1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * The number of bvec entries that are embedded directly in the buffer. 55 * If the chunk size is larger, dm-io is used to do the io. 56 */ 57 #define DM_BUFIO_INLINE_VECS 16 58 59 /* 60 * Don't try to use kmem_cache_alloc for blocks larger than this. 61 * For explanation, see alloc_buffer_data below. 62 */ 63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 65 66 /* 67 * Align buffer writes to this boundary. 68 * Tests show that SSDs have the highest IOPS when using 4k writes. 69 */ 70 #define DM_BUFIO_WRITE_ALIGN 4096 71 72 /* 73 * dm_buffer->list_mode 74 */ 75 #define LIST_CLEAN 0 76 #define LIST_DIRTY 1 77 #define LIST_SIZE 2 78 79 /* 80 * Linking of buffers: 81 * All buffers are linked to cache_hash with their hash_list field. 82 * 83 * Clean buffers that are not being written (B_WRITING not set) 84 * are linked to lru[LIST_CLEAN] with their lru_list field. 85 * 86 * Dirty and clean buffers that are being written are linked to 87 * lru[LIST_DIRTY] with their lru_list field. When the write 88 * finishes, the buffer cannot be relinked immediately (because we 89 * are in an interrupt context and relinking requires process 90 * context), so some clean-not-writing buffers can be held on 91 * dirty_lru too. They are later added to lru in the process 92 * context. 93 */ 94 struct dm_bufio_client { 95 struct mutex lock; 96 97 struct list_head lru[LIST_SIZE]; 98 unsigned long n_buffers[LIST_SIZE]; 99 100 struct block_device *bdev; 101 unsigned block_size; 102 unsigned char sectors_per_block_bits; 103 unsigned char pages_per_block_bits; 104 unsigned char blocks_per_page_bits; 105 unsigned aux_size; 106 void (*alloc_callback)(struct dm_buffer *); 107 void (*write_callback)(struct dm_buffer *); 108 109 struct dm_io_client *dm_io; 110 111 struct list_head reserved_buffers; 112 unsigned need_reserved_buffers; 113 114 unsigned minimum_buffers; 115 116 struct rb_root buffer_tree; 117 wait_queue_head_t free_buffer_wait; 118 119 sector_t start; 120 121 int async_write_error; 122 123 struct list_head client_list; 124 struct shrinker shrinker; 125 }; 126 127 /* 128 * Buffer state bits. 129 */ 130 #define B_READING 0 131 #define B_WRITING 1 132 #define B_DIRTY 2 133 134 /* 135 * Describes how the block was allocated: 136 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 137 * See the comment at alloc_buffer_data. 138 */ 139 enum data_mode { 140 DATA_MODE_SLAB = 0, 141 DATA_MODE_GET_FREE_PAGES = 1, 142 DATA_MODE_VMALLOC = 2, 143 DATA_MODE_LIMIT = 3 144 }; 145 146 struct dm_buffer { 147 struct rb_node node; 148 struct list_head lru_list; 149 sector_t block; 150 void *data; 151 enum data_mode data_mode; 152 unsigned char list_mode; /* LIST_* */ 153 unsigned hold_count; 154 blk_status_t read_error; 155 blk_status_t write_error; 156 unsigned long state; 157 unsigned long last_accessed; 158 unsigned dirty_start; 159 unsigned dirty_end; 160 unsigned write_start; 161 unsigned write_end; 162 struct dm_bufio_client *c; 163 struct list_head write_list; 164 struct bio bio; 165 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 166 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 167 #define MAX_STACK 10 168 struct stack_trace stack_trace; 169 unsigned long stack_entries[MAX_STACK]; 170 #endif 171 }; 172 173 /*----------------------------------------------------------------*/ 174 175 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 176 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 177 178 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 179 { 180 unsigned ret = c->blocks_per_page_bits - 1; 181 182 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 183 184 return ret; 185 } 186 187 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 188 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 189 190 #define dm_bufio_in_request() (!!current->bio_list) 191 192 static void dm_bufio_lock(struct dm_bufio_client *c) 193 { 194 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 195 } 196 197 static int dm_bufio_trylock(struct dm_bufio_client *c) 198 { 199 return mutex_trylock(&c->lock); 200 } 201 202 static void dm_bufio_unlock(struct dm_bufio_client *c) 203 { 204 mutex_unlock(&c->lock); 205 } 206 207 /*----------------------------------------------------------------*/ 208 209 /* 210 * Default cache size: available memory divided by the ratio. 211 */ 212 static unsigned long dm_bufio_default_cache_size; 213 214 /* 215 * Total cache size set by the user. 216 */ 217 static unsigned long dm_bufio_cache_size; 218 219 /* 220 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 221 * at any time. If it disagrees, the user has changed cache size. 222 */ 223 static unsigned long dm_bufio_cache_size_latch; 224 225 static DEFINE_SPINLOCK(param_spinlock); 226 227 /* 228 * Buffers are freed after this timeout 229 */ 230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 231 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 232 233 static unsigned long dm_bufio_peak_allocated; 234 static unsigned long dm_bufio_allocated_kmem_cache; 235 static unsigned long dm_bufio_allocated_get_free_pages; 236 static unsigned long dm_bufio_allocated_vmalloc; 237 static unsigned long dm_bufio_current_allocated; 238 239 /*----------------------------------------------------------------*/ 240 241 /* 242 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 243 */ 244 static unsigned long dm_bufio_cache_size_per_client; 245 246 /* 247 * The current number of clients. 248 */ 249 static int dm_bufio_client_count; 250 251 /* 252 * The list of all clients. 253 */ 254 static LIST_HEAD(dm_bufio_all_clients); 255 256 /* 257 * This mutex protects dm_bufio_cache_size_latch, 258 * dm_bufio_cache_size_per_client and dm_bufio_client_count 259 */ 260 static DEFINE_MUTEX(dm_bufio_clients_lock); 261 262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 263 static void buffer_record_stack(struct dm_buffer *b) 264 { 265 b->stack_trace.nr_entries = 0; 266 b->stack_trace.max_entries = MAX_STACK; 267 b->stack_trace.entries = b->stack_entries; 268 b->stack_trace.skip = 2; 269 save_stack_trace(&b->stack_trace); 270 } 271 #endif 272 273 /*---------------------------------------------------------------- 274 * A red/black tree acts as an index for all the buffers. 