1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/jiffies.h> 15 #include <linux/vmalloc.h> 16 #include <linux/shrinker.h> 17 #include <linux/module.h> 18 #include <linux/rbtree.h> 19 20 #define DM_MSG_PREFIX "bufio" 21 22 /* 23 * Memory management policy: 24 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 25 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 26 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 27 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 28 * dirty buffers. 29 */ 30 #define DM_BUFIO_MIN_BUFFERS 8 31 32 #define DM_BUFIO_MEMORY_PERCENT 2 33 #define DM_BUFIO_VMALLOC_PERCENT 25 34 #define DM_BUFIO_WRITEBACK_PERCENT 75 35 36 /* 37 * Check buffer ages in this interval (seconds) 38 */ 39 #define DM_BUFIO_WORK_TIMER_SECS 30 40 41 /* 42 * Free buffers when they are older than this (seconds) 43 */ 44 #define DM_BUFIO_DEFAULT_AGE_SECS 300 45 46 /* 47 * The nr of bytes of cached data to keep around. 48 */ 49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 50 51 /* 52 * The number of bvec entries that are embedded directly in the buffer. 53 * If the chunk size is larger, dm-io is used to do the io. 54 */ 55 #define DM_BUFIO_INLINE_VECS 16 56 57 /* 58 * Don't try to use kmem_cache_alloc for blocks larger than this. 59 * For explanation, see alloc_buffer_data below. 60 */ 61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /* 72 * Linking of buffers: 73 * All buffers are linked to cache_hash with their hash_list field. 74 * 75 * Clean buffers that are not being written (B_WRITING not set) 76 * are linked to lru[LIST_CLEAN] with their lru_list field. 77 * 78 * Dirty and clean buffers that are being written are linked to 79 * lru[LIST_DIRTY] with their lru_list field. When the write 80 * finishes, the buffer cannot be relinked immediately (because we 81 * are in an interrupt context and relinking requires process 82 * context), so some clean-not-writing buffers can be held on 83 * dirty_lru too. They are later added to lru in the process 84 * context. 85 */ 86 struct dm_bufio_client { 87 struct mutex lock; 88 89 struct list_head lru[LIST_SIZE]; 90 unsigned long n_buffers[LIST_SIZE]; 91 92 struct block_device *bdev; 93 unsigned block_size; 94 unsigned char sectors_per_block_bits; 95 unsigned char pages_per_block_bits; 96 unsigned char blocks_per_page_bits; 97 unsigned aux_size; 98 void (*alloc_callback)(struct dm_buffer *); 99 void (*write_callback)(struct dm_buffer *); 100 101 struct dm_io_client *dm_io; 102 103 struct list_head reserved_buffers; 104 unsigned need_reserved_buffers; 105 106 unsigned minimum_buffers; 107 108 struct rb_root buffer_tree; 109 wait_queue_head_t free_buffer_wait; 110 111 int async_write_error; 112 113 struct list_head client_list; 114 struct shrinker shrinker; 115 }; 116 117 /* 118 * Buffer state bits. 119 */ 120 #define B_READING 0 121 #define B_WRITING 1 122 #define B_DIRTY 2 123 124 /* 125 * Describes how the block was allocated: 126 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 127 * See the comment at alloc_buffer_data. 128 */ 129 enum data_mode { 130 DATA_MODE_SLAB = 0, 131 DATA_MODE_GET_FREE_PAGES = 1, 132 DATA_MODE_VMALLOC = 2, 133 DATA_MODE_LIMIT = 3 134 }; 135 136 struct dm_buffer { 137 struct rb_node node; 138 struct list_head lru_list; 139 sector_t block; 140 void *data; 141 enum data_mode data_mode; 142 unsigned char list_mode; /* LIST_* */ 143 unsigned hold_count; 144 int read_error; 145 int write_error; 146 unsigned long state; 147 unsigned long last_accessed; 148 struct dm_bufio_client *c; 149 struct list_head write_list; 150 struct bio bio; 151 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 152 }; 153 154 /*----------------------------------------------------------------*/ 155 156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 158 159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 160 { 161 unsigned ret = c->blocks_per_page_bits - 1; 162 163 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 164 165 return ret; 166 } 167 168 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 169 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 170 171 #define dm_bufio_in_request() (!!current->bio_list) 172 173 static void dm_bufio_lock(struct dm_bufio_client *c) 174 { 175 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 176 } 177 178 static int dm_bufio_trylock(struct dm_bufio_client *c) 179 { 180 return mutex_trylock(&c->lock); 181 } 182 183 static void dm_bufio_unlock(struct dm_bufio_client *c) 184 { 185 mutex_unlock(&c->lock); 186 } 187 188 /* 189 * FIXME Move to sched.h? 190 */ 191 #ifdef CONFIG_PREEMPT_VOLUNTARY 192 # define dm_bufio_cond_resched() \ 193 do { \ 194 if (unlikely(need_resched())) \ 195 _cond_resched(); \ 196 } while (0) 197 #else 198 # define dm_bufio_cond_resched() do { } while (0) 199 #endif 200 201 /*----------------------------------------------------------------*/ 202 203 /* 204 * Default cache size: available memory divided by the ratio. 205 */ 206 static unsigned long dm_bufio_default_cache_size; 207 208 /* 209 * Total cache size set by the user. 210 */ 211 static unsigned long dm_bufio_cache_size; 212 213 /* 214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 215 * at any time. If it disagrees, the user has changed cache size. 216 */ 217 static unsigned long dm_bufio_cache_size_latch; 218 219 static DEFINE_SPINLOCK(param_spinlock); 220 221 /* 222 * Buffers are freed after this timeout 223 */ 224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 225 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 226 227 static unsigned long dm_bufio_peak_allocated; 228 static unsigned long dm_bufio_allocated_kmem_cache; 229 static unsigned long dm_bufio_allocated_get_free_pages; 230 static unsigned long dm_bufio_allocated_vmalloc; 231 static unsigned long dm_bufio_current_allocated; 232 233 /*----------------------------------------------------------------*/ 234 235 /* 236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 237 */ 238 static unsigned long dm_bufio_cache_size_per_client; 239 240 /* 241 * The current number of clients. 242 */ 243 static int dm_bufio_client_count; 244 245 /* 246 * The list of all clients. 247 */ 248 static LIST_HEAD(dm_bufio_all_clients); 249 250 /* 251 * This mutex protects dm_bufio_cache_size_latch, 252 * dm_bufio_cache_size_per_client and dm_bufio_client_count 253 */ 254 static DEFINE_MUTEX(dm_bufio_clients_lock); 255 256 /*---------------------------------------------------------------- 257 * A red/black tree acts as an index for all the buffers. 