust_total_allocated(b->data_mode, (long)c->block_size);
456 
457 	return b;
458 }
459 
460 /*
461  * Free buffer and its data.
462  */
463 static void free_buffer(struct dm_buffer *b)
464 {
465 	struct dm_bufio_client *c = b->c;
466 
467 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
468 
469 	free_buffer_data(c, b->data, b->data_mode);
470 	kfree(b);
471 }
472 
473 /*
474  * Link buffer to the hash list and clean or dirty queue.
475  */
476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477 {
478 	struct dm_bufio_client *c = b->c;
479 
480 	c->n_buffers[dirty]++;
481 	b->block = block;
482 	b->list_mode = dirty;
483 	list_add(&b->lru_list, &c->lru[dirty]);
484 	__insert(b->c, b);
485 	b->last_accessed = jiffies;
486 }
487 
488 /*
489  * Unlink buffer from the hash list and dirty or clean queue.
490  */
491 static void __unlink_buffer(struct dm_buffer *b)
492 {
493 	struct dm_bufio_client *c = b->c;
494 
495 	BUG_ON(!c->n_buffers[b->list_mode]);
496 
497 	c->n_buffers[b->list_mode]--;
498 	__remove(b->c, b);
499 	list_del(&b->lru_list);
500 }
501 
502 /*
503  * Place the buffer to the head of dirty or clean LRU queue.
504  */
505 static void __relink_lru(struct dm_buffer *b, int dirty)
506 {
507 	struct dm_bufio_client *c = b->c;
508 
509 	BUG_ON(!c->n_buffers[b->list_mode]);
510 
511 	c->n_buffers[b->list_mode]--;
512 	c->n_buffers[dirty]++;
513 	b->list_mode = dirty;
514 	list_move(&b->lru_list, &c->lru[dirty]);
515 	b->last_accessed = jiffies;
516 }
517 
518 /*----------------------------------------------------------------
519  * Submit I/O on the buffer.
520  *
521  * Bio interface is faster but it has some problems:
522  *	the vector list is limited (increasing this limit increases
523  *	memory-consumption per buffer, so it is not viable);
524  *
525  *	the memory must be direct-mapped, not vmalloced;
526  *
527  *	the I/O driver can reject requests spuriously if it thinks that
528  *	the requests are too big for the device or if they cross a
529  *	controller-defined memory boundary.
530  *
531  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532  * it is not vmalloced, try using the bio interface.
533  *
534  * If the buffer is big, if it is vmalloced or if the underlying device
535  * rejects the bio because it is too large, use dm-io layer to do the I/O.
536  * The dm-io layer splits the I/O into multiple requests, avoiding the above
537  * shortcomings.
538  *--------------------------------------------------------------*/
539 
540 /*
541  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542  * that the request was handled directly with bio interface.
543  */
544 static void dmio_complete(unsigned long error, void *context)
545 {
546 	struct dm_buffer *b = context;
547 
548 	b->bio.bi_error = error ? -EIO : 0;
549 	b->bio.bi_end_io(&b->bio);
550 }
551 
552 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
553 		     bio_end_io_t *end_io)
554 {
555 	int r;
556 	struct dm_io_request io_req = {
557 		.bi_rw = rw,
558 		.notify.fn = dmio_complete,
559 		.notify.context = b,
560 		.client = b->c->dm_io,
561 	};
562 	struct dm_io_region region = {
563 		.bdev = b->c->bdev,
564 		.sector = block << b->c->sectors_per_block_bits,
565 		.count = b->c->block_size >> SECTOR_SHIFT,
566 	};
567 
568 	if (b->data_mode != DATA_MODE_VMALLOC) {
569 		io_req.mem.type = DM_IO_KMEM;
570 		io_req.mem.ptr.addr = b->data;
571 	} else {
572 		io_req.mem.type = DM_IO_VMA;
573 		io_req.mem.ptr.vma = b->data;
574 	}
575 
576 	b->bio.bi_end_io = end_io;
577 
578 	r = dm_io(&io_req, 1, &region, NULL);
579 	if (r) {
580 		b->bio.bi_error = r;
581 		end_io(&b->bio);
582 	}
583 }
584 
585 static void inline_endio(struct bio *bio)
586 {
587 	bio_end_io_t *end_fn = bio->bi_private;
588 	int error = bio->bi_error;
589 
590 	/*
591 	 * Reset the bio to free any attached resources
592 	 * (e.g. bio integrity profiles).
593 	 */
594 	bio_reset(bio);
595 
596 	bio->bi_error = error;
597 	end_fn(bio);
598 }
599 
600 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
601 			   bio_end_io_t *end_io)
602 {
603 	char *ptr;
604 	int len;
605 
606 	bio_init(&b->bio);
607 	b->bio.bi_io_vec = b->bio_vec;
608 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
609 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
610 	b->bio.bi_bdev = b->c->bdev;
611 	b->bio.bi_end_io = inline_endio;
612 	/*
613 	 * Use of .bi_private isn't a problem here because
614 	 * the dm_buffer's inline bio is local to bufio.
