xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	struct hlist_head *cache_hash;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct hlist_node hash_list;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct bio bio;
149 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
150 };
151 
152 /*----------------------------------------------------------------*/
153 
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
156 
157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
158 {
159 	unsigned ret = c->blocks_per_page_bits - 1;
160 
161 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
162 
163 	return ret;
164 }
165 
166 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
168 
169 #define dm_bufio_in_request()	(!!current->bio_list)
170 
171 static void dm_bufio_lock(struct dm_bufio_client *c)
172 {
173 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
174 }
175 
176 static int dm_bufio_trylock(struct dm_bufio_client *c)
177 {
178 	return mutex_trylock(&c->lock);
179 }
180 
181 static void dm_bufio_unlock(struct dm_bufio_client *c)
182 {
183 	mutex_unlock(&c->lock);
184 }
185 
186 /*
187  * FIXME Move to sched.h?
188  */
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 #  define dm_bufio_cond_resched()		\
191 do {						\
192 	if (unlikely(need_resched()))		\
193 		_cond_resched();		\
194 } while (0)
195 #else
196 #  define dm_bufio_cond_resched()                do { } while (0)
197 #endif
198 
199 /*----------------------------------------------------------------*/
200 
201 /*
202  * Default cache size: available memory divided by the ratio.
203  */
204 static unsigned long dm_bufio_default_cache_size;
205 
206 /*
207  * Total cache size set by the user.
208  */
209 static unsigned long dm_bufio_cache_size;
210 
211 /*
212  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213  * at any time.  If it disagrees, the user has changed cache size.
214  */
215 static unsigned long dm_bufio_cache_size_latch;
216 
217 static DEFINE_SPINLOCK(param_spinlock);
218 
219 /*
220  * Buffers are freed after this timeout
221  */
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
223 
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
234  */
235 static unsigned long dm_bufio_cache_size_per_client;
236 
237 /*
238  * The current number of clients.
239  */
240 static int dm_bufio_client_count;
241 
242 /*
243  * The list of all clients.
244  */
245 static LIST_HEAD(dm_bufio_all_clients);
246 
247 /*
248  * This mutex protects dm_bufio_cache_size_latch,
249  * dm_bufio_cache_size_per_client and dm_bufio_client_count
250  */
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
252 
253 /*----------------------------------------------------------------*/
254 
255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
256 {
257 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 		&dm_bufio_allocated_kmem_cache,
259 		&dm_bufio_allocated_get_free_pages,
260 		&dm_bufio_allocated_vmalloc,
261 	};
262 
263 	spin_lock(&param_spinlock);
264 
265 	*class_ptr[data_mode] += diff;
266 
267 	dm_bufio_current_allocated += diff;
268 
269 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
271 
272 	spin_unlock(&param_spinlock);
273 }
274 
275 /*
276  * Change the number of clients and recalculate per-client limit.
277  */
278 static void __cache_size_refresh(void)
279 {
280 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 	BUG_ON(dm_bufio_client_count < 0);
282 
283 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
284 
285 	/*
286 	 * Use default if set to 0 and report the actual cache size used.
287 	 */
288 	if (!dm_bufio_cache_size_latch) {
289 		(void)cmpxchg(&dm_bufio_cache_size, 0,
290 			      dm_bufio_default_cache_size);
291 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
292 	}
293 
294 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
295 					 (dm_bufio_client_count ? : 1);
296 }
297 
298 /*
299  * Allocating buffer data.
300  *
301  * Small buffers are allocated with kmem_cache, to use space optimally.
302  *
303  * For large buffers, we choose between get_free_pages and vmalloc.
304  * Each has advantages and disadvantages.
305  *
306  * __get_free_pages can randomly fail if the memory is fragmented.
307  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
308  * as low as 128M) so using it for caching is not appropriate.
309  *
310  * If the allocation may fail we use __get_free_pages. Memory fragmentation
311  * won't have a fatal effect here, but it just causes flushes of some other
312  * buffers and more I/O will be performed. Don't use __get_free_pages if it
313  * always fails (i.e. order >= MAX_ORDER).
314  *
315  * If the allocation shouldn't fail we use __vmalloc. This is only for the
316  * initial reserve allocation, so there's no risk of wasting all vmalloc
317  * space.
318  */
319 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
320 			       enum data_mode *data_mode)
321 {
322 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
323 		*data_mode = DATA_MODE_SLAB;
324 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
325 	}
326 
327 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
328 	    gfp_mask & __GFP_NORETRY) {
329 		*data_mode = DATA_MODE_GET_FREE_PAGES;
330 		return (void *)__get_free_pages(gfp_mask,
331 						c->pages_per_block_bits);
332 	}
333 
334 	*data_mode = DATA_MODE_VMALLOC;
335 	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
336 }
337 
338 /*
339  * Free buffer's data.
340  */
341 static void free_buffer_data(struct dm_bufio_client *c,
342 			     void *data, enum data_mode data_mode)
343 {
344 	switch (data_mode) {
345 	case DATA_MODE_SLAB:
346 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
347 		break;
348 
349 	case DATA_MODE_GET_FREE_PAGES:
350 		free_pages((unsigned long)data, c->pages_per_block_bits);
351 		break;
352 
353 	case DATA_MODE_VMALLOC:
354 		vfree(data);
355 		break;
356 
357 	default:
358 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
359 		       data_mode);
360 		BUG();
361 	}
362 }
363 
364 /*
365  * Allocate buffer and its data.
366  */
367 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
368 {
369 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
370 				      gfp_mask);
371 
372 	if (!b)
373 		return NULL;
374 
375 	b->c = c;
376 
377 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
378 	if (!b->data) {
379 		kfree(b);
380 		return NULL;
381 	}
382 
383 	adjust_total_allocated(b->data_mode, (long)c->block_size);
384 
385 	return b;
386 }
387 
388 /*
389  * Free buffer and its data.