258 *--------------------------------------------------------------*/ 259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 260 { 261 struct rb_node *n = c->buffer_tree.rb_node; 262 struct dm_buffer *b; 263 264 while (n) { 265 b = container_of(n, struct dm_buffer, node); 266 267 if (b->block == block) 268 return b; 269 270 n = (b->block < block) ? n->rb_left : n->rb_right; 271 } 272 273 return NULL; 274 } 275 276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 277 { 278 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 279 struct dm_buffer *found; 280 281 while (*new) { 282 found = container_of(*new, struct dm_buffer, node); 283 284 if (found->block == b->block) { 285 BUG_ON(found != b); 286 return; 287 } 288 289 parent = *new; 290 new = (found->block < b->block) ? 291 &((*new)->rb_left) : &((*new)->rb_right); 292 } 293 294 rb_link_node(&b->node, parent, new); 295 rb_insert_color(&b->node, &c->buffer_tree); 296 } 297 298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 299 { 300 rb_erase(&b->node, &c->buffer_tree); 301 } 302 303 /*----------------------------------------------------------------*/ 304 305 static void adjust_total_allocated(enum data_mode data_mode, long diff) 306 { 307 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 308 &dm_bufio_allocated_kmem_cache, 309 &dm_bufio_allocated_get_free_pages, 310 &dm_bufio_allocated_vmalloc, 311 }; 312 313 spin_lock(¶m_spinlock); 314 315 *class_ptr[data_mode] += diff; 316 317 dm_bufio_current_allocated += diff; 318 319 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 320 dm_bufio_peak_allocated = dm_bufio_current_allocated; 321 322 spin_unlock(¶m_spinlock); 323 } 324 325 /* 326 * Change the number of clients and recalculate per-client limit. 327 */ 328 static void __cache_size_refresh(void) 329 { 330 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 331 BUG_ON(dm_bufio_client_count < 0); 332 333 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 334 335 /* 336 * Use default if set to 0 and report the actual cache size used. 337 */ 338 if (!dm_bufio_cache_size_latch) { 339 (void)cmpxchg(&dm_bufio_cache_size, 0, 340 dm_bufio_default_cache_size); 341 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 342 } 343 344 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 345 (dm_bufio_client_count ? : 1); 346 } 347 348 /* 349 * Allocating buffer data. 350 * 351 * Small buffers are allocated with kmem_cache, to use space optimally. 352 * 353 * For large buffers, we choose between get_free_pages and vmalloc. 354 * Each has advantages and disadvantages. 355 * 356 * __get_free_pages can randomly fail if the memory is fragmented. 357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 358 * as low as 128M) so using it for caching is not appropriate. 359 * 360 * If the allocation may fail we use __get_free_pages. Memory fragmentation 361 * won't have a fatal effect here, but it just causes flushes of some other 362 * buffers and more I/O will be performed. Don't use __get_free_pages if it 363 * always fails (i.e. order >= MAX_ORDER). 364 * 365 * If the allocation shouldn't fail we use __vmalloc. This is only for the 366 * initial reserve allocation, so there's no risk of wasting all vmalloc 367 * space. 368 */ 369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 370 enum data_mode *data_mode) 371 { 372 unsigned noio_flag; 373 void *ptr; 374 375 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 376 *data_mode = DATA_MODE_SLAB; 377 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 378 } 379 380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 381 gfp_mask & __GFP_NORETRY) { 382 *data_mode = DATA_MODE_GET_FREE_PAGES; 383 return (void *)__get_free_pages(gfp_mask, 384 c->pages_per_block_bits); 385 } 386 387 *data_mode = DATA_MODE_VMALLOC; 388 389 /* 390 * __vmalloc allocates the data pages and auxiliary structures with 391 * gfp_flags that were specified, but pagetables are always allocated 392 * with GFP_KERNEL, no matter what was specified as gfp_mask. 393 * 394 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 395 * all allocations done by this process (including pagetables) are done 396 * as if GFP_NOIO was specified. 397 */ 398 399 if (gfp_mask & __GFP_NORETRY) 400 noio_flag = memalloc_noio_save(); 401 402 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL); 403 404 if (gfp_mask & __GFP_NORETRY) 405 memalloc_noio_restore(noio_flag); 406 407 return ptr; 408 } 409 410 /* 411 * Free buffer's data. 412 */ 413 static void free_buffer_data(struct dm_bufio_client *c, 414 void *data, enum data_mode data_mode) 415 { 416 switch (data_mode) { 417 case DATA_MODE_SLAB: 418 kmem_cache_free(DM_BUFIO_CACHE(c), data); 419 break; 420 421 case DATA_MODE_GET_FREE_PAGES: 422 free_pages((unsigned long)data, c->pages_per_block_bits); 423 break; 424 425 case DATA_MODE_VMALLOC: 426 vfree(data); 427 break; 428 429 default: 430 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 431 data_mode); 432 BUG(); 433 } 434 } 435 436 /* 437 * Allocate buffer and its data. 438 */ 439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 440 { 441 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 442 gfp_mask); 443 444 if (!b) 445 return NULL; 446 447 b->c = c; 448 449 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 450 if (!b->data) { 451 kfree(b); 452 return NULL; 453 } 454 455 adjust_total_allocated(b->data_mode, (long)c->block_size); 456 457 return b; 458 } 459 460 /* 461 * Free buffer and its data. 462 */ 463 static void free_buffer(struct dm_buffer *b) 464 { 465 struct dm_bufio_client *c = b->c; 466 467 adjust_total_allocated(b->data_mode, -(long)c->block_size); 468 469 free_buffer_data(c, b->data, b->data_mode); 470 kfree(b); 471 } 472 473 /* 474 * Link buffer to the hash list and clean or dirty queue. 475 */ 476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 477 { 478 struct dm_bufio_client *c = b->c; 479 480 c->n_buffers[dirty]++; 481 b->block = block; 482 b->list_mode = dirty; 483 list_add(&b->lru_list, &c->lru[dirty]); 484 __insert(b->c, b); 485 b->last_accessed = jiffies; 486 } 487 488 /* 489 * Unlink buffer from the hash list and dirty or clean queue. 