xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 88dca4ca)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/dm-bufio.h>
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_RATIO	3
37 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
38 
39 /*
40  * Check buffer ages in this interval (seconds)
41  */
42 #define DM_BUFIO_WORK_TIMER_SECS	30
43 
44 /*
45  * Free buffers when they are older than this (seconds)
46  */
47 #define DM_BUFIO_DEFAULT_AGE_SECS	300
48 
49 /*
50  * The nr of bytes of cached data to keep around.
51  */
52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53 
54 /*
55  * Align buffer writes to this boundary.
56  * Tests show that SSDs have the highest IOPS when using 4k writes.
57  */
58 #define DM_BUFIO_WRITE_ALIGN		4096
59 
60 /*
61  * dm_buffer->list_mode
62  */
63 #define LIST_CLEAN	0
64 #define LIST_DIRTY	1
65 #define LIST_SIZE	2
66 
67 /*
68  * Linking of buffers:
69  *	All buffers are linked to buffer_tree with their node field.
70  *
71  *	Clean buffers that are not being written (B_WRITING not set)
72  *	are linked to lru[LIST_CLEAN] with their lru_list field.
73  *
74  *	Dirty and clean buffers that are being written are linked to
75  *	lru[LIST_DIRTY] with their lru_list field. When the write
76  *	finishes, the buffer cannot be relinked immediately (because we
77  *	are in an interrupt context and relinking requires process
78  *	context), so some clean-not-writing buffers can be held on
79  *	dirty_lru too.  They are later added to lru in the process
80  *	context.
81  */
82 struct dm_bufio_client {
83 	struct mutex lock;
84 
85 	struct list_head lru[LIST_SIZE];
86 	unsigned long n_buffers[LIST_SIZE];
87 
88 	struct block_device *bdev;
89 	unsigned block_size;
90 	s8 sectors_per_block_bits;
91 	void (*alloc_callback)(struct dm_buffer *);
92 	void (*write_callback)(struct dm_buffer *);
93 
94 	struct kmem_cache *slab_buffer;
95 	struct kmem_cache *slab_cache;
96 	struct dm_io_client *dm_io;
97 
98 	struct list_head reserved_buffers;
99 	unsigned need_reserved_buffers;
100 
101 	unsigned minimum_buffers;
102 
103 	struct rb_root buffer_tree;
104 	wait_queue_head_t free_buffer_wait;
105 
106 	sector_t start;
107 
108 	int async_write_error;
109 
110 	struct list_head client_list;
111 	struct shrinker shrinker;
112 };
113 
114 /*
115  * Buffer state bits.
116  */
117 #define B_READING	0
118 #define B_WRITING	1
119 #define B_DIRTY		2
120 
121 /*
122  * Describes how the block was allocated:
123  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
124  * See the comment at alloc_buffer_data.
125  */
126 enum data_mode {
127 	DATA_MODE_SLAB = 0,
128 	DATA_MODE_GET_FREE_PAGES = 1,
129 	DATA_MODE_VMALLOC = 2,
130 	DATA_MODE_LIMIT = 3
131 };
132 
133 struct dm_buffer {
134 	struct rb_node node;
135 	struct list_head lru_list;
136 	struct list_head global_list;
137 	sector_t block;
138 	void *data;
139 	unsigned char data_mode;		/* DATA_MODE_* */
140 	unsigned char list_mode;		/* LIST_* */
141 	blk_status_t read_error;
142 	blk_status_t write_error;
143 	unsigned accessed;
144 	unsigned hold_count;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	unsigned dirty_start;
148 	unsigned dirty_end;
149 	unsigned write_start;
150 	unsigned write_end;
151 	struct dm_bufio_client *c;
152 	struct list_head write_list;
153 	void (*end_io)(struct dm_buffer *, blk_status_t);
154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
155 #define MAX_STACK 10
156 	unsigned int stack_len;
157 	unsigned long stack_entries[MAX_STACK];
158 #endif
159 };
160 
161 /*----------------------------------------------------------------*/
162 
163 #define dm_bufio_in_request()	(!!current->bio_list)
164 
165 static void dm_bufio_lock(struct dm_bufio_client *c)
166 {
167 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
168 }
169 
170 static int dm_bufio_trylock(struct dm_bufio_client *c)
171 {
172 	return mutex_trylock(&c->lock);
173 }
174 
175 static void dm_bufio_unlock(struct dm_bufio_client *c)
176 {
177 	mutex_unlock(&c->lock);
178 }
179 
180 /*----------------------------------------------------------------*/
181 
182 /*
183  * Default cache size: available memory divided by the ratio.
184  */
185 static unsigned long dm_bufio_default_cache_size;
186 
187 /*
188  * Total cache size set by the user.
189  */
190 static unsigned long dm_bufio_cache_size;
191 
192 /*
193  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
194  * at any time.  If it disagrees, the user has changed cache size.
195  */
196 static unsigned long dm_bufio_cache_size_latch;
197 
198 static DEFINE_SPINLOCK(global_spinlock);
199 
200 static LIST_HEAD(global_queue);
201 
202 static unsigned long global_num = 0;
203 
204 /*
205  * Buffers are freed after this timeout
206  */
207 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
208 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
209 
210 static unsigned long dm_bufio_peak_allocated;
211 static unsigned long dm_bufio_allocated_kmem_cache;
212 static unsigned long dm_bufio_allocated_get_free_pages;
213 static unsigned long dm_bufio_allocated_vmalloc;
214 static unsigned long dm_bufio_current_allocated;
215 
216 /*----------------------------------------------------------------*/
217 
218 /*
219  * The current number of clients.
220  */
221 static int dm_bufio_client_count;
222 
223 /*
224  * The list of all clients.
225  */
226 static LIST_HEAD(dm_bufio_all_clients);
227 
228 /*
229  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
230  */
231 static DEFINE_MUTEX(dm_bufio_clients_lock);
232 
233 static struct workqueue_struct *dm_bufio_wq;
234 static struct delayed_work dm_bufio_cleanup_old_work;
235 static struct work_struct dm_bufio_replacement_work;
236 
237 
238 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
239 static void buffer_record_stack(struct dm_buffer *b)
240 {
241 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
242 }
243 #endif
244 
245 /*----------------------------------------------------------------
246  * A red/black tree acts as an index for all the buffers.
247  *--------------------------------------------------------------*/
248 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
249 {
250 	struct rb_node *n = c->buffer_tree.rb_node;
251 	struct dm_buffer *b;
252 
253 	while (n) {
254 		b = container_of(n, struct dm_buffer, node);
255 
256 		if (b->block == block)
257 			return b;
258 
259 		n = (b->block < block) ? n->rb_left : n->rb_right;
260 	}
261 
262 	return NULL;
263 }
264 
265 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
266 {
267 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
268 	struct dm_buffer *found;
269 
270 	while (*new) {
271 		found = container_of(*new, struct dm_buffer, node);
272 
273 		if (found->block == b->block) {
274 			BUG_ON(found != b);
275 			return;
276 		}
277 
278 		parent = *new;
279 		new = (found->block < b->block) ?