390  */
391 static void free_buffer(struct dm_buffer *b)
392 {
393 	struct dm_bufio_client *c = b->c;
394 
395 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
396 
397 	free_buffer_data(c, b->data, b->data_mode);
398 	kfree(b);
399 }
400 
401 /*
402  * Link buffer to the hash list and clean or dirty queue.
403  */
404 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
405 {
406 	struct dm_bufio_client *c = b->c;
407 
408 	c->n_buffers[dirty]++;
409 	b->block = block;
410 	b->list_mode = dirty;
411 	list_add(&b->lru_list, &c->lru[dirty]);
412 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
413 	b->last_accessed = jiffies;
414 }
415 
416 /*
417  * Unlink buffer from the hash list and dirty or clean queue.
418  */
419 static void __unlink_buffer(struct dm_buffer *b)
420 {
421 	struct dm_bufio_client *c = b->c;
422 
423 	BUG_ON(!c->n_buffers[b->list_mode]);
424 
425 	c->n_buffers[b->list_mode]--;
426 	hlist_del(&b->hash_list);
427 	list_del(&b->lru_list);
428 }
429 
430 /*
431  * Place the buffer to the head of dirty or clean LRU queue.
432  */
433 static void __relink_lru(struct dm_buffer *b, int dirty)
434 {
435 	struct dm_bufio_client *c = b->c;
436 
437 	BUG_ON(!c->n_buffers[b->list_mode]);
438 
439 	c->n_buffers[b->list_mode]--;
440 	c->n_buffers[dirty]++;
441 	b->list_mode = dirty;
442 	list_move(&b->lru_list, &c->lru[dirty]);
443 }
444 
445 /*----------------------------------------------------------------
446  * Submit I/O on the buffer.
447  *
448  * Bio interface is faster but it has some problems:
449  *	the vector list is limited (increasing this limit increases
450  *	memory-consumption per buffer, so it is not viable);
451  *
452  *	the memory must be direct-mapped, not vmalloced;
453  *
454  *	the I/O driver can reject requests spuriously if it thinks that
455  *	the requests are too big for the device or if they cross a
456  *	controller-defined memory boundary.
457  *
458  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
459  * it is not vmalloced, try using the bio interface.
460  *
461  * If the buffer is big, if it is vmalloced or if the underlying device
462  * rejects the bio because it is too large, use dm-io layer to do the I/O.
463  * The dm-io layer splits the I/O into multiple requests, avoiding the above
464  * shortcomings.
465  *--------------------------------------------------------------*/
466 
467 /*
468  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
469  * that the request was handled directly with bio interface.
470  */
471 static void dmio_complete(unsigned long error, void *context)
472 {
473 	struct dm_buffer *b = context;
474 
475 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
476 }
477 
478 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
479 		     bio_end_io_t *end_io)
480 {
481 	int r;
482 	struct dm_io_request io_req = {
483 		.bi_rw = rw,
484 		.notify.fn = dmio_complete,
485 		.notify.context = b,
486 		.client = b->c->dm_io,
487 	};
488 	struct dm_io_region region = {
489 		.bdev = b->c->bdev,
490 		.sector = block << b->c->sectors_per_block_bits,
491 		.count = b->c->block_size >> SECTOR_SHIFT,
492 	};
493 
494 	if (b->data_mode != DATA_MODE_VMALLOC) {
495 		io_req.mem.type = DM_IO_KMEM;
496 		io_req.mem.ptr.addr = b->data;
497 	} else {
498 		io_req.mem.type = DM_IO_VMA;
499 		io_req.mem.ptr.vma = b->data;
500 	}
501 
502 	b->bio.bi_end_io = end_io;
503 
504 	r = dm_io(&io_req, 1, &region, NULL);
505 	if (r)
506 		end_io(&b->bio, r);
507 }
508 
509 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
510 			   bio_end_io_t *end_io)
511 {
512 	char *ptr;
513 	int len;
514 
515 	bio_init(&b->bio);
516 	b->bio.bi_io_vec = b->bio_vec;
517 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
518 	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
519 	b->bio.bi_bdev = b->c->bdev;
520 	b->bio.bi_end_io = end_io;
521 
522 	/*
523 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
524 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
525 	 */
526 	ptr = b->data;
527 	len = b->c->block_size;
528 
529 	if (len >= PAGE_SIZE)
530 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
531 	else
532 		BUG_ON((unsigned long)ptr & (len - 1));
533 
534 	do {
535 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
536 				  len < PAGE_SIZE ? len : PAGE_SIZE,
537 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
538 			BUG_ON(b->c->block_size <= PAGE_SIZE);
539 			use_dmio(b, rw, block, end_io);
540 			return;
541 		}
542 
543 		len -= PAGE_SIZE;
544 		ptr += PAGE_SIZE;
545 	} while (len > 0);
546 
547 	submit_bio(rw, &b->bio);
548 }
549 
550 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
551 		      bio_end_io_t *end_io)
552 {
553 	if (rw == WRITE && b->c->write_callback)
554 		b->c->write_callback(b);
555 
556 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
557 	    b->data_mode != DATA_MODE_VMALLOC)
558 		use_inline_bio(b, rw, block, end_io);
559 	else
560 		use_dmio(b, rw, block, end_io);
561 }
562 
563 /*----------------------------------------------------------------
564  * Writing dirty buffers
565  *--------------------------------------------------------------*/
566 
567 /*
568  * The endio routine for write.
569  *
570  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
571  * it.