275 *--------------------------------------------------------------*/ 276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 277 { 278 struct rb_node *n = c->buffer_tree.rb_node; 279 struct dm_buffer *b; 280 281 while (n) { 282 b = container_of(n, struct dm_buffer, node); 283 284 if (b->block == block) 285 return b; 286 287 n = (b->block < block) ? n->rb_left : n->rb_right; 288 } 289 290 return NULL; 291 } 292 293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 294 { 295 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 296 struct dm_buffer *found; 297 298 while (*new) { 299 found = container_of(*new, struct dm_buffer, node); 300 301 if (found->block == b->block) { 302 BUG_ON(found != b); 303 return; 304 } 305 306 parent = *new; 307 new = (found->block < b->block) ? 308 &((*new)->rb_left) : &((*new)->rb_right); 309 } 310 311 rb_link_node(&b->node, parent, new); 312 rb_insert_color(&b->node, &c->buffer_tree); 313 } 314 315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 316 { 317 rb_erase(&b->node, &c->buffer_tree); 318 } 319 320 /*----------------------------------------------------------------*/ 321 322 static void adjust_total_allocated(enum data_mode data_mode, long diff) 323 { 324 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 325 &dm_bufio_allocated_kmem_cache, 326 &dm_bufio_allocated_get_free_pages, 327 &dm_bufio_allocated_vmalloc, 328 }; 329 330 spin_lock(¶m_spinlock); 331 332 *class_ptr[data_mode] += diff; 333 334 dm_bufio_current_allocated += diff; 335 336 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 337 dm_bufio_peak_allocated = dm_bufio_current_allocated; 338 339 spin_unlock(¶m_spinlock); 340 } 341 342 /* 343 * Change the number of clients and recalculate per-client limit. 344 */ 345 static void __cache_size_refresh(void) 346 { 347 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 348 BUG_ON(dm_bufio_client_count < 0); 349 350 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 351 352 /* 353 * Use default if set to 0 and report the actual cache size used. 354 */ 355 if (!dm_bufio_cache_size_latch) { 356 (void)cmpxchg(&dm_bufio_cache_size, 0, 357 dm_bufio_default_cache_size); 358 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 359 } 360 361 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 362 (dm_bufio_client_count ? : 1); 363 } 364 365 /* 366 * Allocating buffer data. 367 * 368 * Small buffers are allocated with kmem_cache, to use space optimally. 369 * 370 * For large buffers, we choose between get_free_pages and vmalloc. 371 * Each has advantages and disadvantages. 372 * 373 * __get_free_pages can randomly fail if the memory is fragmented. 374 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 375 * as low as 128M) so using it for caching is not appropriate. 376 * 377 * If the allocation may fail we use __get_free_pages. Memory fragmentation 378 * won't have a fatal effect here, but it just causes flushes of some other 379 * buffers and more I/O will be performed. Don't use __get_free_pages if it 380 * always fails (i.e. order >= MAX_ORDER). 381 * 382 * If the allocation shouldn't fail we use __vmalloc. This is only for the 383 * initial reserve allocation, so there's no risk of wasting all vmalloc 384 * space. 385 */ 386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 387 enum data_mode *data_mode) 388 { 389 unsigned noio_flag; 390 void *ptr; 391 392 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 393 *data_mode = DATA_MODE_SLAB; 394 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 395 } 396 397 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 398 gfp_mask & __GFP_NORETRY) { 399 *data_mode = DATA_MODE_GET_FREE_PAGES; 400 return (void *)__get_free_pages(gfp_mask, 401 c->pages_per_block_bits); 402 } 403 404 *data_mode = DATA_MODE_VMALLOC; 405 406 /* 407 * __vmalloc allocates the data pages and auxiliary structures with 408 * gfp_flags that were specified, but pagetables are always allocated 409 * with GFP_KERNEL, no matter what was specified as gfp_mask. 410 * 411 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 412 * all allocations done by this process (including pagetables) are done 413 * as if GFP_NOIO was specified. 414 */ 415 416 if (gfp_mask & __GFP_NORETRY) 417 noio_flag = memalloc_noio_save(); 418 419 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 420 421 if (gfp_mask & __GFP_NORETRY) 422 memalloc_noio_restore(noio_flag); 423 424 return ptr; 425 } 426 427 /* 428 * Free buffer's data. 429 */ 430 static void free_buffer_data(struct dm_bufio_client *c, 431 void *data, enum data_mode data_mode) 432 { 433 switch (data_mode) { 434 case DATA_MODE_SLAB: 435 kmem_cache_free(DM_BUFIO_CACHE(c), data); 436 break; 437 438 case DATA_MODE_GET_FREE_PAGES: 439 free_pages((unsigned long)data, c->pages_per_block_bits); 440 break; 441 442 case DATA_MODE_VMALLOC: 443 vfree(data); 444 break; 445 446 default: 447 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 448 data_mode); 449 BUG(); 450 } 451 } 452 453 /* 454 * Allocate buffer and its data. 455 */ 456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 457 { 458 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 459 gfp_mask); 460 461 if (!b) 462 return NULL; 463 464 b->c = c; 465 466 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 467 if (!b->data) { 468 kfree(b); 469 return NULL; 470 } 471 472 adjust_total_allocated(b->data_mode, (long)c->block_size); 473 474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 475 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 476 #endif 477 return b; 478 } 479 480 /* 481 * Free buffer and its data. 482 */ 483 static void free_buffer(struct dm_buffer *b) 484 { 485 struct dm_bufio_client *c = b->c; 486 487 adjust_total_allocated(b->data_mode, -(long)c->block_size); 488 489 free_buffer_data(c, b->data, b->data_mode); 490 kfree(b); 491 } 492 493 /* 494 * Link buffer to the hash list and clean or dirty queue. 495 */ 496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 497 { 498 struct dm_bufio_client *c = b->c; 499 500 c->n_buffers[dirty]++; 501 b->block = block; 502 b->list_mode = dirty; 503 list_add(&b->lru_list, &c->lru[dirty]); 504 __insert(b->c, b); 505 b->last_accessed = jiffies; 506 } 507 508 /* 509 * Unlink buffer from the hash list and dirty or clean queue. 510 */ 511 static void __unlink_buffer(struct dm_buffer *b) 512 { 513 struct dm_bufio_client *c = b->c; 514 515 BUG_ON(!c->n_buffers[b->list_mode]); 516 517 c->n_buffers[b->list_mode]--; 518 __remove(b->c, b); 519 list_del(&b->lru_list); 520 } 521 522 /* 523 * Place the buffer to the head of dirty or clean LRU queue. 524 */ 525 static void __relink_lru(struct dm_buffer *b, int dirty) 526 { 527 struct dm_bufio_client *c = b->c; 528 529 BUG_ON(!c->n_buffers[b->list_mode]); 530 531 c->n_buffers[b->list_mode]--; 532 c->n_buffers[dirty]++; 533 b->list_mode = dirty; 534 list_move(&b->lru_list, &c->lru[dirty]); 535 b->last_accessed = jiffies; 536 } 537 538 /*---------------------------------------------------------------- 539 * Submit I/O on the buffer. 