1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * Check buffer ages in this interval (seconds) 45 */ 46 #define DM_BUFIO_WORK_TIMER_SECS 30 47 48 /* 49 * Free buffers when they are older than this (seconds) 50 */ 51 #define DM_BUFIO_DEFAULT_AGE_SECS 300 52 53 /* 54 * The nr of bytes of cached data to keep around. 55 */ 56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 57 58 /* 59 * Align buffer writes to this boundary. 60 * Tests show that SSDs have the highest IOPS when using 4k writes. 61 */ 62 #define DM_BUFIO_WRITE_ALIGN 4096 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /*--------------------------------------------------------------*/ 72 73 /* 74 * Rather than use an LRU list, we use a clock algorithm where entries 75 * are held in a circular list. When an entry is 'hit' a reference bit 76 * is set. The least recently used entry is approximated by running a 77 * cursor around the list selecting unreferenced entries. Referenced 78 * entries have their reference bit cleared as the cursor passes them. 79 */ 80 struct lru_entry { 81 struct list_head list; 82 atomic_t referenced; 83 }; 84 85 struct lru_iter { 86 struct lru *lru; 87 struct list_head list; 88 struct lru_entry *stop; 89 struct lru_entry *e; 90 }; 91 92 struct lru { 93 struct list_head *cursor; 94 unsigned long count; 95 96 struct list_head iterators; 97 }; 98 99 /*--------------*/ 100 101 static void lru_init(struct lru *lru) 102 { 103 lru->cursor = NULL; 104 lru->count = 0; 105 INIT_LIST_HEAD(&lru->iterators); 106 } 107 108 static void lru_destroy(struct lru *lru) 109 { 110 WARN_ON_ONCE(lru->cursor); 111 WARN_ON_ONCE(!list_empty(&lru->iterators)); 112 } 113 114 /* 115 * Insert a new entry into the lru. 116 */ 117 static void lru_insert(struct lru *lru, struct lru_entry *le) 118 { 119 /* 120 * Don't be tempted to set to 1, makes the lru aspect 121 * perform poorly. 122 */ 123 atomic_set(&le->referenced, 0); 124 125 if (lru->cursor) { 126 list_add_tail(&le->list, lru->cursor); 127 } else { 128 INIT_LIST_HEAD(&le->list); 129 lru->cursor = &le->list; 130 } 131 lru->count++; 132 } 133 134 /*--------------*/ 135 136 /* 137 * Convert a list_head pointer to an lru_entry pointer. 138 */ 139 static inline struct lru_entry *to_le(struct list_head *l) 140 { 141 return container_of(l, struct lru_entry, list); 142 } 143 144 /* 145 * Initialize an lru_iter and add it to the list of cursors in the lru. 146 */ 147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 148 { 149 it->lru = lru; 150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 151 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 152 list_add(&it->list, &lru->iterators); 153 } 154 155 /* 156 * Remove an lru_iter from the list of cursors in the lru. 157 */ 158 static inline void lru_iter_end(struct lru_iter *it) 159 { 160 list_del(&it->list); 161 } 162 163 /* Predicate function type to be used with lru_iter_next */ 164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 165 166 /* 167 * Advance the cursor to the next entry that passes the 168 * predicate, and return that entry. Returns NULL if the 169 * iteration is complete. 170 */ 171 static struct lru_entry *lru_iter_next(struct lru_iter *it, 172 iter_predicate pred, void *context) 173 { 174 struct lru_entry *e; 175 176 while (it->e) { 177 e = it->e; 178 179 /* advance the cursor */ 180 if (it->e == it->stop) 181 it->e = NULL; 182 else 183 it->e = to_le(it->e->list.next); 184 185 if (pred(e, context)) 186 return e; 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Invalidate a specific lru_entry and update all cursors in 194 * the lru accordingly. 195 */ 196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 197 { 198 struct lru_iter *it; 199 200 list_for_each_entry(it, &lru->iterators, list) { 201 /* Move c->e forwards if necc. */ 202 if (it->e == e) { 203 it->e = to_le(it->e->list.next); 204 if (it->e == e) 205 it->e = NULL; 206 } 207 208 /* Move it->stop backwards if necc. */ 209 if (it->stop == e) { 210 it->stop = to_le(it->stop->list.prev); 211 if (it->stop == e) 212 it->stop = NULL; 213 } 214 } 215 } 216 217 /*--------------*/ 218 219 /* 220 * Remove a specific entry from the lru. 221 */ 222 static void lru_remove(struct lru *lru, struct lru_entry *le) 223 { 224 lru_iter_invalidate(lru, le); 225 if (lru->count == 1) { 226 lru->cursor = NULL; 227 } else { 228 if (lru->cursor == &le->list) 229 lru->cursor = lru->cursor->next; 230 list_del(&le->list); 231 } 232 lru->count--; 233 } 234 235 /* 236 * Mark as referenced. 237 */ 238 static inline void lru_reference(struct lru_entry *le) 239 { 240 atomic_set(&le->referenced, 1); 241 } 242 243 /*--------------*/ 244 245 /* 246 * Remove the least recently used entry (approx), that passes the predicate. 247 * Returns NULL on failure. 248 */ 249 enum evict_result { 250 ER_EVICT, 251 ER_DONT_EVICT, 252 ER_STOP, /* stop looking for something to evict */ 253 }; 254 255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 256 257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep) 258 { 259 unsigned long tested = 0; 260 struct list_head *h = lru->cursor; 261 struct lru_entry *le; 262 263 if (!h) 264 return NULL; 265 /* 266 * In the worst case we have to loop around twice. Once to clear 267 * the reference flags, and then again to discover the predicate 268 * fails for all entries. 269 */ 270 while (tested < lru->count) { 271 le = container_of(h, struct lru_entry, list); 272 273 if (atomic_read(&le->referenced)) { 274 atomic_set(&le->referenced, 0); 275 } else { 276 tested++; 277 switch (pred(le, context)) { 278 case ER_EVICT: 279 /* 280 * Adjust the cursor, so we start the next 281 * search from here. 282 */ 283 lru->cursor = le->list.next; 284 lru_remove(lru, le); 285 return le; 286 287 case ER_DONT_EVICT: 288 break; 289 290 case ER_STOP: 291 lru->cursor = le->list.next; 292 return NULL; 293 } 294 } 295 296 h = h->next; 297 298 if (!no_sleep) 299 cond_resched(); 300 } 301 302 return NULL; 303 } 304 305 /*--------------------------------------------------------------*/ 306 307 /* 308 * Buffer state bits. 309 */ 310 #define B_READING 0 311 #define B_WRITING 1 312 #define B_DIRTY 2 313 314 /* 315 * Describes how the block was allocated: 316 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 317 * See the comment at alloc_buffer_data. 318 */ 319 enum data_mode { 320 DATA_MODE_SLAB = 0, 321 DATA_MODE_GET_FREE_PAGES = 1, 322 DATA_MODE_VMALLOC = 2, 323 DATA_MODE_LIMIT = 3 324 }; 325 326 struct dm_buffer { 327 /* protected by the locks in dm_buffer_cache */ 328 struct rb_node node; 329 330 /* immutable, so don't need protecting */ 331 sector_t block; 332 void *data; 333 unsigned char data_mode; /* DATA_MODE_* */ 334 335 /* 336 * These two fields are used in isolation, so do not need 337 * a surrounding lock. 338 */ 339 atomic_t hold_count; 340 unsigned long last_accessed; 341 342 /* 343 * Everything else is protected by the mutex in 344 * dm_bufio_client 345 */ 346 unsigned long state; 347 struct lru_entry lru; 348 unsigned char list_mode; /* LIST_* */ 349 blk_status_t read_error; 350 blk_status_t write_error; 351 unsigned int dirty_start; 352 unsigned int dirty_end; 353 unsigned int write_start; 354 unsigned int write_end; 355 struct list_head write_list; 356 struct dm_bufio_client *c; 357 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 359 #define MAX_STACK 10 360 unsigned int stack_len; 361 unsigned long stack_entries[MAX_STACK]; 362 #endif 363 }; 364 365 /*--------------------------------------------------------------*/ 366 367 /* 368 * The buffer cache manages buffers, particularly: 369 * - inc/dec of holder count 370 * - setting the last_accessed field 371 * - maintains clean/dirty state along with lru 372 * - selecting buffers that match predicates 373 * 374 * It does *not* handle: 375 * - allocation/freeing of buffers. 376 * - IO 377 * - Eviction or cache sizing. 378 * 379 * cache_get() and cache_put() are threadsafe, you do not need to 380 * protect these calls with a surrounding mutex. All the other 381 * methods are not threadsafe; they do use locking primitives, but 382 * only enough to ensure get/put are threadsafe. 383 */ 384 385 struct buffer_tree { 386 union { 387 struct rw_semaphore lock; 388 rwlock_t spinlock; 389 } u; 390 struct rb_root root; 391 } ____cacheline_aligned_in_smp; 392 393 struct dm_buffer_cache { 394 struct lru lru[LIST_SIZE]; 395 /* 396 * We spread entries across multiple trees to reduce contention 397 * on the locks. 