572  */
573 static void write_endio(struct bio *bio, int error)
574 {
575 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
576 
577 	b->write_error = error;
578 	if (unlikely(error)) {
579 		struct dm_bufio_client *c = b->c;
580 		(void)cmpxchg(&c->async_write_error, 0, error);
581 	}
582 
583 	BUG_ON(!test_bit(B_WRITING, &b->state));
584 
585 	smp_mb__before_clear_bit();
586 	clear_bit(B_WRITING, &b->state);
587 	smp_mb__after_clear_bit();
588 
589 	wake_up_bit(&b->state, B_WRITING);
590 }
591 
592 /*
593  * This function is called when wait_on_bit is actually waiting.
594  */
595 static int do_io_schedule(void *word)
596 {
597 	io_schedule();
598 
599 	return 0;
600 }
601 
602 /*
603  * Initiate a write on a dirty buffer, but don't wait for it.
604  *
605  * - If the buffer is not dirty, exit.
606  * - If there some previous write going on, wait for it to finish (we can't
607  *   have two writes on the same buffer simultaneously).
608  * - Submit our write and don't wait on it. We set B_WRITING indicating
609  *   that there is a write in progress.
610  */
611 static void __write_dirty_buffer(struct dm_buffer *b)
612 {
613 	if (!test_bit(B_DIRTY, &b->state))
614 		return;
615 
616 	clear_bit(B_DIRTY, &b->state);
617 	wait_on_bit_lock(&b->state, B_WRITING,
618 			 do_io_schedule, TASK_UNINTERRUPTIBLE);
619 
620 	submit_io(b, WRITE, b->block, write_endio);
621 }
622 
623 /*
624  * Wait until any activity on the buffer finishes.  Possibly write the
625  * buffer if it is dirty.  When this function finishes, there is no I/O
626  * running on the buffer and the buffer is not dirty.
627  */
628 static void __make_buffer_clean(struct dm_buffer *b)
629 {
630 	BUG_ON(b->hold_count);
631 
632 	if (!b->state)	/* fast case */
633 		return;
634 
635 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
636 	__write_dirty_buffer(b);
637 	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
638 }
639 
640 /*
641  * Find some buffer that is not held by anybody, clean it, unlink it and
642  * return it.
643  */
644 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
645 {
646 	struct dm_buffer *b;
647 
648 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
649 		BUG_ON(test_bit(B_WRITING, &b->state));
650 		BUG_ON(test_bit(B_DIRTY, &b->state));
651 
652 		if (!b->hold_count) {
653 			__make_buffer_clean(b);
654 			__unlink_buffer(b);
655 			return b;
656 		}
657 		dm_bufio_cond_resched();
658 	}
659 
660 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
661 		BUG_ON(test_bit(B_READING, &b->state));
662 
663 		if (!b->hold_count) {
664 			__make_buffer_clean(b);
665 			__unlink_buffer(b);
666 			return b;
667 		}
668 		dm_bufio_cond_resched();
669 	}
670 
671 	return NULL;
672 }
673 
674 /*
675  * Wait until some other threads free some buffer or release hold count on
676  * some buffer.
677  *
678  * This function is entered with c->lock held, drops it and regains it
679  * before exiting.
680  */
681 static void __wait_for_free_buffer(struct dm_bufio_client *c)
682 {
683 	DECLARE_WAITQUEUE(wait, current);
684 
685 	add_wait_queue(&c->free_buffer_wait, &wait);
686 	set_task_state(current, TASK_UNINTERRUPTIBLE);
687 	dm_bufio_unlock(c);
688 
689 	io_schedule();
690 
691 	set_task_state(current, TASK_RUNNING);
692 	remove_wait_queue(&c->free_buffer_wait, &wait);
693 
694 	dm_bufio_lock(c);
695 }
696 
697 enum new_flag {
698 	NF_FRESH = 0,
699 	NF_READ = 1,
700 	NF_GET = 2,
701 	NF_PREFETCH = 3
702 };
703 
704 /*
705  * Allocate a new buffer. If the allocation is not possible, wait until
706  * some other thread frees a buffer.
707  *
708  * May drop the lock and regain it.
709  */
710 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
711 {
712 	struct dm_buffer *b;
713 
714 	/*
715 	 * dm-bufio is resistant to allocation failures (it just keeps
716 	 * one buffer reserved in cases all the allocations fail).
717 	 * So set flags to not try too hard:
718 	 *	GFP_NOIO: don't recurse into the I/O layer
719 	 *	__GFP_NORETRY: don't retry and rather return failure
720 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
721 	 *	__GFP_NOWARN: don't print a warning in case of failure
722 	 *
723 	 * For debugging, if we set the cache size to 1, no new buffers will
724 	 * be allocated.
725 	 */
726 	while (1) {
727 		if (dm_bufio_cache_size_latch != 1) {
728 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
729 			if (b)
730 				return b;
731 		}
732 
733 		if (nf == NF_PREFETCH)
734 			return NULL;
735 
736 		if (!list_empty(&c->reserved_buffers)) {
737 			b = list_entry(c->reserved_buffers.next,
738 				       struct dm_buffer, lru_list);
739 			list_del(&b->lru_list);
740 			c->need_reserved_buffers++;
741 
742 			return b;
743 		}
744 
745 		b = __get_unclaimed_buffer(c);
746 		if (b)
747 			return b;
748 
749 		__wait_for_free_buffer(c);
750 	}
751 }
752 
753 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
754 {
755 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
756 
757 	if (!b)
758 		return NULL;
759 
760 	if (c->alloc_callback)
761 		c->alloc_callback(b);
762 
763 	return b;
764 }
765 
766 /*
767  * Free a buffer and wake other threads waiting for free buffers.