280 			&((*new)->rb_left) : &((*new)->rb_right);
281 	}
282 
283 	rb_link_node(&b->node, parent, new);
284 	rb_insert_color(&b->node, &c->buffer_tree);
285 }
286 
287 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
288 {
289 	rb_erase(&b->node, &c->buffer_tree);
290 }
291 
292 /*----------------------------------------------------------------*/
293 
294 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
295 {
296 	unsigned char data_mode;
297 	long diff;
298 
299 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
300 		&dm_bufio_allocated_kmem_cache,
301 		&dm_bufio_allocated_get_free_pages,
302 		&dm_bufio_allocated_vmalloc,
303 	};
304 
305 	data_mode = b->data_mode;
306 	diff = (long)b->c->block_size;
307 	if (unlink)
308 		diff = -diff;
309 
310 	spin_lock(&global_spinlock);
311 
312 	*class_ptr[data_mode] += diff;
313 
314 	dm_bufio_current_allocated += diff;
315 
316 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
317 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
318 
319 	b->accessed = 1;
320 
321 	if (!unlink) {
322 		list_add(&b->global_list, &global_queue);
323 		global_num++;
324 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
325 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
326 	} else {
327 		list_del(&b->global_list);
328 		global_num--;
329 	}
330 
331 	spin_unlock(&global_spinlock);
332 }
333 
334 /*
335  * Change the number of clients and recalculate per-client limit.
336  */
337 static void __cache_size_refresh(void)
338 {
339 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
340 	BUG_ON(dm_bufio_client_count < 0);
341 
342 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
343 
344 	/*
345 	 * Use default if set to 0 and report the actual cache size used.
346 	 */
347 	if (!dm_bufio_cache_size_latch) {
348 		(void)cmpxchg(&dm_bufio_cache_size, 0,
349 			      dm_bufio_default_cache_size);
350 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
351 	}
352 }
353 
354 /*
355  * Allocating buffer data.
356  *
357  * Small buffers are allocated with kmem_cache, to use space optimally.
358  *
359  * For large buffers, we choose between get_free_pages and vmalloc.
360  * Each has advantages and disadvantages.
361  *
362  * __get_free_pages can randomly fail if the memory is fragmented.
363  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
364  * as low as 128M) so using it for caching is not appropriate.
365  *
366  * If the allocation may fail we use __get_free_pages. Memory fragmentation
367  * won't have a fatal effect here, but it just causes flushes of some other
368  * buffers and more I/O will be performed. Don't use __get_free_pages if it
369  * always fails (i.e. order >= MAX_ORDER).
370  *
371  * If the allocation shouldn't fail we use __vmalloc. This is only for the
372  * initial reserve allocation, so there's no risk of wasting all vmalloc
373  * space.
374  */
375 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
376 			       unsigned char *data_mode)
377 {
378 	if (unlikely(c->slab_cache != NULL)) {
379 		*data_mode = DATA_MODE_SLAB;
380 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
381 	}
382 
383 	if (c->block_size <= KMALLOC_MAX_SIZE &&
384 	    gfp_mask & __GFP_NORETRY) {
385 		*data_mode = DATA_MODE_GET_FREE_PAGES;
386 		return (void *)__get_free_pages(gfp_mask,
387 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
388 	}
389 
390 	*data_mode = DATA_MODE_VMALLOC;
391 
392 	/*
393 	 * __vmalloc allocates the data pages and auxiliary structures with
394 	 * gfp_flags that were specified, but pagetables are always allocated
395 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
396 	 *
397 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
398 	 * all allocations done by this process (including pagetables) are done
399 	 * as if GFP_NOIO was specified.
400 	 */
401 	if (gfp_mask & __GFP_NORETRY) {
402 		unsigned noio_flag = memalloc_noio_save();
403 		void *ptr = __vmalloc(c->block_size, gfp_mask);
404 
405 		memalloc_noio_restore(noio_flag);
406 		return ptr;
407 	}
408 
409 	return __vmalloc(c->block_size, gfp_mask);
410 }
411 
412 /*
413  * Free buffer's data.
414  */
415 static void free_buffer_data(struct dm_bufio_client *c,
416 			     void *data, unsigned char data_mode)
417 {
418 	switch (data_mode) {
419 	case DATA_MODE_SLAB:
420 		kmem_cache_free(c->slab_cache, data);
421 		break;
422 
423 	case DATA_MODE_GET_FREE_PAGES:
424 		free_pages((unsigned long)data,
425 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
426 		break;
427 
428 	case DATA_MODE_VMALLOC:
429 		vfree(data);
430 		break;
431 
432 	default:
433 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
434 		       data_mode);
435 		BUG();
436 	}
437 }
438 
439 /*
440  * Allocate buffer and its data.
441  */
442 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
443 {
444 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
445 
446 	if (!b)
447 		return NULL;
448 
449 	b->c = c;
450 
451 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
452 	if (!b->data) {
453 		kmem_cache_free(c->slab_buffer, b);
454 		return NULL;
455 	}
456 
457 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
458 	b->stack_len = 0;
459 #endif
460 	return b;
461 }
462 
463 /*
464  * Free buffer and its data.
465  */
466 static void free_buffer(struct dm_buffer *b)
467 {
468 	struct dm_bufio_client *c = b->c;
469 
470 	free_buffer_data(c, b->data, b->data_mode);
471 	kmem_cache_free(c->slab_buffer, b);
472 }
473 
474 /*
475  * Link buffer to the buffer tree and clean or dirty queue.
476  */
477 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
478 {
479 	struct dm_bufio_client *c = b->c;
480 
481 	c->n_buffers[dirty]++;
482 	b->block = block;
483 	b->list_mode = dirty;
484 	list_add(&b->lru_list, &c->lru[dirty]);
485 	__insert(b->c, b);
486 	b->last_accessed = jiffies;
487 
488 	adjust_total_allocated(b, false);
489 }
490 
491 /*
492  * Unlink buffer from the buffer tree and dirty or clean queue.
493  */
494 static void __unlink_buffer(struct dm_buffer *b)
495 {
496 	struct dm_bufio_client *c = b->c;
497 
498 	BUG_ON(!c->n_buffers[b->list_mode]);
499 
500 	c->n_buffers[b->list_mode]--;
501 	__remove(b->c, b);
502 	list_del(&b->lru_list);
503 
504 	adjust_total_allocated(b, true);
505 }
506 
507 /*
508  * Place the buffer to the head of dirty or clean LRU queue.
509  */
510 static void __relink_lru(struct dm_buffer *b, int dirty)
511 {
512 	struct dm_bufio_client *c = b->c;
513 
514 	b->accessed = 1;
515 
516 	BUG_ON(!c->n_buffers[b->list_mode]);
517 
518 	c->n_buffers[b->list_mode]--;
519 	c->n_buffers[dirty]++;
520 	b->list_mode = dirty;
521 	list_move(&b->lru_list, &c->lru[dirty]);
522 	b->last_accessed = jiffies;
523 }
524 
525 /*----------------------------------------------------------------
526  * Submit I/O on the buffer.
527  *
528  * Bio interface is faster but it has some problems:
529  *	the vector list is limited (increasing this limit increases
530  *	memory-consumption per buffer, so it is not viable);
531  *
532  *	the memory must be direct-mapped, not vmalloced;
533  *
534  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
535  * it is not vmalloced, try using the bio interface.
536  *
537  * If the buffer is big, if it is vmalloced or if the underlying device
538  * rejects the bio because it is too large, use dm-io layer to do the I/O.