615 	 */
616 	b->bio.bi_private = end_io;
617 
618 	/*
619 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
620 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
621 	 */
622 	ptr = b->data;
623 	len = b->c->block_size;
624 
625 	if (len >= PAGE_SIZE)
626 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
627 	else
628 		BUG_ON((unsigned long)ptr & (len - 1));
629 
630 	do {
631 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
632 				  len < PAGE_SIZE ? len : PAGE_SIZE,
633 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
634 			BUG_ON(b->c->block_size <= PAGE_SIZE);
635 			use_dmio(b, rw, block, end_io);
636 			return;
637 		}
638 
639 		len -= PAGE_SIZE;
640 		ptr += PAGE_SIZE;
641 	} while (len > 0);
642 
643 	submit_bio(rw, &b->bio);
644 }
645 
646 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
647 		      bio_end_io_t *end_io)
648 {
649 	if (rw == WRITE && b->c->write_callback)
650 		b->c->write_callback(b);
651 
652 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
653 	    b->data_mode != DATA_MODE_VMALLOC)
654 		use_inline_bio(b, rw, block, end_io);
655 	else
656 		use_dmio(b, rw, block, end_io);
657 }
658 
659 /*----------------------------------------------------------------
660  * Writing dirty buffers
661  *--------------------------------------------------------------*/
662 
663 /*
664  * The endio routine for write.
665  *
666  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
667  * it.
668  */
669 static void write_endio(struct bio *bio)
670 {
671 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
672 
673 	b->write_error = bio->bi_error;
674 	if (unlikely(bio->bi_error)) {
675 		struct dm_bufio_client *c = b->c;
676 		int error = bio->bi_error;
677 		(void)cmpxchg(&c->async_write_error, 0, error);
678 	}
679 
680 	BUG_ON(!test_bit(B_WRITING, &b->state));
681 
682 	smp_mb__before_atomic();
683 	clear_bit(B_WRITING, &b->state);
684 	smp_mb__after_atomic();
685 
686 	wake_up_bit(&b->state, B_WRITING);
687 }
688 
689 /*
690  * Initiate a write on a dirty buffer, but don't wait for it.
691  *
692  * - If the buffer is not dirty, exit.
693  * - If there some previous write going on, wait for it to finish (we can't
694  *   have two writes on the same buffer simultaneously).
695  * - Submit our write and don't wait on it. We set B_WRITING indicating
696  *   that there is a write in progress.
697  */
698 static void __write_dirty_buffer(struct dm_buffer *b,
699 				 struct list_head *write_list)
700 {
701 	if (!test_bit(B_DIRTY, &b->state))
702 		return;
703 
704 	clear_bit(B_DIRTY, &b->state);
705 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
706 
707 	if (!write_list)
708 		submit_io(b, WRITE, b->block, write_endio);
709 	else
710 		list_add_tail(&b->write_list, write_list);
711 }
712 
713 static void __flush_write_list(struct list_head *write_list)
714 {
715 	struct blk_plug plug;
716 	blk_start_plug(&plug);
717 	while (!list_empty(write_list)) {
718 		struct dm_buffer *b =
719 			list_entry(write_list->next, struct dm_buffer, write_list);
720 		list_del(&b->write_list);
721 		submit_io(b, WRITE, b->block, write_endio);
722 		dm_bufio_cond_resched();
723 	}
724 	blk_finish_plug(&plug);
725 }
726 
727 /*
728  * Wait until any activity on the buffer finishes.  Possibly write the
729  * buffer if it is dirty.  When this function finishes, there is no I/O
730  * running on the buffer and the buffer is not dirty.
731  */
732 static void __make_buffer_clean(struct dm_buffer *b)
733 {
734 	BUG_ON(b->hold_count);
735 
736 	if (!b->state)	/* fast case */
737 		return;
738 
739 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
740 	__write_dirty_buffer(b, NULL);
741 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
742 }
743 
744 /*
745  * Find some buffer that is not held by anybody, clean it, unlink it and
746  * return it.
747  */
748 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
749 {
750 	struct dm_buffer *b;
751 
752 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
753 		BUG_ON(test_bit(B_WRITING, &b->state));
754 		BUG_ON(test_bit(B_DIRTY, &b->state));
755 
756 		if (!b->hold_count) {
757 			__make_buffer_clean(b);
758 			__unlink_buffer(b);
759 			return b;
760 		}
761 		dm_bufio_cond_resched();
762 	}
763 
764 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
765 		BUG_ON(test_bit(B_READING, &b->state));
766 
767 		if (!b->hold_count) {
768 			__make_buffer_clean(b);
769 			__unlink_buffer(b);
770 			return b;
771 		}
772 		dm_bufio_cond_resched();
773 	}
774 
775 	return NULL;
776 }
777 
778 /*
779  * Wait until some other threads free some buffer or release hold count on
780  * some buffer.
781  *
782  * This function is entered with c->lock held, drops it and regains it
783  * before exiting.
784  */
785 static void __wait_for_free_buffer(struct dm_bufio_client *c)
786 {
787 	DECLARE_WAITQUEUE(wait, current);
788 
789 	add_wait_queue(&c->free_buffer_wait, &wait);
790 	set_task_state(current, TASK_UNINTERRUPTIBLE);
791 	dm_bufio_unlock(c);
792 
793 	io_schedule();
794 
795 	remove_wait_queue(&c->free_buffer_wait, &wait);
796 
797 	dm_bufio_lock(c);
798 }
799 
800 enum new_flag {
801 	NF_FRESH = 0,
802 	NF_READ = 1,
803 	NF_GET = 2,
804 	NF_PREFETCH = 3
805 };
806 
807 /*
808  * Allocate a new buffer. If the allocation is not possible, wait until
809  * some other thread frees a buffer.
810  *
811  * May drop the lock and regain it.