768  */
769 static void __free_buffer_wake(struct dm_buffer *b)
770 {
771 	struct dm_bufio_client *c = b->c;
772 
773 	if (!c->need_reserved_buffers)
774 		free_buffer(b);
775 	else {
776 		list_add(&b->lru_list, &c->reserved_buffers);
777 		c->need_reserved_buffers--;
778 	}
779 
780 	wake_up(&c->free_buffer_wait);
781 }
782 
783 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
784 {
785 	struct dm_buffer *b, *tmp;
786 
787 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
788 		BUG_ON(test_bit(B_READING, &b->state));
789 
790 		if (!test_bit(B_DIRTY, &b->state) &&
791 		    !test_bit(B_WRITING, &b->state)) {
792 			__relink_lru(b, LIST_CLEAN);
793 			continue;
794 		}
795 
796 		if (no_wait && test_bit(B_WRITING, &b->state))
797 			return;
798 
799 		__write_dirty_buffer(b);
800 		dm_bufio_cond_resched();
801 	}
802 }
803 
804 /*
805  * Get writeback threshold and buffer limit for a given client.
806  */
807 static void __get_memory_limit(struct dm_bufio_client *c,
808 			       unsigned long *threshold_buffers,
809 			       unsigned long *limit_buffers)
810 {
811 	unsigned long buffers;
812 
813 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
814 		mutex_lock(&dm_bufio_clients_lock);
815 		__cache_size_refresh();
816 		mutex_unlock(&dm_bufio_clients_lock);
817 	}
818 
819 	buffers = dm_bufio_cache_size_per_client >>
820 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
821 
822 	if (buffers < DM_BUFIO_MIN_BUFFERS)
823 		buffers = DM_BUFIO_MIN_BUFFERS;
824 
825 	*limit_buffers = buffers;
826 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
827 }
828 
829 /*
830  * Check if we're over watermark.
831  * If we are over threshold_buffers, start freeing buffers.
832  * If we're over "limit_buffers", block until we get under the limit.
833  */
834 static void __check_watermark(struct dm_bufio_client *c)
835 {
836 	unsigned long threshold_buffers, limit_buffers;
837 
838 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
839 
840 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
841 	       limit_buffers) {
842 
843 		struct dm_buffer *b = __get_unclaimed_buffer(c);
844 
845 		if (!b)
846 			return;
847 
848 		__free_buffer_wake(b);
849 		dm_bufio_cond_resched();
850 	}
851 
852 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
853 		__write_dirty_buffers_async(c, 1);
854 }
855 
856 /*
857  * Find a buffer in the hash.
858  */
859 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
860 {
861 	struct dm_buffer *b;
862 
863 	hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
864 			     hash_list) {
865 		dm_bufio_cond_resched();
866 		if (b->block == block)
867 			return b;
868 	}
869 
870 	return NULL;
871 }
872 
873 /*----------------------------------------------------------------
874  * Getting a buffer
875  *--------------------------------------------------------------*/
876 
877 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
878 				     enum new_flag nf, int *need_submit)
879 {
880 	struct dm_buffer *b, *new_b = NULL;
881 
882 	*need_submit = 0;
883 
884 	b = __find(c, block);
885 	if (b)
886 		goto found_buffer;
887 
888 	if (nf == NF_GET)
889 		return NULL;
890 
891 	new_b = __alloc_buffer_wait(c, nf);
892 	if (!new_b)
893 		return NULL;
894 
895 	/*
896 	 * We've had a period where the mutex was unlocked, so need to
897 	 * recheck the hash table.
898 	 */
899 	b = __find(c, block);
900 	if (b) {
901 		__free_buffer_wake(new_b);
902 		goto found_buffer;
903 	}
904 
905 	__check_watermark(c);
906 
907 	b = new_b;
908 	b->hold_count = 1;
909 	b->read_error = 0;
910 	b->write_error = 0;
911 	__link_buffer(b, block, LIST_CLEAN);
912 
913 	if (nf == NF_FRESH) {
914 		b->state = 0;
915 		return b;
916 	}
917 
918 	b->state = 1 << B_READING;
919 	*need_submit = 1;
920 
921 	return b;
922 
923 found_buffer:
924 	if (nf == NF_PREFETCH)
925 		return NULL;
926 	/*
927 	 * Note: it is essential that we don't wait for the buffer to be
928 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
929 	 * dm_bufio_prefetch can be used in the driver request routine.
930 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
931 	 * the same buffer, it would deadlock if we waited.
932 	 */
933 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
934 		return NULL;
935 
936 	b->hold_count++;
937 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
938 		     test_bit(B_WRITING, &b->state));
939 	return b;
940 }
941 
942 /*
943  * The endio routine for reading: set the error, clear the bit and wake up
944  * anyone waiting on the buffer.
945  */
946 static void read_endio(struct bio *bio, int error)
947 {
948 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
949 
950 	b->read_error = error;
951 
952 	BUG_ON(!test_bit(B_READING, &b->state));
953 
954 	smp_mb__before_clear_bit();
955 	clear_bit(B_READING, &b->state);
956 	smp_mb__after_clear_bit();
957 
958 	wake_up_bit(&b->state, B_READING);
959 }
960 
961 /*
962  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
963  * functions is similar except that dm_bufio_new doesn't read the
964  * buffer from the disk (assuming that the caller overwrites all the data
965  * and uses dm_bufio_mark_buffer_dirty to write new data back).