539  * The dm-io layer splits the I/O into multiple requests, avoiding the above
540  * shortcomings.
541  *--------------------------------------------------------------*/
542 
543 /*
544  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
545  * that the request was handled directly with bio interface.
546  */
547 static void dmio_complete(unsigned long error, void *context)
548 {
549 	struct dm_buffer *b = context;
550 
551 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
552 }
553 
554 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
555 		     unsigned n_sectors, unsigned offset)
556 {
557 	int r;
558 	struct dm_io_request io_req = {
559 		.bi_op = rw,
560 		.bi_op_flags = 0,
561 		.notify.fn = dmio_complete,
562 		.notify.context = b,
563 		.client = b->c->dm_io,
564 	};
565 	struct dm_io_region region = {
566 		.bdev = b->c->bdev,
567 		.sector = sector,
568 		.count = n_sectors,
569 	};
570 
571 	if (b->data_mode != DATA_MODE_VMALLOC) {
572 		io_req.mem.type = DM_IO_KMEM;
573 		io_req.mem.ptr.addr = (char *)b->data + offset;
574 	} else {
575 		io_req.mem.type = DM_IO_VMA;
576 		io_req.mem.ptr.vma = (char *)b->data + offset;
577 	}
578 
579 	r = dm_io(&io_req, 1, &region, NULL);
580 	if (unlikely(r))
581 		b->end_io(b, errno_to_blk_status(r));
582 }
583 
584 static void bio_complete(struct bio *bio)
585 {
586 	struct dm_buffer *b = bio->bi_private;
587 	blk_status_t status = bio->bi_status;
588 	bio_put(bio);
589 	b->end_io(b, status);
590 }
591 
592 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
593 		    unsigned n_sectors, unsigned offset)
594 {
595 	struct bio *bio;
596 	char *ptr;
597 	unsigned vec_size, len;
598 
599 	vec_size = b->c->block_size >> PAGE_SHIFT;
600 	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
601 		vec_size += 2;
602 
603 	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
604 	if (!bio) {
605 dmio:
606 		use_dmio(b, rw, sector, n_sectors, offset);
607 		return;
608 	}
609 
610 	bio->bi_iter.bi_sector = sector;
611 	bio_set_dev(bio, b->c->bdev);
612 	bio_set_op_attrs(bio, rw, 0);
613 	bio->bi_end_io = bio_complete;
614 	bio->bi_private = b;
615 
616 	ptr = (char *)b->data + offset;
617 	len = n_sectors << SECTOR_SHIFT;
618 
619 	do {
620 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
621 		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
622 				  offset_in_page(ptr))) {
623 			bio_put(bio);
624 			goto dmio;
625 		}
626 
627 		len -= this_step;
628 		ptr += this_step;
629 	} while (len > 0);
630 
631 	submit_bio(bio);
632 }
633 
634 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
635 {
636 	unsigned n_sectors;
637 	sector_t sector;
638 	unsigned offset, end;
639 
640 	b->end_io = end_io;
641 
642 	if (likely(b->c->sectors_per_block_bits >= 0))
643 		sector = b->block << b->c->sectors_per_block_bits;
644 	else
645 		sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
646 	sector += b->c->start;
647 
648 	if (rw != REQ_OP_WRITE) {
649 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
650 		offset = 0;
651 	} else {
652 		if (b->c->write_callback)
653 			b->c->write_callback(b);
654 		offset = b->write_start;
655 		end = b->write_end;
656 		offset &= -DM_BUFIO_WRITE_ALIGN;
657 		end += DM_BUFIO_WRITE_ALIGN - 1;
658 		end &= -DM_BUFIO_WRITE_ALIGN;
659 		if (unlikely(end > b->c->block_size))
660 			end = b->c->block_size;
661 
662 		sector += offset >> SECTOR_SHIFT;
663 		n_sectors = (end - offset) >> SECTOR_SHIFT;
664 	}
665 
666 	if (b->data_mode != DATA_MODE_VMALLOC)
667 		use_bio(b, rw, sector, n_sectors, offset);
668 	else
669 		use_dmio(b, rw, sector, n_sectors, offset);
670 }
671 
672 /*----------------------------------------------------------------
673  * Writing dirty buffers
674  *--------------------------------------------------------------*/
675 
676 /*
677  * The endio routine for write.
678  *
679  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
680  * it.
681  */
682 static void write_endio(struct dm_buffer *b, blk_status_t status)
683 {
684 	b->write_error = status;
685 	if (unlikely(status)) {
686 		struct dm_bufio_client *c = b->c;
687 
688 		(void)cmpxchg(&c->async_write_error, 0,
689 				blk_status_to_errno(status));
690 	}
691 
692 	BUG_ON(!test_bit(B_WRITING, &b->state));
693 
694 	smp_mb__before_atomic();
695 	clear_bit(B_WRITING, &b->state);
696 	smp_mb__after_atomic();
697 
698 	wake_up_bit(&b->state, B_WRITING);
699 }
700 
701 /*
702  * Initiate a write on a dirty buffer, but don't wait for it.
703  *
704  * - If the buffer is not dirty, exit.
705  * - If there some previous write going on, wait for it to finish (we can't
706  *   have two writes on the same buffer simultaneously).
707  * - Submit our write and don't wait on it. We set B_WRITING indicating
708  *   that there is a write in progress.
709  */
710 static void __write_dirty_buffer(struct dm_buffer *b,
711 				 struct list_head *write_list)
712 {
713 	if (!test_bit(B_DIRTY, &b->state))
714 		return;
715 
716 	clear_bit(B_DIRTY, &b->state);
717 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
718 
719 	b->write_start = b->dirty_start;
720 	b->write_end = b->dirty_end;
721 
722 	if (!write_list)
723 		submit_io(b, REQ_OP_WRITE, write_endio);
724 	else
725 		list_add_tail(&b->write_list, write_list);
726 }
727 
728 static void __flush_write_list(struct list_head *write_list)
729 {
730 	struct blk_plug plug;
731 	blk_start_plug(&plug);
732 	while (!list_empty(write_list)) {
733 		struct dm_buffer *b =
734 			list_entry(write_list->next, struct dm_buffer, write_list);
735 		list_del(&b->write_list);
736 		submit_io(b, REQ_OP_WRITE, write_endio);
737 		cond_resched();
738 	}
739 	blk_finish_plug(&plug);
740 }
741 
742 /*
743  * Wait until any activity on the buffer finishes.  Possibly write the
744  * buffer if it is dirty.  When this function finishes, there is no I/O
745  * running on the buffer and the buffer is not dirty.
746  */
747 static void __make_buffer_clean(struct dm_buffer *b)
748 {
749 	BUG_ON(b->hold_count);
750 
751 	if (!b->state)	/* fast case */
752 		return;
753 
754 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
755 	__write_dirty_buffer(b, NULL);
756 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
757 }
758 
759 /*
760  * Find some buffer that is not held by anybody, clean it, unlink it and
761  * return it.