398 */ 399 unsigned int num_locks; 400 bool no_sleep; 401 struct buffer_tree trees[]; 402 }; 403 404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 405 406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 407 { 408 return dm_hash_locks_index(block, num_locks); 409 } 410 411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 412 { 413 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 414 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 415 else 416 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 417 } 418 419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 420 { 421 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 422 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 423 else 424 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 425 } 426 427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 428 { 429 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 430 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 431 else 432 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 433 } 434 435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 436 { 437 if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep) 438 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock); 439 else 440 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock); 441 } 442 443 /* 444 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 445 * This struct helps avoid redundant drop and gets of the same lock. 446 */ 447 struct lock_history { 448 struct dm_buffer_cache *cache; 449 bool write; 450 unsigned int previous; 451 unsigned int no_previous; 452 }; 453 454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 455 { 456 lh->cache = cache; 457 lh->write = write; 458 lh->no_previous = cache->num_locks; 459 lh->previous = lh->no_previous; 460 } 461 462 static void __lh_lock(struct lock_history *lh, unsigned int index) 463 { 464 if (lh->write) { 465 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 466 write_lock_bh(&lh->cache->trees[index].u.spinlock); 467 else 468 down_write(&lh->cache->trees[index].u.lock); 469 } else { 470 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 471 read_lock_bh(&lh->cache->trees[index].u.spinlock); 472 else 473 down_read(&lh->cache->trees[index].u.lock); 474 } 475 } 476 477 static void __lh_unlock(struct lock_history *lh, unsigned int index) 478 { 479 if (lh->write) { 480 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 481 write_unlock_bh(&lh->cache->trees[index].u.spinlock); 482 else 483 up_write(&lh->cache->trees[index].u.lock); 484 } else { 485 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep) 486 read_unlock_bh(&lh->cache->trees[index].u.spinlock); 487 else 488 up_read(&lh->cache->trees[index].u.lock); 489 } 490 } 491 492 /* 493 * Make sure you call this since it will unlock the final lock. 494 */ 495 static void lh_exit(struct lock_history *lh) 496 { 497 if (lh->previous != lh->no_previous) { 498 __lh_unlock(lh, lh->previous); 499 lh->previous = lh->no_previous; 500 } 501 } 502 503 /* 504 * Named 'next' because there is no corresponding 505 * 'up/unlock' call since it's done automatically. 506 */ 507 static void lh_next(struct lock_history *lh, sector_t b) 508 { 509 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 510 511 if (lh->previous != lh->no_previous) { 512 if (lh->previous != index) { 513 __lh_unlock(lh, lh->previous); 514 __lh_lock(lh, index); 515 lh->previous = index; 516 } 517 } else { 518 __lh_lock(lh, index); 519 lh->previous = index; 520 } 521 } 522 523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 524 { 525 return container_of(le, struct dm_buffer, lru); 526 } 527 528 static struct dm_buffer *list_to_buffer(struct list_head *l) 529 { 530 struct lru_entry *le = list_entry(l, struct lru_entry, list); 531 532 if (!le) 533 return NULL; 534 535 return le_to_buffer(le); 536 } 537 538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep) 539 { 540 unsigned int i; 541 542 bc->num_locks = num_locks; 543 bc->no_sleep = no_sleep; 544 545 for (i = 0; i < bc->num_locks; i++) { 546 if (no_sleep) 547 rwlock_init(&bc->trees[i].u.spinlock); 548 else 549 init_rwsem(&bc->trees[i].u.lock); 550 bc->trees[i].root = RB_ROOT; 551 } 552 553 lru_init(&bc->lru[LIST_CLEAN]); 554 lru_init(&bc->lru[LIST_DIRTY]); 555 } 556 557 static void cache_destroy(struct dm_buffer_cache *bc) 558 { 559 unsigned int i; 560 561 for (i = 0; i < bc->num_locks; i++) 562 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 563 564 lru_destroy(&bc->lru[LIST_CLEAN]); 565 lru_destroy(&bc->lru[LIST_DIRTY]); 566 } 567 568 /*--------------*/ 569 570 /* 571 * not threadsafe, or racey depending how you look at it 572 */ 573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 574 { 575 return bc->lru[list_mode].count; 576 } 577 578 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 579 { 580 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 581 } 582 583 /*--------------*/ 584 585 /* 586 * Gets a specific buffer, indexed by block. 587 * If the buffer is found then its holder count will be incremented and 588 * lru_reference will be called. 589 * 590 * threadsafe 591 */ 592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 593 { 594 struct rb_node *n = root->rb_node; 595 struct dm_buffer *b; 596 597 while (n) { 598 b = container_of(n, struct dm_buffer, node); 599 600 if (b->block == block) 601 return b; 602 603 n = block < b->block ? n->rb_left : n->rb_right; 604 } 605 606 return NULL; 607 } 608 609 static void __cache_inc_buffer(struct dm_buffer *b) 610 { 611 atomic_inc(&b->hold_count); 612 WRITE_ONCE(b->last_accessed, jiffies); 613 } 614 615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 616 { 617 struct dm_buffer *b; 618 619 cache_read_lock(bc, block); 620 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 621 if (b) { 622 lru_reference(&b->lru); 623 __cache_inc_buffer(b); 624 } 625 cache_read_unlock(bc, block); 626 627 return b; 628 } 629 630 /*--------------*/ 631 632 /* 633 * Returns true if the hold count hits zero. 634 * threadsafe 635 */ 636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 637 { 638 bool r; 639 640 cache_read_lock(bc, b->block); 641 BUG_ON(!atomic_read(&b->hold_count)); 642 r = atomic_dec_and_test(&b->hold_count); 643 cache_read_unlock(bc, b->block); 644 645 return r; 646 } 647 648 /*--------------*/ 649 650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 651 652 /* 653 * Evicts a buffer based on a predicate. The oldest buffer that 654 * matches the predicate will be selected. In addition to the 655 * predicate the hold_count of the selected buffer will be zero. 656 */ 657 struct evict_wrapper { 658 struct lock_history *lh; 659 b_predicate pred; 660 void *context; 661 }; 662 663 /* 664 * Wraps the buffer predicate turning it into an lru predicate. Adds 665 * extra test for hold_count. 666 */ 667 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 668 { 669 struct evict_wrapper *w = context; 670 struct dm_buffer *b = le_to_buffer(le); 671 672 lh_next(w->lh, b->block); 673 674 if (atomic_read(&b->hold_count)) 675 return ER_DONT_EVICT; 676 677 return w->pred(b, w->context); 678 } 679 680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 681 b_predicate pred, void *context, 682 struct lock_history *lh) 683 { 684 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 685 struct lru_entry *le; 686 struct dm_buffer *b; 687 688 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep); 689 if (!le) 690 return NULL; 691 692 b = le_to_buffer(le); 693 /* __evict_pred will have locked the appropriate tree. */ 694 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 695 696 return b; 697 } 698 699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 700 b_predicate pred, void *context) 701 { 702 struct dm_buffer *b; 703 struct lock_history lh; 704 705 lh_init(&lh, bc, true); 706 b = __cache_evict(bc, list_mode, pred, context, &lh); 707 lh_exit(&lh); 708 709 return b; 710 } 711 712 /*--------------*/ 713 714 /* 715 * Mark a buffer as clean or dirty. Not threadsafe. 716 */ 717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 718 { 719 cache_write_lock(bc, b->block); 720 if (list_mode != b->list_mode) { 721 lru_remove(&bc->lru[b->list_mode], &b->lru); 722 b->list_mode = list_mode; 723 lru_insert(&bc->lru[b->list_mode], &b->lru); 724 } 725 cache_write_unlock(bc, b->block); 726 } 727 728 /*--------------*/ 729 730 /* 731 * Runs through the lru associated with 'old_mode', if the predicate matches then 732 * it moves them to 'new_mode'. Not threadsafe. 733 */ 734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 735 b_predicate pred, void *context, struct lock_history *lh) 736 { 737 struct lru_entry *le; 738 struct dm_buffer *b; 739 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 740 741 while (true) { 742 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep); 743 if (!le) 744 break; 745 746 b = le_to_buffer(le); 747 b->list_mode = new_mode; 748 lru_insert(&bc->lru[b->list_mode], &b->lru); 749 } 750 } 751 752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 753 b_predicate pred, void *context) 754 { 755 struct lock_history lh; 756 757 lh_init(&lh, bc, true); 758 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 759 lh_exit(&lh); 760 } 761 762 /*--------------*/ 763 764 /* 765 * Iterates through all clean or dirty entries calling a function for each 766 * entry. The callback may terminate the iteration early. Not threadsafe. 767 */ 768 769 /* 770 * Iterator functions should return one of these actions to indicate 771 * how the iteration should proceed. 772 */ 773 enum it_action { 774 IT_NEXT, 775 IT_COMPLETE, 776 }; 777 778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 779 780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 781 iter_fn fn, void *context, struct lock_history *lh) 782 { 783 struct lru *lru = &bc->lru[list_mode]; 784 struct lru_entry *le, *first; 785 786 if (!lru->cursor) 787 return; 788 789 first = le = to_le(lru->cursor); 790 do { 791 struct dm_buffer *b = le_to_buffer(le); 792 793 lh_next(lh, b->block); 794 795 switch (fn(b, context)) { 796 case IT_NEXT: 797 break; 798 799 case IT_COMPLETE: 800 return; 801 } 802 cond_resched(); 803 804 le = to_le(le->list.next); 805 } while (le != first); 806 } 807 808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 809 iter_fn fn, void *context) 810 { 811 struct lock_history lh; 812 813 lh_init(&lh, bc, false); 814 __cache_iterate(bc, list_mode, fn, context, &lh); 815 lh_exit(&lh); 816 } 817 818 /*--------------*/ 819 820 /* 821 * Passes ownership of the buffer to the cache. Returns false if the 822 * buffer was already present (in which case ownership does not pass). 823 * eg, a race with another thread. 824 * 825 * Holder count should be 1 on insertion. 826 * 827 * Not threadsafe. 