812  */
813 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
814 {
815 	struct dm_buffer *b;
816 
817 	/*
818 	 * dm-bufio is resistant to allocation failures (it just keeps
819 	 * one buffer reserved in cases all the allocations fail).
820 	 * So set flags to not try too hard:
821 	 *	GFP_NOIO: don't recurse into the I/O layer
822 	 *	__GFP_NORETRY: don't retry and rather return failure
823 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
824 	 *	__GFP_NOWARN: don't print a warning in case of failure
825 	 *
826 	 * For debugging, if we set the cache size to 1, no new buffers will
827 	 * be allocated.
828 	 */
829 	while (1) {
830 		if (dm_bufio_cache_size_latch != 1) {
831 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
832 			if (b)
833 				return b;
834 		}
835 
836 		if (nf == NF_PREFETCH)
837 			return NULL;
838 
839 		if (!list_empty(&c->reserved_buffers)) {
840 			b = list_entry(c->reserved_buffers.next,
841 				       struct dm_buffer, lru_list);
842 			list_del(&b->lru_list);
843 			c->need_reserved_buffers++;
844 
845 			return b;
846 		}
847 
848 		b = __get_unclaimed_buffer(c);
849 		if (b)
850 			return b;
851 
852 		__wait_for_free_buffer(c);
853 	}
854 }
855 
856 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
857 {
858 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
859 
860 	if (!b)
861 		return NULL;
862 
863 	if (c->alloc_callback)
864 		c->alloc_callback(b);
865 
866 	return b;
867 }
868 
869 /*
870  * Free a buffer and wake other threads waiting for free buffers.
871  */
872 static void __free_buffer_wake(struct dm_buffer *b)
873 {
874 	struct dm_bufio_client *c = b->c;
875 
876 	if (!c->need_reserved_buffers)
877 		free_buffer(b);
878 	else {
879 		list_add(&b->lru_list, &c->reserved_buffers);
880 		c->need_reserved_buffers--;
881 	}
882 
883 	wake_up(&c->free_buffer_wait);
884 }
885 
886 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
887 					struct list_head *write_list)
888 {
889 	struct dm_buffer *b, *tmp;
890 
891 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
892 		BUG_ON(test_bit(B_READING, &b->state));
893 
894 		if (!test_bit(B_DIRTY, &b->state) &&
895 		    !test_bit(B_WRITING, &b->state)) {
896 			__relink_lru(b, LIST_CLEAN);
897 			continue;
898 		}
899 
900 		if (no_wait && test_bit(B_WRITING, &b->state))
901 			return;
902 
903 		__write_dirty_buffer(b, write_list);
904 		dm_bufio_cond_resched();
905 	}
906 }
907 
908 /*
909  * Get writeback threshold and buffer limit for a given client.
910  */
911 static void __get_memory_limit(struct dm_bufio_client *c,
912 			       unsigned long *threshold_buffers,
913 			       unsigned long *limit_buffers)
914 {
915 	unsigned long buffers;
916 
917 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
918 		mutex_lock(&dm_bufio_clients_lock);
919 		__cache_size_refresh();
920 		mutex_unlock(&dm_bufio_clients_lock);
921 	}
922 
923 	buffers = dm_bufio_cache_size_per_client >>
924 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
925 
926 	if (buffers < c->minimum_buffers)
927 		buffers = c->minimum_buffers;
928 
929 	*limit_buffers = buffers;
930 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
931 }
932 
933 /*
934  * Check if we're over watermark.
935  * If we are over threshold_buffers, start freeing buffers.
936  * If we're over "limit_buffers", block until we get under the limit.
937  */
938 static void __check_watermark(struct dm_bufio_client *c,
939 			      struct list_head *write_list)
940 {
941 	unsigned long threshold_buffers, limit_buffers;
942 
943 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
944 
945 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
946 	       limit_buffers) {
947 
948 		struct dm_buffer *b = __get_unclaimed_buffer(c);
949 
950 		if (!b)
951 			return;
952 
953 		__free_buffer_wake(b);
954 		dm_bufio_cond_resched();
955 	}
956 
957 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
958 		__write_dirty_buffers_async(c, 1, write_list);
959 }
960 
961 /*----------------------------------------------------------------
962  * Getting a buffer
963  *--------------------------------------------------------------*/
964 
965 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
966 				     enum new_flag nf, int *need_submit,
967 				     struct list_head *write_list)
968 {
969 	struct dm_buffer *b, *new_b = NULL;
970 
971 	*need_submit = 0;
972 
973 	b = __find(c, block);
974 	if (b)
975 		goto found_buffer;
976 
977 	if (nf == NF_GET)
978 		return NULL;
979 
980 	new_b = __alloc_buffer_wait(c, nf);
981 	if (!new_b)
982 		return NULL;
983 
984 	/*
985 	 * We've had a period where the mutex was unlocked, so need to
986 	 * recheck the hash table.
987 	 */
988 	b = __find(c, block);
989 	if (b) {
990 		__free_buffer_wake(new_b);
991 		goto found_buffer;
992 	}
993 
994 	__check_watermark(c, write_list);
995 
996 	b = new_b;
997 	b->hold_count = 1;
998 	b->read_error = 0;
999 	b->write_error = 0;
1000 	__link_buffer(b, block, LIST_CLEAN);
1001 
1002 	if (nf == NF_FRESH) {
1003 		b->state = 0;
1004 		return b;
1005 	}
1006 
1007 	b->state = 1 << B_READING;
1008 	*need_submit = 1;
1009 
1010 	return b;
1011 
1012 found_buffer:
1013 	if (nf == NF_PREFETCH)
1014 		return NULL;
1015 	/*
1016 	 * Note: it is essential that we don't wait for the buffer to be
1017 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1018 	 * dm_bufio_prefetch can be used in the driver request routine.
