1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/jiffies.h> 15 #include <linux/vmalloc.h> 16 #include <linux/shrinker.h> 17 #include <linux/module.h> 18 #include <linux/rbtree.h> 19 #include <linux/stacktrace.h> 20 21 #define DM_MSG_PREFIX "bufio" 22 23 /* 24 * Memory management policy: 25 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 26 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 27 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 28 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 29 * dirty buffers. 30 */ 31 #define DM_BUFIO_MIN_BUFFERS 8 32 33 #define DM_BUFIO_MEMORY_PERCENT 2 34 #define DM_BUFIO_VMALLOC_PERCENT 25 35 #define DM_BUFIO_WRITEBACK_PERCENT 75 36 37 /* 38 * Check buffer ages in this interval (seconds) 39 */ 40 #define DM_BUFIO_WORK_TIMER_SECS 30 41 42 /* 43 * Free buffers when they are older than this (seconds) 44 */ 45 #define DM_BUFIO_DEFAULT_AGE_SECS 300 46 47 /* 48 * The nr of bytes of cached data to keep around. 49 */ 50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 51 52 /* 53 * The number of bvec entries that are embedded directly in the buffer. 54 * If the chunk size is larger, dm-io is used to do the io. 55 */ 56 #define DM_BUFIO_INLINE_VECS 16 57 58 /* 59 * Don't try to use kmem_cache_alloc for blocks larger than this. 60 * For explanation, see alloc_buffer_data below. 61 */ 62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 64 65 /* 66 * dm_buffer->list_mode 67 */ 68 #define LIST_CLEAN 0 69 #define LIST_DIRTY 1 70 #define LIST_SIZE 2 71 72 /* 73 * Linking of buffers: 74 * All buffers are linked to cache_hash with their hash_list field. 75 * 76 * Clean buffers that are not being written (B_WRITING not set) 77 * are linked to lru[LIST_CLEAN] with their lru_list field. 78 * 79 * Dirty and clean buffers that are being written are linked to 80 * lru[LIST_DIRTY] with their lru_list field. When the write 81 * finishes, the buffer cannot be relinked immediately (because we 82 * are in an interrupt context and relinking requires process 83 * context), so some clean-not-writing buffers can be held on 84 * dirty_lru too. They are later added to lru in the process 85 * context. 86 */ 87 struct dm_bufio_client { 88 struct mutex lock; 89 90 struct list_head lru[LIST_SIZE]; 91 unsigned long n_buffers[LIST_SIZE]; 92 93 struct block_device *bdev; 94 unsigned block_size; 95 unsigned char sectors_per_block_bits; 96 unsigned char pages_per_block_bits; 97 unsigned char blocks_per_page_bits; 98 unsigned aux_size; 99 void (*alloc_callback)(struct dm_buffer *); 100 void (*write_callback)(struct dm_buffer *); 101 102 struct dm_io_client *dm_io; 103 104 struct list_head reserved_buffers; 105 unsigned need_reserved_buffers; 106 107 unsigned minimum_buffers; 108 109 struct rb_root buffer_tree; 110 wait_queue_head_t free_buffer_wait; 111 112 int async_write_error; 113 114 struct list_head client_list; 115 struct shrinker shrinker; 116 }; 117 118 /* 119 * Buffer state bits. 120 */ 121 #define B_READING 0 122 #define B_WRITING 1 123 #define B_DIRTY 2 124 125 /* 126 * Describes how the block was allocated: 127 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 128 * See the comment at alloc_buffer_data. 129 */ 130 enum data_mode { 131 DATA_MODE_SLAB = 0, 132 DATA_MODE_GET_FREE_PAGES = 1, 133 DATA_MODE_VMALLOC = 2, 134 DATA_MODE_LIMIT = 3 135 }; 136 137 struct dm_buffer { 138 struct rb_node node; 139 struct list_head lru_list; 140 sector_t block; 141 void *data; 142 enum data_mode data_mode; 143 unsigned char list_mode; /* LIST_* */ 144 unsigned hold_count; 145 int read_error; 146 int write_error; 147 unsigned long state; 148 unsigned long last_accessed; 149 struct dm_bufio_client *c; 150 struct list_head write_list; 151 struct bio bio; 152 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 154 #define MAX_STACK 10 155 struct stack_trace stack_trace; 156 unsigned long stack_entries[MAX_STACK]; 157 #endif 158 }; 159 160 /*----------------------------------------------------------------*/ 161 162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 164 165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 166 { 167 unsigned ret = c->blocks_per_page_bits - 1; 168 169 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 170 171 return ret; 172 } 173 174 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 175 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 176 177 #define dm_bufio_in_request() (!!current->bio_list) 178 179 static void dm_bufio_lock(struct dm_bufio_client *c) 180 { 181 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 182 } 183 184 static int dm_bufio_trylock(struct dm_bufio_client *c) 185 { 186 return mutex_trylock(&c->lock); 187 } 188 189 static void dm_bufio_unlock(struct dm_bufio_client *c) 190 { 191 mutex_unlock(&c->lock); 192 } 193 194 /*----------------------------------------------------------------*/ 195 196 /* 197 * Default cache size: available memory divided by the ratio. 198 */ 199 static unsigned long dm_bufio_default_cache_size; 200 201 /* 202 * Total cache size set by the user. 203 */ 204 static unsigned long dm_bufio_cache_size; 205 206 /* 207 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 208 * at any time. If it disagrees, the user has changed cache size. 209 */ 210 static unsigned long dm_bufio_cache_size_latch; 211 212 static DEFINE_SPINLOCK(param_spinlock); 213 214 /* 215 * Buffers are freed after this timeout 216 */ 217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 218 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 219 220 static unsigned long dm_bufio_peak_allocated; 221 static unsigned long dm_bufio_allocated_kmem_cache; 222 static unsigned long dm_bufio_allocated_get_free_pages; 223 static unsigned long dm_bufio_allocated_vmalloc; 224 static unsigned long dm_bufio_current_allocated; 225 226 /*----------------------------------------------------------------*/ 227 228 /* 229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 230 */ 231 static unsigned long dm_bufio_cache_size_per_client; 232 233 /* 234 * The current number of clients. 235 */ 236 static int dm_bufio_client_count; 237 238 /* 239 * The list of all clients. 240 */ 241 static LIST_HEAD(dm_bufio_all_clients); 242 243 /* 244 * This mutex protects dm_bufio_cache_size_latch, 245 * dm_bufio_cache_size_per_client and dm_bufio_client_count 246 */ 247 static DEFINE_MUTEX(dm_bufio_clients_lock); 248 249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 250 static void buffer_record_stack(struct dm_buffer *b) 251 { 252 b->stack_trace.nr_entries = 0; 253 b->stack_trace.max_entries = MAX_STACK; 254 b->stack_trace.entries = b->stack_entries; 255 b->stack_trace.skip = 2; 256 save_stack_trace(&b->stack_trace); 257 } 258 #endif 259 260 /*---------------------------------------------------------------- 261 * A red/black tree acts as an index for all the buffers. 262 *--------------------------------------------------------------*/ 263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 264 { 265 struct rb_node *n = c->buffer_tree.rb_node; 266 struct dm_buffer *b; 267 268 while (n) { 269 b = container_of(n, struct dm_buffer, node); 270 271 if (b->block == block) 272 return b; 273 274 n = (b->block < block) ? n->rb_left : n->rb_right; 275 } 276 277 return NULL; 278 } 279 280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 281 { 282 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 283 struct dm_buffer *found; 284 285 while (*new) { 286 found = container_of(*new, struct dm_buffer, node); 287 288 if (found->block == b->block) { 289 BUG_ON(found != b); 290 return; 291 } 292 293 parent = *new; 294 new = (found->block < b->block) ? 