540 * 541 * Bio interface is faster but it has some problems: 542 * the vector list is limited (increasing this limit increases 543 * memory-consumption per buffer, so it is not viable); 544 * 545 * the memory must be direct-mapped, not vmalloced; 546 * 547 * the I/O driver can reject requests spuriously if it thinks that 548 * the requests are too big for the device or if they cross a 549 * controller-defined memory boundary. 550 * 551 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 552 * it is not vmalloced, try using the bio interface. 553 * 554 * If the buffer is big, if it is vmalloced or if the underlying device 555 * rejects the bio because it is too large, use dm-io layer to do the I/O. 556 * The dm-io layer splits the I/O into multiple requests, avoiding the above 557 * shortcomings. 558 *--------------------------------------------------------------*/ 559 560 /* 561 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 562 * that the request was handled directly with bio interface. 563 */ 564 static void dmio_complete(unsigned long error, void *context) 565 { 566 struct dm_buffer *b = context; 567 568 b->bio.bi_status = error ? BLK_STS_IOERR : 0; 569 b->bio.bi_end_io(&b->bio); 570 } 571 572 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 573 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io) 574 { 575 int r; 576 struct dm_io_request io_req = { 577 .bi_op = rw, 578 .bi_op_flags = 0, 579 .notify.fn = dmio_complete, 580 .notify.context = b, 581 .client = b->c->dm_io, 582 }; 583 struct dm_io_region region = { 584 .bdev = b->c->bdev, 585 .sector = sector, 586 .count = n_sectors, 587 }; 588 589 if (b->data_mode != DATA_MODE_VMALLOC) { 590 io_req.mem.type = DM_IO_KMEM; 591 io_req.mem.ptr.addr = (char *)b->data + offset; 592 } else { 593 io_req.mem.type = DM_IO_VMA; 594 io_req.mem.ptr.vma = (char *)b->data + offset; 595 } 596 597 b->bio.bi_end_io = end_io; 598 599 r = dm_io(&io_req, 1, ®ion, NULL); 600 if (r) { 601 b->bio.bi_status = errno_to_blk_status(r); 602 end_io(&b->bio); 603 } 604 } 605 606 static void inline_endio(struct bio *bio) 607 { 608 bio_end_io_t *end_fn = bio->bi_private; 609 blk_status_t status = bio->bi_status; 610 611 /* 612 * Reset the bio to free any attached resources 613 * (e.g. bio integrity profiles). 614 */ 615 bio_reset(bio); 616 617 bio->bi_status = status; 618 end_fn(bio); 619 } 620 621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector, 622 unsigned n_sectors, unsigned offset, bio_end_io_t *end_io) 623 { 624 char *ptr; 625 unsigned len; 626 627 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 628 b->bio.bi_iter.bi_sector = sector; 629 bio_set_dev(&b->bio, b->c->bdev); 630 b->bio.bi_end_io = inline_endio; 631 /* 632 * Use of .bi_private isn't a problem here because 633 * the dm_buffer's inline bio is local to bufio. 634 */ 635 b->bio.bi_private = end_io; 636 bio_set_op_attrs(&b->bio, rw, 0); 637 638 ptr = (char *)b->data + offset; 639 len = n_sectors << SECTOR_SHIFT; 640 641 do { 642 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 643 if (!bio_add_page(&b->bio, virt_to_page(ptr), this_step, 644 offset_in_page(ptr))) { 645 BUG_ON(b->c->block_size <= PAGE_SIZE); 646 use_dmio(b, rw, sector, n_sectors, offset, end_io); 647 return; 648 } 649 650 len -= this_step; 651 ptr += this_step; 652 } while (len > 0); 653 654 submit_bio(&b->bio); 655 } 656 657 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io) 658 { 659 unsigned n_sectors; 660 sector_t sector; 661 unsigned offset, end; 662 663 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start; 664 665 if (rw != REQ_OP_WRITE) { 666 n_sectors = 1 << b->c->sectors_per_block_bits; 667 offset = 0; 668 } else { 669 if (b->c->write_callback) 670 b->c->write_callback(b); 671 offset = b->write_start; 672 end = b->write_end; 673 offset &= -DM_BUFIO_WRITE_ALIGN; 674 end += DM_BUFIO_WRITE_ALIGN - 1; 675 end &= -DM_BUFIO_WRITE_ALIGN; 676 if (unlikely(end > b->c->block_size)) 677 end = b->c->block_size; 678 679 sector += offset >> SECTOR_SHIFT; 680 n_sectors = (end - offset) >> SECTOR_SHIFT; 681 } 682 683 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) && 684 b->data_mode != DATA_MODE_VMALLOC) 685 use_inline_bio(b, rw, sector, n_sectors, offset, end_io); 686 else 687 use_dmio(b, rw, sector, n_sectors, offset, end_io); 688 } 689 690 /*---------------------------------------------------------------- 691 * Writing dirty buffers 692 *--------------------------------------------------------------*/ 693 694 /* 695 * The endio routine for write. 696 * 697 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 698 * it. 699 */ 700 static void write_endio(struct bio *bio) 701 { 702 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 703 704 b->write_error = bio->bi_status; 705 if (unlikely(bio->bi_status)) { 706 struct dm_bufio_client *c = b->c; 707 708 (void)cmpxchg(&c->async_write_error, 0, 709 blk_status_to_errno(bio->bi_status)); 710 } 711 712 BUG_ON(!test_bit(B_WRITING, &b->state)); 713 714 smp_mb__before_atomic(); 715 clear_bit(B_WRITING, &b->state); 716 smp_mb__after_atomic(); 717 718 wake_up_bit(&b->state, B_WRITING); 719 } 720 721 /* 722 * Initiate a write on a dirty buffer, but don't wait for it. 723 * 724 * - If the buffer is not dirty, exit. 725 * - If there some previous write going on, wait for it to finish (we can't 726 * have two writes on the same buffer simultaneously). 727 * - Submit our write and don't wait on it. We set B_WRITING indicating 728 * that there is a write in progress. 729 */ 730 static void __write_dirty_buffer(struct dm_buffer *b, 731 struct list_head *write_list) 732 { 733 if (!test_bit(B_DIRTY, &b->state)) 734 return; 735 736 clear_bit(B_DIRTY, &b->state); 737 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 738 739 b->write_start = b->dirty_start; 740 b->write_end = b->dirty_end; 741 742 if (!write_list) 743 submit_io(b, REQ_OP_WRITE, write_endio); 744 else 745 list_add_tail(&b->write_list, write_list); 746 } 747 748 static void __flush_write_list(struct list_head *write_list) 749 { 750 struct blk_plug plug; 751 blk_start_plug(&plug); 752 while (!list_empty(write_list)) { 753 struct dm_buffer *b = 754 list_entry(write_list->next, struct dm_buffer, write_list); 755 list_del(&b->write_list); 756 submit_io(b, REQ_OP_WRITE, write_endio); 757 cond_resched(); 758 } 759 blk_finish_plug(&plug); 760 } 761 762 /* 763 * Wait until any activity on the buffer finishes. Possibly write the 764 * buffer if it is dirty. When this function finishes, there is no I/O 765 * running on the buffer and the buffer is not dirty. 