762  */
763 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
764 {
765 	struct dm_buffer *b;
766 
767 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
768 		BUG_ON(test_bit(B_WRITING, &b->state));
769 		BUG_ON(test_bit(B_DIRTY, &b->state));
770 
771 		if (!b->hold_count) {
772 			__make_buffer_clean(b);
773 			__unlink_buffer(b);
774 			return b;
775 		}
776 		cond_resched();
777 	}
778 
779 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
780 		BUG_ON(test_bit(B_READING, &b->state));
781 
782 		if (!b->hold_count) {
783 			__make_buffer_clean(b);
784 			__unlink_buffer(b);
785 			return b;
786 		}
787 		cond_resched();
788 	}
789 
790 	return NULL;
791 }
792 
793 /*
794  * Wait until some other threads free some buffer or release hold count on
795  * some buffer.
796  *
797  * This function is entered with c->lock held, drops it and regains it
798  * before exiting.
799  */
800 static void __wait_for_free_buffer(struct dm_bufio_client *c)
801 {
802 	DECLARE_WAITQUEUE(wait, current);
803 
804 	add_wait_queue(&c->free_buffer_wait, &wait);
805 	set_current_state(TASK_UNINTERRUPTIBLE);
806 	dm_bufio_unlock(c);
807 
808 	io_schedule();
809 
810 	remove_wait_queue(&c->free_buffer_wait, &wait);
811 
812 	dm_bufio_lock(c);
813 }
814 
815 enum new_flag {
816 	NF_FRESH = 0,
817 	NF_READ = 1,
818 	NF_GET = 2,
819 	NF_PREFETCH = 3
820 };
821 
822 /*
823  * Allocate a new buffer. If the allocation is not possible, wait until
824  * some other thread frees a buffer.
825  *
826  * May drop the lock and regain it.
827  */
828 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
829 {
830 	struct dm_buffer *b;
831 	bool tried_noio_alloc = false;
832 
833 	/*
834 	 * dm-bufio is resistant to allocation failures (it just keeps
835 	 * one buffer reserved in cases all the allocations fail).
836 	 * So set flags to not try too hard:
837 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
838 	 *		    mutex and wait ourselves.
839 	 *	__GFP_NORETRY: don't retry and rather return failure
840 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
841 	 *	__GFP_NOWARN: don't print a warning in case of failure
842 	 *
843 	 * For debugging, if we set the cache size to 1, no new buffers will
844 	 * be allocated.
845 	 */
846 	while (1) {
847 		if (dm_bufio_cache_size_latch != 1) {
848 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
849 			if (b)
850 				return b;
851 		}
852 
853 		if (nf == NF_PREFETCH)
854 			return NULL;
855 
856 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
857 			dm_bufio_unlock(c);
858 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
859 			dm_bufio_lock(c);
860 			if (b)
861 				return b;
862 			tried_noio_alloc = true;
863 		}
864 
865 		if (!list_empty(&c->reserved_buffers)) {
866 			b = list_entry(c->reserved_buffers.next,
867 				       struct dm_buffer, lru_list);
868 			list_del(&b->lru_list);
869 			c->need_reserved_buffers++;
870 
871 			return b;
872 		}
873 
874 		b = __get_unclaimed_buffer(c);
875 		if (b)
876 			return b;
877 
878 		__wait_for_free_buffer(c);
879 	}
880 }
881 
882 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
883 {
884 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
885 
886 	if (!b)
887 		return NULL;
888 
889 	if (c->alloc_callback)
890 		c->alloc_callback(b);
891 
892 	return b;
893 }
894 
895 /*
896  * Free a buffer and wake other threads waiting for free buffers.
897  */
898 static void __free_buffer_wake(struct dm_buffer *b)
899 {
900 	struct dm_bufio_client *c = b->c;
901 
902 	if (!c->need_reserved_buffers)
903 		free_buffer(b);
904 	else {
905 		list_add(&b->lru_list, &c->reserved_buffers);
906 		c->need_reserved_buffers--;
907 	}
908 
909 	wake_up(&c->free_buffer_wait);
910 }
911 
912 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
913 					struct list_head *write_list)
914 {
915 	struct dm_buffer *b, *tmp;
916 
917 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
918 		BUG_ON(test_bit(B_READING, &b->state));
919 
920 		if (!test_bit(B_DIRTY, &b->state) &&
921 		    !test_bit(B_WRITING, &b->state)) {
922 			__relink_lru(b, LIST_CLEAN);
923 			continue;
924 		}
925 
926 		if (no_wait && test_bit(B_WRITING, &b->state))
927 			return;
928 
929 		__write_dirty_buffer(b, write_list);
930 		cond_resched();
931 	}
932 }
933 
934 /*
935  * Check if we're over watermark.
936  * If we are over threshold_buffers, start freeing buffers.
937  * If we're over "limit_buffers", block until we get under the limit.
938  */
939 static void __check_watermark(struct dm_bufio_client *c,
940 			      struct list_head *write_list)
941 {
942 	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
943 		__write_dirty_buffers_async(c, 1, write_list);
944 }
945 
946 /*----------------------------------------------------------------
947  * Getting a buffer
948  *--------------------------------------------------------------*/
949 
950 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
951 				     enum new_flag nf, int *need_submit,
952 				     struct list_head *write_list)
953 {
954 	struct dm_buffer *b, *new_b = NULL;
955 
956 	*need_submit = 0;
957 
958 	b = __find(c, block);
959 	if (b)
960 		goto found_buffer;
961 
962 	if (nf == NF_GET)
963 		return NULL;
964 
965 	new_b = __alloc_buffer_wait(c, nf);
966 	if (!new_b)
967 		return NULL;
968 
969 	/*
970 	 * We've had a period where the mutex was unlocked, so need to
971 	 * recheck the buffer tree.
972 	 */
973 	b = __find(c, block);
974 	if (b) {
975 		__free_buffer_wake(new_b);
976 		goto found_buffer;
977 	}
978 
979 	__check_watermark(c, write_list);
980 
981 	b = new_b;
982 	b->hold_count = 1;
983 	b->read_error = 0;
984 	b->write_error = 0;
985 	__link_buffer(b, block, LIST_CLEAN);
986 
987 	if (nf == NF_FRESH) {
988 		b->state = 0;
989 		return b;
990 	}
991 
992 	b->state = 1 << B_READING;
993 	*need_submit = 1;
994 
995 	return b;
996 
997 found_buffer:
998 	if (nf == NF_PREFETCH)
999 		return NULL;
1000 	/*
1001 	 * Note: it is essential that we don't wait for the buffer to be
1002 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1003 	 * dm_bufio_prefetch can be used in the driver request routine.
1004 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1005 	 * the same buffer, it would deadlock if we waited.
1006 	 */
1007 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1008 		return NULL;
1009 
1010 	b->hold_count++;
1011 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1012 		     test_bit(B_WRITING, &b->state));
1013 	return b;
1014 }
1015 
1016 /*
1017  * The endio routine for reading: set the error, clear the bit and wake up
1018  * anyone waiting on the buffer.