828 */ 829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 830 { 831 struct rb_node **new = &root->rb_node, *parent = NULL; 832 struct dm_buffer *found; 833 834 while (*new) { 835 found = container_of(*new, struct dm_buffer, node); 836 837 if (found->block == b->block) 838 return false; 839 840 parent = *new; 841 new = b->block < found->block ? 842 &found->node.rb_left : &found->node.rb_right; 843 } 844 845 rb_link_node(&b->node, parent, new); 846 rb_insert_color(&b->node, root); 847 848 return true; 849 } 850 851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 852 { 853 bool r; 854 855 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 856 return false; 857 858 cache_write_lock(bc, b->block); 859 BUG_ON(atomic_read(&b->hold_count) != 1); 860 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 861 if (r) 862 lru_insert(&bc->lru[b->list_mode], &b->lru); 863 cache_write_unlock(bc, b->block); 864 865 return r; 866 } 867 868 /*--------------*/ 869 870 /* 871 * Removes buffer from cache, ownership of the buffer passes back to the caller. 872 * Fails if the hold_count is not one (ie. the caller holds the only reference). 873 * 874 * Not threadsafe. 875 */ 876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 877 { 878 bool r; 879 880 cache_write_lock(bc, b->block); 881 882 if (atomic_read(&b->hold_count) != 1) { 883 r = false; 884 } else { 885 r = true; 886 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 887 lru_remove(&bc->lru[b->list_mode], &b->lru); 888 } 889 890 cache_write_unlock(bc, b->block); 891 892 return r; 893 } 894 895 /*--------------*/ 896 897 typedef void (*b_release)(struct dm_buffer *); 898 899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 900 { 901 struct rb_node *n = root->rb_node; 902 struct dm_buffer *b; 903 struct dm_buffer *best = NULL; 904 905 while (n) { 906 b = container_of(n, struct dm_buffer, node); 907 908 if (b->block == block) 909 return b; 910 911 if (block <= b->block) { 912 n = n->rb_left; 913 best = b; 914 } else { 915 n = n->rb_right; 916 } 917 } 918 919 return best; 920 } 921 922 static void __remove_range(struct dm_buffer_cache *bc, 923 struct rb_root *root, 924 sector_t begin, sector_t end, 925 b_predicate pred, b_release release) 926 { 927 struct dm_buffer *b; 928 929 while (true) { 930 cond_resched(); 931 932 b = __find_next(root, begin); 933 if (!b || (b->block >= end)) 934 break; 935 936 begin = b->block + 1; 937 938 if (atomic_read(&b->hold_count)) 939 continue; 940 941 if (pred(b, NULL) == ER_EVICT) { 942 rb_erase(&b->node, root); 943 lru_remove(&bc->lru[b->list_mode], &b->lru); 944 release(b); 945 } 946 } 947 } 948 949 static void cache_remove_range(struct dm_buffer_cache *bc, 950 sector_t begin, sector_t end, 951 b_predicate pred, b_release release) 952 { 953 unsigned int i; 954 955 BUG_ON(bc->no_sleep); 956 for (i = 0; i < bc->num_locks; i++) { 957 down_write(&bc->trees[i].u.lock); 958 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 959 up_write(&bc->trees[i].u.lock); 960 } 961 } 962 963 /*----------------------------------------------------------------*/ 964 965 /* 966 * Linking of buffers: 967 * All buffers are linked to buffer_cache with their node field. 968 * 969 * Clean buffers that are not being written (B_WRITING not set) 970 * are linked to lru[LIST_CLEAN] with their lru_list field. 971 * 972 * Dirty and clean buffers that are being written are linked to 973 * lru[LIST_DIRTY] with their lru_list field. When the write 974 * finishes, the buffer cannot be relinked immediately (because we 975 * are in an interrupt context and relinking requires process 976 * context), so some clean-not-writing buffers can be held on 977 * dirty_lru too. They are later added to lru in the process 978 * context. 979 */ 980 struct dm_bufio_client { 981 struct block_device *bdev; 982 unsigned int block_size; 983 s8 sectors_per_block_bits; 984 985 bool no_sleep; 986 struct mutex lock; 987 spinlock_t spinlock; 988 989 int async_write_error; 990 991 void (*alloc_callback)(struct dm_buffer *buf); 992 void (*write_callback)(struct dm_buffer *buf); 993 struct kmem_cache *slab_buffer; 994 struct kmem_cache *slab_cache; 995 struct dm_io_client *dm_io; 996 997 struct list_head reserved_buffers; 998 unsigned int need_reserved_buffers; 999 1000 unsigned int minimum_buffers; 1001 1002 sector_t start; 1003 1004 struct shrinker shrinker; 1005 struct work_struct shrink_work; 1006 atomic_long_t need_shrink; 1007 1008 wait_queue_head_t free_buffer_wait; 1009 1010 struct list_head client_list; 1011 1012 /* 1013 * Used by global_cleanup to sort the clients list. 1014 */ 1015 unsigned long oldest_buffer; 1016 1017 struct dm_buffer_cache cache; /* must be last member */ 1018 }; 1019 1020 /*----------------------------------------------------------------*/ 1021 1022 #define dm_bufio_in_request() (!!current->bio_list) 1023 1024 static void dm_bufio_lock(struct dm_bufio_client *c) 1025 { 1026 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1027 spin_lock_bh(&c->spinlock); 1028 else 1029 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 1030 } 1031 1032 static void dm_bufio_unlock(struct dm_bufio_client *c) 1033 { 1034 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1035 spin_unlock_bh(&c->spinlock); 1036 else 1037 mutex_unlock(&c->lock); 1038 } 1039 1040 /*----------------------------------------------------------------*/ 1041 1042 /* 1043 * Default cache size: available memory divided by the ratio. 1044 */ 1045 static unsigned long dm_bufio_default_cache_size; 1046 1047 /* 1048 * Total cache size set by the user. 1049 */ 1050 static unsigned long dm_bufio_cache_size; 1051 1052 /* 1053 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1054 * at any time. If it disagrees, the user has changed cache size. 1055 */ 1056 static unsigned long dm_bufio_cache_size_latch; 1057 1058 static DEFINE_SPINLOCK(global_spinlock); 1059 1060 /* 1061 * Buffers are freed after this timeout 1062 */ 1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1065 1066 static unsigned long dm_bufio_peak_allocated; 1067 static unsigned long dm_bufio_allocated_kmem_cache; 1068 static unsigned long dm_bufio_allocated_get_free_pages; 1069 static unsigned long dm_bufio_allocated_vmalloc; 1070 static unsigned long dm_bufio_current_allocated; 1071 1072 /*----------------------------------------------------------------*/ 1073 1074 /* 1075 * The current number of clients. 1076 */ 1077 static int dm_bufio_client_count; 1078 1079 /* 1080 * The list of all clients. 1081 */ 1082 static LIST_HEAD(dm_bufio_all_clients); 1083 1084 /* 1085 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1086 */ 1087 static DEFINE_MUTEX(dm_bufio_clients_lock); 1088 1089 static struct workqueue_struct *dm_bufio_wq; 1090 static struct delayed_work dm_bufio_cleanup_old_work; 1091 static struct work_struct dm_bufio_replacement_work; 1092 1093 1094 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1095 static void buffer_record_stack(struct dm_buffer *b) 1096 { 1097 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1098 } 1099 #endif 1100 1101 /*----------------------------------------------------------------*/ 1102 1103 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1104 { 1105 unsigned char data_mode; 1106 long diff; 1107 1108 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1109 &dm_bufio_allocated_kmem_cache, 1110 &dm_bufio_allocated_get_free_pages, 1111 &dm_bufio_allocated_vmalloc, 1112 }; 1113 1114 data_mode = b->data_mode; 1115 diff = (long)b->c->block_size; 1116 if (unlink) 1117 diff = -diff; 1118 1119 spin_lock(&global_spinlock); 1120 1121 *class_ptr[data_mode] += diff; 1122 1123 dm_bufio_current_allocated += diff; 1124 1125 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1126 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1127 1128 if (!unlink) { 1129 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1130 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1131 } 1132 1133 spin_unlock(&global_spinlock); 1134 } 1135 1136 /* 1137 * Change the number of clients and recalculate per-client limit. 1138 */ 1139 static void __cache_size_refresh(void) 1140 { 1141 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1142 return; 1143 if (WARN_ON(dm_bufio_client_count < 0)) 1144 return; 1145 1146 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1147 1148 /* 1149 * Use default if set to 0 and report the actual cache size used. 1150 */ 1151 if (!dm_bufio_cache_size_latch) { 1152 (void)cmpxchg(&dm_bufio_cache_size, 0, 1153 dm_bufio_default_cache_size); 1154 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1155 } 1156 } 1157 1158 /* 1159 * Allocating buffer data. 1160 * 1161 * Small buffers are allocated with kmem_cache, to use space optimally. 1162 * 1163 * For large buffers, we choose between get_free_pages and vmalloc. 1164 * Each has advantages and disadvantages. 1165 * 1166 * __get_free_pages can randomly fail if the memory is fragmented. 1167 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1168 * as low as 128M) so using it for caching is not appropriate. 1169 * 1170 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1171 * won't have a fatal effect here, but it just causes flushes of some other 1172 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1173 * always fails (i.e. order > MAX_ORDER). 1174 * 1175 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1176 * initial reserve allocation, so there's no risk of wasting all vmalloc 1177 * space. 