766 */ 767 static void __make_buffer_clean(struct dm_buffer *b) 768 { 769 BUG_ON(b->hold_count); 770 771 if (!b->state) /* fast case */ 772 return; 773 774 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 775 __write_dirty_buffer(b, NULL); 776 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 777 } 778 779 /* 780 * Find some buffer that is not held by anybody, clean it, unlink it and 781 * return it. 782 */ 783 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 784 { 785 struct dm_buffer *b; 786 787 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 788 BUG_ON(test_bit(B_WRITING, &b->state)); 789 BUG_ON(test_bit(B_DIRTY, &b->state)); 790 791 if (!b->hold_count) { 792 __make_buffer_clean(b); 793 __unlink_buffer(b); 794 return b; 795 } 796 cond_resched(); 797 } 798 799 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 800 BUG_ON(test_bit(B_READING, &b->state)); 801 802 if (!b->hold_count) { 803 __make_buffer_clean(b); 804 __unlink_buffer(b); 805 return b; 806 } 807 cond_resched(); 808 } 809 810 return NULL; 811 } 812 813 /* 814 * Wait until some other threads free some buffer or release hold count on 815 * some buffer. 816 * 817 * This function is entered with c->lock held, drops it and regains it 818 * before exiting. 819 */ 820 static void __wait_for_free_buffer(struct dm_bufio_client *c) 821 { 822 DECLARE_WAITQUEUE(wait, current); 823 824 add_wait_queue(&c->free_buffer_wait, &wait); 825 set_current_state(TASK_UNINTERRUPTIBLE); 826 dm_bufio_unlock(c); 827 828 io_schedule(); 829 830 remove_wait_queue(&c->free_buffer_wait, &wait); 831 832 dm_bufio_lock(c); 833 } 834 835 enum new_flag { 836 NF_FRESH = 0, 837 NF_READ = 1, 838 NF_GET = 2, 839 NF_PREFETCH = 3 840 }; 841 842 /* 843 * Allocate a new buffer. If the allocation is not possible, wait until 844 * some other thread frees a buffer. 845 * 846 * May drop the lock and regain it. 847 */ 848 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 849 { 850 struct dm_buffer *b; 851 bool tried_noio_alloc = false; 852 853 /* 854 * dm-bufio is resistant to allocation failures (it just keeps 855 * one buffer reserved in cases all the allocations fail). 856 * So set flags to not try too hard: 857 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 858 * mutex and wait ourselves. 859 * __GFP_NORETRY: don't retry and rather return failure 860 * __GFP_NOMEMALLOC: don't use emergency reserves 861 * __GFP_NOWARN: don't print a warning in case of failure 862 * 863 * For debugging, if we set the cache size to 1, no new buffers will 864 * be allocated. 865 */ 866 while (1) { 867 if (dm_bufio_cache_size_latch != 1) { 868 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 869 if (b) 870 return b; 871 } 872 873 if (nf == NF_PREFETCH) 874 return NULL; 875 876 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 877 dm_bufio_unlock(c); 878 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 879 dm_bufio_lock(c); 880 if (b) 881 return b; 882 tried_noio_alloc = true; 883 } 884 885 if (!list_empty(&c->reserved_buffers)) { 886 b = list_entry(c->reserved_buffers.next, 887 struct dm_buffer, lru_list); 888 list_del(&b->lru_list); 889 c->need_reserved_buffers++; 890 891 return b; 892 } 893 894 b = __get_unclaimed_buffer(c); 895 if (b) 896 return b; 897 898 __wait_for_free_buffer(c); 899 } 900 } 901 902 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 903 { 904 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 905 906 if (!b) 907 return NULL; 908 909 if (c->alloc_callback) 910 c->alloc_callback(b); 911 912 return b; 913 } 914 915 /* 916 * Free a buffer and wake other threads waiting for free buffers. 917 */ 918 static void __free_buffer_wake(struct dm_buffer *b) 919 { 920 struct dm_bufio_client *c = b->c; 921 922 if (!c->need_reserved_buffers) 923 free_buffer(b); 924 else { 925 list_add(&b->lru_list, &c->reserved_buffers); 926 c->need_reserved_buffers--; 927 } 928 929 wake_up(&c->free_buffer_wait); 930 } 931 932 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 933 struct list_head *write_list) 934 { 935 struct dm_buffer *b, *tmp; 936 937 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 938 BUG_ON(test_bit(B_READING, &b->state)); 939 940 if (!test_bit(B_DIRTY, &b->state) && 941 !test_bit(B_WRITING, &b->state)) { 942 __relink_lru(b, LIST_CLEAN); 943 continue; 944 } 945 946 if (no_wait && test_bit(B_WRITING, &b->state)) 947 return; 948 949 __write_dirty_buffer(b, write_list); 950 cond_resched(); 951 } 952 } 953 954 /* 955 * Get writeback threshold and buffer limit for a given client. 956 */ 957 static void __get_memory_limit(struct dm_bufio_client *c, 958 unsigned long *threshold_buffers, 959 unsigned long *limit_buffers) 960 { 961 unsigned long buffers; 962 963 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) { 964 if (mutex_trylock(&dm_bufio_clients_lock)) { 965 __cache_size_refresh(); 966 mutex_unlock(&dm_bufio_clients_lock); 967 } 968 } 969 970 buffers = dm_bufio_cache_size_per_client >> 971 (c->sectors_per_block_bits + SECTOR_SHIFT); 972 973 if (buffers < c->minimum_buffers) 974 buffers = c->minimum_buffers; 975 976 *limit_buffers = buffers; 977 *threshold_buffers = mult_frac(buffers, 978 DM_BUFIO_WRITEBACK_PERCENT, 100); 979 } 980 981 /* 982 * Check if we're over watermark. 983 * If we are over threshold_buffers, start freeing buffers. 984 * If we're over "limit_buffers", block until we get under the limit. 985 */ 986 static void __check_watermark(struct dm_bufio_client *c, 987 struct list_head *write_list) 988 { 989 unsigned long threshold_buffers, limit_buffers; 990 991 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 992 993 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 994 limit_buffers) { 995 996 struct dm_buffer *b = __get_unclaimed_buffer(c); 997 998 if (!b) 999 return; 1000 1001 __free_buffer_wake(b); 1002 cond_resched(); 1003 } 1004 1005 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 1006 __write_dirty_buffers_async(c, 1, write_list); 1007 } 1008 1009 /*---------------------------------------------------------------- 1010 * Getting a buffer 1011 *--------------------------------------------------------------*/ 1012 1013 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1014 enum new_flag nf, int *need_submit, 1015 struct list_head *write_list) 1016 { 1017 struct dm_buffer *b, *new_b = NULL; 1018 1019 *need_submit = 0; 1020 1021 b = __find(c, block); 1022 if (b) 1023 goto found_buffer; 1024 1025 if (nf == NF_GET) 1026 return NULL; 1027 1028 new_b = __alloc_buffer_wait(c, nf); 1029 if (!new_b) 1030 return NULL; 1031 1032 /* 1033 * We've had a period where the mutex was unlocked, so need to 1034 * recheck the hash table. 