966  */
967 static void *new_read(struct dm_bufio_client *c, sector_t block,
968 		      enum new_flag nf, struct dm_buffer **bp)
969 {
970 	int need_submit;
971 	struct dm_buffer *b;
972 
973 	dm_bufio_lock(c);
974 	b = __bufio_new(c, block, nf, &need_submit);
975 	dm_bufio_unlock(c);
976 
977 	if (!b)
978 		return b;
979 
980 	if (need_submit)
981 		submit_io(b, READ, b->block, read_endio);
982 
983 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
984 
985 	if (b->read_error) {
986 		int error = b->read_error;
987 
988 		dm_bufio_release(b);
989 
990 		return ERR_PTR(error);
991 	}
992 
993 	*bp = b;
994 
995 	return b->data;
996 }
997 
998 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
999 		   struct dm_buffer **bp)
1000 {
1001 	return new_read(c, block, NF_GET, bp);
1002 }
1003 EXPORT_SYMBOL_GPL(dm_bufio_get);
1004 
1005 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1006 		    struct dm_buffer **bp)
1007 {
1008 	BUG_ON(dm_bufio_in_request());
1009 
1010 	return new_read(c, block, NF_READ, bp);
1011 }
1012 EXPORT_SYMBOL_GPL(dm_bufio_read);
1013 
1014 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1015 		   struct dm_buffer **bp)
1016 {
1017 	BUG_ON(dm_bufio_in_request());
1018 
1019 	return new_read(c, block, NF_FRESH, bp);
1020 }
1021 EXPORT_SYMBOL_GPL(dm_bufio_new);
1022 
1023 void dm_bufio_prefetch(struct dm_bufio_client *c,
1024 		       sector_t block, unsigned n_blocks)
1025 {
1026 	struct blk_plug plug;
1027 
1028 	blk_start_plug(&plug);
1029 	dm_bufio_lock(c);
1030 
1031 	for (; n_blocks--; block++) {
1032 		int need_submit;
1033 		struct dm_buffer *b;
1034 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
1035 		if (unlikely(b != NULL)) {
1036 			dm_bufio_unlock(c);
1037 
1038 			if (need_submit)
1039 				submit_io(b, READ, b->block, read_endio);
1040 			dm_bufio_release(b);
1041 
1042 			dm_bufio_cond_resched();
1043 
1044 			if (!n_blocks)
1045 				goto flush_plug;
1046 			dm_bufio_lock(c);
1047 		}
1048 
1049 	}
1050 
1051 	dm_bufio_unlock(c);
1052 
1053 flush_plug:
1054 	blk_finish_plug(&plug);
1055 }
1056 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1057 
1058 void dm_bufio_release(struct dm_buffer *b)
1059 {
1060 	struct dm_bufio_client *c = b->c;
1061 
1062 	dm_bufio_lock(c);
1063 
1064 	BUG_ON(!b->hold_count);
1065 
1066 	b->hold_count--;
1067 	if (!b->hold_count) {
1068 		wake_up(&c->free_buffer_wait);
1069 
1070 		/*
1071 		 * If there were errors on the buffer, and the buffer is not
1072 		 * to be written, free the buffer. There is no point in caching
1073 		 * invalid buffer.
1074 		 */
1075 		if ((b->read_error || b->write_error) &&
1076 		    !test_bit(B_READING, &b->state) &&
1077 		    !test_bit(B_WRITING, &b->state) &&
1078 		    !test_bit(B_DIRTY, &b->state)) {
1079 			__unlink_buffer(b);
1080 			__free_buffer_wake(b);
1081 		}
1082 	}
1083 
1084 	dm_bufio_unlock(c);
1085 }
1086 EXPORT_SYMBOL_GPL(dm_bufio_release);
1087 
1088 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1089 {
1090 	struct dm_bufio_client *c = b->c;
1091 
1092 	dm_bufio_lock(c);
1093 
1094 	BUG_ON(test_bit(B_READING, &b->state));
1095 
1096 	if (!test_and_set_bit(B_DIRTY, &b->state))
1097 		__relink_lru(b, LIST_DIRTY);
1098 
1099 	dm_bufio_unlock(c);
1100 }
1101 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1102 
1103 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1104 {
1105 	BUG_ON(dm_bufio_in_request());
1106 
1107 	dm_bufio_lock(c);
1108 	__write_dirty_buffers_async(c, 0);
1109 	dm_bufio_unlock(c);
1110 }
1111 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1112 
1113 /*
1114  * For performance, it is essential that the buffers are written asynchronously
1115  * and simultaneously (so that the block layer can merge the writes) and then
1116  * waited upon.
1117  *
1118  * Finally, we flush hardware disk cache.
1119  */
1120 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1121 {
1122 	int a, f;
1123 	unsigned long buffers_processed = 0;
1124 	struct dm_buffer *b, *tmp;
1125 
1126 	dm_bufio_lock(c);
1127 	__write_dirty_buffers_async(c, 0);
1128 
1129 again:
1130 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1131 		int dropped_lock = 0;
1132 
1133 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1134 			buffers_processed++;
1135 
1136 		BUG_ON(test_bit(B_READING, &b->state));
1137 
1138 		if (test_bit(B_WRITING, &b->state)) {
1139 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1140 				dropped_lock = 1;
1141 				b->hold_count++;
1142 				dm_bufio_unlock(c);
1143 				wait_on_bit(&b->state, B_WRITING,
1144 					    do_io_schedule,
1145 					    TASK_UNINTERRUPTIBLE);
1146 				dm_bufio_lock(c);
1147 				b->hold_count--;
1148 			} else
1149 				wait_on_bit(&b->state, B_WRITING,
1150 					    do_io_schedule,
1151 					    TASK_UNINTERRUPTIBLE);
1152 		}
1153 
1154 		if (!test_bit(B_DIRTY, &b->state) &&
1155 		    !test_bit(B_WRITING, &b->state))
1156 			__relink_lru(b, LIST_CLEAN);
1157 
1158 		dm_bufio_cond_resched();
1159 
1160 		/*
1161 		 * If we dropped the lock, the list is no longer consistent,
1162 		 * so we must restart the search.
1163 		 *
1164 		 * In the most common case, the buffer just processed is
1165 		 * relinked to the clean list, so we won't loop scanning the
1166 		 * same buffer again and again.