1019 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1020 	 * the same buffer, it would deadlock if we waited.
1021 	 */
1022 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1023 		return NULL;
1024 
1025 	b->hold_count++;
1026 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1027 		     test_bit(B_WRITING, &b->state));
1028 	return b;
1029 }
1030 
1031 /*
1032  * The endio routine for reading: set the error, clear the bit and wake up
1033  * anyone waiting on the buffer.
1034  */
1035 static void read_endio(struct bio *bio)
1036 {
1037 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1038 
1039 	b->read_error = bio->bi_error;
1040 
1041 	BUG_ON(!test_bit(B_READING, &b->state));
1042 
1043 	smp_mb__before_atomic();
1044 	clear_bit(B_READING, &b->state);
1045 	smp_mb__after_atomic();
1046 
1047 	wake_up_bit(&b->state, B_READING);
1048 }
1049 
1050 /*
1051  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1052  * functions is similar except that dm_bufio_new doesn't read the
1053  * buffer from the disk (assuming that the caller overwrites all the data
1054  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1055  */
1056 static void *new_read(struct dm_bufio_client *c, sector_t block,
1057 		      enum new_flag nf, struct dm_buffer **bp)
1058 {
1059 	int need_submit;
1060 	struct dm_buffer *b;
1061 
1062 	LIST_HEAD(write_list);
1063 
1064 	dm_bufio_lock(c);
1065 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1066 	dm_bufio_unlock(c);
1067 
1068 	__flush_write_list(&write_list);
1069 
1070 	if (!b)
1071 		return b;
1072 
1073 	if (need_submit)
1074 		submit_io(b, READ, b->block, read_endio);
1075 
1076 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1077 
1078 	if (b->read_error) {
1079 		int error = b->read_error;
1080 
1081 		dm_bufio_release(b);
1082 
1083 		return ERR_PTR(error);
1084 	}
1085 
1086 	*bp = b;
1087 
1088 	return b->data;
1089 }
1090 
1091 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1092 		   struct dm_buffer **bp)
1093 {
1094 	return new_read(c, block, NF_GET, bp);
1095 }
1096 EXPORT_SYMBOL_GPL(dm_bufio_get);
1097 
1098 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1099 		    struct dm_buffer **bp)
1100 {
1101 	BUG_ON(dm_bufio_in_request());
1102 
1103 	return new_read(c, block, NF_READ, bp);
1104 }
1105 EXPORT_SYMBOL_GPL(dm_bufio_read);
1106 
1107 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1108 		   struct dm_buffer **bp)
1109 {
1110 	BUG_ON(dm_bufio_in_request());
1111 
1112 	return new_read(c, block, NF_FRESH, bp);
1113 }
1114 EXPORT_SYMBOL_GPL(dm_bufio_new);
1115 
1116 void dm_bufio_prefetch(struct dm_bufio_client *c,
1117 		       sector_t block, unsigned n_blocks)
1118 {
1119 	struct blk_plug plug;
1120 
1121 	LIST_HEAD(write_list);
1122 
1123 	BUG_ON(dm_bufio_in_request());
1124 
1125 	blk_start_plug(&plug);
1126 	dm_bufio_lock(c);
1127 
1128 	for (; n_blocks--; block++) {
1129 		int need_submit;
1130 		struct dm_buffer *b;
1131 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1132 				&write_list);
1133 		if (unlikely(!list_empty(&write_list))) {
1134 			dm_bufio_unlock(c);
1135 			blk_finish_plug(&plug);
1136 			__flush_write_list(&write_list);
1137 			blk_start_plug(&plug);
1138 			dm_bufio_lock(c);
1139 		}
1140 		if (unlikely(b != NULL)) {
1141 			dm_bufio_unlock(c);
1142 
1143 			if (need_submit)
1144 				submit_io(b, READ, b->block, read_endio);
1145 			dm_bufio_release(b);
1146 
1147 			dm_bufio_cond_resched();
1148 
1149 			if (!n_blocks)
1150 				goto flush_plug;
1151 			dm_bufio_lock(c);
1152 		}
1153 	}
1154 
1155 	dm_bufio_unlock(c);
1156 
1157 flush_plug:
1158 	blk_finish_plug(&plug);
1159 }
1160 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1161 
1162 void dm_bufio_release(struct dm_buffer *b)
1163 {
1164 	struct dm_bufio_client *c = b->c;
1165 
1166 	dm_bufio_lock(c);
1167 
1168 	BUG_ON(!b->hold_count);
1169 
1170 	b->hold_count--;
1171 	if (!b->hold_count) {
1172 		wake_up(&c->free_buffer_wait);
1173 
1174 		/*
1175 		 * If there were errors on the buffer, and the buffer is not
1176 		 * to be written, free the buffer. There is no point in caching
1177 		 * invalid buffer.