1035 */ 1036 b = __find(c, block); 1037 if (b) { 1038 __free_buffer_wake(new_b); 1039 goto found_buffer; 1040 } 1041 1042 __check_watermark(c, write_list); 1043 1044 b = new_b; 1045 b->hold_count = 1; 1046 b->read_error = 0; 1047 b->write_error = 0; 1048 __link_buffer(b, block, LIST_CLEAN); 1049 1050 if (nf == NF_FRESH) { 1051 b->state = 0; 1052 return b; 1053 } 1054 1055 b->state = 1 << B_READING; 1056 *need_submit = 1; 1057 1058 return b; 1059 1060 found_buffer: 1061 if (nf == NF_PREFETCH) 1062 return NULL; 1063 /* 1064 * Note: it is essential that we don't wait for the buffer to be 1065 * read if dm_bufio_get function is used. Both dm_bufio_get and 1066 * dm_bufio_prefetch can be used in the driver request routine. 1067 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1068 * the same buffer, it would deadlock if we waited. 1069 */ 1070 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1071 return NULL; 1072 1073 b->hold_count++; 1074 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1075 test_bit(B_WRITING, &b->state)); 1076 return b; 1077 } 1078 1079 /* 1080 * The endio routine for reading: set the error, clear the bit and wake up 1081 * anyone waiting on the buffer. 1082 */ 1083 static void read_endio(struct bio *bio) 1084 { 1085 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1086 1087 b->read_error = bio->bi_status; 1088 1089 BUG_ON(!test_bit(B_READING, &b->state)); 1090 1091 smp_mb__before_atomic(); 1092 clear_bit(B_READING, &b->state); 1093 smp_mb__after_atomic(); 1094 1095 wake_up_bit(&b->state, B_READING); 1096 } 1097 1098 /* 1099 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1100 * functions is similar except that dm_bufio_new doesn't read the 1101 * buffer from the disk (assuming that the caller overwrites all the data 1102 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1103 */ 1104 static void *new_read(struct dm_bufio_client *c, sector_t block, 1105 enum new_flag nf, struct dm_buffer **bp) 1106 { 1107 int need_submit; 1108 struct dm_buffer *b; 1109 1110 LIST_HEAD(write_list); 1111 1112 dm_bufio_lock(c); 1113 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1114 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1115 if (b && b->hold_count == 1) 1116 buffer_record_stack(b); 1117 #endif 1118 dm_bufio_unlock(c); 1119 1120 __flush_write_list(&write_list); 1121 1122 if (!b) 1123 return NULL; 1124 1125 if (need_submit) 1126 submit_io(b, REQ_OP_READ, read_endio); 1127 1128 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1129 1130 if (b->read_error) { 1131 int error = blk_status_to_errno(b->read_error); 1132 1133 dm_bufio_release(b); 1134 1135 return ERR_PTR(error); 1136 } 1137 1138 *bp = b; 1139 1140 return b->data; 1141 } 1142 1143 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1144 struct dm_buffer **bp) 1145 { 1146 return new_read(c, block, NF_GET, bp); 1147 } 1148 EXPORT_SYMBOL_GPL(dm_bufio_get); 1149 1150 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1151 struct dm_buffer **bp) 1152 { 1153 BUG_ON(dm_bufio_in_request()); 1154 1155 return new_read(c, block, NF_READ, bp); 1156 } 1157 EXPORT_SYMBOL_GPL(dm_bufio_read); 1158 1159 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1160 struct dm_buffer **bp) 1161 { 1162 BUG_ON(dm_bufio_in_request()); 1163 1164 return new_read(c, block, NF_FRESH, bp); 1165 } 1166 EXPORT_SYMBOL_GPL(dm_bufio_new); 1167 1168 void dm_bufio_prefetch(struct dm_bufio_client *c, 1169 sector_t block, unsigned n_blocks) 1170 { 1171 struct blk_plug plug; 1172 1173 LIST_HEAD(write_list); 1174 1175 BUG_ON(dm_bufio_in_request()); 1176 1177 blk_start_plug(&plug); 1178 dm_bufio_lock(c); 1179 1180 for (; n_blocks--; block++) { 1181 int need_submit; 1182 struct dm_buffer *b; 1183 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1184 &write_list); 1185 if (unlikely(!list_empty(&write_list))) { 1186 dm_bufio_unlock(c); 1187 blk_finish_plug(&plug); 1188 __flush_write_list(&write_list); 1189 blk_start_plug(&plug); 1190 dm_bufio_lock(c); 1191 } 1192 if (unlikely(b != NULL)) { 1193 dm_bufio_unlock(c); 1194 1195 if (need_submit) 1196 submit_io(b, REQ_OP_READ, read_endio); 1197 dm_bufio_release(b); 1198 1199 cond_resched(); 1200 1201 if (!n_blocks) 1202 goto flush_plug; 1203 dm_bufio_lock(c); 1204 } 1205 } 1206 1207 dm_bufio_unlock(c); 1208 1209 flush_plug: 1210 blk_finish_plug(&plug); 1211 } 1212 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1213 1214 void dm_bufio_release(struct dm_buffer *b) 1215 { 1216 struct dm_bufio_client *c = b->c; 1217 1218 dm_bufio_lock(c); 1219 1220 BUG_ON(!b->hold_count); 1221 1222 b->hold_count--; 1223 if (!b->hold_count) { 1224 wake_up(&c->free_buffer_wait); 1225 1226 /* 1227 * If there were errors on the buffer, and the buffer is not 1228 * to be written, free the buffer. There is no point in caching 1229 * invalid buffer. 1230 */ 1231 if ((b->read_error || b->write_error) && 1232 !test_bit(B_READING, &b->state) && 1233 !test_bit(B_WRITING, &b->state) && 1234 !test_bit(B_DIRTY, &b->state)) { 1235 __unlink_buffer(b); 1236 __free_buffer_wake(b); 1237 } 1238 } 1239 1240 dm_bufio_unlock(c); 1241 } 1242 EXPORT_SYMBOL_GPL(dm_bufio_release); 1243 1244 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1245 unsigned start, unsigned end) 1246 { 1247 struct dm_bufio_client *c = b->c; 1248 1249 BUG_ON(start >= end); 1250 BUG_ON(end > b->c->block_size); 1251 1252 dm_bufio_lock(c); 1253 1254 BUG_ON(test_bit(B_READING, &b->state)); 1255 1256 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1257 b->dirty_start = start; 1258 b->dirty_end = end; 1259 __relink_lru(b, LIST_DIRTY); 1260 } else { 1261 if (start < b->dirty_start) 1262 b->dirty_start = start; 1263 if (end > b->dirty_end) 1264 b->dirty_end = end; 1265 } 1266 1267 dm_bufio_unlock(c); 1268 } 1269 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1270 1271 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1272 { 1273 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1274 } 1275 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1276 1277 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1278 { 1279 LIST_HEAD(write_list); 1280 1281 BUG_ON(dm_bufio_in_request()); 1282 1283 dm_bufio_lock(c); 1284 __write_dirty_buffers_async(c, 0, &write_list); 1285 dm_bufio_unlock(c); 1286 __flush_write_list(&write_list); 1287 } 1288 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1289 1290 /* 1291 * For performance, it is essential that the buffers are written asynchronously 1292 * and simultaneously (so that the block layer can merge the writes) and then 1293 * waited upon. 1294 * 1295 * Finally, we flush hardware disk cache. 