490 */ 491 static void __unlink_buffer(struct dm_buffer *b) 492 { 493 struct dm_bufio_client *c = b->c; 494 495 BUG_ON(!c->n_buffers[b->list_mode]); 496 497 c->n_buffers[b->list_mode]--; 498 __remove(b->c, b); 499 list_del(&b->lru_list); 500 } 501 502 /* 503 * Place the buffer to the head of dirty or clean LRU queue. 504 */ 505 static void __relink_lru(struct dm_buffer *b, int dirty) 506 { 507 struct dm_bufio_client *c = b->c; 508 509 BUG_ON(!c->n_buffers[b->list_mode]); 510 511 c->n_buffers[b->list_mode]--; 512 c->n_buffers[dirty]++; 513 b->list_mode = dirty; 514 list_move(&b->lru_list, &c->lru[dirty]); 515 b->last_accessed = jiffies; 516 } 517 518 /*---------------------------------------------------------------- 519 * Submit I/O on the buffer. 520 * 521 * Bio interface is faster but it has some problems: 522 * the vector list is limited (increasing this limit increases 523 * memory-consumption per buffer, so it is not viable); 524 * 525 * the memory must be direct-mapped, not vmalloced; 526 * 527 * the I/O driver can reject requests spuriously if it thinks that 528 * the requests are too big for the device or if they cross a 529 * controller-defined memory boundary. 530 * 531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 532 * it is not vmalloced, try using the bio interface. 533 * 534 * If the buffer is big, if it is vmalloced or if the underlying device 535 * rejects the bio because it is too large, use dm-io layer to do the I/O. 536 * The dm-io layer splits the I/O into multiple requests, avoiding the above 537 * shortcomings. 538 *--------------------------------------------------------------*/ 539 540 /* 541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 542 * that the request was handled directly with bio interface. 543 */ 544 static void dmio_complete(unsigned long error, void *context) 545 { 546 struct dm_buffer *b = context; 547 548 b->bio.bi_error = error ? -EIO : 0; 549 b->bio.bi_end_io(&b->bio); 550 } 551 552 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 553 bio_end_io_t *end_io) 554 { 555 int r; 556 struct dm_io_request io_req = { 557 .bi_rw = rw, 558 .notify.fn = dmio_complete, 559 .notify.context = b, 560 .client = b->c->dm_io, 561 }; 562 struct dm_io_region region = { 563 .bdev = b->c->bdev, 564 .sector = block << b->c->sectors_per_block_bits, 565 .count = b->c->block_size >> SECTOR_SHIFT, 566 }; 567 568 if (b->data_mode != DATA_MODE_VMALLOC) { 569 io_req.mem.type = DM_IO_KMEM; 570 io_req.mem.ptr.addr = b->data; 571 } else { 572 io_req.mem.type = DM_IO_VMA; 573 io_req.mem.ptr.vma = b->data; 574 } 575 576 b->bio.bi_end_io = end_io; 577 578 r = dm_io(&io_req, 1, ®ion, NULL); 579 if (r) { 580 b->bio.bi_error = r; 581 end_io(&b->bio); 582 } 583 } 584 585 static void inline_endio(struct bio *bio) 586 { 587 bio_end_io_t *end_fn = bio->bi_private; 588 int error = bio->bi_error; 589 590 /* 591 * Reset the bio to free any attached resources 592 * (e.g. bio integrity profiles). 593 */ 594 bio_reset(bio); 595 596 bio->bi_error = error; 597 end_fn(bio); 598 } 599 600 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 601 bio_end_io_t *end_io) 602 { 603 char *ptr; 604 int len; 605 606 bio_init(&b->bio); 607 b->bio.bi_io_vec = b->bio_vec; 608 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS; 609 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits; 610 b->bio.bi_bdev = b->c->bdev; 611 b->bio.bi_end_io = inline_endio; 612 /* 613 * Use of .bi_private isn't a problem here because 614 * the dm_buffer's inline bio is local to bufio. 615 */ 616 b->bio.bi_private = end_io; 617 618 /* 619 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 620 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 621 */ 622 ptr = b->data; 623 len = b->c->block_size; 624 625 if (len >= PAGE_SIZE) 626 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 627 else 628 BUG_ON((unsigned long)ptr & (len - 1)); 629 630 do { 631 if (!bio_add_page(&b->bio, virt_to_page(ptr), 632 len < PAGE_SIZE ? len : PAGE_SIZE, 633 virt_to_phys(ptr) & (PAGE_SIZE - 1))) { 634 BUG_ON(b->c->block_size <= PAGE_SIZE); 635 use_dmio(b, rw, block, end_io); 636 return; 637 } 638 639 len -= PAGE_SIZE; 640 ptr += PAGE_SIZE; 641 } while (len > 0); 642 643 submit_bio(rw, &b->bio); 644 } 645 646 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 647 bio_end_io_t *end_io) 648 { 649 if (rw == WRITE && b->c->write_callback) 650 b->c->write_callback(b); 651 652 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 653 b->data_mode != DATA_MODE_VMALLOC) 654 use_inline_bio(b, rw, block, end_io); 655 else 656 use_dmio(b, rw, block, end_io); 657 } 658 659 /*---------------------------------------------------------------- 660 * Writing dirty buffers 661 *--------------------------------------------------------------*/ 662 663 /* 664 * The endio routine for write. 665 * 666 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 667 * it. 668 */ 669 static void write_endio(struct bio *bio) 670 { 671 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 672 673 b->write_error = bio->bi_error; 674 if (unlikely(bio->bi_error)) { 675 struct dm_bufio_client *c = b->c; 676 int error = bio->bi_error; 677 (void)cmpxchg(&c->async_write_error, 0, error); 678 } 679 680 BUG_ON(!test_bit(B_WRITING, &b->state)); 681 682 smp_mb__before_atomic(); 683 clear_bit(B_WRITING, &b->state); 684 smp_mb__after_atomic(); 685 686 wake_up_bit(&b->state, B_WRITING); 687 } 688 689 /* 690 * Initiate a write on a dirty buffer, but don't wait for it. 691 * 692 * - If the buffer is not dirty, exit. 693 * - If there some previous write going on, wait for it to finish (we can't 694 * have two writes on the same buffer simultaneously). 695 * - Submit our write and don't wait on it. We set B_WRITING indicating 696 * that there is a write in progress. 697 */ 698 static void __write_dirty_buffer(struct dm_buffer *b, 699 struct list_head *write_list) 700 { 701 if (!test_bit(B_DIRTY, &b->state)) 702 return; 703 704 clear_bit(B_DIRTY, &b->state); 705 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 706 707 if (!write_list) 708 submit_io(b, WRITE, b->block, write_endio); 709 else 710 list_add_tail(&b->write_list, write_list); 711 } 712 713 static void __flush_write_list(struct list_head *write_list) 714 { 715 struct blk_plug plug; 716 blk_start_plug(&plug); 717 while (!list_empty(write_list)) { 718 struct dm_buffer *b = 719 list_entry(write_list->next, struct dm_buffer, write_list); 720 list_del(&b->write_list); 721 submit_io(b, WRITE, b->block, write_endio); 722 dm_bufio_cond_resched(); 723 } 724 blk_finish_plug(&plug); 725 } 726 727 /* 728 * Wait until any activity on the buffer finishes. Possibly write the 729 * buffer if it is dirty. When this function finishes, there is no I/O 730 * running on the buffer and the buffer is not dirty. 