1019  */
1020 static void read_endio(struct dm_buffer *b, blk_status_t status)
1021 {
1022 	b->read_error = status;
1023 
1024 	BUG_ON(!test_bit(B_READING, &b->state));
1025 
1026 	smp_mb__before_atomic();
1027 	clear_bit(B_READING, &b->state);
1028 	smp_mb__after_atomic();
1029 
1030 	wake_up_bit(&b->state, B_READING);
1031 }
1032 
1033 /*
1034  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1035  * functions is similar except that dm_bufio_new doesn't read the
1036  * buffer from the disk (assuming that the caller overwrites all the data
1037  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1038  */
1039 static void *new_read(struct dm_bufio_client *c, sector_t block,
1040 		      enum new_flag nf, struct dm_buffer **bp)
1041 {
1042 	int need_submit;
1043 	struct dm_buffer *b;
1044 
1045 	LIST_HEAD(write_list);
1046 
1047 	dm_bufio_lock(c);
1048 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1049 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1050 	if (b && b->hold_count == 1)
1051 		buffer_record_stack(b);
1052 #endif
1053 	dm_bufio_unlock(c);
1054 
1055 	__flush_write_list(&write_list);
1056 
1057 	if (!b)
1058 		return NULL;
1059 
1060 	if (need_submit)
1061 		submit_io(b, REQ_OP_READ, read_endio);
1062 
1063 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1064 
1065 	if (b->read_error) {
1066 		int error = blk_status_to_errno(b->read_error);
1067 
1068 		dm_bufio_release(b);
1069 
1070 		return ERR_PTR(error);
1071 	}
1072 
1073 	*bp = b;
1074 
1075 	return b->data;
1076 }
1077 
1078 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1079 		   struct dm_buffer **bp)
1080 {
1081 	return new_read(c, block, NF_GET, bp);
1082 }
1083 EXPORT_SYMBOL_GPL(dm_bufio_get);
1084 
1085 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1086 		    struct dm_buffer **bp)
1087 {
1088 	BUG_ON(dm_bufio_in_request());
1089 
1090 	return new_read(c, block, NF_READ, bp);
1091 }
1092 EXPORT_SYMBOL_GPL(dm_bufio_read);
1093 
1094 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1095 		   struct dm_buffer **bp)
1096 {
1097 	BUG_ON(dm_bufio_in_request());
1098 
1099 	return new_read(c, block, NF_FRESH, bp);
1100 }
1101 EXPORT_SYMBOL_GPL(dm_bufio_new);
1102 
1103 void dm_bufio_prefetch(struct dm_bufio_client *c,
1104 		       sector_t block, unsigned n_blocks)
1105 {
1106 	struct blk_plug plug;
1107 
1108 	LIST_HEAD(write_list);
1109 
1110 	BUG_ON(dm_bufio_in_request());
1111 
1112 	blk_start_plug(&plug);
1113 	dm_bufio_lock(c);
1114 
1115 	for (; n_blocks--; block++) {
1116 		int need_submit;
1117 		struct dm_buffer *b;
1118 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1119 				&write_list);
1120 		if (unlikely(!list_empty(&write_list))) {
1121 			dm_bufio_unlock(c);
1122 			blk_finish_plug(&plug);
1123 			__flush_write_list(&write_list);
1124 			blk_start_plug(&plug);
1125 			dm_bufio_lock(c);
1126 		}
1127 		if (unlikely(b != NULL)) {
1128 			dm_bufio_unlock(c);
1129 
1130 			if (need_submit)
1131 				submit_io(b, REQ_OP_READ, read_endio);
1132 			dm_bufio_release(b);
1133 
1134 			cond_resched();
1135 
1136 			if (!n_blocks)
1137 				goto flush_plug;
1138 			dm_bufio_lock(c);
1139 		}
1140 	}
1141 
1142 	dm_bufio_unlock(c);
1143 
1144 flush_plug:
1145 	blk_finish_plug(&plug);
1146 }
1147 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1148 
1149 void dm_bufio_release(struct dm_buffer *b)
1150 {
1151 	struct dm_bufio_client *c = b->c;
1152 
1153 	dm_bufio_lock(c);
1154 
1155 	BUG_ON(!b->hold_count);
1156 
1157 	b->hold_count--;
1158 	if (!b->hold_count) {
1159 		wake_up(&c->free_buffer_wait);
1160 
1161 		/*
1162 		 * If there were errors on the buffer, and the buffer is not
1163 		 * to be written, free the buffer. There is no point in caching
1164 		 * invalid buffer.
1165 		 */
1166 		if ((b->read_error || b->write_error) &&
1167 		    !test_bit(B_READING, &b->state) &&
1168 		    !test_bit(B_WRITING, &b->state) &&
1169 		    !test_bit(B_DIRTY, &b->state)) {
1170 			__unlink_buffer(b);
1171 			__free_buffer_wake(b);
1172 		}
1173 	}
1174 
1175 	dm_bufio_unlock(c);
1176 }
1177 EXPORT_SYMBOL_GPL(dm_bufio_release);
1178 
1179 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1180 					unsigned start, unsigned end)
1181 {
1182 	struct dm_bufio_client *c = b->c;
1183 
1184 	BUG_ON(start >= end);
1185 	BUG_ON(end > b->c->block_size);
1186 
1187 	dm_bufio_lock(c);
1188 
1189 	BUG_ON(test_bit(B_READING, &b->state));
1190 
1191 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1192 		b->dirty_start = start;
1193 		b->dirty_end = end;
1194 		__relink_lru(b, LIST_DIRTY);
1195 	} else {
1196 		if (start < b->dirty_start)
1197 			b->dirty_start = start;
1198 		if (end > b->dirty_end)
1199 			b->dirty_end = end;
1200 	}
1201 
1202 	dm_bufio_unlock(c);
1203 }
1204 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1205 
1206 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1207 {
1208 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1209 }
1210 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1211 
1212 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1213 {
1214 	LIST_HEAD(write_list);
1215 
1216 	BUG_ON(dm_bufio_in_request());
1217 
1218 	dm_bufio_lock(c);
1219 	__write_dirty_buffers_async(c, 0, &write_list);
1220 	dm_bufio_unlock(c);
1221 	__flush_write_list(&write_list);
1222 }
1223 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1224 
1225 /*
1226  * For performance, it is essential that the buffers are written asynchronously
1227  * and simultaneously (so that the block layer can merge the writes) and then
1228  * waited upon.
1229  *
1230  * Finally, we flush hardware disk cache.
1231  */
1232 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1233 {
1234 	int a, f;
1235 	unsigned long buffers_processed = 0;
1236 	struct dm_buffer *b, *tmp;
1237 
1238 	LIST_HEAD(write_list);
1239 
1240 	dm_bufio_lock(c);
1241 	__write_dirty_buffers_async(c, 0, &write_list);
1242 	dm_bufio_unlock(c);
1243 	__flush_write_list(&write_list);
1244 	dm_bufio_lock(c);
1245 
1246 again:
1247 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1248 		int dropped_lock = 0;
1249 
1250 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1251 			buffers_processed++;
1252 
1253 		BUG_ON(test_bit(B_READING, &b->state));
1254 
1255 		if (test_bit(B_WRITING, &b->state)) {
1256 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1257 				dropped_lock = 1;
1258 				b->hold_count++;
1259 				dm_bufio_unlock(c);
1260 				wait_on_bit_io(&b->state, B_WRITING,
1261 					       TASK_UNINTERRUPTIBLE);
1262 				dm_bufio_lock(c);
1263 				b->hold_count--;
1264 			} else
1265 				wait_on_bit_io(&b->state, B_WRITING,
1266 					       TASK_UNINTERRUPTIBLE);
1267 		}
1268 
1269 		if (!test_bit(B_DIRTY, &b->state) &&
1270 		    !test_bit(B_WRITING, &b->state))
1271 			__relink_lru(b, LIST_CLEAN);
1272 
1273 		cond_resched();
1274 
1275 		/*
1276 		 * If we dropped the lock, the list is no longer consistent,
1277 		 * so we must restart the search.