1167 		 *
1168 		 * This may livelock if there is another thread simultaneously
1169 		 * dirtying buffers, so we count the number of buffers walked
1170 		 * and if it exceeds the total number of buffers, it means that
1171 		 * someone is doing some writes simultaneously with us.  In
1172 		 * this case, stop, dropping the lock.
1173 		 */
1174 		if (dropped_lock)
1175 			goto again;
1176 	}
1177 	wake_up(&c->free_buffer_wait);
1178 	dm_bufio_unlock(c);
1179 
1180 	a = xchg(&c->async_write_error, 0);
1181 	f = dm_bufio_issue_flush(c);
1182 	if (a)
1183 		return a;
1184 
1185 	return f;
1186 }
1187 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1188 
1189 /*
1190  * Use dm-io to send and empty barrier flush the device.
1191  */
1192 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1193 {
1194 	struct dm_io_request io_req = {
1195 		.bi_rw = WRITE_FLUSH,
1196 		.mem.type = DM_IO_KMEM,
1197 		.mem.ptr.addr = NULL,
1198 		.client = c->dm_io,
1199 	};
1200 	struct dm_io_region io_reg = {
1201 		.bdev = c->bdev,
1202 		.sector = 0,
1203 		.count = 0,
1204 	};
1205 
1206 	BUG_ON(dm_bufio_in_request());
1207 
1208 	return dm_io(&io_req, 1, &io_reg, NULL);
1209 }
1210 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1211 
1212 /*
1213  * We first delete any other buffer that may be at that new location.
1214  *
1215  * Then, we write the buffer to the original location if it was dirty.
1216  *
1217  * Then, if we are the only one who is holding the buffer, relink the buffer
1218  * in the hash queue for the new location.
1219  *
1220  * If there was someone else holding the buffer, we write it to the new
1221  * location but not relink it, because that other user needs to have the buffer
1222  * at the same place.
1223  */
1224 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1225 {
1226 	struct dm_bufio_client *c = b->c;
1227 	struct dm_buffer *new;
1228 
1229 	BUG_ON(dm_bufio_in_request());
1230 
1231 	dm_bufio_lock(c);
1232 
1233 retry:
1234 	new = __find(c, new_block);
1235 	if (new) {
1236 		if (new->hold_count) {
1237 			__wait_for_free_buffer(c);
1238 			goto retry;
1239 		}
1240 
1241 		/*
1242 		 * FIXME: Is there any point waiting for a write that's going
1243 		 * to be overwritten in a bit?
1244 		 */
1245 		__make_buffer_clean(new);
1246 		__unlink_buffer(new);
1247 		__free_buffer_wake(new);
1248 	}
1249 
1250 	BUG_ON(!b->hold_count);
1251 	BUG_ON(test_bit(B_READING, &b->state));
1252 
1253 	__write_dirty_buffer(b);
1254 	if (b->hold_count == 1) {
1255 		wait_on_bit(&b->state, B_WRITING,
1256 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1257 		set_bit(B_DIRTY, &b->state);
1258 		__unlink_buffer(b);
1259 		__link_buffer(b, new_block, LIST_DIRTY);
1260 	} else {
1261 		sector_t old_block;
1262 		wait_on_bit_lock(&b->state, B_WRITING,
1263 				 do_io_schedule, TASK_UNINTERRUPTIBLE);
1264 		/*
1265 		 * Relink buffer to "new_block" so that write_callback
1266 		 * sees "new_block" as a block number.
1267 		 * After the write, link the buffer back to old_block.
1268 		 * All this must be done in bufio lock, so that block number
1269 		 * change isn't visible to other threads.
1270 		 */
1271 		old_block = b->block;
1272 		__unlink_buffer(b);
1273 		__link_buffer(b, new_block, b->list_mode);
1274 		submit_io(b, WRITE, new_block, write_endio);
1275 		wait_on_bit(&b->state, B_WRITING,
1276 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1277 		__unlink_buffer(b);
1278 		__link_buffer(b, old_block, b->list_mode);
1279 	}
1280 
1281 	dm_bufio_unlock(c);
1282 	dm_bufio_release(b);
1283 }
1284 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1285 
1286 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1287 {
1288 	return c->block_size;
1289 }
1290 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1291 
1292 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1293 {
1294 	return i_size_read(c->bdev->bd_inode) >>
1295 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1296 }
1297 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1298 
1299 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1300 {
1301 	return b->block;
1302 }
1303 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1304 
1305 void *dm_bufio_get_block_data(struct dm_buffer *b)
1306 {
1307 	return b->data;
1308 }
1309 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1310 
1311 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1312 {
1313 	return b + 1;
1314 }
1315 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1316 
1317 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1318 {
1319 	return b->c;
1320 }
1321 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1322 
1323 static void drop_buffers(struct dm_bufio_client *c)
1324 {
1325 	struct dm_buffer *b;
1326 	int i;
1327 
1328 	BUG_ON(dm_bufio_in_request());
1329 
1330 	/*
1331 	 * An optimization so that the buffers are not written one-by-one.
1332 	 */
1333 	dm_bufio_write_dirty_buffers_async(c);
1334 
1335 	dm_bufio_lock(c);
1336 
1337 	while ((b = __get_unclaimed_buffer(c)))
1338 		__free_buffer_wake(b);
1339 
1340 	for (i = 0; i < LIST_SIZE; i++)
1341 		list_for_each_entry(b, &c->lru[i], lru_list)
1342 			DMERR("leaked buffer %llx, hold count %u, list %d",
1343 			      (unsigned long long)b->block, b->hold_count, i);
1344 
1345 	for (i = 0; i < LIST_SIZE; i++)
1346 		BUG_ON(!list_empty(&c->lru[i]));
1347 
1348 	dm_bufio_unlock(c);
1349 }
1350 
1351 /*
1352  * Test if the buffer is unused and too old, and commit it.