1178 		 */
1179 		if ((b->read_error || b->write_error) &&
1180 		    !test_bit(B_READING, &b->state) &&
1181 		    !test_bit(B_WRITING, &b->state) &&
1182 		    !test_bit(B_DIRTY, &b->state)) {
1183 			__unlink_buffer(b);
1184 			__free_buffer_wake(b);
1185 		}
1186 	}
1187 
1188 	dm_bufio_unlock(c);
1189 }
1190 EXPORT_SYMBOL_GPL(dm_bufio_release);
1191 
1192 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1193 {
1194 	struct dm_bufio_client *c = b->c;
1195 
1196 	dm_bufio_lock(c);
1197 
1198 	BUG_ON(test_bit(B_READING, &b->state));
1199 
1200 	if (!test_and_set_bit(B_DIRTY, &b->state))
1201 		__relink_lru(b, LIST_DIRTY);
1202 
1203 	dm_bufio_unlock(c);
1204 }
1205 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1206 
1207 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1208 {
1209 	LIST_HEAD(write_list);
1210 
1211 	BUG_ON(dm_bufio_in_request());
1212 
1213 	dm_bufio_lock(c);
1214 	__write_dirty_buffers_async(c, 0, &write_list);
1215 	dm_bufio_unlock(c);
1216 	__flush_write_list(&write_list);
1217 }
1218 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1219 
1220 /*
1221  * For performance, it is essential that the buffers are written asynchronously
1222  * and simultaneously (so that the block layer can merge the writes) and then
1223  * waited upon.
1224  *
1225  * Finally, we flush hardware disk cache.
1226  */
1227 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1228 {
1229 	int a, f;
1230 	unsigned long buffers_processed = 0;
1231 	struct dm_buffer *b, *tmp;
1232 
1233 	LIST_HEAD(write_list);
1234 
1235 	dm_bufio_lock(c);
1236 	__write_dirty_buffers_async(c, 0, &write_list);
1237 	dm_bufio_unlock(c);
1238 	__flush_write_list(&write_list);
1239 	dm_bufio_lock(c);
1240 
1241 again:
1242 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1243 		int dropped_lock = 0;
1244 
1245 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1246 			buffers_processed++;
1247 
1248 		BUG_ON(test_bit(B_READING, &b->state));
1249 
1250 		if (test_bit(B_WRITING, &b->state)) {
1251 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1252 				dropped_lock = 1;
1253 				b->hold_count++;
1254 				dm_bufio_unlock(c);
1255 				wait_on_bit_io(&b->state, B_WRITING,
1256 					       TASK_UNINTERRUPTIBLE);
1257 				dm_bufio_lock(c);
1258 				b->hold_count--;
1259 			} else
1260 				wait_on_bit_io(&b->state, B_WRITING,
1261 					       TASK_UNINTERRUPTIBLE);
1262 		}
1263 
1264 		if (!test_bit(B_DIRTY, &b->state) &&
1265 		    !test_bit(B_WRITING, &b->state))
1266 			__relink_lru(b, LIST_CLEAN);
1267 
1268 		dm_bufio_cond_resched();
1269 
1270 		/*
1271 		 * If we dropped the lock, the list is no longer consistent,
1272 		 * so we must restart the search.
1273 		 *
1274 		 * In the most common case, the buffer just processed is
1275 		 * relinked to the clean list, so we won't loop scanning the
1276 		 * same buffer again and again.
1277 		 *
1278 		 * This may livelock if there is another thread simultaneously
1279 		 * dirtying buffers, so we count the number of buffers walked
1280 		 * and if it exceeds the total number of buffers, it means that
1281 		 * someone is doing some writes simultaneously with us.  In
1282 		 * this case, stop, dropping the lock.
1283 		 */
1284 		if (dropped_lock)
1285 			goto again;
1286 	}
1287 	wake_up(&c->free_buffer_wait);
1288 	dm_bufio_unlock(c);
1289 
1290 	a = xchg(&c->async_write_error, 0);
1291 	f = dm_bufio_issue_flush(c);
1292 	if (a)
1293 		return a;
1294 
1295 	return f;
1296 }
1297 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1298 
1299 /*
1300  * Use dm-io to send and empty barrier flush the device.
1301  */
1302 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1303 {
1304 	struct dm_io_request io_req = {
1305 		.bi_rw = WRITE_FLUSH,
1306 		.mem.type = DM_IO_KMEM,
1307 		.mem.ptr.addr = NULL,
1308 		.client = c->dm_io,
1309 	};
1310 	struct dm_io_region io_reg = {
1311 		.bdev = c->bdev,
1312 		.sector = 0,
1313 		.count = 0,
1314 	};
1315 
1316 	BUG_ON(dm_bufio_in_request());
1317 
1318 	return dm_io(&io_req, 1, &io_reg, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1321 
1322 /*
1323  * We first delete any other buffer that may be at that new location.
1324  *
1325  * Then, we write the buffer to the original location if it was dirty.
1326  *
1327  * Then, if we are the only one who is holding the buffer, relink the buffer
1328  * in the hash queue for the new location.
1329  *
1330  * If there was someone else holding the buffer, we write it to the new
1331  * location but not relink it, because that other user needs to have the buffer
1332  * at the same place.
1333  */
1334 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1335 {
1336 	struct dm_bufio_client *c = b->c;
1337 	struct dm_buffer *new;
1338 
1339 	BUG_ON(dm_bufio_in_request());
1340 
1341 	dm_bufio_lock(c);
1342 
1343 retry:
1344 	new = __find(c, new_block);
1345 	if (new) {
1346 		if (new->hold_count) {
1347 			__wait_for_free_buffer(c);
1348 			goto retry;
1349 		}
1350 
1351 		/*
1352 		 * FIXME: Is there any point waiting for a write that's going
1353 		 * to be overwritten in a bit?