1278 		 *
1279 		 * In the most common case, the buffer just processed is
1280 		 * relinked to the clean list, so we won't loop scanning the
1281 		 * same buffer again and again.
1282 		 *
1283 		 * This may livelock if there is another thread simultaneously
1284 		 * dirtying buffers, so we count the number of buffers walked
1285 		 * and if it exceeds the total number of buffers, it means that
1286 		 * someone is doing some writes simultaneously with us.  In
1287 		 * this case, stop, dropping the lock.
1288 		 */
1289 		if (dropped_lock)
1290 			goto again;
1291 	}
1292 	wake_up(&c->free_buffer_wait);
1293 	dm_bufio_unlock(c);
1294 
1295 	a = xchg(&c->async_write_error, 0);
1296 	f = dm_bufio_issue_flush(c);
1297 	if (a)
1298 		return a;
1299 
1300 	return f;
1301 }
1302 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1303 
1304 /*
1305  * Use dm-io to send an empty barrier to flush the device.
1306  */
1307 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1308 {
1309 	struct dm_io_request io_req = {
1310 		.bi_op = REQ_OP_WRITE,
1311 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1312 		.mem.type = DM_IO_KMEM,
1313 		.mem.ptr.addr = NULL,
1314 		.client = c->dm_io,
1315 	};
1316 	struct dm_io_region io_reg = {
1317 		.bdev = c->bdev,
1318 		.sector = 0,
1319 		.count = 0,
1320 	};
1321 
1322 	BUG_ON(dm_bufio_in_request());
1323 
1324 	return dm_io(&io_req, 1, &io_reg, NULL);
1325 }
1326 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1327 
1328 /*
1329  * We first delete any other buffer that may be at that new location.
1330  *
1331  * Then, we write the buffer to the original location if it was dirty.
1332  *
1333  * Then, if we are the only one who is holding the buffer, relink the buffer
1334  * in the buffer tree for the new location.
1335  *
1336  * If there was someone else holding the buffer, we write it to the new
1337  * location but not relink it, because that other user needs to have the buffer
1338  * at the same place.
1339  */
1340 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1341 {
1342 	struct dm_bufio_client *c = b->c;
1343 	struct dm_buffer *new;
1344 
1345 	BUG_ON(dm_bufio_in_request());
1346 
1347 	dm_bufio_lock(c);
1348 
1349 retry:
1350 	new = __find(c, new_block);
1351 	if (new) {
1352 		if (new->hold_count) {
1353 			__wait_for_free_buffer(c);
1354 			goto retry;
1355 		}
1356 
1357 		/*
1358 		 * FIXME: Is there any point waiting for a write that's going
1359 		 * to be overwritten in a bit?
1360 		 */
1361 		__make_buffer_clean(new);
1362 		__unlink_buffer(new);
1363 		__free_buffer_wake(new);
1364 	}
1365 
1366 	BUG_ON(!b->hold_count);
1367 	BUG_ON(test_bit(B_READING, &b->state));
1368 
1369 	__write_dirty_buffer(b, NULL);
1370 	if (b->hold_count == 1) {
1371 		wait_on_bit_io(&b->state, B_WRITING,
1372 			       TASK_UNINTERRUPTIBLE);
1373 		set_bit(B_DIRTY, &b->state);
1374 		b->dirty_start = 0;
1375 		b->dirty_end = c->block_size;
1376 		__unlink_buffer(b);
1377 		__link_buffer(b, new_block, LIST_DIRTY);
1378 	} else {
1379 		sector_t old_block;
1380 		wait_on_bit_lock_io(&b->state, B_WRITING,
1381 				    TASK_UNINTERRUPTIBLE);
1382 		/*
1383 		 * Relink buffer to "new_block" so that write_callback
1384 		 * sees "new_block" as a block number.
1385 		 * After the write, link the buffer back to old_block.
1386 		 * All this must be done in bufio lock, so that block number
1387 		 * change isn't visible to other threads.
1388 		 */
1389 		old_block = b->block;
1390 		__unlink_buffer(b);
1391 		__link_buffer(b, new_block, b->list_mode);
1392 		submit_io(b, REQ_OP_WRITE, write_endio);
1393 		wait_on_bit_io(&b->state, B_WRITING,
1394 			       TASK_UNINTERRUPTIBLE);
1395 		__unlink_buffer(b);
1396 		__link_buffer(b, old_block, b->list_mode);
1397 	}
1398 
1399 	dm_bufio_unlock(c);
1400 	dm_bufio_release(b);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1403 
1404 /*
1405  * Free the given buffer.
1406  *
1407  * This is just a hint, if the buffer is in use or dirty, this function
1408  * does nothing.
1409  */
1410 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1411 {
1412 	struct dm_buffer *b;
1413 
1414 	dm_bufio_lock(c);
1415 
1416 	b = __find(c, block);
1417 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1418 		__unlink_buffer(b);
1419 		__free_buffer_wake(b);
1420 	}
1421 
1422 	dm_bufio_unlock(c);
1423 }
1424 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1425 
1426 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1427 {
1428 	c->minimum_buffers = n;
1429 }
1430 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1431 
1432 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1433 {
1434 	return c->block_size;
1435 }
1436 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1437 
1438 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1439 {
1440 	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1441 	if (likely(c->sectors_per_block_bits >= 0))
1442 		s >>= c->sectors_per_block_bits;
1443 	else
1444 		sector_div(s, c->block_size >> SECTOR_SHIFT);
1445 	return s;
1446 }
1447 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1448 
1449 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1450 {
1451 	return b->block;
1452 }
1453 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1454 
1455 void *dm_bufio_get_block_data(struct dm_buffer *b)
1456 {
1457 	return b->data;
1458 }
1459 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1460 
1461 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1462 {
1463 	return b + 1;
1464 }
1465 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1466 
1467 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1468 {
1469 	return b->c;
1470 }
1471 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1472 
1473 static void drop_buffers(struct dm_bufio_client *c)
1474 {
1475 	struct dm_buffer *b;
1476 	int i;
1477 	bool warned = false;
1478 
1479 	BUG_ON(dm_bufio_in_request());
1480 
1481 	/*
1482 	 * An optimization so that the buffers are not written one-by-one.
1483 	 */
1484 	dm_bufio_write_dirty_buffers_async(c);
1485 
1486 	dm_bufio_lock(c);
1487 
1488 	while ((b = __get_unclaimed_buffer(c)))
1489 		__free_buffer_wake(b);
1490 
1491 	for (i = 0; i < LIST_SIZE; i++)
1492 		list_for_each_entry(b, &c->lru[i], lru_list) {
1493 			WARN_ON(!warned);
1494 			warned = true;
1495 			DMERR("leaked buffer %llx, hold count %u, list %d",
1496 			      (unsigned long long)b->block, b->hold_count, i);
1497 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1498 			stack_trace_print(b->stack_entries, b->stack_len, 1);
1499 			/* mark unclaimed to avoid BUG_ON below */
1500 			b->hold_count = 0;
1501 #endif
1502 		}
1503 
1504 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1505 	while ((b = __get_unclaimed_buffer(c)))
1506 		__free_buffer_wake(b);
1507 #endif
1508 
1509 	for (i = 0; i < LIST_SIZE; i++)
1510 		BUG_ON(!list_empty(&c->lru[i]));
1511 
1512 	dm_bufio_unlock(c);
1513 }
1514 
1515 /*
1516  * We may not be able to evict this buffer if IO pending or the client
1517  * is still using it.  Caller is expected to know buffer is too old.