1353  * At if noio is set, we must not do any I/O because we hold
1354  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1355  * different bufio client.
1356  */
1357 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1358 				unsigned long max_jiffies)
1359 {
1360 	if (jiffies - b->last_accessed < max_jiffies)
1361 		return 1;
1362 
1363 	if (!(gfp & __GFP_IO)) {
1364 		if (test_bit(B_READING, &b->state) ||
1365 		    test_bit(B_WRITING, &b->state) ||
1366 		    test_bit(B_DIRTY, &b->state))
1367 			return 1;
1368 	}
1369 
1370 	if (b->hold_count)
1371 		return 1;
1372 
1373 	__make_buffer_clean(b);
1374 	__unlink_buffer(b);
1375 	__free_buffer_wake(b);
1376 
1377 	return 0;
1378 }
1379 
1380 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1381 		   struct shrink_control *sc)
1382 {
1383 	int l;
1384 	struct dm_buffer *b, *tmp;
1385 
1386 	for (l = 0; l < LIST_SIZE; l++) {
1387 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1388 			if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1389 			    !--nr_to_scan)
1390 				return;
1391 		dm_bufio_cond_resched();
1392 	}
1393 }
1394 
1395 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1396 {
1397 	struct dm_bufio_client *c =
1398 	    container_of(shrinker, struct dm_bufio_client, shrinker);
1399 	unsigned long r;
1400 	unsigned long nr_to_scan = sc->nr_to_scan;
1401 
1402 	if (sc->gfp_mask & __GFP_IO)
1403 		dm_bufio_lock(c);
1404 	else if (!dm_bufio_trylock(c))
1405 		return !nr_to_scan ? 0 : -1;
1406 
1407 	if (nr_to_scan)
1408 		__scan(c, nr_to_scan, sc);
1409 
1410 	r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1411 	if (r > INT_MAX)
1412 		r = INT_MAX;
1413 
1414 	dm_bufio_unlock(c);
1415 
1416 	return r;
1417 }
1418 
1419 /*
1420  * Create the buffering interface
1421  */
1422 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1423 					       unsigned reserved_buffers, unsigned aux_size,
1424 					       void (*alloc_callback)(struct dm_buffer *),
1425 					       void (*write_callback)(struct dm_buffer *))
1426 {
1427 	int r;
1428 	struct dm_bufio_client *c;
1429 	unsigned i;
1430 
1431 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1432 	       (block_size & (block_size - 1)));
1433 
1434 	c = kmalloc(sizeof(*c), GFP_KERNEL);
1435 	if (!c) {
1436 		r = -ENOMEM;
1437 		goto bad_client;
1438 	}
1439 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1440 	if (!c->cache_hash) {
1441 		r = -ENOMEM;
1442 		goto bad_hash;
1443 	}
1444 
1445 	c->bdev = bdev;
1446 	c->block_size = block_size;
1447 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1448 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1449 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1450 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1451 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1452 
1453 	c->aux_size = aux_size;
1454 	c->alloc_callback = alloc_callback;
1455 	c->write_callback = write_callback;
1456 
1457 	for (i = 0; i < LIST_SIZE; i++) {
1458 		INIT_LIST_HEAD(&c->lru[i]);
1459 		c->n_buffers[i] = 0;
1460 	}
1461 
1462 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1463 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1464 
1465 	mutex_init(&c->lock);
1466 	INIT_LIST_HEAD(&c->reserved_buffers);
1467 	c->need_reserved_buffers = reserved_buffers;
1468 
1469 	init_waitqueue_head(&c->free_buffer_wait);
1470 	c->async_write_error = 0;
1471 
1472 	c->dm_io = dm_io_client_create();
1473 	if (IS_ERR(c->dm_io)) {
1474 		r = PTR_ERR(c->dm_io);
1475 		goto bad_dm_io;
1476 	}
1477 
1478 	mutex_lock(&dm_bufio_clients_lock);
1479 	if (c->blocks_per_page_bits) {
1480 		if (!DM_BUFIO_CACHE_NAME(c)) {
1481 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1482 			if (!DM_BUFIO_CACHE_NAME(c)) {
1483 				r = -ENOMEM;
1484 				mutex_unlock(&dm_bufio_clients_lock);
1485 				goto bad_cache;
1486 			}
1487 		}
1488 
1489 		if (!DM_BUFIO_CACHE(c)) {
1490 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1491 							      c->block_size,
1492 							      c->block_size, 0, NULL);
1493 			if (!DM_BUFIO_CACHE(c)) {
1494 				r = -ENOMEM;
1495 				mutex_unlock(&dm_bufio_clients_lock);
1496 				goto bad_cache;
1497 			}
1498 		}
1499 	}
1500 	mutex_unlock(&dm_bufio_clients_lock);
1501 
1502 	while (c->need_reserved_buffers) {
1503 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1504 
1505 		if (!b) {
1506 			r = -ENOMEM;
1507 			goto bad_buffer;
1508 		}
1509 		__free_buffer_wake(b);
1510 	}
1511 
1512 	mutex_lock(&dm_bufio_clients_lock);
1513 	dm_bufio_client_count++;
1514 	list_add(&c->client_list, &dm_bufio_all_clients);
1515 	__cache_size_refresh();
1516 	mutex_unlock(&dm_bufio_clients_lock);
1517 
1518 	c->shrinker.shrink = shrink;
1519 	c->shrinker.seeks = 1;
1520 	c->shrinker.batch = 0;
1521 	register_shrinker(&c->shrinker);
1522 
1523 	return c;
1524 
1525 bad_buffer:
1526 bad_cache:
1527 	while (!list_empty(&c->reserved_buffers)) {
1528 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1529 						 struct dm_buffer, lru_list);
1530 		list_del(&b->lru_list);
1531 		free_buffer(b);
1532 	}
1533 	dm_io_client_destroy(c->dm_io);
1534 bad_dm_io:
1535 	vfree(c->cache_hash);
1536 bad_hash:
1537 	kfree(c);
1538 bad_client:
1539 	return ERR_PTR(r);
1540 }
1541 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1542 
1543 /*
1544  * Free the buffering interface.