1178 */ 1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1180 unsigned char *data_mode) 1181 { 1182 if (unlikely(c->slab_cache != NULL)) { 1183 *data_mode = DATA_MODE_SLAB; 1184 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1185 } 1186 1187 if (c->block_size <= KMALLOC_MAX_SIZE && 1188 gfp_mask & __GFP_NORETRY) { 1189 *data_mode = DATA_MODE_GET_FREE_PAGES; 1190 return (void *)__get_free_pages(gfp_mask, 1191 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1192 } 1193 1194 *data_mode = DATA_MODE_VMALLOC; 1195 1196 return __vmalloc(c->block_size, gfp_mask); 1197 } 1198 1199 /* 1200 * Free buffer's data. 1201 */ 1202 static void free_buffer_data(struct dm_bufio_client *c, 1203 void *data, unsigned char data_mode) 1204 { 1205 switch (data_mode) { 1206 case DATA_MODE_SLAB: 1207 kmem_cache_free(c->slab_cache, data); 1208 break; 1209 1210 case DATA_MODE_GET_FREE_PAGES: 1211 free_pages((unsigned long)data, 1212 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1213 break; 1214 1215 case DATA_MODE_VMALLOC: 1216 vfree(data); 1217 break; 1218 1219 default: 1220 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1221 data_mode); 1222 BUG(); 1223 } 1224 } 1225 1226 /* 1227 * Allocate buffer and its data. 1228 */ 1229 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1230 { 1231 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1232 1233 if (!b) 1234 return NULL; 1235 1236 b->c = c; 1237 1238 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1239 if (!b->data) { 1240 kmem_cache_free(c->slab_buffer, b); 1241 return NULL; 1242 } 1243 adjust_total_allocated(b, false); 1244 1245 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1246 b->stack_len = 0; 1247 #endif 1248 return b; 1249 } 1250 1251 /* 1252 * Free buffer and its data. 1253 */ 1254 static void free_buffer(struct dm_buffer *b) 1255 { 1256 struct dm_bufio_client *c = b->c; 1257 1258 adjust_total_allocated(b, true); 1259 free_buffer_data(c, b->data, b->data_mode); 1260 kmem_cache_free(c->slab_buffer, b); 1261 } 1262 1263 /* 1264 *-------------------------------------------------------------------------- 1265 * Submit I/O on the buffer. 1266 * 1267 * Bio interface is faster but it has some problems: 1268 * the vector list is limited (increasing this limit increases 1269 * memory-consumption per buffer, so it is not viable); 1270 * 1271 * the memory must be direct-mapped, not vmalloced; 1272 * 1273 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1274 * it is not vmalloced, try using the bio interface. 1275 * 1276 * If the buffer is big, if it is vmalloced or if the underlying device 1277 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1278 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1279 * shortcomings. 1280 *-------------------------------------------------------------------------- 1281 */ 1282 1283 /* 1284 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1285 * that the request was handled directly with bio interface. 1286 */ 1287 static void dmio_complete(unsigned long error, void *context) 1288 { 1289 struct dm_buffer *b = context; 1290 1291 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1292 } 1293 1294 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1295 unsigned int n_sectors, unsigned int offset) 1296 { 1297 int r; 1298 struct dm_io_request io_req = { 1299 .bi_opf = op, 1300 .notify.fn = dmio_complete, 1301 .notify.context = b, 1302 .client = b->c->dm_io, 1303 }; 1304 struct dm_io_region region = { 1305 .bdev = b->c->bdev, 1306 .sector = sector, 1307 .count = n_sectors, 1308 }; 1309 1310 if (b->data_mode != DATA_MODE_VMALLOC) { 1311 io_req.mem.type = DM_IO_KMEM; 1312 io_req.mem.ptr.addr = (char *)b->data + offset; 1313 } else { 1314 io_req.mem.type = DM_IO_VMA; 1315 io_req.mem.ptr.vma = (char *)b->data + offset; 1316 } 1317 1318 r = dm_io(&io_req, 1, ®ion, NULL); 1319 if (unlikely(r)) 1320 b->end_io(b, errno_to_blk_status(r)); 1321 } 1322 1323 static void bio_complete(struct bio *bio) 1324 { 1325 struct dm_buffer *b = bio->bi_private; 1326 blk_status_t status = bio->bi_status; 1327 1328 bio_uninit(bio); 1329 kfree(bio); 1330 b->end_io(b, status); 1331 } 1332 1333 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1334 unsigned int n_sectors, unsigned int offset) 1335 { 1336 struct bio *bio; 1337 char *ptr; 1338 unsigned int len; 1339 1340 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1341 if (!bio) { 1342 use_dmio(b, op, sector, n_sectors, offset); 1343 return; 1344 } 1345 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1346 bio->bi_iter.bi_sector = sector; 1347 bio->bi_end_io = bio_complete; 1348 bio->bi_private = b; 1349 1350 ptr = (char *)b->data + offset; 1351 len = n_sectors << SECTOR_SHIFT; 1352 1353 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr)); 1354 1355 submit_bio(bio); 1356 } 1357 1358 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1359 { 1360 sector_t sector; 1361 1362 if (likely(c->sectors_per_block_bits >= 0)) 1363 sector = block << c->sectors_per_block_bits; 1364 else 1365 sector = block * (c->block_size >> SECTOR_SHIFT); 1366 sector += c->start; 1367 1368 return sector; 1369 } 1370 1371 static void submit_io(struct dm_buffer *b, enum req_op op, 1372 void (*end_io)(struct dm_buffer *, blk_status_t)) 1373 { 1374 unsigned int n_sectors; 1375 sector_t sector; 1376 unsigned int offset, end; 1377 1378 b->end_io = end_io; 1379 1380 sector = block_to_sector(b->c, b->block); 1381 1382 if (op != REQ_OP_WRITE) { 1383 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1384 offset = 0; 1385 } else { 1386 if (b->c->write_callback) 1387 b->c->write_callback(b); 1388 offset = b->write_start; 1389 end = b->write_end; 1390 offset &= -DM_BUFIO_WRITE_ALIGN; 1391 end += DM_BUFIO_WRITE_ALIGN - 1; 1392 end &= -DM_BUFIO_WRITE_ALIGN; 1393 if (unlikely(end > b->c->block_size)) 1394 end = b->c->block_size; 1395 1396 sector += offset >> SECTOR_SHIFT; 1397 n_sectors = (end - offset) >> SECTOR_SHIFT; 1398 } 1399 1400 if (b->data_mode != DATA_MODE_VMALLOC) 1401 use_bio(b, op, sector, n_sectors, offset); 1402 else 1403 use_dmio(b, op, sector, n_sectors, offset); 1404 } 1405 1406 /* 1407 *-------------------------------------------------------------- 1408 * Writing dirty buffers 1409 *-------------------------------------------------------------- 1410 */ 1411 1412 /* 1413 * The endio routine for write. 1414 * 1415 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1416 * it. 1417 */ 1418 static void write_endio(struct dm_buffer *b, blk_status_t status) 1419 { 1420 b->write_error = status; 1421 if (unlikely(status)) { 1422 struct dm_bufio_client *c = b->c; 1423 1424 (void)cmpxchg(&c->async_write_error, 0, 1425 blk_status_to_errno(status)); 1426 } 1427 1428 BUG_ON(!test_bit(B_WRITING, &b->state)); 1429 1430 smp_mb__before_atomic(); 1431 clear_bit(B_WRITING, &b->state); 1432 smp_mb__after_atomic(); 1433 1434 wake_up_bit(&b->state, B_WRITING); 1435 } 1436 1437 /* 1438 * Initiate a write on a dirty buffer, but don't wait for it. 1439 * 1440 * - If the buffer is not dirty, exit. 1441 * - If there some previous write going on, wait for it to finish (we can't 1442 * have two writes on the same buffer simultaneously). 1443 * - Submit our write and don't wait on it. We set B_WRITING indicating 1444 * that there is a write in progress. 1445 */ 1446 static void __write_dirty_buffer(struct dm_buffer *b, 1447 struct list_head *write_list) 1448 { 1449 if (!test_bit(B_DIRTY, &b->state)) 1450 return; 1451 1452 clear_bit(B_DIRTY, &b->state); 1453 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1454 1455 b->write_start = b->dirty_start; 1456 b->write_end = b->dirty_end; 1457 1458 if (!write_list) 1459 submit_io(b, REQ_OP_WRITE, write_endio); 1460 else 1461 list_add_tail(&b->write_list, write_list); 1462 } 1463 1464 static void __flush_write_list(struct list_head *write_list) 1465 { 1466 struct blk_plug plug; 1467 1468 blk_start_plug(&plug); 1469 while (!list_empty(write_list)) { 1470 struct dm_buffer *b = 1471 list_entry(write_list->next, struct dm_buffer, write_list); 1472 list_del(&b->write_list); 1473 submit_io(b, REQ_OP_WRITE, write_endio); 1474 cond_resched(); 1475 } 1476 blk_finish_plug(&plug); 1477 } 1478 1479 /* 1480 * Wait until any activity on the buffer finishes. Possibly write the 1481 * buffer if it is dirty. When this function finishes, there is no I/O 1482 * running on the buffer and the buffer is not dirty. 1483 */ 1484 static void __make_buffer_clean(struct dm_buffer *b) 1485 { 1486 BUG_ON(atomic_read(&b->hold_count)); 1487 1488 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1489 if (!smp_load_acquire(&b->state)) /* fast case */ 1490 return; 1491 1492 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1493 __write_dirty_buffer(b, NULL); 1494 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1495 } 1496 1497 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1498 { 1499 struct dm_bufio_client *c = context; 1500 1501 /* These should never happen */ 1502 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1503 return ER_DONT_EVICT; 1504 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1505 return ER_DONT_EVICT; 1506 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1507 return ER_DONT_EVICT; 1508 1509 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1510 unlikely(test_bit(B_READING, &b->state))) 1511 return ER_DONT_EVICT; 1512 1513 return ER_EVICT; 1514 } 1515 1516 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1517 { 1518 /* These should never happen */ 1519 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1520 return ER_DONT_EVICT; 1521 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1522 return ER_DONT_EVICT; 1523 1524 return ER_EVICT; 1525 } 1526 1527 /* 1528 * Find some buffer that is not held by anybody, clean it, unlink it and 1529 * return it. 1530 */ 1531 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1532 { 1533 struct dm_buffer *b; 1534 1535 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1536 if (b) { 1537 /* this also waits for pending reads */ 1538 __make_buffer_clean(b); 1539 return b; 1540 } 1541 1542 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1543 return NULL; 1544 1545 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1546 if (b) { 1547 __make_buffer_clean(b); 1548 return b; 1549 } 1550 1551 return NULL; 1552 } 1553 1554 /* 1555 * Wait until some other threads free some buffer or release hold count on 1556 * some buffer. 