1296 */ 1297 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1298 { 1299 int a, f; 1300 unsigned long buffers_processed = 0; 1301 struct dm_buffer *b, *tmp; 1302 1303 LIST_HEAD(write_list); 1304 1305 dm_bufio_lock(c); 1306 __write_dirty_buffers_async(c, 0, &write_list); 1307 dm_bufio_unlock(c); 1308 __flush_write_list(&write_list); 1309 dm_bufio_lock(c); 1310 1311 again: 1312 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1313 int dropped_lock = 0; 1314 1315 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1316 buffers_processed++; 1317 1318 BUG_ON(test_bit(B_READING, &b->state)); 1319 1320 if (test_bit(B_WRITING, &b->state)) { 1321 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1322 dropped_lock = 1; 1323 b->hold_count++; 1324 dm_bufio_unlock(c); 1325 wait_on_bit_io(&b->state, B_WRITING, 1326 TASK_UNINTERRUPTIBLE); 1327 dm_bufio_lock(c); 1328 b->hold_count--; 1329 } else 1330 wait_on_bit_io(&b->state, B_WRITING, 1331 TASK_UNINTERRUPTIBLE); 1332 } 1333 1334 if (!test_bit(B_DIRTY, &b->state) && 1335 !test_bit(B_WRITING, &b->state)) 1336 __relink_lru(b, LIST_CLEAN); 1337 1338 cond_resched(); 1339 1340 /* 1341 * If we dropped the lock, the list is no longer consistent, 1342 * so we must restart the search. 1343 * 1344 * In the most common case, the buffer just processed is 1345 * relinked to the clean list, so we won't loop scanning the 1346 * same buffer again and again. 1347 * 1348 * This may livelock if there is another thread simultaneously 1349 * dirtying buffers, so we count the number of buffers walked 1350 * and if it exceeds the total number of buffers, it means that 1351 * someone is doing some writes simultaneously with us. In 1352 * this case, stop, dropping the lock. 1353 */ 1354 if (dropped_lock) 1355 goto again; 1356 } 1357 wake_up(&c->free_buffer_wait); 1358 dm_bufio_unlock(c); 1359 1360 a = xchg(&c->async_write_error, 0); 1361 f = dm_bufio_issue_flush(c); 1362 if (a) 1363 return a; 1364 1365 return f; 1366 } 1367 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1368 1369 /* 1370 * Use dm-io to send and empty barrier flush the device. 1371 */ 1372 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1373 { 1374 struct dm_io_request io_req = { 1375 .bi_op = REQ_OP_WRITE, 1376 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1377 .mem.type = DM_IO_KMEM, 1378 .mem.ptr.addr = NULL, 1379 .client = c->dm_io, 1380 }; 1381 struct dm_io_region io_reg = { 1382 .bdev = c->bdev, 1383 .sector = 0, 1384 .count = 0, 1385 }; 1386 1387 BUG_ON(dm_bufio_in_request()); 1388 1389 return dm_io(&io_req, 1, &io_reg, NULL); 1390 } 1391 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1392 1393 /* 1394 * We first delete any other buffer that may be at that new location. 1395 * 1396 * Then, we write the buffer to the original location if it was dirty. 1397 * 1398 * Then, if we are the only one who is holding the buffer, relink the buffer 1399 * in the hash queue for the new location. 1400 * 1401 * If there was someone else holding the buffer, we write it to the new 1402 * location but not relink it, because that other user needs to have the buffer 1403 * at the same place. 1404 */ 1405 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1406 { 1407 struct dm_bufio_client *c = b->c; 1408 struct dm_buffer *new; 1409 1410 BUG_ON(dm_bufio_in_request()); 1411 1412 dm_bufio_lock(c); 1413 1414 retry: 1415 new = __find(c, new_block); 1416 if (new) { 1417 if (new->hold_count) { 1418 __wait_for_free_buffer(c); 1419 goto retry; 1420 } 1421 1422 /* 1423 * FIXME: Is there any point waiting for a write that's going 1424 * to be overwritten in a bit? 1425 */ 1426 __make_buffer_clean(new); 1427 __unlink_buffer(new); 1428 __free_buffer_wake(new); 1429 } 1430 1431 BUG_ON(!b->hold_count); 1432 BUG_ON(test_bit(B_READING, &b->state)); 1433 1434 __write_dirty_buffer(b, NULL); 1435 if (b->hold_count == 1) { 1436 wait_on_bit_io(&b->state, B_WRITING, 1437 TASK_UNINTERRUPTIBLE); 1438 set_bit(B_DIRTY, &b->state); 1439 b->dirty_start = 0; 1440 b->dirty_end = c->block_size; 1441 __unlink_buffer(b); 1442 __link_buffer(b, new_block, LIST_DIRTY); 1443 } else { 1444 sector_t old_block; 1445 wait_on_bit_lock_io(&b->state, B_WRITING, 1446 TASK_UNINTERRUPTIBLE); 1447 /* 1448 * Relink buffer to "new_block" so that write_callback 1449 * sees "new_block" as a block number. 1450 * After the write, link the buffer back to old_block. 1451 * All this must be done in bufio lock, so that block number 1452 * change isn't visible to other threads. 1453 */ 1454 old_block = b->block; 1455 __unlink_buffer(b); 1456 __link_buffer(b, new_block, b->list_mode); 1457 submit_io(b, REQ_OP_WRITE, write_endio); 1458 wait_on_bit_io(&b->state, B_WRITING, 1459 TASK_UNINTERRUPTIBLE); 1460 __unlink_buffer(b); 1461 __link_buffer(b, old_block, b->list_mode); 1462 } 1463 1464 dm_bufio_unlock(c); 1465 dm_bufio_release(b); 1466 } 1467 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1468 1469 /* 1470 * Free the given buffer. 1471 * 1472 * This is just a hint, if the buffer is in use or dirty, this function 1473 * does nothing. 1474 */ 1475 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1476 { 1477 struct dm_buffer *b; 1478 1479 dm_bufio_lock(c); 1480 1481 b = __find(c, block); 1482 if (b && likely(!b->hold_count) && likely(!b->state)) { 1483 __unlink_buffer(b); 1484 __free_buffer_wake(b); 1485 } 1486 1487 dm_bufio_unlock(c); 1488 } 1489 EXPORT_SYMBOL(dm_bufio_forget); 1490 1491 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1492 { 1493 c->minimum_buffers = n; 1494 } 1495 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1496 1497 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1498 { 1499 return c->block_size; 1500 } 1501 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1502 1503 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1504 { 1505 return i_size_read(c->bdev->bd_inode) >> 1506 (SECTOR_SHIFT + c->sectors_per_block_bits); 1507 } 1508 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1509 1510 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1511 { 1512 return b->block; 1513 } 1514 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1515 1516 void *dm_bufio_get_block_data(struct dm_buffer *b) 1517 { 1518 return b->data; 1519 } 1520 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1521 1522 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1523 { 1524 return b + 1; 1525 } 1526 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1527 1528 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1529 { 1530 return b->c; 1531 } 1532 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1533 1534 static void drop_buffers(struct dm_bufio_client *c) 1535 { 1536 struct dm_buffer *b; 1537 int i; 1538 bool warned = false; 1539 1540 BUG_ON(dm_bufio_in_request()); 1541 1542 /* 1543 * An optimization so that the buffers are not written one-by-one. 1544 */ 1545 