1354 		 */
1355 		__make_buffer_clean(new);
1356 		__unlink_buffer(new);
1357 		__free_buffer_wake(new);
1358 	}
1359 
1360 	BUG_ON(!b->hold_count);
1361 	BUG_ON(test_bit(B_READING, &b->state));
1362 
1363 	__write_dirty_buffer(b, NULL);
1364 	if (b->hold_count == 1) {
1365 		wait_on_bit_io(&b->state, B_WRITING,
1366 			       TASK_UNINTERRUPTIBLE);
1367 		set_bit(B_DIRTY, &b->state);
1368 		__unlink_buffer(b);
1369 		__link_buffer(b, new_block, LIST_DIRTY);
1370 	} else {
1371 		sector_t old_block;
1372 		wait_on_bit_lock_io(&b->state, B_WRITING,
1373 				    TASK_UNINTERRUPTIBLE);
1374 		/*
1375 		 * Relink buffer to "new_block" so that write_callback
1376 		 * sees "new_block" as a block number.
1377 		 * After the write, link the buffer back to old_block.
1378 		 * All this must be done in bufio lock, so that block number
1379 		 * change isn't visible to other threads.
1380 		 */
1381 		old_block = b->block;
1382 		__unlink_buffer(b);
1383 		__link_buffer(b, new_block, b->list_mode);
1384 		submit_io(b, WRITE, new_block, write_endio);
1385 		wait_on_bit_io(&b->state, B_WRITING,
1386 			       TASK_UNINTERRUPTIBLE);
1387 		__unlink_buffer(b);
1388 		__link_buffer(b, old_block, b->list_mode);
1389 	}
1390 
1391 	dm_bufio_unlock(c);
1392 	dm_bufio_release(b);
1393 }
1394 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1395 
1396 /*
1397  * Free the given buffer.
1398  *
1399  * This is just a hint, if the buffer is in use or dirty, this function
1400  * does nothing.
1401  */
1402 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1403 {
1404 	struct dm_buffer *b;
1405 
1406 	dm_bufio_lock(c);
1407 
1408 	b = __find(c, block);
1409 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1410 		__unlink_buffer(b);
1411 		__free_buffer_wake(b);
1412 	}
1413 
1414 	dm_bufio_unlock(c);
1415 }
1416 EXPORT_SYMBOL(dm_bufio_forget);
1417 
1418 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1419 {
1420 	c->minimum_buffers = n;
1421 }
1422 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1423 
1424 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1425 {
1426 	return c->block_size;
1427 }
1428 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1429 
1430 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1431 {
1432 	return i_size_read(c->bdev->bd_inode) >>
1433 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1434 }
1435 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1436 
1437 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1438 {
1439 	return b->block;
1440 }
1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1442 
1443 void *dm_bufio_get_block_data(struct dm_buffer *b)
1444 {
1445 	return b->data;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1448 
1449 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1450 {
1451 	return b + 1;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1454 
1455 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1456 {
1457 	return b->c;
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1460 
1461 static void drop_buffers(struct dm_bufio_client *c)
1462 {
1463 	struct dm_buffer *b;
1464 	int i;
1465 
1466 	BUG_ON(dm_bufio_in_request());
1467 
1468 	/*
1469 	 * An optimization so that the buffers are not written one-by-one.
1470 	 */
1471 	dm_bufio_write_dirty_buffers_async(c);
1472 
1473 	dm_bufio_lock(c);
1474 
1475 	while ((b = __get_unclaimed_buffer(c)))
1476 		__free_buffer_wake(b);
1477 
1478 	for (i = 0; i < LIST_SIZE; i++)
1479 		list_for_each_entry(b, &c->lru[i], lru_list)
1480 			DMERR("leaked buffer %llx, hold count %u, list %d",
1481 			      (unsigned long long)b->block, b->hold_count, i);
1482 
1483 	for (i = 0; i < LIST_SIZE; i++)
1484 		BUG_ON(!list_empty(&c->lru[i]));
1485 
1486 	dm_bufio_unlock(c);
1487 }
1488 
1489 /*
1490  * We may not be able to evict this buffer if IO pending or the client
1491  * is still using it.  Caller is expected to know buffer is too old.
1492  *
1493  * And if GFP_NOFS is used, we must not do any I/O because we hold
1494  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1495  * rerouted to different bufio client.