1557 * 1558 * This function is entered with c->lock held, drops it and regains it 1559 * before exiting. 1560 */ 1561 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1562 { 1563 DECLARE_WAITQUEUE(wait, current); 1564 1565 add_wait_queue(&c->free_buffer_wait, &wait); 1566 set_current_state(TASK_UNINTERRUPTIBLE); 1567 dm_bufio_unlock(c); 1568 1569 /* 1570 * It's possible to miss a wake up event since we don't always 1571 * hold c->lock when wake_up is called. So we have a timeout here, 1572 * just in case. 1573 */ 1574 io_schedule_timeout(5 * HZ); 1575 1576 remove_wait_queue(&c->free_buffer_wait, &wait); 1577 1578 dm_bufio_lock(c); 1579 } 1580 1581 enum new_flag { 1582 NF_FRESH = 0, 1583 NF_READ = 1, 1584 NF_GET = 2, 1585 NF_PREFETCH = 3 1586 }; 1587 1588 /* 1589 * Allocate a new buffer. If the allocation is not possible, wait until 1590 * some other thread frees a buffer. 1591 * 1592 * May drop the lock and regain it. 1593 */ 1594 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1595 { 1596 struct dm_buffer *b; 1597 bool tried_noio_alloc = false; 1598 1599 /* 1600 * dm-bufio is resistant to allocation failures (it just keeps 1601 * one buffer reserved in cases all the allocations fail). 1602 * So set flags to not try too hard: 1603 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1604 * mutex and wait ourselves. 1605 * __GFP_NORETRY: don't retry and rather return failure 1606 * __GFP_NOMEMALLOC: don't use emergency reserves 1607 * __GFP_NOWARN: don't print a warning in case of failure 1608 * 1609 * For debugging, if we set the cache size to 1, no new buffers will 1610 * be allocated. 1611 */ 1612 while (1) { 1613 if (dm_bufio_cache_size_latch != 1) { 1614 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1615 if (b) 1616 return b; 1617 } 1618 1619 if (nf == NF_PREFETCH) 1620 return NULL; 1621 1622 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1623 dm_bufio_unlock(c); 1624 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1625 dm_bufio_lock(c); 1626 if (b) 1627 return b; 1628 tried_noio_alloc = true; 1629 } 1630 1631 if (!list_empty(&c->reserved_buffers)) { 1632 b = list_to_buffer(c->reserved_buffers.next); 1633 list_del(&b->lru.list); 1634 c->need_reserved_buffers++; 1635 1636 return b; 1637 } 1638 1639 b = __get_unclaimed_buffer(c); 1640 if (b) 1641 return b; 1642 1643 __wait_for_free_buffer(c); 1644 } 1645 } 1646 1647 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1648 { 1649 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1650 1651 if (!b) 1652 return NULL; 1653 1654 if (c->alloc_callback) 1655 c->alloc_callback(b); 1656 1657 return b; 1658 } 1659 1660 /* 1661 * Free a buffer and wake other threads waiting for free buffers. 1662 */ 1663 static void __free_buffer_wake(struct dm_buffer *b) 1664 { 1665 struct dm_bufio_client *c = b->c; 1666 1667 b->block = -1; 1668 if (!c->need_reserved_buffers) 1669 free_buffer(b); 1670 else { 1671 list_add(&b->lru.list, &c->reserved_buffers); 1672 c->need_reserved_buffers--; 1673 } 1674 1675 /* 1676 * We hold the bufio lock here, so no one can add entries to the 1677 * wait queue anyway. 1678 */ 1679 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1680 wake_up(&c->free_buffer_wait); 1681 } 1682 1683 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1684 { 1685 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1686 return ER_DONT_EVICT; /* should never happen */ 1687 1688 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1689 return ER_DONT_EVICT; 1690 else 1691 return ER_EVICT; 1692 } 1693 1694 static void __move_clean_buffers(struct dm_bufio_client *c) 1695 { 1696 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1697 } 1698 1699 struct write_context { 1700 int no_wait; 1701 struct list_head *write_list; 1702 }; 1703 1704 static enum it_action write_one(struct dm_buffer *b, void *context) 1705 { 1706 struct write_context *wc = context; 1707 1708 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1709 return IT_COMPLETE; 1710 1711 __write_dirty_buffer(b, wc->write_list); 1712 return IT_NEXT; 1713 } 1714 1715 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1716 struct list_head *write_list) 1717 { 1718 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1719 1720 __move_clean_buffers(c); 1721 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1722 } 1723 1724 /* 1725 * Check if we're over watermark. 1726 * If we are over threshold_buffers, start freeing buffers. 1727 * If we're over "limit_buffers", block until we get under the limit. 1728 */ 1729 static void __check_watermark(struct dm_bufio_client *c, 1730 struct list_head *write_list) 1731 { 1732 if (cache_count(&c->cache, LIST_DIRTY) > 1733 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1734 __write_dirty_buffers_async(c, 1, write_list); 1735 } 1736 1737 /* 1738 *-------------------------------------------------------------- 1739 * Getting a buffer 1740 *-------------------------------------------------------------- 1741 */ 1742 1743 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1744 { 1745 /* 1746 * Relying on waitqueue_active() is racey, but we sleep 1747 * with schedule_timeout anyway. 1748 */ 1749 if (cache_put(&c->cache, b) && 1750 unlikely(waitqueue_active(&c->free_buffer_wait))) 1751 wake_up(&c->free_buffer_wait); 1752 } 1753 1754 /* 1755 * This assumes you have already checked the cache to see if the buffer 1756 * is already present (it will recheck after dropping the lock for allocation). 1757 */ 1758 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1759 enum new_flag nf, int *need_submit, 1760 struct list_head *write_list) 1761 { 1762 struct dm_buffer *b, *new_b = NULL; 1763 1764 *need_submit = 0; 1765 1766 /* This can't be called with NF_GET */ 1767 if (WARN_ON_ONCE(nf == NF_GET)) 1768 return NULL; 1769 1770 new_b = __alloc_buffer_wait(c, nf); 1771 if (!new_b) 1772 return NULL; 1773 1774 /* 1775 * We've had a period where the mutex was unlocked, so need to 1776 * recheck the buffer tree. 1777 */ 1778 b = cache_get(&c->cache, block); 1779 if (b) { 1780 __free_buffer_wake(new_b); 1781 goto found_buffer; 1782 } 1783 1784 __check_watermark(c, write_list); 1785 1786 b = new_b; 1787 atomic_set(&b->hold_count, 1); 1788 WRITE_ONCE(b->last_accessed, jiffies); 1789 b->block = block; 1790 b->read_error = 0; 1791 b->write_error = 0; 1792 b->list_mode = LIST_CLEAN; 1793 1794 if (nf == NF_FRESH) 1795 b->state = 0; 1796 else { 1797 b->state = 1 << B_READING; 1798 *need_submit = 1; 1799 } 1800 1801 /* 1802 * We mustn't insert into the cache until the B_READING state 1803 * is set. Otherwise another thread could get it and use 1804 * it before it had been read. 1805 */ 1806 cache_insert(&c->cache, b); 1807 1808 return b; 1809 1810 found_buffer: 1811 if (nf == NF_PREFETCH) { 1812 cache_put_and_wake(c, b); 1813 return NULL; 1814 } 1815 1816 /* 1817 * Note: it is essential that we don't wait for the buffer to be 1818 * read if dm_bufio_get function is used. Both dm_bufio_get and 1819 * dm_bufio_prefetch can be used in the driver request routine. 1820 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1821 * the same buffer, it would deadlock if we waited. 1822 */ 1823 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1824 cache_put_and_wake(c, b); 1825 return NULL; 1826 } 1827 1828 return b; 1829 } 1830 1831 /* 1832 * The endio routine for reading: set the error, clear the bit and wake up 1833 * anyone waiting on the buffer. 1834 */ 1835 static void read_endio(struct dm_buffer *b, blk_status_t status) 1836 { 1837 b->read_error = status; 1838 1839 BUG_ON(!test_bit(B_READING, &b->state)); 1840 1841 smp_mb__before_atomic(); 1842 clear_bit(B_READING, &b->state); 1843 smp_mb__after_atomic(); 1844 1845 wake_up_bit(&b->state, B_READING); 1846 } 1847 1848 /* 1849 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1850 * functions is similar except that dm_bufio_new doesn't read the 1851 * buffer from the disk (assuming that the caller overwrites all the data 1852 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1853 */ 1854 static void *new_read(struct dm_bufio_client *c, sector_t block, 1855 enum new_flag nf, struct dm_buffer **bp) 1856 { 1857 int need_submit = 0; 1858 struct dm_buffer *b; 1859 1860 LIST_HEAD(write_list); 1861 1862 *bp = NULL; 1863 1864 /* 1865 * Fast path, hopefully the block is already in the cache. No need 1866 * to get the client lock for this. 1867 */ 1868 b = cache_get(&c->cache, block); 1869 if (b) { 1870 if (nf == NF_PREFETCH) { 1871 cache_put_and_wake(c, b); 1872 return NULL; 1873 } 1874 1875 /* 1876 * Note: it is essential that we don't wait for the buffer to be 1877 * read if dm_bufio_get function is used. Both dm_bufio_get and 1878 * dm_bufio_prefetch can be used in the driver request routine. 1879 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1880 * the same buffer, it would deadlock if we waited. 