731 */ 732 static void __make_buffer_clean(struct dm_buffer *b) 733 { 734 BUG_ON(b->hold_count); 735 736 if (!b->state) /* fast case */ 737 return; 738 739 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 740 __write_dirty_buffer(b, NULL); 741 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 742 } 743 744 /* 745 * Find some buffer that is not held by anybody, clean it, unlink it and 746 * return it. 747 */ 748 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 749 { 750 struct dm_buffer *b; 751 752 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 753 BUG_ON(test_bit(B_WRITING, &b->state)); 754 BUG_ON(test_bit(B_DIRTY, &b->state)); 755 756 if (!b->hold_count) { 757 __make_buffer_clean(b); 758 __unlink_buffer(b); 759 return b; 760 } 761 dm_bufio_cond_resched(); 762 } 763 764 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 765 BUG_ON(test_bit(B_READING, &b->state)); 766 767 if (!b->hold_count) { 768 __make_buffer_clean(b); 769 __unlink_buffer(b); 770 return b; 771 } 772 dm_bufio_cond_resched(); 773 } 774 775 return NULL; 776 } 777 778 /* 779 * Wait until some other threads free some buffer or release hold count on 780 * some buffer. 781 * 782 * This function is entered with c->lock held, drops it and regains it 783 * before exiting. 784 */ 785 static void __wait_for_free_buffer(struct dm_bufio_client *c) 786 { 787 DECLARE_WAITQUEUE(wait, current); 788 789 add_wait_queue(&c->free_buffer_wait, &wait); 790 set_task_state(current, TASK_UNINTERRUPTIBLE); 791 dm_bufio_unlock(c); 792 793 io_schedule(); 794 795 remove_wait_queue(&c->free_buffer_wait, &wait); 796 797 dm_bufio_lock(c); 798 } 799 800 enum new_flag { 801 NF_FRESH = 0, 802 NF_READ = 1, 803 NF_GET = 2, 804 NF_PREFETCH = 3 805 }; 806 807 /* 808 * Allocate a new buffer. If the allocation is not possible, wait until 809 * some other thread frees a buffer. 810 * 811 * May drop the lock and regain it. 812 */ 813 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 814 { 815 struct dm_buffer *b; 816 817 /* 818 * dm-bufio is resistant to allocation failures (it just keeps 819 * one buffer reserved in cases all the allocations fail). 820 * So set flags to not try too hard: 821 * GFP_NOIO: don't recurse into the I/O layer 822 * __GFP_NORETRY: don't retry and rather return failure 823 * __GFP_NOMEMALLOC: don't use emergency reserves 824 * __GFP_NOWARN: don't print a warning in case of failure 825 * 826 * For debugging, if we set the cache size to 1, no new buffers will 827 * be allocated. 828 */ 829 while (1) { 830 if (dm_bufio_cache_size_latch != 1) { 831 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 832 if (b) 833 return b; 834 } 835 836 if (nf == NF_PREFETCH) 837 return NULL; 838 839 if (!list_empty(&c->reserved_buffers)) { 840 b = list_entry(c->reserved_buffers.next, 841 struct dm_buffer, lru_list); 842 list_del(&b->lru_list); 843 c->need_reserved_buffers++; 844 845 return b; 846 } 847 848 b = __get_unclaimed_buffer(c); 849 if (b) 850 return b; 851 852 __wait_for_free_buffer(c); 853 } 854 } 855 856 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 857 { 858 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 859 860 if (!b) 861 return NULL; 862 863 if (c->alloc_callback) 864 c->alloc_callback(b); 865 866 return b; 867 } 868 869 /* 870 * Free a buffer and wake other threads waiting for free buffers. 871 */ 872 static void __free_buffer_wake(struct dm_buffer *b) 873 { 874 struct dm_bufio_client *c = b->c; 875 876 if (!c->need_reserved_buffers) 877 free_buffer(b); 878 else { 879 list_add(&b->lru_list, &c->reserved_buffers); 880 c->need_reserved_buffers--; 881 } 882 883 wake_up(&c->free_buffer_wait); 884 } 885 886 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 887 struct list_head *write_list) 888 { 889 struct dm_buffer *b, *tmp; 890 891 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 892 BUG_ON(test_bit(B_READING, &b->state)); 893 894 if (!test_bit(B_DIRTY, &b->state) && 895 !test_bit(B_WRITING, &b->state)) { 896 __relink_lru(b, LIST_CLEAN); 897 continue; 898 } 899 900 if (no_wait && test_bit(B_WRITING, &b->state)) 901 return; 902 903 __write_dirty_buffer(b, write_list); 904 dm_bufio_cond_resched(); 905 } 906 } 907 908 /* 909 * Get writeback threshold and buffer limit for a given client. 910 */ 911 static void __get_memory_limit(struct dm_bufio_client *c, 912 unsigned long *threshold_buffers, 913 unsigned long *limit_buffers) 914 { 915 unsigned long buffers; 916 917 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) { 918 mutex_lock(&dm_bufio_clients_lock); 919 __cache_size_refresh(); 920 mutex_unlock(&dm_bufio_clients_lock); 921 } 922 923 buffers = dm_bufio_cache_size_per_client >> 924 (c->sectors_per_block_bits + SECTOR_SHIFT); 925 926 if (buffers < c->minimum_buffers) 927 buffers = c->minimum_buffers; 928 929 *limit_buffers = buffers; 930 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 931 } 932 933 /* 934 * Check if we're over watermark. 935 * If we are over threshold_buffers, start freeing buffers. 936 * If we're over "limit_buffers", block until we get under the limit. 937 */ 938 static void __check_watermark(struct dm_bufio_client *c, 939 struct list_head *write_list) 940 { 941 unsigned long threshold_buffers, limit_buffers; 942 943 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 944 945 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 946 limit_buffers) { 947 948 struct dm_buffer *b = __get_unclaimed_buffer(c); 949 950 if (!b) 951 return; 952 953 __free_buffer_wake(b); 954 dm_bufio_cond_resched(); 955 } 956 957 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 958 __write_dirty_buffers_async(c, 1, write_list); 959 } 960 961 /*---------------------------------------------------------------- 962 * Getting a buffer 963 *--------------------------------------------------------------*/ 964 965 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 966 enum new_flag nf, int *need_submit, 967 struct list_head *write_list) 968 { 969 struct dm_buffer *b, *new_b = NULL; 970 971 *need_submit = 0; 972 973 b = __find(c, block); 974 if (b) 975 goto found_buffer; 976 977 if (nf == NF_GET) 978 return NULL; 979 980 new_b = __alloc_buffer_wait(c, nf); 981 if (!new_b) 982 return NULL; 983 984 /* 985 * We've had a period where the mutex was unlocked, so need to 986 * recheck the hash table. 