1545  * It is required that there are no references on any buffers.
1546  */
1547 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1548 {
1549 	unsigned i;
1550 
1551 	drop_buffers(c);
1552 
1553 	unregister_shrinker(&c->shrinker);
1554 
1555 	mutex_lock(&dm_bufio_clients_lock);
1556 
1557 	list_del(&c->client_list);
1558 	dm_bufio_client_count--;
1559 	__cache_size_refresh();
1560 
1561 	mutex_unlock(&dm_bufio_clients_lock);
1562 
1563 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1564 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1565 
1566 	BUG_ON(c->need_reserved_buffers);
1567 
1568 	while (!list_empty(&c->reserved_buffers)) {
1569 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1570 						 struct dm_buffer, lru_list);
1571 		list_del(&b->lru_list);
1572 		free_buffer(b);
1573 	}
1574 
1575 	for (i = 0; i < LIST_SIZE; i++)
1576 		if (c->n_buffers[i])
1577 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1578 
1579 	for (i = 0; i < LIST_SIZE; i++)
1580 		BUG_ON(c->n_buffers[i]);
1581 
1582 	dm_io_client_destroy(c->dm_io);
1583 	vfree(c->cache_hash);
1584 	kfree(c);
1585 }
1586 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1587 
1588 static void cleanup_old_buffers(void)
1589 {
1590 	unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1591 	struct dm_bufio_client *c;
1592 
1593 	if (max_age > ULONG_MAX / HZ)
1594 		max_age = ULONG_MAX / HZ;
1595 
1596 	mutex_lock(&dm_bufio_clients_lock);
1597 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1598 		if (!dm_bufio_trylock(c))
1599 			continue;
1600 
1601 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1602 			struct dm_buffer *b;
1603 			b = list_entry(c->lru[LIST_CLEAN].prev,
1604 				       struct dm_buffer, lru_list);
1605 			if (__cleanup_old_buffer(b, 0, max_age * HZ))
1606 				break;
1607 			dm_bufio_cond_resched();
1608 		}
1609 
1610 		dm_bufio_unlock(c);
1611 		dm_bufio_cond_resched();
1612 	}
1613 	mutex_unlock(&dm_bufio_clients_lock);
1614 }
1615 
1616 static struct workqueue_struct *dm_bufio_wq;
1617 static struct delayed_work dm_bufio_work;
1618 
1619 static void work_fn(struct work_struct *w)
1620 {
1621 	cleanup_old_buffers();
1622 
1623 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1624 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1625 }
1626 
1627 /*----------------------------------------------------------------
1628  * Module setup
1629  *--------------------------------------------------------------*/
1630 
1631 /*
1632  * This is called only once for the whole dm_bufio module.
1633  * It initializes memory limit.
1634  */
1635 static int __init dm_bufio_init(void)
1636 {
1637 	__u64 mem;
1638 
1639 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1640 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1641 
1642 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1643 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1644 
1645 	if (mem > ULONG_MAX)
1646 		mem = ULONG_MAX;
1647 
1648 #ifdef CONFIG_MMU
1649 	/*
1650 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1651 	 * in fs/proc/internal.h
1652 	 */
1653 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1654 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1655 #endif
1656 
1657 	dm_bufio_default_cache_size = mem;
1658 
1659 	mutex_lock(&dm_bufio_clients_lock);
1660 	__cache_size_refresh();
1661 	mutex_unlock(&dm_bufio_clients_lock);
1662 
1663 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1664 	if (!dm_bufio_wq)
1665 		return -ENOMEM;
1666 
1667 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1668 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1669 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * This is called once when unloading the dm_bufio module.
1676  */
1677 static void __exit dm_bufio_exit(void)
1678 {
1679 	int bug = 0;
1680 	int i;
1681 
1682 	cancel_delayed_work_sync(&dm_bufio_work);
1683 	destroy_workqueue(dm_bufio_wq);
1684 
1685 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1686 		struct kmem_cache *kc = dm_bufio_caches[i];
1687 
1688 		if (kc)
1689 			kmem_cache_destroy(kc);
1690 	}
1691 
1692 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1693 		kfree(dm_bufio_cache_names[i]);
1694 
1695 	if (dm_bufio_client_count) {
1696 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1697 			__func__, dm_bufio_client_count);
1698 		bug = 1;
1699 	}
1700 
1701 	if (dm_bufio_current_allocated) {
1702 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1703 			__func__, dm_bufio_current_allocated);
1704 		bug = 1;
1705 	}
1706 
1707 	if (dm_bufio_allocated_get_free_pages) {
1708 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1709 		       __func__, dm_bufio_allocated_get_free_pages);
1710 		bug = 1;
1711 	}
1712 
1713 	if (dm_bufio_allocated_vmalloc) {
1714 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1715 		       __func__, dm_bufio_allocated_vmalloc);
1716 		bug = 1;
1717 	}
1718 
1719 	if (bug)
1720 		BUG();
1721 }
1722 
1723 module_init(dm_bufio_init)
1724 module_exit(dm_bufio_exit)
1725 
1726 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1727 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1728 
1729 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1730 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1731 
1732 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1733 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1734 
1735 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1736 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1737 
1738 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1739 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1740 
1741 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1742 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1743 
1744 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1745 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1746 
1747 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1748 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1749 MODULE_LICENSE("GPL");
1750