1881 */ 1882 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1883 cache_put_and_wake(c, b); 1884 return NULL; 1885 } 1886 } 1887 1888 if (!b) { 1889 if (nf == NF_GET) 1890 return NULL; 1891 1892 dm_bufio_lock(c); 1893 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1894 dm_bufio_unlock(c); 1895 } 1896 1897 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1898 if (b && (atomic_read(&b->hold_count) == 1)) 1899 buffer_record_stack(b); 1900 #endif 1901 1902 __flush_write_list(&write_list); 1903 1904 if (!b) 1905 return NULL; 1906 1907 if (need_submit) 1908 submit_io(b, REQ_OP_READ, read_endio); 1909 1910 if (nf != NF_GET) /* we already tested this condition above */ 1911 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1912 1913 if (b->read_error) { 1914 int error = blk_status_to_errno(b->read_error); 1915 1916 dm_bufio_release(b); 1917 1918 return ERR_PTR(error); 1919 } 1920 1921 *bp = b; 1922 1923 return b->data; 1924 } 1925 1926 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1927 struct dm_buffer **bp) 1928 { 1929 return new_read(c, block, NF_GET, bp); 1930 } 1931 EXPORT_SYMBOL_GPL(dm_bufio_get); 1932 1933 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1934 struct dm_buffer **bp) 1935 { 1936 if (WARN_ON_ONCE(dm_bufio_in_request())) 1937 return ERR_PTR(-EINVAL); 1938 1939 return new_read(c, block, NF_READ, bp); 1940 } 1941 EXPORT_SYMBOL_GPL(dm_bufio_read); 1942 1943 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1944 struct dm_buffer **bp) 1945 { 1946 if (WARN_ON_ONCE(dm_bufio_in_request())) 1947 return ERR_PTR(-EINVAL); 1948 1949 return new_read(c, block, NF_FRESH, bp); 1950 } 1951 EXPORT_SYMBOL_GPL(dm_bufio_new); 1952 1953 void dm_bufio_prefetch(struct dm_bufio_client *c, 1954 sector_t block, unsigned int n_blocks) 1955 { 1956 struct blk_plug plug; 1957 1958 LIST_HEAD(write_list); 1959 1960 if (WARN_ON_ONCE(dm_bufio_in_request())) 1961 return; /* should never happen */ 1962 1963 blk_start_plug(&plug); 1964 1965 for (; n_blocks--; block++) { 1966 int need_submit; 1967 struct dm_buffer *b; 1968 1969 b = cache_get(&c->cache, block); 1970 if (b) { 1971 /* already in cache */ 1972 cache_put_and_wake(c, b); 1973 continue; 1974 } 1975 1976 dm_bufio_lock(c); 1977 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1978 &write_list); 1979 if (unlikely(!list_empty(&write_list))) { 1980 dm_bufio_unlock(c); 1981 blk_finish_plug(&plug); 1982 __flush_write_list(&write_list); 1983 blk_start_plug(&plug); 1984 dm_bufio_lock(c); 1985 } 1986 if (unlikely(b != NULL)) { 1987 dm_bufio_unlock(c); 1988 1989 if (need_submit) 1990 submit_io(b, REQ_OP_READ, read_endio); 1991 dm_bufio_release(b); 1992 1993 cond_resched(); 1994 1995 if (!n_blocks) 1996 goto flush_plug; 1997 dm_bufio_lock(c); 1998 } 1999 dm_bufio_unlock(c); 2000 } 2001 2002 flush_plug: 2003 blk_finish_plug(&plug); 2004 } 2005 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 2006 2007 void dm_bufio_release(struct dm_buffer *b) 2008 { 2009 struct dm_bufio_client *c = b->c; 2010 2011 /* 2012 * If there were errors on the buffer, and the buffer is not 2013 * to be written, free the buffer. There is no point in caching 2014 * invalid buffer. 2015 */ 2016 if ((b->read_error || b->write_error) && 2017 !test_bit_acquire(B_READING, &b->state) && 2018 !test_bit(B_WRITING, &b->state) && 2019 !test_bit(B_DIRTY, &b->state)) { 2020 dm_bufio_lock(c); 2021 2022 /* cache remove can fail if there are other holders */ 2023 if (cache_remove(&c->cache, b)) { 2024 __free_buffer_wake(b); 2025 dm_bufio_unlock(c); 2026 return; 2027 } 2028 2029 dm_bufio_unlock(c); 2030 } 2031 2032 cache_put_and_wake(c, b); 2033 } 2034 EXPORT_SYMBOL_GPL(dm_bufio_release); 2035 2036 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2037 unsigned int start, unsigned int end) 2038 { 2039 struct dm_bufio_client *c = b->c; 2040 2041 BUG_ON(start >= end); 2042 BUG_ON(end > b->c->block_size); 2043 2044 dm_bufio_lock(c); 2045 2046 BUG_ON(test_bit(B_READING, &b->state)); 2047 2048 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2049 b->dirty_start = start; 2050 b->dirty_end = end; 2051 cache_mark(&c->cache, b, LIST_DIRTY); 2052 } else { 2053 if (start < b->dirty_start) 2054 b->dirty_start = start; 2055 if (end > b->dirty_end) 2056 b->dirty_end = end; 2057 } 2058 2059 dm_bufio_unlock(c); 2060 } 2061 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2062 2063 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2064 { 2065 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2066 } 2067 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2068 2069 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2070 { 2071 LIST_HEAD(write_list); 2072 2073 if (WARN_ON_ONCE(dm_bufio_in_request())) 2074 return; /* should never happen */ 2075 2076 dm_bufio_lock(c); 2077 __write_dirty_buffers_async(c, 0, &write_list); 2078 dm_bufio_unlock(c); 2079 __flush_write_list(&write_list); 2080 } 2081 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2082 2083 /* 2084 * For performance, it is essential that the buffers are written asynchronously 2085 * and simultaneously (so that the block layer can merge the writes) and then 2086 * waited upon. 2087 * 2088 * Finally, we flush hardware disk cache. 2089 */ 2090 static bool is_writing(struct lru_entry *e, void *context) 2091 { 2092 struct dm_buffer *b = le_to_buffer(e); 2093 2094 return test_bit(B_WRITING, &b->state); 2095 } 2096 2097 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2098 { 2099 int a, f; 2100 unsigned long nr_buffers; 2101 struct lru_entry *e; 2102 struct lru_iter it; 2103 2104 LIST_HEAD(write_list); 2105 2106 dm_bufio_lock(c); 2107 __write_dirty_buffers_async(c, 0, &write_list); 2108 dm_bufio_unlock(c); 2109 __flush_write_list(&write_list); 2110 dm_bufio_lock(c); 2111 2112 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2113 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2114 while ((e = lru_iter_next(&it, is_writing, c))) { 2115 struct dm_buffer *b = le_to_buffer(e); 2116 __cache_inc_buffer(b); 2117 2118 BUG_ON(test_bit(B_READING, &b->state)); 2119 2120 if (nr_buffers) { 2121 nr_buffers--; 2122 dm_bufio_unlock(c); 2123 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2124 dm_bufio_lock(c); 2125 } else { 2126 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2127 } 2128 2129 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2130 cache_mark(&c->cache, b, LIST_CLEAN); 2131 2132 cache_put_and_wake(c, b); 2133 2134 cond_resched(); 2135 } 2136 lru_iter_end(&it); 2137 2138 wake_up(&c->free_buffer_wait); 2139 dm_bufio_unlock(c); 2140 2141 a = xchg(&c->async_write_error, 0); 2142 f = dm_bufio_issue_flush(c); 2143 if (a) 2144 return a; 2145 2146 return f; 2147 } 2148 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2149 2150 /* 2151 * Use dm-io to send an empty barrier to flush the device. 2152 */ 2153 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2154 { 2155 struct dm_io_request io_req = { 2156 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2157 .mem.type = DM_IO_KMEM, 2158 .mem.ptr.addr = NULL, 2159 .client = c->dm_io, 2160 }; 2161 struct dm_io_region io_reg = { 2162 .bdev = c->bdev, 2163 .sector = 0, 2164 .count = 0, 2165 }; 2166 2167 if (WARN_ON_ONCE(dm_bufio_in_request())) 2168 return -EINVAL; 2169 2170 return dm_io(&io_req, 1, &io_reg, NULL); 2171 } 2172 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2173 2174 /* 2175 * Use dm-io to send a discard request to flush the device. 2176 */ 2177 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2178 { 2179 struct dm_io_request io_req = { 2180 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2181 .mem.type = DM_IO_KMEM, 2182 .mem.ptr.addr = NULL, 2183 .client = c->dm_io, 2184 }; 2185 struct dm_io_region io_reg = { 2186 .bdev = c->bdev, 2187 .sector = block_to_sector(c, block), 2188 .count = block_to_sector(c, count), 2189 }; 2190 2191 if (WARN_ON_ONCE(dm_bufio_in_request())) 2192 return -EINVAL; /* discards are optional */ 2193 2194 return dm_io(&io_req, 1, &io_reg, NULL); 2195 } 2196 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2197 2198 static bool forget_buffer(struct dm_bufio_client *c, sector_t block) 2199 { 2200 struct dm_buffer *b; 2201 2202 b = cache_get(&c->cache, block); 2203 if (b) { 2204 if (likely(!smp_load_acquire(&b->state))) { 2205 if (cache_remove(&c->cache, b)) 2206 __free_buffer_wake(b); 2207 else 2208 cache_put_and_wake(c, b); 2209 } else { 2210 cache_put_and_wake(c, b); 2211 } 2212 } 2213 2214 return b ? true : false; 2215 } 2216 2217 /* 2218 * Free the given buffer. 2219 * 2220 * This is just a hint, if the buffer is in use or dirty, this function 2221 * does nothing. 2222 */ 2223 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2224 { 2225 dm_bufio_lock(c); 2226 forget_buffer(c, block); 2227 dm_bufio_unlock(c); 2228 } 2229 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2230 2231 static enum evict_result idle(struct dm_buffer *b, void *context) 2232 { 2233 return b->state ? ER_DONT_EVICT : ER_EVICT; 2234 } 2235 2236 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2237 { 2238 dm_bufio_lock(c); 2239 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2240 dm_bufio_unlock(c); 2241 } 2242 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2243 2244 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2245 { 2246 c->minimum_buffers = n; 2247 } 2248 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2249 2250 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2251 { 2252 return c->block_size; 2253 } 2254 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2255 2256 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2257 { 2258 sector_t s = bdev_nr_sectors(c->bdev); 2259 2260 if (s >= c->start) 2261 s -= c->start; 2262 else 2263 s = 0; 2264 if (likely(c->sectors_per_block_bits >= 0)) 2265 s >>= c->sectors_per_block_bits; 2266 else 2267 sector_div(s, c->block_size >> SECTOR_SHIFT); 2268 return s; 2269 } 2270 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2271 2272 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2273 { 2274 return c->dm_io; 2275 } 2276 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2277 2278 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2279 { 2280 return b->block; 2281 } 2282 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2283 2284 void *dm_bufio_get_block_data(struct dm_buffer *b) 2285 { 2286 return b->data; 2287 } 2288 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2289 2290 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2291 { 2292 return b + 1; 2293 } 2294 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2295 2296 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2297 { 2298 return b->c; 2299 } 2300 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2301 2302 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2303 { 2304 bool *warned = context; 2305 2306 WARN_ON(!