987 */ 988 b = __find(c, block); 989 if (b) { 990 __free_buffer_wake(new_b); 991 goto found_buffer; 992 } 993 994 __check_watermark(c, write_list); 995 996 b = new_b; 997 b->hold_count = 1; 998 b->read_error = 0; 999 b->write_error = 0; 1000 __link_buffer(b, block, LIST_CLEAN); 1001 1002 if (nf == NF_FRESH) { 1003 b->state = 0; 1004 return b; 1005 } 1006 1007 b->state = 1 << B_READING; 1008 *need_submit = 1; 1009 1010 return b; 1011 1012 found_buffer: 1013 if (nf == NF_PREFETCH) 1014 return NULL; 1015 /* 1016 * Note: it is essential that we don't wait for the buffer to be 1017 * read if dm_bufio_get function is used. Both dm_bufio_get and 1018 * dm_bufio_prefetch can be used in the driver request routine. 1019 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1020 * the same buffer, it would deadlock if we waited. 1021 */ 1022 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1023 return NULL; 1024 1025 b->hold_count++; 1026 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1027 test_bit(B_WRITING, &b->state)); 1028 return b; 1029 } 1030 1031 /* 1032 * The endio routine for reading: set the error, clear the bit and wake up 1033 * anyone waiting on the buffer. 1034 */ 1035 static void read_endio(struct bio *bio) 1036 { 1037 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1038 1039 b->read_error = bio->bi_error; 1040 1041 BUG_ON(!test_bit(B_READING, &b->state)); 1042 1043 smp_mb__before_atomic(); 1044 clear_bit(B_READING, &b->state); 1045 smp_mb__after_atomic(); 1046 1047 wake_up_bit(&b->state, B_READING); 1048 } 1049 1050 /* 1051 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1052 * functions is similar except that dm_bufio_new doesn't read the 1053 * buffer from the disk (assuming that the caller overwrites all the data 1054 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1055 */ 1056 static void *new_read(struct dm_bufio_client *c, sector_t block, 1057 enum new_flag nf, struct dm_buffer **bp) 1058 { 1059 int need_submit; 1060 struct dm_buffer *b; 1061 1062 LIST_HEAD(write_list); 1063 1064 dm_bufio_lock(c); 1065 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1066 dm_bufio_unlock(c); 1067 1068 __flush_write_list(&write_list); 1069 1070 if (!b) 1071 return b; 1072 1073 if (need_submit) 1074 submit_io(b, READ, b->block, read_endio); 1075 1076 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1077 1078 if (b->read_error) { 1079 int error = b->read_error; 1080 1081 dm_bufio_release(b); 1082 1083 return ERR_PTR(error); 1084 } 1085 1086 *bp = b; 1087 1088 return b->data; 1089 } 1090 1091 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1092 struct dm_buffer **bp) 1093 { 1094 return new_read(c, block, NF_GET, bp); 1095 } 1096 EXPORT_SYMBOL_GPL(dm_bufio_get); 1097 1098 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1099 struct dm_buffer **bp) 1100 { 1101 BUG_ON(dm_bufio_in_request()); 1102 1103 return new_read(c, block, NF_READ, bp); 1104 } 1105 EXPORT_SYMBOL_GPL(dm_bufio_read); 1106 1107 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1108 struct dm_buffer **bp) 1109 { 1110 BUG_ON(dm_bufio_in_request()); 1111 1112 return new_read(c, block, NF_FRESH, bp); 1113 } 1114 EXPORT_SYMBOL_GPL(dm_bufio_new); 1115 1116 void dm_bufio_prefetch(struct dm_bufio_client *c, 1117 sector_t block, unsigned n_blocks) 1118 { 1119 struct blk_plug plug; 1120 1121 LIST_HEAD(write_list); 1122 1123 BUG_ON(dm_bufio_in_request()); 1124 1125 blk_start_plug(&plug); 1126 dm_bufio_lock(c); 1127 1128 for (; n_blocks--; block++) { 1129 int need_submit; 1130 struct dm_buffer *b; 1131 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1132 &write_list); 1133 if (unlikely(!list_empty(&write_list))) { 1134 dm_bufio_unlock(c); 1135 blk_finish_plug(&plug); 1136 __flush_write_list(&write_list); 1137 blk_start_plug(&plug); 1138 dm_bufio_lock(c); 1139 } 1140 if (unlikely(b != NULL)) { 1141 dm_bufio_unlock(c); 1142 1143 if (need_submit) 1144 submit_io(b, READ, b->block, read_endio); 1145 dm_bufio_release(b); 1146 1147 dm_bufio_cond_resched(); 1148 1149 if (!n_blocks) 1150 goto flush_plug; 1151 dm_bufio_lock(c); 1152 } 1153 } 1154 1155 dm_bufio_unlock(c); 1156 1157 flush_plug: 1158 blk_finish_plug(&plug); 1159 } 1160 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1161 1162 void dm_bufio_release(struct dm_buffer *b) 1163 { 1164 struct dm_bufio_client *c = b->c; 1165 1166 dm_bufio_lock(c); 1167 1168 BUG_ON(!b->hold_count); 1169 1170 b->hold_count--; 1171 if (!b->hold_count) { 1172 wake_up(&c->free_buffer_wait); 1173 1174 /* 1175 * If there were errors on the buffer, and the buffer is not 1176 * to be written, free the buffer. There is no point in caching 1177 * invalid buffer. 1178 */ 1179 if ((b->read_error || b->write_error) && 1180 !test_bit(B_READING, &b->state) && 1181 !test_bit(B_WRITING, &b->state) && 1182 !test_bit(B_DIRTY, &b->state)) { 1183 __unlink_buffer(b); 1184 __free_buffer_wake(b); 1185 } 1186 } 1187 1188 dm_bufio_unlock(c); 1189 } 1190 EXPORT_SYMBOL_GPL(dm_bufio_release); 1191 1192 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1193 { 1194 struct dm_bufio_client *c = b->c; 1195 1196 dm_bufio_lock(c); 1197 1198 BUG_ON(test_bit(B_READING, &b->state)); 1199 1200 if (!test_and_set_bit(B_DIRTY, &b->state)) 1201 __relink_lru(b, LIST_DIRTY); 1202 1203 dm_bufio_unlock(c); 1204 } 1205 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1206 1207 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1208 { 1209 LIST_HEAD(write_list); 1210 1211 BUG_ON(dm_bufio_in_request()); 1212 1213 dm_bufio_lock(c); 1214 __write_dirty_buffers_async(c, 0, &write_list); 1215 dm_bufio_unlock(c); 1216 __flush_write_list(&write_list); 1217 } 1218 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1219 1220 /* 1221 * For performance, it is essential that the buffers are written asynchronously 1222 * and simultaneously (so that the block layer can merge the writes) and then 1223 * waited upon. 1224 * 1225 * Finally, we flush hardware disk cache. 