1518  *
1519  * And if GFP_NOFS is used, we must not do any I/O because we hold
1520  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1521  * rerouted to different bufio client.
1522  */
1523 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1524 {
1525 	if (!(gfp & __GFP_FS)) {
1526 		if (test_bit(B_READING, &b->state) ||
1527 		    test_bit(B_WRITING, &b->state) ||
1528 		    test_bit(B_DIRTY, &b->state))
1529 			return false;
1530 	}
1531 
1532 	if (b->hold_count)
1533 		return false;
1534 
1535 	__make_buffer_clean(b);
1536 	__unlink_buffer(b);
1537 	__free_buffer_wake(b);
1538 
1539 	return true;
1540 }
1541 
1542 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1543 {
1544 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1545 	if (likely(c->sectors_per_block_bits >= 0))
1546 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1547 	else
1548 		retain_bytes /= c->block_size;
1549 	return retain_bytes;
1550 }
1551 
1552 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1553 			    gfp_t gfp_mask)
1554 {
1555 	int l;
1556 	struct dm_buffer *b, *tmp;
1557 	unsigned long freed = 0;
1558 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1559 			      c->n_buffers[LIST_DIRTY];
1560 	unsigned long retain_target = get_retain_buffers(c);
1561 
1562 	for (l = 0; l < LIST_SIZE; l++) {
1563 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1564 			if (__try_evict_buffer(b, gfp_mask))
1565 				freed++;
1566 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1567 				return freed;
1568 			cond_resched();
1569 		}
1570 	}
1571 	return freed;
1572 }
1573 
1574 static unsigned long
1575 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1576 {
1577 	struct dm_bufio_client *c;
1578 	unsigned long freed;
1579 
1580 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1581 	if (sc->gfp_mask & __GFP_FS)
1582 		dm_bufio_lock(c);
1583 	else if (!dm_bufio_trylock(c))
1584 		return SHRINK_STOP;
1585 
1586 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1587 	dm_bufio_unlock(c);
1588 	return freed;
1589 }
1590 
1591 static unsigned long
1592 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1593 {
1594 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1595 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1596 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1597 	unsigned long retain_target = get_retain_buffers(c);
1598 
1599 	return (count < retain_target) ? 0 : (count - retain_target);
1600 }
1601 
1602 /*
1603  * Create the buffering interface
1604  */
1605 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1606 					       unsigned reserved_buffers, unsigned aux_size,
1607 					       void (*alloc_callback)(struct dm_buffer *),
1608 					       void (*write_callback)(struct dm_buffer *))
1609 {
1610 	int r;
1611 	struct dm_bufio_client *c;
1612 	unsigned i;
1613 	char slab_name[27];
1614 
1615 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1616 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1617 		r = -EINVAL;
1618 		goto bad_client;
1619 	}
1620 
1621 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1622 	if (!c) {
1623 		r = -ENOMEM;
1624 		goto bad_client;
1625 	}
1626 	c->buffer_tree = RB_ROOT;
1627 
1628 	c->bdev = bdev;
1629 	c->block_size = block_size;
1630 	if (is_power_of_2(block_size))
1631 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1632 	else
1633 		c->sectors_per_block_bits = -1;
1634 
1635 	c->alloc_callback = alloc_callback;
1636 	c->write_callback = write_callback;
1637 
1638 	for (i = 0; i < LIST_SIZE; i++) {
1639 		INIT_LIST_HEAD(&c->lru[i]);
1640 		c->n_buffers[i] = 0;
1641 	}
1642 
1643 	mutex_init(&c->lock);
1644 	INIT_LIST_HEAD(&c->reserved_buffers);
1645 	c->need_reserved_buffers = reserved_buffers;
1646 
1647 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1648 
1649 	init_waitqueue_head(&c->free_buffer_wait);
1650 	c->async_write_error = 0;
1651 
1652 	c->dm_io = dm_io_client_create();
1653 	if (IS_ERR(c->dm_io)) {
1654 		r = PTR_ERR(c->dm_io);
1655 		goto bad_dm_io;
1656 	}
1657 
1658 	if (block_size <= KMALLOC_MAX_SIZE &&
1659 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1660 		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1661 		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1662 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1663 						  SLAB_RECLAIM_ACCOUNT, NULL);
1664 		if (!c->slab_cache) {
1665 			r = -ENOMEM;
1666 			goto bad;
1667 		}
1668 	}
1669 	if (aux_size)
1670 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1671 	else
1672 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1673 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1674 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1675 	if (!c->slab_buffer) {
1676 		r = -ENOMEM;
1677 		goto bad;
1678 	}
1679 
1680 	while (c->need_reserved_buffers) {
1681 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1682 
1683 		if (!b) {
1684 			r = -ENOMEM;
1685 			goto bad;
1686 		}
1687 		__free_buffer_wake(b);
1688 	}
1689 
1690 	c->shrinker.count_objects = dm_bufio_shrink_count;
1691 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1692 	c->shrinker.seeks = 1;
1693 	c->shrinker.batch = 0;
1694 	r = register_shrinker(&c->shrinker);
1695 	if (r)
1696 		goto bad;
1697 
1698 	mutex_lock(&dm_bufio_clients_lock);
1699 	dm_bufio_client_count++;
1700 	list_add(&c->client_list, &dm_bufio_all_clients);
1701 	__cache_size_refresh();
1702 	mutex_unlock(&dm_bufio_clients_lock);
1703 
1704 	return c;
1705 
1706 bad:
1707 	while (!list_empty(&c->reserved_buffers)) {
1708 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1709 						 struct dm_buffer, lru_list);
1710 		list_del(&b->lru_list);
1711 		free_buffer(b);
1712 	}
1713 	kmem_cache_destroy(c->slab_cache);
1714 	kmem_cache_destroy(c->slab_buffer);
1715 	dm_io_client_destroy(c->dm_io);
1716 bad_dm_io:
1717 	mutex_destroy(&c->lock);
1718 	kfree(c);
1719 bad_client:
1720 	return ERR_PTR(r);
1721 }
1722 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1723 
1724 /*
1725  * Free the buffering interface.
1726  * It is required that there are no references on any buffers.