1496  */
1497 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1498 {
1499 	if (!(gfp & __GFP_FS)) {
1500 		if (test_bit(B_READING, &b->state) ||
1501 		    test_bit(B_WRITING, &b->state) ||
1502 		    test_bit(B_DIRTY, &b->state))
1503 			return false;
1504 	}
1505 
1506 	if (b->hold_count)
1507 		return false;
1508 
1509 	__make_buffer_clean(b);
1510 	__unlink_buffer(b);
1511 	__free_buffer_wake(b);
1512 
1513 	return true;
1514 }
1515 
1516 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1517 {
1518         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1519         return retain_bytes / c->block_size;
1520 }
1521 
1522 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1523 			    gfp_t gfp_mask)
1524 {
1525 	int l;
1526 	struct dm_buffer *b, *tmp;
1527 	unsigned long freed = 0;
1528 	unsigned long count = nr_to_scan;
1529 	unsigned retain_target = get_retain_buffers(c);
1530 
1531 	for (l = 0; l < LIST_SIZE; l++) {
1532 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1533 			if (__try_evict_buffer(b, gfp_mask))
1534 				freed++;
1535 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1536 				return freed;
1537 			dm_bufio_cond_resched();
1538 		}
1539 	}
1540 	return freed;
1541 }
1542 
1543 static unsigned long
1544 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1545 {
1546 	struct dm_bufio_client *c;
1547 	unsigned long freed;
1548 
1549 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1550 	if (sc->gfp_mask & __GFP_FS)
1551 		dm_bufio_lock(c);
1552 	else if (!dm_bufio_trylock(c))
1553 		return SHRINK_STOP;
1554 
1555 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1556 	dm_bufio_unlock(c);
1557 	return freed;
1558 }
1559 
1560 static unsigned long
1561 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1562 {
1563 	struct dm_bufio_client *c;
1564 	unsigned long count;
1565 
1566 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1567 	if (sc->gfp_mask & __GFP_FS)
1568 		dm_bufio_lock(c);
1569 	else if (!dm_bufio_trylock(c))
1570 		return 0;
1571 
1572 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1573 	dm_bufio_unlock(c);
1574 	return count;
1575 }
1576 
1577 /*
1578  * Create the buffering interface
1579  */
1580 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1581 					       unsigned reserved_buffers, unsigned aux_size,
1582 					       void (*alloc_callback)(struct dm_buffer *),
1583 					       void (*write_callback)(struct dm_buffer *))
1584 {
1585 	int r;
1586 	struct dm_bufio_client *c;
1587 	unsigned i;
1588 
1589 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1590 	       (block_size & (block_size - 1)));
1591 
1592 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1593 	if (!c) {
1594 		r = -ENOMEM;
1595 		goto bad_client;
1596 	}
1597 	c->buffer_tree = RB_ROOT;
1598 
1599 	c->bdev = bdev;
1600 	c->block_size = block_size;
1601 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1602 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1603 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1604 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1605 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1606 
1607 	c->aux_size = aux_size;
1608 	c->alloc_callback = alloc_callback;
1609 	c->write_callback = write_callback;
1610 
1611 	for (i = 0; i < LIST_SIZE; i++) {
1612 		INIT_LIST_HEAD(&c->lru[i]);
1613 		c->n_buffers[i] = 0;
1614 	}
1615 
1616 	mutex_init(&c->lock);
1617 	INIT_LIST_HEAD(&c->reserved_buffers);
1618 	c->need_reserved_buffers = reserved_buffers;
1619 
1620 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1621 
1622 	init_waitqueue_head(&c->free_buffer_wait);
1623 	c->async_write_error = 0;
1624 
1625 	c->dm_io = dm_io_client_create();
1626 	if (IS_ERR(c->dm_io)) {
1627 		r = PTR_ERR(c->dm_io);
1628 		goto bad_dm_io;
1629 	}
1630 
1631 	mutex_lock(&dm_bufio_clients_lock);
1632 	if (c->blocks_per_page_bits) {
1633 		if (!DM_BUFIO_CACHE_NAME(c)) {
1634 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1635 			if (!DM_BUFIO_CACHE_NAME(c)) {
1636 				r = -ENOMEM;
1637 				mutex_unlock(&dm_bufio_clients_lock);
1638 				goto bad_cache;
1639 			}
1640 		}
1641 
1642 		if (!DM_BUFIO_CACHE(c)) {
1643 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1644 							      c->block_size,
1645 							      c->block_size, 0, NULL);
1646 			if (!DM_BUFIO_CACHE(c)) {
1647 				r = -ENOMEM;
1648 				mutex_unlock(&dm_bufio_clients_lock);
1649 				goto bad_cache;
1650 			}
1651 		}
1652 	}
1653 	mutex_unlock(&dm_bufio_clients_lock);
1654 
1655 	while (c->need_reserved_buffers) {
1656 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1657 
1658 		if (!b) {
1659 			r = -ENOMEM;
1660 			goto bad_buffer;
1661 		}
1662 		__free_buffer_wake(b);
1663 	}
1664 
1665 	mutex_lock(&dm_bufio_clients_lock);
1666 	dm_bufio_client_count++;
1667 	list_add(&c->client_list, &dm_bufio_all_clients);
1668 	__cache_size_refresh();
1669 	mutex_unlock(&dm_bufio_clients_lock);
1670 
1671 	c->shrinker.count_objects = dm_bufio_shrink_count;
1672 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1673 	c->shrinker.seeks = 1;
1674 	c->shrinker.batch = 0;
1675 	register_shrinker(&c->shrinker);
1676 
1677 	return c;
1678 
1679 bad_buffer:
1680 bad_cache:
1681 	while (!list_empty(&c->reserved_buffers)) {
1682 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1683 						 struct dm_buffer, lru_list);
1684 		list_del(&b->lru_list);
1685 		free_buffer(b);
1686 	}
1687 	dm_io_client_destroy(c->dm_io);
1688 bad_dm_io:
1689 	kfree(c);
1690 bad_client:
1691 	return ERR_PTR(r);
1692 }
1693 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1694 
1695 /*
1696  * Free the buffering interface.
1697  * It is required that there are no references on any buffers.