1226 */ 1227 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1228 { 1229 int a, f; 1230 unsigned long buffers_processed = 0; 1231 struct dm_buffer *b, *tmp; 1232 1233 LIST_HEAD(write_list); 1234 1235 dm_bufio_lock(c); 1236 __write_dirty_buffers_async(c, 0, &write_list); 1237 dm_bufio_unlock(c); 1238 __flush_write_list(&write_list); 1239 dm_bufio_lock(c); 1240 1241 again: 1242 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1243 int dropped_lock = 0; 1244 1245 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1246 buffers_processed++; 1247 1248 BUG_ON(test_bit(B_READING, &b->state)); 1249 1250 if (test_bit(B_WRITING, &b->state)) { 1251 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1252 dropped_lock = 1; 1253 b->hold_count++; 1254 dm_bufio_unlock(c); 1255 wait_on_bit_io(&b->state, B_WRITING, 1256 TASK_UNINTERRUPTIBLE); 1257 dm_bufio_lock(c); 1258 b->hold_count--; 1259 } else 1260 wait_on_bit_io(&b->state, B_WRITING, 1261 TASK_UNINTERRUPTIBLE); 1262 } 1263 1264 if (!test_bit(B_DIRTY, &b->state) && 1265 !test_bit(B_WRITING, &b->state)) 1266 __relink_lru(b, LIST_CLEAN); 1267 1268 dm_bufio_cond_resched(); 1269 1270 /* 1271 * If we dropped the lock, the list is no longer consistent, 1272 * so we must restart the search. 1273 * 1274 * In the most common case, the buffer just processed is 1275 * relinked to the clean list, so we won't loop scanning the 1276 * same buffer again and again. 1277 * 1278 * This may livelock if there is another thread simultaneously 1279 * dirtying buffers, so we count the number of buffers walked 1280 * and if it exceeds the total number of buffers, it means that 1281 * someone is doing some writes simultaneously with us. In 1282 * this case, stop, dropping the lock. 1283 */ 1284 if (dropped_lock) 1285 goto again; 1286 } 1287 wake_up(&c->free_buffer_wait); 1288 dm_bufio_unlock(c); 1289 1290 a = xchg(&c->async_write_error, 0); 1291 f = dm_bufio_issue_flush(c); 1292 if (a) 1293 return a; 1294 1295 return f; 1296 } 1297 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1298 1299 /* 1300 * Use dm-io to send and empty barrier flush the device. 1301 */ 1302 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1303 { 1304 struct dm_io_request io_req = { 1305 .bi_rw = WRITE_FLUSH, 1306 .mem.type = DM_IO_KMEM, 1307 .mem.ptr.addr = NULL, 1308 .client = c->dm_io, 1309 }; 1310 struct dm_io_region io_reg = { 1311 .bdev = c->bdev, 1312 .sector = 0, 1313 .count = 0, 1314 }; 1315 1316 BUG_ON(dm_bufio_in_request()); 1317 1318 return dm_io(&io_req, 1, &io_reg, NULL); 1319 } 1320 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1321 1322 /* 1323 * We first delete any other buffer that may be at that new location. 1324 * 1325 * Then, we write the buffer to the original location if it was dirty. 1326 * 1327 * Then, if we are the only one who is holding the buffer, relink the buffer 1328 * in the hash queue for the new location. 1329 * 1330 * If there was someone else holding the buffer, we write it to the new 1331 * location but not relink it, because that other user needs to have the buffer 1332 * at the same place. 1333 */ 1334 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1335 { 1336 struct dm_bufio_client *c = b->c; 1337 struct dm_buffer *new; 1338 1339 BUG_ON(dm_bufio_in_request()); 1340 1341 dm_bufio_lock(c); 1342 1343 retry: 1344 new = __find(c, new_block); 1345 if (new) { 1346 if (new->hold_count) { 1347 __wait_for_free_buffer(c); 1348 goto retry; 1349 } 1350 1351 /* 1352 * FIXME: Is there any point waiting for a write that's going 1353 * to be overwritten in a bit? 1354 */ 1355 __make_buffer_clean(new); 1356 __unlink_buffer(new); 1357 __free_buffer_wake(new); 1358 } 1359 1360 BUG_ON(!b->hold_count); 1361 BUG_ON(test_bit(B_READING, &b->state)); 1362 1363 __write_dirty_buffer(b, NULL); 1364 if (b->hold_count == 1) { 1365 wait_on_bit_io(&b->state, B_WRITING, 1366 TASK_UNINTERRUPTIBLE); 1367 set_bit(B_DIRTY, &b->state); 1368 __unlink_buffer(b); 1369 __link_buffer(b, new_block, LIST_DIRTY); 1370 } else { 1371 sector_t old_block; 1372 wait_on_bit_lock_io(&b->state, B_WRITING, 1373 TASK_UNINTERRUPTIBLE); 1374 /* 1375 * Relink buffer to "new_block" so that write_callback 1376 * sees "new_block" as a block number. 1377 * After the write, link the buffer back to old_block. 1378 * All this must be done in bufio lock, so that block number 1379 * change isn't visible to other threads. 1380 */ 1381 old_block = b->block; 1382 __unlink_buffer(b); 1383 __link_buffer(b, new_block, b->list_mode); 1384 submit_io(b, WRITE, new_block, write_endio); 1385 wait_on_bit_io(&b->state, B_WRITING, 1386 TASK_UNINTERRUPTIBLE); 1387 __unlink_buffer(b); 1388 __link_buffer(b, old_block, b->list_mode); 1389 } 1390 1391 dm_bufio_unlock(c); 1392 dm_bufio_release(b); 1393 } 1394 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1395 1396 /* 1397 * Free the given buffer. 1398 * 1399 * This is just a hint, if the buffer is in use or dirty, this function 1400 * does nothing. 1401 */ 1402 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1403 { 1404 struct dm_buffer *b; 1405 1406 dm_bufio_lock(c); 1407 1408 b = __find(c, block); 1409 if (b && likely(!b->hold_count) && likely(!b->state)) { 1410 __unlink_buffer(b); 1411 __free_buffer_wake(b); 1412 } 1413 1414 dm_bufio_unlock(c); 1415 } 1416 EXPORT_SYMBOL(dm_bufio_forget); 1417 1418 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1419 { 1420 c->minimum_buffers = n; 1421 } 1422 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1423 1424 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1425 { 1426 return c->block_size; 1427 } 1428 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1429 1430 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1431 { 1432 return i_size_read(c->bdev->bd_inode) >> 1433 (SECTOR_SHIFT + c->sectors_per_block_bits); 1434 } 1435 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1436 1437 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1438 { 1439 return b->block; 1440 } 1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1442 1443 void *dm_bufio_get_block_data(struct dm_buffer *b) 1444 { 1445 return b->data; 1446 } 1447 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1448 1449 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1450 { 1451 return b + 1; 1452 } 1453 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1454 1455 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1456 { 1457 return b->c; 1458 } 1459 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1460 1461 static void drop_buffers(struct dm_bufio_client *c) 1462 { 1463 struct dm_buffer *b; 1464 int i; 1465 1466 BUG_ON(dm_bufio_in_request()); 1467 1468 /* 1469 * An optimization so that the buffers are not written one-by-one. 1470 */ 1471 dm_bufio_write_dirty_buffers_async(c); 1472 1473 dm_bufio_lock(c); 1474 1475 while ((b = __get_unclaimed_buffer(c))) 1476 __free_buffer_wake(b); 1477 1478 for (i = 0; i < LIST_SIZE; i++) 1479 list_for_each_entry(b, &c->lru[i], lru_list) 1480 DMERR("leaked buffer %llx, hold count %u, list %d", 1481 (unsigned long long)b->block, b->hold_count, i); 1482 1483 for (i = 0; i < LIST_SIZE; i++) 1484 BUG_ON(!list_empty(&c->lru[i])); 1485 1486 dm_bufio_unlock(c); 1487 } 1488 1489 /* 1490 * We may not be able to evict this buffer if IO pending or the client 1491 * is still using it. Caller is expected to know buffer is too old. 1492 * 1493 * And if GFP_NOFS is used, we must not do any I/O because we hold 1494 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1495 * rerouted to different bufio client. 