1727  */
1728 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1729 {
1730 	unsigned i;
1731 
1732 	drop_buffers(c);
1733 
1734 	unregister_shrinker(&c->shrinker);
1735 
1736 	mutex_lock(&dm_bufio_clients_lock);
1737 
1738 	list_del(&c->client_list);
1739 	dm_bufio_client_count--;
1740 	__cache_size_refresh();
1741 
1742 	mutex_unlock(&dm_bufio_clients_lock);
1743 
1744 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1745 	BUG_ON(c->need_reserved_buffers);
1746 
1747 	while (!list_empty(&c->reserved_buffers)) {
1748 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1749 						 struct dm_buffer, lru_list);
1750 		list_del(&b->lru_list);
1751 		free_buffer(b);
1752 	}
1753 
1754 	for (i = 0; i < LIST_SIZE; i++)
1755 		if (c->n_buffers[i])
1756 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1757 
1758 	for (i = 0; i < LIST_SIZE; i++)
1759 		BUG_ON(c->n_buffers[i]);
1760 
1761 	kmem_cache_destroy(c->slab_cache);
1762 	kmem_cache_destroy(c->slab_buffer);
1763 	dm_io_client_destroy(c->dm_io);
1764 	mutex_destroy(&c->lock);
1765 	kfree(c);
1766 }
1767 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1768 
1769 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1770 {
1771 	c->start = start;
1772 }
1773 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1774 
1775 static unsigned get_max_age_hz(void)
1776 {
1777 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1778 
1779 	if (max_age > UINT_MAX / HZ)
1780 		max_age = UINT_MAX / HZ;
1781 
1782 	return max_age * HZ;
1783 }
1784 
1785 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1786 {
1787 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1788 }
1789 
1790 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1791 {
1792 	struct dm_buffer *b, *tmp;
1793 	unsigned long retain_target = get_retain_buffers(c);
1794 	unsigned long count;
1795 	LIST_HEAD(write_list);
1796 
1797 	dm_bufio_lock(c);
1798 
1799 	__check_watermark(c, &write_list);
1800 	if (unlikely(!list_empty(&write_list))) {
1801 		dm_bufio_unlock(c);
1802 		__flush_write_list(&write_list);
1803 		dm_bufio_lock(c);
1804 	}
1805 
1806 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1807 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1808 		if (count <= retain_target)
1809 			break;
1810 
1811 		if (!older_than(b, age_hz))
1812 			break;
1813 
1814 		if (__try_evict_buffer(b, 0))
1815 			count--;
1816 
1817 		cond_resched();
1818 	}
1819 
1820 	dm_bufio_unlock(c);
1821 }
1822 
1823 static void do_global_cleanup(struct work_struct *w)
1824 {
1825 	struct dm_bufio_client *locked_client = NULL;
1826 	struct dm_bufio_client *current_client;
1827 	struct dm_buffer *b;
1828 	unsigned spinlock_hold_count;
1829 	unsigned long threshold = dm_bufio_cache_size -
1830 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1831 	unsigned long loops = global_num * 2;
1832 
1833 	mutex_lock(&dm_bufio_clients_lock);
1834 
1835 	while (1) {
1836 		cond_resched();
1837 
1838 		spin_lock(&global_spinlock);
1839 		if (unlikely(dm_bufio_current_allocated <= threshold))
1840 			break;
1841 
1842 		spinlock_hold_count = 0;
1843 get_next:
1844 		if (!loops--)
1845 			break;
1846 		if (unlikely(list_empty(&global_queue)))
1847 			break;
1848 		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1849 
1850 		if (b->accessed) {
1851 			b->accessed = 0;
1852 			list_move(&b->global_list, &global_queue);
1853 			if (likely(++spinlock_hold_count < 16))
1854 				goto get_next;
1855 			spin_unlock(&global_spinlock);
1856 			continue;
1857 		}
1858 
1859 		current_client = b->c;
1860 		if (unlikely(current_client != locked_client)) {
1861 			if (locked_client)
1862 				dm_bufio_unlock(locked_client);
1863 
1864 			if (!dm_bufio_trylock(current_client)) {
1865 				spin_unlock(&global_spinlock);
1866 				dm_bufio_lock(current_client);
1867 				locked_client = current_client;
1868 				continue;
1869 			}
1870 
1871 			locked_client = current_client;
1872 		}
1873 
1874 		spin_unlock(&global_spinlock);
1875 
1876 		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1877 			spin_lock(&global_spinlock);
1878 			list_move(&b->global_list, &global_queue);
1879 			spin_unlock(&global_spinlock);
1880 		}
1881 	}
1882 
1883 	spin_unlock(&global_spinlock);
1884 
1885 	if (locked_client)
1886 		dm_bufio_unlock(locked_client);
1887 
1888 	mutex_unlock(&dm_bufio_clients_lock);
1889 }
1890 
1891 static void cleanup_old_buffers(void)
1892 {
1893 	unsigned long max_age_hz = get_max_age_hz();
1894 	struct dm_bufio_client *c;
1895 
1896 	mutex_lock(&dm_bufio_clients_lock);
1897 
1898 	__cache_size_refresh();
1899 
1900 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1901 		__evict_old_buffers(c, max_age_hz);
1902 
1903 	mutex_unlock(&dm_bufio_clients_lock);
1904 }
1905 
1906 static void work_fn(struct work_struct *w)
1907 {
1908 	cleanup_old_buffers();
1909 
1910 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
1911 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1912 }
1913 
1914 /*----------------------------------------------------------------
1915  * Module setup
1916  *--------------------------------------------------------------*/
1917 
1918 /*
1919  * This is called only once for the whole dm_bufio module.
1920  * It initializes memory limit.
1921  */
1922 static int __init dm_bufio_init(void)
1923 {
1924 	__u64 mem;
1925 
1926 	dm_bufio_allocated_kmem_cache = 0;
1927 	dm_bufio_allocated_get_free_pages = 0;
1928 	dm_bufio_allocated_vmalloc = 0;
1929 	dm_bufio_current_allocated = 0;
1930 
1931 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
1932 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1933 
1934 	if (mem > ULONG_MAX)
1935 		mem = ULONG_MAX;
1936 
1937 #ifdef CONFIG_MMU
1938 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1939 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1940 #endif
1941 
1942 	dm_bufio_default_cache_size = mem;
1943 
1944 	mutex_lock(&dm_bufio_clients_lock);
1945 	__cache_size_refresh();
1946 	mutex_unlock(&dm_bufio_clients_lock);
1947 
1948 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1949 	if (!dm_bufio_wq)
1950 		return -ENOMEM;
1951 
1952 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
1953 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
1954 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
1955 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1956 
1957 	return 0;
1958 }
1959 
1960 /*
1961  * This is called once when unloading the dm_bufio module.
1962  */
1963 static void __exit dm_bufio_exit(void)
1964 {
1965 	int bug = 0;
1966 
1967 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
1968 	flush_workqueue(dm_bufio_wq);
1969 	destroy_workqueue(dm_bufio_wq);
1970 
1971 	if (dm_bufio_client_count) {
1972 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1973 			__func__, dm_bufio_client_count);
1974 		bug = 1;
1975 	}
1976 
1977 	if (dm_bufio_current_allocated) {
1978 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1979 			__func__, dm_bufio_current_allocated);
1980 		bug = 1;
1981 	}
1982 
1983 	if (dm_bufio_allocated_get_free_pages) {
1984 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1985 		       __func__, dm_bufio_allocated_get_free_pages);
1986 		bug = 1;
1987 	}
1988 
1989 	if (dm_bufio_allocated_vmalloc) {
1990 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1991 		       __func__, dm_bufio_allocated_vmalloc);
1992 		bug = 1;
1993 	}
1994 
1995 	BUG_ON(bug);
1996 }
1997 
1998 module_init(dm_bufio_init)
1999 module_exit(dm_bufio_exit)
2000 
2001 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2002 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2003 
2004 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2005 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2006 
2007 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2008 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2009 
2010 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2011 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2012 
2013 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2014 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2015 
2016 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2017 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2018 
2019 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2020 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2021 
2022 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2023 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2024 
2025 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2026 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2027 MODULE_LICENSE("GPL");
2028