(*warned)); 2307 *warned = true; 2308 DMERR("leaked buffer %llx, hold count %u, list %d", 2309 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2310 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2311 stack_trace_print(b->stack_entries, b->stack_len, 1); 2312 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2313 atomic_set(&b->hold_count, 0); 2314 #endif 2315 return IT_NEXT; 2316 } 2317 2318 static void drop_buffers(struct dm_bufio_client *c) 2319 { 2320 int i; 2321 struct dm_buffer *b; 2322 2323 if (WARN_ON(dm_bufio_in_request())) 2324 return; /* should never happen */ 2325 2326 /* 2327 * An optimization so that the buffers are not written one-by-one. 2328 */ 2329 dm_bufio_write_dirty_buffers_async(c); 2330 2331 dm_bufio_lock(c); 2332 2333 while ((b = __get_unclaimed_buffer(c))) 2334 __free_buffer_wake(b); 2335 2336 for (i = 0; i < LIST_SIZE; i++) { 2337 bool warned = false; 2338 2339 cache_iterate(&c->cache, i, warn_leak, &warned); 2340 } 2341 2342 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2343 while ((b = __get_unclaimed_buffer(c))) 2344 __free_buffer_wake(b); 2345 #endif 2346 2347 for (i = 0; i < LIST_SIZE; i++) 2348 WARN_ON(cache_count(&c->cache, i)); 2349 2350 dm_bufio_unlock(c); 2351 } 2352 2353 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2354 { 2355 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2356 2357 if (likely(c->sectors_per_block_bits >= 0)) 2358 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2359 else 2360 retain_bytes /= c->block_size; 2361 2362 return retain_bytes; 2363 } 2364 2365 static void __scan(struct dm_bufio_client *c) 2366 { 2367 int l; 2368 struct dm_buffer *b; 2369 unsigned long freed = 0; 2370 unsigned long retain_target = get_retain_buffers(c); 2371 unsigned long count = cache_total(&c->cache); 2372 2373 for (l = 0; l < LIST_SIZE; l++) { 2374 while (true) { 2375 if (count - freed <= retain_target) 2376 atomic_long_set(&c->need_shrink, 0); 2377 if (!atomic_long_read(&c->need_shrink)) 2378 break; 2379 2380 b = cache_evict(&c->cache, l, 2381 l == LIST_CLEAN ? is_clean : is_dirty, c); 2382 if (!b) 2383 break; 2384 2385 __make_buffer_clean(b); 2386 __free_buffer_wake(b); 2387 2388 atomic_long_dec(&c->need_shrink); 2389 freed++; 2390 cond_resched(); 2391 } 2392 } 2393 } 2394 2395 static void shrink_work(struct work_struct *w) 2396 { 2397 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2398 2399 dm_bufio_lock(c); 2400 __scan(c); 2401 dm_bufio_unlock(c); 2402 } 2403 2404 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2405 { 2406 struct dm_bufio_client *c; 2407 2408 c = container_of(shrink, struct dm_bufio_client, shrinker); 2409 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2410 queue_work(dm_bufio_wq, &c->shrink_work); 2411 2412 return sc->nr_to_scan; 2413 } 2414 2415 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2416 { 2417 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 2418 unsigned long count = cache_total(&c->cache); 2419 unsigned long retain_target = get_retain_buffers(c); 2420 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2421 2422 if (unlikely(count < retain_target)) 2423 count = 0; 2424 else 2425 count -= retain_target; 2426 2427 if (unlikely(count < queued_for_cleanup)) 2428 count = 0; 2429 else 2430 count -= queued_for_cleanup; 2431 2432 return count; 2433 } 2434 2435 /* 2436 * Create the buffering interface 2437 */ 2438 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2439 unsigned int reserved_buffers, unsigned int aux_size, 2440 void (*alloc_callback)(struct dm_buffer *), 2441 void (*write_callback)(struct dm_buffer *), 2442 unsigned int flags) 2443 { 2444 int r; 2445 unsigned int num_locks; 2446 struct dm_bufio_client *c; 2447 char slab_name[27]; 2448 2449 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2450 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2451 r = -EINVAL; 2452 goto bad_client; 2453 } 2454 2455 num_locks = dm_num_hash_locks(); 2456 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2457 if (!c) { 2458 r = -ENOMEM; 2459 goto bad_client; 2460 } 2461 cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0); 2462 2463 c->bdev = bdev; 2464 c->block_size = block_size; 2465 if (is_power_of_2(block_size)) 2466 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2467 else 2468 c->sectors_per_block_bits = -1; 2469 2470 c->alloc_callback = alloc_callback; 2471 c->write_callback = write_callback; 2472 2473 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2474 c->no_sleep = true; 2475 static_branch_inc(&no_sleep_enabled); 2476 } 2477 2478 mutex_init(&c->lock); 2479 spin_lock_init(&c->spinlock); 2480 INIT_LIST_HEAD(&c->reserved_buffers); 2481 c->need_reserved_buffers = reserved_buffers; 2482 2483 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2484 2485 init_waitqueue_head(&c->free_buffer_wait); 2486 c->async_write_error = 0; 2487 2488 c->dm_io = dm_io_client_create(); 2489 if (IS_ERR(c->dm_io)) { 2490 r = PTR_ERR(c->dm_io); 2491 goto bad_dm_io; 2492 } 2493 2494 if (block_size <= KMALLOC_MAX_SIZE && 2495 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 2496 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2497 2498 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size); 2499 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2500 SLAB_RECLAIM_ACCOUNT, NULL); 2501 if (!c->slab_cache) { 2502 r = -ENOMEM; 2503 goto bad; 2504 } 2505 } 2506 if (aux_size) 2507 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size); 2508 else 2509 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer"); 2510 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2511 0, SLAB_RECLAIM_ACCOUNT, NULL); 2512 if (!c->slab_buffer) { 2513 r = -ENOMEM; 2514 goto bad; 2515 } 2516 2517 while (c->need_reserved_buffers) { 2518 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2519 2520 if (!b) { 2521 r = -ENOMEM; 2522 goto bad; 2523 } 2524 __free_buffer_wake(b); 2525 } 2526 2527 INIT_WORK(&c->shrink_work, shrink_work); 2528 atomic_long_set(&c->need_shrink, 0); 2529 2530 c->shrinker.count_objects = dm_bufio_shrink_count; 2531 c->shrinker.scan_objects = dm_bufio_shrink_scan; 2532 c->shrinker.seeks = 1; 2533 c->shrinker.batch = 0; 2534 r = register_shrinker(&c->shrinker, "dm-bufio:(%u:%u)", 2535 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2536 if (r) 2537 goto bad; 2538 2539 mutex_lock(&dm_bufio_clients_lock); 2540 dm_bufio_client_count++; 2541 list_add(&c->client_list, &dm_bufio_all_clients); 2542 __cache_size_refresh(); 2543 mutex_unlock(&dm_bufio_clients_lock); 2544 2545 return c; 2546 2547 bad: 2548 while (!list_empty(&c->reserved_buffers)) { 2549 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2550 2551 list_del(&b->lru.list); 2552 free_buffer(b); 2553 } 2554 kmem_cache_destroy(c->slab_cache); 2555 kmem_cache_destroy(c->slab_buffer); 2556 dm_io_client_destroy(c->dm_io); 2557 bad_dm_io: 2558 mutex_destroy(&c->lock); 2559 if (c->no_sleep) 2560 static_branch_dec(&no_sleep_enabled); 2561 kfree(c); 2562 bad_client: 2563 return ERR_PTR(r); 2564 } 2565 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2566 2567 /* 2568 * Free the buffering interface. 2569 * It is required that there are no references on any buffers. 2570 */ 2571 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2572 { 2573 unsigned int i; 2574 2575 drop_buffers(c); 2576 2577 unregister_shrinker(&c->shrinker); 2578 flush_work(&c->shrink_work); 2579 2580 mutex_lock(&dm_bufio_clients_lock); 2581 2582 list_del(&c->client_list); 2583 dm_bufio_client_count--; 2584 __cache_size_refresh(); 2585 2586 mutex_unlock(&dm_bufio_clients_lock); 2587 2588 WARN_ON(c->need_reserved_buffers); 2589 2590 while (!list_empty(&c->reserved_buffers)) { 2591 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2592 2593 list_del(&b->lru.list); 2594 free_buffer(b); 2595 } 2596 2597 for (i = 0; i < LIST_SIZE; i++) 2598 if (cache_count(&c->cache, i)) 2599 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2600 2601 for (i = 0; i < LIST_SIZE; i++) 2602 WARN_ON(cache_count(&c->cache, i)); 2603 2604 cache_destroy(&c->cache); 2605 kmem_cache_destroy(c->slab_cache); 2606 kmem_cache_destroy(c->slab_buffer); 2607 dm_io_client_destroy(c->dm_io); 2608 mutex_destroy(&c->lock); 2609 if (c->no_sleep) 2610 static_branch_dec(&no_sleep_enabled); 2611 kfree(c); 2612 } 2613 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2614 2615 void dm_bufio_client_reset(struct dm_bufio_client *c) 2616 { 2617 drop_buffers(c); 2618 flush_work(&c->shrink_work); 2619 } 2620 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2621 2622 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2623 { 2624 c->start = start; 2625 } 2626 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2627 2628 /*--------------------------------------------------------------*/ 2629 2630 static unsigned int get_max_age_hz(void) 2631 { 2632 unsigned int max_age = READ_ONCE(dm_bufio_max_age); 2633 2634 if (max_age > UINT_MAX / HZ) 2635 max_age = UINT_MAX / HZ; 2636 2637 return max_age * HZ; 2638 } 2639 2640 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 2641 { 2642 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz); 2643 } 2644 2645 struct evict_params { 2646 gfp_t gfp; 2647 unsigned long age_hz; 2648 2649 /* 2650 * This gets updated with the largest last_accessed (ie. most 2651 * recently used) of the evicted buffers. It will not be reinitialised 2652 * by __evict_many(), so you can use it across multiple invocations. 