1496 */ 1497 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1498 { 1499 if (!(gfp & __GFP_FS)) { 1500 if (test_bit(B_READING, &b->state) || 1501 test_bit(B_WRITING, &b->state) || 1502 test_bit(B_DIRTY, &b->state)) 1503 return false; 1504 } 1505 1506 if (b->hold_count) 1507 return false; 1508 1509 __make_buffer_clean(b); 1510 __unlink_buffer(b); 1511 __free_buffer_wake(b); 1512 1513 return true; 1514 } 1515 1516 static unsigned get_retain_buffers(struct dm_bufio_client *c) 1517 { 1518 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1519 return retain_bytes / c->block_size; 1520 } 1521 1522 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1523 gfp_t gfp_mask) 1524 { 1525 int l; 1526 struct dm_buffer *b, *tmp; 1527 unsigned long freed = 0; 1528 unsigned long count = nr_to_scan; 1529 unsigned retain_target = get_retain_buffers(c); 1530 1531 for (l = 0; l < LIST_SIZE; l++) { 1532 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1533 if (__try_evict_buffer(b, gfp_mask)) 1534 freed++; 1535 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1536 return freed; 1537 dm_bufio_cond_resched(); 1538 } 1539 } 1540 return freed; 1541 } 1542 1543 static unsigned long 1544 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1545 { 1546 struct dm_bufio_client *c; 1547 unsigned long freed; 1548 1549 c = container_of(shrink, struct dm_bufio_client, shrinker); 1550 if (sc->gfp_mask & __GFP_FS) 1551 dm_bufio_lock(c); 1552 else if (!dm_bufio_trylock(c)) 1553 return SHRINK_STOP; 1554 1555 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1556 dm_bufio_unlock(c); 1557 return freed; 1558 } 1559 1560 static unsigned long 1561 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1562 { 1563 struct dm_bufio_client *c; 1564 unsigned long count; 1565 1566 c = container_of(shrink, struct dm_bufio_client, shrinker); 1567 if (sc->gfp_mask & __GFP_FS) 1568 dm_bufio_lock(c); 1569 else if (!dm_bufio_trylock(c)) 1570 return 0; 1571 1572 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1573 dm_bufio_unlock(c); 1574 return count; 1575 } 1576 1577 /* 1578 * Create the buffering interface 1579 */ 1580 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1581 unsigned reserved_buffers, unsigned aux_size, 1582 void (*alloc_callback)(struct dm_buffer *), 1583 void (*write_callback)(struct dm_buffer *)) 1584 { 1585 int r; 1586 struct dm_bufio_client *c; 1587 unsigned i; 1588 1589 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1590 (block_size & (block_size - 1))); 1591 1592 c = kzalloc(sizeof(*c), GFP_KERNEL); 1593 if (!c) { 1594 r = -ENOMEM; 1595 goto bad_client; 1596 } 1597 c->buffer_tree = RB_ROOT; 1598 1599 c->bdev = bdev; 1600 c->block_size = block_size; 1601 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT; 1602 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ? 1603 ffs(block_size) - 1 - PAGE_SHIFT : 0; 1604 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ? 1605 PAGE_SHIFT - (ffs(block_size) - 1) : 0); 1606 1607 c->aux_size = aux_size; 1608 c->alloc_callback = alloc_callback; 1609 c->write_callback = write_callback; 1610 1611 for (i = 0; i < LIST_SIZE; i++) { 1612 INIT_LIST_HEAD(&c->lru[i]); 1613 c->n_buffers[i] = 0; 1614 } 1615 1616 mutex_init(&c->lock); 1617 INIT_LIST_HEAD(&c->reserved_buffers); 1618 c->need_reserved_buffers = reserved_buffers; 1619 1620 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1621 1622 init_waitqueue_head(&c->free_buffer_wait); 1623 c->async_write_error = 0; 1624 1625 c->dm_io = dm_io_client_create(); 1626 if (IS_ERR(c->dm_io)) { 1627 r = PTR_ERR(c->dm_io); 1628 goto bad_dm_io; 1629 } 1630 1631 mutex_lock(&dm_bufio_clients_lock); 1632 if (c->blocks_per_page_bits) { 1633 if (!DM_BUFIO_CACHE_NAME(c)) { 1634 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1635 if (!DM_BUFIO_CACHE_NAME(c)) { 1636 r = -ENOMEM; 1637 mutex_unlock(&dm_bufio_clients_lock); 1638 goto bad_cache; 1639 } 1640 } 1641 1642 if (!DM_BUFIO_CACHE(c)) { 1643 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1644 c->block_size, 1645 c->block_size, 0, NULL); 1646 if (!DM_BUFIO_CACHE(c)) { 1647 r = -ENOMEM; 1648 mutex_unlock(&dm_bufio_clients_lock); 1649 goto bad_cache; 1650 } 1651 } 1652 } 1653 mutex_unlock(&dm_bufio_clients_lock); 1654 1655 while (c->need_reserved_buffers) { 1656 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1657 1658 if (!b) { 1659 r = -ENOMEM; 1660 goto bad_buffer; 1661 } 1662 __free_buffer_wake(b); 1663 } 1664 1665 mutex_lock(&dm_bufio_clients_lock); 1666 dm_bufio_client_count++; 1667 list_add(&c->client_list, &dm_bufio_all_clients); 1668 __cache_size_refresh(); 1669 mutex_unlock(&dm_bufio_clients_lock); 1670 1671 c->shrinker.count_objects = dm_bufio_shrink_count; 1672 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1673 c->shrinker.seeks = 1; 1674 c->shrinker.batch = 0; 1675 register_shrinker(&c->shrinker); 1676 1677 return c; 1678 1679 bad_buffer: 1680 bad_cache: 1681 while (!list_empty(&c->reserved_buffers)) { 1682 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1683 struct dm_buffer, lru_list); 1684 list_del(&b->lru_list); 1685 free_buffer(b); 1686 } 1687 dm_io_client_destroy(c->dm_io); 1688 bad_dm_io: 1689 kfree(c); 1690 bad_client: 1691 return ERR_PTR(r); 1692 } 1693 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1694 1695 /* 1696 * Free the buffering interface. 1697 * It is required that there are no references on any buffers. 