dm_bufio_write_dirty_buffers_async(c); 1546 1547 dm_bufio_lock(c); 1548 1549 while ((b = __get_unclaimed_buffer(c))) 1550 __free_buffer_wake(b); 1551 1552 for (i = 0; i < LIST_SIZE; i++) 1553 list_for_each_entry(b, &c->lru[i], lru_list) { 1554 WARN_ON(!warned); 1555 warned = true; 1556 DMERR("leaked buffer %llx, hold count %u, list %d", 1557 (unsigned long long)b->block, b->hold_count, i); 1558 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1559 print_stack_trace(&b->stack_trace, 1); 1560 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1561 #endif 1562 } 1563 1564 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1565 while ((b = __get_unclaimed_buffer(c))) 1566 __free_buffer_wake(b); 1567 #endif 1568 1569 for (i = 0; i < LIST_SIZE; i++) 1570 BUG_ON(!list_empty(&c->lru[i])); 1571 1572 dm_bufio_unlock(c); 1573 } 1574 1575 /* 1576 * We may not be able to evict this buffer if IO pending or the client 1577 * is still using it. Caller is expected to know buffer is too old. 1578 * 1579 * And if GFP_NOFS is used, we must not do any I/O because we hold 1580 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1581 * rerouted to different bufio client. 1582 */ 1583 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1584 { 1585 if (!(gfp & __GFP_FS)) { 1586 if (test_bit(B_READING, &b->state) || 1587 test_bit(B_WRITING, &b->state) || 1588 test_bit(B_DIRTY, &b->state)) 1589 return false; 1590 } 1591 1592 if (b->hold_count) 1593 return false; 1594 1595 __make_buffer_clean(b); 1596 __unlink_buffer(b); 1597 __free_buffer_wake(b); 1598 1599 return true; 1600 } 1601 1602 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1603 { 1604 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1605 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT); 1606 } 1607 1608 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1609 gfp_t gfp_mask) 1610 { 1611 int l; 1612 struct dm_buffer *b, *tmp; 1613 unsigned long freed = 0; 1614 unsigned long count = c->n_buffers[LIST_CLEAN] + 1615 c->n_buffers[LIST_DIRTY]; 1616 unsigned long retain_target = get_retain_buffers(c); 1617 1618 for (l = 0; l < LIST_SIZE; l++) { 1619 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1620 if (__try_evict_buffer(b, gfp_mask)) 1621 freed++; 1622 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1623 return freed; 1624 cond_resched(); 1625 } 1626 } 1627 return freed; 1628 } 1629 1630 static unsigned long 1631 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1632 { 1633 struct dm_bufio_client *c; 1634 unsigned long freed; 1635 1636 c = container_of(shrink, struct dm_bufio_client, shrinker); 1637 if (sc->gfp_mask & __GFP_FS) 1638 dm_bufio_lock(c); 1639 else if (!dm_bufio_trylock(c)) 1640 return SHRINK_STOP; 1641 1642 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1643 dm_bufio_unlock(c); 1644 return freed; 1645 } 1646 1647 static unsigned long 1648 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1649 { 1650 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1651 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1652 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1653 unsigned long retain_target = get_retain_buffers(c); 1654 1655 return (count < retain_target) ? 0 : (count - retain_target); 1656 } 1657 1658 /* 1659 * Create the buffering interface 1660 */ 1661 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1662 unsigned reserved_buffers, unsigned aux_size, 1663 void (*alloc_callback)(struct dm_buffer *), 1664 void (*write_callback)(struct dm_buffer *)) 1665 { 1666 int r; 1667 struct dm_bufio_client *c; 1668 unsigned i; 1669 1670 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1671 (block_size & (block_size - 1))); 1672 1673 c = kzalloc(sizeof(*c), GFP_KERNEL); 1674 if (!c) { 1675 r = -ENOMEM; 1676 goto bad_client; 1677 } 1678 c->buffer_tree = RB_ROOT; 1679 1680 c->bdev = bdev; 1681 c->block_size = block_size; 1682 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1683 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1684 __ffs(block_size) - PAGE_SHIFT : 0; 1685 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1686 PAGE_SHIFT - __ffs(block_size) : 0); 1687 1688 c->aux_size = aux_size; 1689 c->alloc_callback = alloc_callback; 1690 c->write_callback = write_callback; 1691 1692 for (i = 0; i < LIST_SIZE; i++) { 1693 INIT_LIST_HEAD(&c->lru[i]); 1694 c->n_buffers[i] = 0; 1695 } 1696 1697 mutex_init(&c->lock); 1698 INIT_LIST_HEAD(&c->reserved_buffers); 1699 c->need_reserved_buffers = reserved_buffers; 1700 1701 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1702 1703 init_waitqueue_head(&c->free_buffer_wait); 1704 c->async_write_error = 0; 1705 1706 c->dm_io = dm_io_client_create(); 1707 if (IS_ERR(c->dm_io)) { 1708 r = PTR_ERR(c->dm_io); 1709 goto bad_dm_io; 1710 } 1711 1712 mutex_lock(&dm_bufio_clients_lock); 1713 if (c->blocks_per_page_bits) { 1714 if (!DM_BUFIO_CACHE_NAME(c)) { 1715 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1716 if (!DM_BUFIO_CACHE_NAME(c)) { 1717 r = -ENOMEM; 1718 mutex_unlock(&dm_bufio_clients_lock); 1719 goto bad; 1720 } 1721 } 1722 1723 if (!DM_BUFIO_CACHE(c)) { 1724 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1725 c->block_size, 1726 c->block_size, 0, NULL); 1727 if (!DM_BUFIO_CACHE(c)) { 1728 r = -ENOMEM; 1729 mutex_unlock(&dm_bufio_clients_lock); 1730 goto bad; 1731 } 1732 } 1733 } 1734 mutex_unlock(&dm_bufio_clients_lock); 1735 1736 while (c->need_reserved_buffers) { 1737 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1738 1739 if (!b) { 1740 r = -ENOMEM; 1741 goto bad; 1742 } 1743 __free_buffer_wake(b); 1744 } 1745 1746 c->shrinker.count_objects = dm_bufio_shrink_count; 1747 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1748 c->shrinker.seeks = 1; 1749 c->shrinker.batch = 0; 1750 r = register_shrinker(&c->shrinker); 1751 if (r) 1752 goto bad; 1753 1754 mutex_lock(&dm_bufio_clients_lock); 1755 dm_bufio_client_count++; 1756 list_add(&c->client_list, &dm_bufio_all_clients); 1757 __cache_size_refresh(); 1758 mutex_unlock(&dm_bufio_clients_lock); 1759 1760 return c; 1761 1762 bad: 1763 while (!list_empty(&c->reserved_buffers)) { 1764 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1765 struct dm_buffer, lru_list); 1766 list_del(&b->lru_list); 1767 free_buffer(b); 1768 } 1769 dm_io_client_destroy(c->dm_io); 1770 bad_dm_io: 1771 mutex_destroy(&c->lock); 1772 kfree(c); 1773 bad_client: 1774 return ERR_PTR(r); 1775 } 1776 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1777 1778 /* 1779 * Free the buffering interface. 1780 * It is required that there are no references on any buffers. 