1698  */
1699 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1700 {
1701 	unsigned i;
1702 
1703 	drop_buffers(c);
1704 
1705 	unregister_shrinker(&c->shrinker);
1706 
1707 	mutex_lock(&dm_bufio_clients_lock);
1708 
1709 	list_del(&c->client_list);
1710 	dm_bufio_client_count--;
1711 	__cache_size_refresh();
1712 
1713 	mutex_unlock(&dm_bufio_clients_lock);
1714 
1715 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1716 	BUG_ON(c->need_reserved_buffers);
1717 
1718 	while (!list_empty(&c->reserved_buffers)) {
1719 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1720 						 struct dm_buffer, lru_list);
1721 		list_del(&b->lru_list);
1722 		free_buffer(b);
1723 	}
1724 
1725 	for (i = 0; i < LIST_SIZE; i++)
1726 		if (c->n_buffers[i])
1727 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1728 
1729 	for (i = 0; i < LIST_SIZE; i++)
1730 		BUG_ON(c->n_buffers[i]);
1731 
1732 	dm_io_client_destroy(c->dm_io);
1733 	kfree(c);
1734 }
1735 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1736 
1737 static unsigned get_max_age_hz(void)
1738 {
1739 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1740 
1741 	if (max_age > UINT_MAX / HZ)
1742 		max_age = UINT_MAX / HZ;
1743 
1744 	return max_age * HZ;
1745 }
1746 
1747 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1748 {
1749 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1750 }
1751 
1752 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1753 {
1754 	struct dm_buffer *b, *tmp;
1755 	unsigned retain_target = get_retain_buffers(c);
1756 	unsigned count;
1757 
1758 	dm_bufio_lock(c);
1759 
1760 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1761 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1762 		if (count <= retain_target)
1763 			break;
1764 
1765 		if (!older_than(b, age_hz))
1766 			break;
1767 
1768 		if (__try_evict_buffer(b, 0))
1769 			count--;
1770 
1771 		dm_bufio_cond_resched();
1772 	}
1773 
1774 	dm_bufio_unlock(c);
1775 }
1776 
1777 static void cleanup_old_buffers(void)
1778 {
1779 	unsigned long max_age_hz = get_max_age_hz();
1780 	struct dm_bufio_client *c;
1781 
1782 	mutex_lock(&dm_bufio_clients_lock);
1783 
1784 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1785 		__evict_old_buffers(c, max_age_hz);
1786 
1787 	mutex_unlock(&dm_bufio_clients_lock);
1788 }
1789 
1790 static struct workqueue_struct *dm_bufio_wq;
1791 static struct delayed_work dm_bufio_work;
1792 
1793 static void work_fn(struct work_struct *w)
1794 {
1795 	cleanup_old_buffers();
1796 
1797 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1798 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1799 }
1800 
1801 /*----------------------------------------------------------------
1802  * Module setup
1803  *--------------------------------------------------------------*/
1804 
1805 /*
1806  * This is called only once for the whole dm_bufio module.
1807  * It initializes memory limit.
1808  */
1809 static int __init dm_bufio_init(void)
1810 {
1811 	__u64 mem;
1812 
1813 	dm_bufio_allocated_kmem_cache = 0;
1814 	dm_bufio_allocated_get_free_pages = 0;
1815 	dm_bufio_allocated_vmalloc = 0;
1816 	dm_bufio_current_allocated = 0;
1817 
1818 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1819 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1820 
1821 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1822 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1823 
1824 	if (mem > ULONG_MAX)
1825 		mem = ULONG_MAX;
1826 
1827 #ifdef CONFIG_MMU
1828 	/*
1829 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1830 	 * in fs/proc/internal.h
1831 	 */
1832 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1833 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1834 #endif
1835 
1836 	dm_bufio_default_cache_size = mem;
1837 
1838 	mutex_lock(&dm_bufio_clients_lock);
1839 	__cache_size_refresh();
1840 	mutex_unlock(&dm_bufio_clients_lock);
1841 
1842 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1843 	if (!dm_bufio_wq)
1844 		return -ENOMEM;
1845 
1846 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1847 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1848 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1849 
1850 	return 0;
1851 }
1852 
1853 /*
1854  * This is called once when unloading the dm_bufio module.
1855  */
1856 static void __exit dm_bufio_exit(void)
1857 {
1858 	int bug = 0;
1859 	int i;
1860 
1861 	cancel_delayed_work_sync(&dm_bufio_work);
1862 	destroy_workqueue(dm_bufio_wq);
1863 
1864 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1865 		struct kmem_cache *kc = dm_bufio_caches[i];
1866 
1867 		if (kc)
1868 			kmem_cache_destroy(kc);
1869 	}
1870 
1871 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1872 		kfree(dm_bufio_cache_names[i]);
1873 
1874 	if (dm_bufio_client_count) {
1875 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1876 			__func__, dm_bufio_client_count);
1877 		bug = 1;
1878 	}
1879 
1880 	if (dm_bufio_current_allocated) {
1881 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1882 			__func__, dm_bufio_current_allocated);
1883 		bug = 1;
1884 	}
1885 
1886 	if (dm_bufio_allocated_get_free_pages) {
1887 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1888 		       __func__, dm_bufio_allocated_get_free_pages);
1889 		bug = 1;
1890 	}
1891 
1892 	if (dm_bufio_allocated_vmalloc) {
1893 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1894 		       __func__, dm_bufio_allocated_vmalloc);
1895 		bug = 1;
1896 	}
1897 
1898 	if (bug)
1899 		BUG();
1900 }
1901 
1902 module_init(dm_bufio_init)
1903 module_exit(dm_bufio_exit)
1904 
1905 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1906 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1907 
1908 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1909 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1910 
1911 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1912 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1913 
1914 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1915 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1916 
1917 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1918 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1919 
1920 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1921 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1922 
1923 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1924 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1925 
1926 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1927 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1928 
1929 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1930 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1931 MODULE_LICENSE("GPL");
1932