1698 */ 1699 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1700 { 1701 unsigned i; 1702 1703 drop_buffers(c); 1704 1705 unregister_shrinker(&c->shrinker); 1706 1707 mutex_lock(&dm_bufio_clients_lock); 1708 1709 list_del(&c->client_list); 1710 dm_bufio_client_count--; 1711 __cache_size_refresh(); 1712 1713 mutex_unlock(&dm_bufio_clients_lock); 1714 1715 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1716 BUG_ON(c->need_reserved_buffers); 1717 1718 while (!list_empty(&c->reserved_buffers)) { 1719 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1720 struct dm_buffer, lru_list); 1721 list_del(&b->lru_list); 1722 free_buffer(b); 1723 } 1724 1725 for (i = 0; i < LIST_SIZE; i++) 1726 if (c->n_buffers[i]) 1727 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1728 1729 for (i = 0; i < LIST_SIZE; i++) 1730 BUG_ON(c->n_buffers[i]); 1731 1732 dm_io_client_destroy(c->dm_io); 1733 kfree(c); 1734 } 1735 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1736 1737 static unsigned get_max_age_hz(void) 1738 { 1739 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1740 1741 if (max_age > UINT_MAX / HZ) 1742 max_age = UINT_MAX / HZ; 1743 1744 return max_age * HZ; 1745 } 1746 1747 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1748 { 1749 return time_after_eq(jiffies, b->last_accessed + age_hz); 1750 } 1751 1752 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1753 { 1754 struct dm_buffer *b, *tmp; 1755 unsigned retain_target = get_retain_buffers(c); 1756 unsigned count; 1757 1758 dm_bufio_lock(c); 1759 1760 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1761 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1762 if (count <= retain_target) 1763 break; 1764 1765 if (!older_than(b, age_hz)) 1766 break; 1767 1768 if (__try_evict_buffer(b, 0)) 1769 count--; 1770 1771 dm_bufio_cond_resched(); 1772 } 1773 1774 dm_bufio_unlock(c); 1775 } 1776 1777 static void cleanup_old_buffers(void) 1778 { 1779 unsigned long max_age_hz = get_max_age_hz(); 1780 struct dm_bufio_client *c; 1781 1782 mutex_lock(&dm_bufio_clients_lock); 1783 1784 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1785 __evict_old_buffers(c, max_age_hz); 1786 1787 mutex_unlock(&dm_bufio_clients_lock); 1788 } 1789 1790 static struct workqueue_struct *dm_bufio_wq; 1791 static struct delayed_work dm_bufio_work; 1792 1793 static void work_fn(struct work_struct *w) 1794 { 1795 cleanup_old_buffers(); 1796 1797 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1798 DM_BUFIO_WORK_TIMER_SECS * HZ); 1799 } 1800 1801 /*---------------------------------------------------------------- 1802 * Module setup 1803 *--------------------------------------------------------------*/ 1804 1805 /* 1806 * This is called only once for the whole dm_bufio module. 1807 * It initializes memory limit. 1808 */ 1809 static int __init dm_bufio_init(void) 1810 { 1811 __u64 mem; 1812 1813 dm_bufio_allocated_kmem_cache = 0; 1814 dm_bufio_allocated_get_free_pages = 0; 1815 dm_bufio_allocated_vmalloc = 0; 1816 dm_bufio_current_allocated = 0; 1817 1818 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1819 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1820 1821 mem = (__u64)((totalram_pages - totalhigh_pages) * 1822 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1823 1824 if (mem > ULONG_MAX) 1825 mem = ULONG_MAX; 1826 1827 #ifdef CONFIG_MMU 1828 /* 1829 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1830 * in fs/proc/internal.h 1831 */ 1832 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1833 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1834 #endif 1835 1836 dm_bufio_default_cache_size = mem; 1837 1838 mutex_lock(&dm_bufio_clients_lock); 1839 __cache_size_refresh(); 1840 mutex_unlock(&dm_bufio_clients_lock); 1841 1842 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache"); 1843 if (!dm_bufio_wq) 1844 return -ENOMEM; 1845 1846 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1847 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1848 DM_BUFIO_WORK_TIMER_SECS * HZ); 1849 1850 return 0; 1851 } 1852 1853 /* 1854 * This is called once when unloading the dm_bufio module. 1855 */ 1856 static void __exit dm_bufio_exit(void) 1857 { 1858 int bug = 0; 1859 int i; 1860 1861 cancel_delayed_work_sync(&dm_bufio_work); 1862 destroy_workqueue(dm_bufio_wq); 1863 1864 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) { 1865 struct kmem_cache *kc = dm_bufio_caches[i]; 1866 1867 if (kc) 1868 kmem_cache_destroy(kc); 1869 } 1870 1871 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1872 kfree(dm_bufio_cache_names[i]); 1873 1874 if (dm_bufio_client_count) { 1875 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1876 __func__, dm_bufio_client_count); 1877 bug = 1; 1878 } 1879 1880 if (dm_bufio_current_allocated) { 1881 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1882 __func__, dm_bufio_current_allocated); 1883 bug = 1; 1884 } 1885 1886 if (dm_bufio_allocated_get_free_pages) { 1887 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1888 __func__, dm_bufio_allocated_get_free_pages); 1889 bug = 1; 1890 } 1891 1892 if (dm_bufio_allocated_vmalloc) { 1893 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1894 __func__, dm_bufio_allocated_vmalloc); 1895 bug = 1; 1896 } 1897 1898 if (bug) 1899 BUG(); 1900 } 1901 1902 module_init(dm_bufio_init) 1903 module_exit(dm_bufio_exit) 1904 1905 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1906 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1907 1908 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1909 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1910 1911 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR); 1912 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1913 1914 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1915 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1916 1917 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1918 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1919 1920 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1921 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1922 1923 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1924 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1925 1926 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1927 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1928 1929 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1930 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1931 MODULE_LICENSE("GPL"); 1932