2653 */ 2654 unsigned long last_accessed; 2655 }; 2656 2657 /* 2658 * We may not be able to evict this buffer if IO pending or the client 2659 * is still using it. 2660 * 2661 * And if GFP_NOFS is used, we must not do any I/O because we hold 2662 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 2663 * rerouted to different bufio client. 2664 */ 2665 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2666 { 2667 struct evict_params *params = context; 2668 2669 if (!(params->gfp & __GFP_FS) || 2670 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 2671 if (test_bit_acquire(B_READING, &b->state) || 2672 test_bit(B_WRITING, &b->state) || 2673 test_bit(B_DIRTY, &b->state)) 2674 return ER_DONT_EVICT; 2675 } 2676 2677 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP; 2678 } 2679 2680 static unsigned long __evict_many(struct dm_bufio_client *c, 2681 struct evict_params *params, 2682 int list_mode, unsigned long max_count) 2683 { 2684 unsigned long count; 2685 unsigned long last_accessed; 2686 struct dm_buffer *b; 2687 2688 for (count = 0; count < max_count; count++) { 2689 b = cache_evict(&c->cache, list_mode, select_for_evict, params); 2690 if (!b) 2691 break; 2692 2693 last_accessed = READ_ONCE(b->last_accessed); 2694 if (time_after_eq(params->last_accessed, last_accessed)) 2695 params->last_accessed = last_accessed; 2696 2697 __make_buffer_clean(b); 2698 __free_buffer_wake(b); 2699 2700 cond_resched(); 2701 } 2702 2703 return count; 2704 } 2705 2706 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 2707 { 2708 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0}; 2709 unsigned long retain = get_retain_buffers(c); 2710 unsigned long count; 2711 LIST_HEAD(write_list); 2712 2713 dm_bufio_lock(c); 2714 2715 __check_watermark(c, &write_list); 2716 if (unlikely(!list_empty(&write_list))) { 2717 dm_bufio_unlock(c); 2718 __flush_write_list(&write_list); 2719 dm_bufio_lock(c); 2720 } 2721 2722 count = cache_total(&c->cache); 2723 if (count > retain) 2724 __evict_many(c, ¶ms, LIST_CLEAN, count - retain); 2725 2726 dm_bufio_unlock(c); 2727 } 2728 2729 static void cleanup_old_buffers(void) 2730 { 2731 unsigned long max_age_hz = get_max_age_hz(); 2732 struct dm_bufio_client *c; 2733 2734 mutex_lock(&dm_bufio_clients_lock); 2735 2736 __cache_size_refresh(); 2737 2738 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2739 evict_old_buffers(c, max_age_hz); 2740 2741 mutex_unlock(&dm_bufio_clients_lock); 2742 } 2743 2744 static void work_fn(struct work_struct *w) 2745 { 2746 cleanup_old_buffers(); 2747 2748 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2749 DM_BUFIO_WORK_TIMER_SECS * HZ); 2750 } 2751 2752 /*--------------------------------------------------------------*/ 2753 2754 /* 2755 * Global cleanup tries to evict the oldest buffers from across _all_ 2756 * the clients. It does this by repeatedly evicting a few buffers from 2757 * the client that holds the oldest buffer. It's approximate, but hopefully 2758 * good enough. 2759 */ 2760 static struct dm_bufio_client *__pop_client(void) 2761 { 2762 struct list_head *h; 2763 2764 if (list_empty(&dm_bufio_all_clients)) 2765 return NULL; 2766 2767 h = dm_bufio_all_clients.next; 2768 list_del(h); 2769 return container_of(h, struct dm_bufio_client, client_list); 2770 } 2771 2772 /* 2773 * Inserts the client in the global client list based on its 2774 * 'oldest_buffer' field. 2775 */ 2776 static void __insert_client(struct dm_bufio_client *new_client) 2777 { 2778 struct dm_bufio_client *c; 2779 struct list_head *h = dm_bufio_all_clients.next; 2780 2781 while (h != &dm_bufio_all_clients) { 2782 c = container_of(h, struct dm_bufio_client, client_list); 2783 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2784 break; 2785 h = h->next; 2786 } 2787 2788 list_add_tail(&new_client->client_list, h); 2789 } 2790 2791 static unsigned long __evict_a_few(unsigned long nr_buffers) 2792 { 2793 unsigned long count; 2794 struct dm_bufio_client *c; 2795 struct evict_params params = { 2796 .gfp = GFP_KERNEL, 2797 .age_hz = 0, 2798 /* set to jiffies in case there are no buffers in this client */ 2799 .last_accessed = jiffies 2800 }; 2801 2802 c = __pop_client(); 2803 if (!c) 2804 return 0; 2805 2806 dm_bufio_lock(c); 2807 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers); 2808 dm_bufio_unlock(c); 2809 2810 if (count) 2811 c->oldest_buffer = params.last_accessed; 2812 __insert_client(c); 2813 2814 return count; 2815 } 2816 2817 static void check_watermarks(void) 2818 { 2819 LIST_HEAD(write_list); 2820 struct dm_bufio_client *c; 2821 2822 mutex_lock(&dm_bufio_clients_lock); 2823 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2824 dm_bufio_lock(c); 2825 __check_watermark(c, &write_list); 2826 dm_bufio_unlock(c); 2827 } 2828 mutex_unlock(&dm_bufio_clients_lock); 2829 2830 __flush_write_list(&write_list); 2831 } 2832 2833 static void evict_old(void) 2834 { 2835 unsigned long threshold = dm_bufio_cache_size - 2836 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2837 2838 mutex_lock(&dm_bufio_clients_lock); 2839 while (dm_bufio_current_allocated > threshold) { 2840 if (!__evict_a_few(64)) 2841 break; 2842 cond_resched(); 2843 } 2844 mutex_unlock(&dm_bufio_clients_lock); 2845 } 2846 2847 static void do_global_cleanup(struct work_struct *w) 2848 { 2849 check_watermarks(); 2850 evict_old(); 2851 } 2852 2853 /* 2854 *-------------------------------------------------------------- 2855 * Module setup 2856 *-------------------------------------------------------------- 2857 */ 2858 2859 /* 2860 * This is called only once for the whole dm_bufio module. 2861 * It initializes memory limit. 2862 */ 2863 static int __init dm_bufio_init(void) 2864 { 2865 __u64 mem; 2866 2867 dm_bufio_allocated_kmem_cache = 0; 2868 dm_bufio_allocated_get_free_pages = 0; 2869 dm_bufio_allocated_vmalloc = 0; 2870 dm_bufio_current_allocated = 0; 2871 2872 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2873 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2874 2875 if (mem > ULONG_MAX) 2876 mem = ULONG_MAX; 2877 2878 #ifdef CONFIG_MMU 2879 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2880 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2881 #endif 2882 2883 dm_bufio_default_cache_size = mem; 2884 2885 mutex_lock(&dm_bufio_clients_lock); 2886 __cache_size_refresh(); 2887 mutex_unlock(&dm_bufio_clients_lock); 2888 2889 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2890 if (!dm_bufio_wq) 2891 return -ENOMEM; 2892 2893 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2894 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2895 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2896 DM_BUFIO_WORK_TIMER_SECS * HZ); 2897 2898 return 0; 2899 } 2900 2901 /* 2902 * This is called once when unloading the dm_bufio module. 2903 */ 2904 static void __exit dm_bufio_exit(void) 2905 { 2906 int bug = 0; 2907 2908 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2909 destroy_workqueue(dm_bufio_wq); 2910 2911 if (dm_bufio_client_count) { 2912 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2913 __func__, dm_bufio_client_count); 2914 bug = 1; 2915 } 2916 2917 if (dm_bufio_current_allocated) { 2918 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2919 __func__, dm_bufio_current_allocated); 2920 bug = 1; 2921 } 2922 2923 if (dm_bufio_allocated_get_free_pages) { 2924 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2925 __func__, dm_bufio_allocated_get_free_pages); 2926 bug = 1; 2927 } 2928 2929 if (dm_bufio_allocated_vmalloc) { 2930 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2931 __func__, dm_bufio_allocated_vmalloc); 2932 bug = 1; 2933 } 2934 2935 WARN_ON(bug); /* leaks are not worth crashing the system */ 2936 } 2937 2938 module_init(dm_bufio_init) 2939 module_exit(dm_bufio_exit) 2940 2941 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2942 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2943 2944 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2945 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2946 2947 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 2948 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2949 2950 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 2951 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2952 2953 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 2954 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2955 2956 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 2957 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2958 2959 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 2960 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2961 2962 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 2963 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2964 2965 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2966 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2967 MODULE_LICENSE("GPL"); 2968