1781 */ 1782 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1783 { 1784 unsigned i; 1785 1786 drop_buffers(c); 1787 1788 unregister_shrinker(&c->shrinker); 1789 1790 mutex_lock(&dm_bufio_clients_lock); 1791 1792 list_del(&c->client_list); 1793 dm_bufio_client_count--; 1794 __cache_size_refresh(); 1795 1796 mutex_unlock(&dm_bufio_clients_lock); 1797 1798 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1799 BUG_ON(c->need_reserved_buffers); 1800 1801 while (!list_empty(&c->reserved_buffers)) { 1802 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1803 struct dm_buffer, lru_list); 1804 list_del(&b->lru_list); 1805 free_buffer(b); 1806 } 1807 1808 for (i = 0; i < LIST_SIZE; i++) 1809 if (c->n_buffers[i]) 1810 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1811 1812 for (i = 0; i < LIST_SIZE; i++) 1813 BUG_ON(c->n_buffers[i]); 1814 1815 dm_io_client_destroy(c->dm_io); 1816 mutex_destroy(&c->lock); 1817 kfree(c); 1818 } 1819 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1820 1821 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1822 { 1823 c->start = start; 1824 } 1825 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1826 1827 static unsigned get_max_age_hz(void) 1828 { 1829 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1830 1831 if (max_age > UINT_MAX / HZ) 1832 max_age = UINT_MAX / HZ; 1833 1834 return max_age * HZ; 1835 } 1836 1837 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1838 { 1839 return time_after_eq(jiffies, b->last_accessed + age_hz); 1840 } 1841 1842 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1843 { 1844 struct dm_buffer *b, *tmp; 1845 unsigned long retain_target = get_retain_buffers(c); 1846 unsigned long count; 1847 LIST_HEAD(write_list); 1848 1849 dm_bufio_lock(c); 1850 1851 __check_watermark(c, &write_list); 1852 if (unlikely(!list_empty(&write_list))) { 1853 dm_bufio_unlock(c); 1854 __flush_write_list(&write_list); 1855 dm_bufio_lock(c); 1856 } 1857 1858 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1859 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1860 if (count <= retain_target) 1861 break; 1862 1863 if (!older_than(b, age_hz)) 1864 break; 1865 1866 if (__try_evict_buffer(b, 0)) 1867 count--; 1868 1869 cond_resched(); 1870 } 1871 1872 dm_bufio_unlock(c); 1873 } 1874 1875 static void cleanup_old_buffers(void) 1876 { 1877 unsigned long max_age_hz = get_max_age_hz(); 1878 struct dm_bufio_client *c; 1879 1880 mutex_lock(&dm_bufio_clients_lock); 1881 1882 __cache_size_refresh(); 1883 1884 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1885 __evict_old_buffers(c, max_age_hz); 1886 1887 mutex_unlock(&dm_bufio_clients_lock); 1888 } 1889 1890 static struct workqueue_struct *dm_bufio_wq; 1891 static struct delayed_work dm_bufio_work; 1892 1893 static void work_fn(struct work_struct *w) 1894 { 1895 cleanup_old_buffers(); 1896 1897 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1898 DM_BUFIO_WORK_TIMER_SECS * HZ); 1899 } 1900 1901 /*---------------------------------------------------------------- 1902 * Module setup 1903 *--------------------------------------------------------------*/ 1904 1905 /* 1906 * This is called only once for the whole dm_bufio module. 1907 * It initializes memory limit. 1908 */ 1909 static int __init dm_bufio_init(void) 1910 { 1911 __u64 mem; 1912 1913 dm_bufio_allocated_kmem_cache = 0; 1914 dm_bufio_allocated_get_free_pages = 0; 1915 dm_bufio_allocated_vmalloc = 0; 1916 dm_bufio_current_allocated = 0; 1917 1918 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1919 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1920 1921 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages, 1922 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 1923 1924 if (mem > ULONG_MAX) 1925 mem = ULONG_MAX; 1926 1927 #ifdef CONFIG_MMU 1928 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 1929 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 1930 #endif 1931 1932 dm_bufio_default_cache_size = mem; 1933 1934 mutex_lock(&dm_bufio_clients_lock); 1935 __cache_size_refresh(); 1936 mutex_unlock(&dm_bufio_clients_lock); 1937 1938 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1939 if (!dm_bufio_wq) 1940 return -ENOMEM; 1941 1942 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1943 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1944 DM_BUFIO_WORK_TIMER_SECS * HZ); 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * This is called once when unloading the dm_bufio module. 1951 */ 1952 static void __exit dm_bufio_exit(void) 1953 { 1954 int bug = 0; 1955 int i; 1956 1957 cancel_delayed_work_sync(&dm_bufio_work); 1958 destroy_workqueue(dm_bufio_wq); 1959 1960 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1961 kmem_cache_destroy(dm_bufio_caches[i]); 1962 1963 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1964 kfree(dm_bufio_cache_names[i]); 1965 1966 if (dm_bufio_client_count) { 1967 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1968 __func__, dm_bufio_client_count); 1969 bug = 1; 1970 } 1971 1972 if (dm_bufio_current_allocated) { 1973 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1974 __func__, dm_bufio_current_allocated); 1975 bug = 1; 1976 } 1977 1978 if (dm_bufio_allocated_get_free_pages) { 1979 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1980 __func__, dm_bufio_allocated_get_free_pages); 1981 bug = 1; 1982 } 1983 1984 if (dm_bufio_allocated_vmalloc) { 1985 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1986 __func__, dm_bufio_allocated_vmalloc); 1987 bug = 1; 1988 } 1989 1990 BUG_ON(bug); 1991 } 1992 1993 module_init(dm_bufio_init) 1994 module_exit(dm_bufio_exit) 1995 1996 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1997 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1998 1999 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 2000 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2001 2002 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 2003 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2004 2005 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2006 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2007 2008 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2009 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2010 2011 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2012 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2013 2014 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2015 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2016 2017 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2018 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2019 2020 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2021 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2022 MODULE_LICENSE("GPL"); 2023