295 &((*new)->rb_left) : &((*new)->rb_right); 296 } 297 298 rb_link_node(&b->node, parent, new); 299 rb_insert_color(&b->node, &c->buffer_tree); 300 } 301 302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 303 { 304 rb_erase(&b->node, &c->buffer_tree); 305 } 306 307 /*----------------------------------------------------------------*/ 308 309 static void adjust_total_allocated(enum data_mode data_mode, long diff) 310 { 311 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 312 &dm_bufio_allocated_kmem_cache, 313 &dm_bufio_allocated_get_free_pages, 314 &dm_bufio_allocated_vmalloc, 315 }; 316 317 spin_lock(¶m_spinlock); 318 319 *class_ptr[data_mode] += diff; 320 321 dm_bufio_current_allocated += diff; 322 323 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 324 dm_bufio_peak_allocated = dm_bufio_current_allocated; 325 326 spin_unlock(¶m_spinlock); 327 } 328 329 /* 330 * Change the number of clients and recalculate per-client limit. 331 */ 332 static void __cache_size_refresh(void) 333 { 334 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 335 BUG_ON(dm_bufio_client_count < 0); 336 337 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 338 339 /* 340 * Use default if set to 0 and report the actual cache size used. 341 */ 342 if (!dm_bufio_cache_size_latch) { 343 (void)cmpxchg(&dm_bufio_cache_size, 0, 344 dm_bufio_default_cache_size); 345 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 346 } 347 348 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 349 (dm_bufio_client_count ? : 1); 350 } 351 352 /* 353 * Allocating buffer data. 354 * 355 * Small buffers are allocated with kmem_cache, to use space optimally. 356 * 357 * For large buffers, we choose between get_free_pages and vmalloc. 358 * Each has advantages and disadvantages. 359 * 360 * __get_free_pages can randomly fail if the memory is fragmented. 361 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 362 * as low as 128M) so using it for caching is not appropriate. 363 * 364 * If the allocation may fail we use __get_free_pages. Memory fragmentation 365 * won't have a fatal effect here, but it just causes flushes of some other 366 * buffers and more I/O will be performed. Don't use __get_free_pages if it 367 * always fails (i.e. order >= MAX_ORDER). 368 * 369 * If the allocation shouldn't fail we use __vmalloc. This is only for the 370 * initial reserve allocation, so there's no risk of wasting all vmalloc 371 * space. 372 */ 373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 374 enum data_mode *data_mode) 375 { 376 unsigned noio_flag; 377 void *ptr; 378 379 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 380 *data_mode = DATA_MODE_SLAB; 381 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 382 } 383 384 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 385 gfp_mask & __GFP_NORETRY) { 386 *data_mode = DATA_MODE_GET_FREE_PAGES; 387 return (void *)__get_free_pages(gfp_mask, 388 c->pages_per_block_bits); 389 } 390 391 *data_mode = DATA_MODE_VMALLOC; 392 393 /* 394 * __vmalloc allocates the data pages and auxiliary structures with 395 * gfp_flags that were specified, but pagetables are always allocated 396 * with GFP_KERNEL, no matter what was specified as gfp_mask. 397 * 398 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 399 * all allocations done by this process (including pagetables) are done 400 * as if GFP_NOIO was specified. 401 */ 402 403 if (gfp_mask & __GFP_NORETRY) 404 noio_flag = memalloc_noio_save(); 405 406 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL); 407 408 if (gfp_mask & __GFP_NORETRY) 409 memalloc_noio_restore(noio_flag); 410 411 return ptr; 412 } 413 414 /* 415 * Free buffer's data. 416 */ 417 static void free_buffer_data(struct dm_bufio_client *c, 418 void *data, enum data_mode data_mode) 419 { 420 switch (data_mode) { 421 case DATA_MODE_SLAB: 422 kmem_cache_free(DM_BUFIO_CACHE(c), data); 423 break; 424 425 case DATA_MODE_GET_FREE_PAGES: 426 free_pages((unsigned long)data, c->pages_per_block_bits); 427 break; 428 429 case DATA_MODE_VMALLOC: 430 vfree(data); 431 break; 432 433 default: 434 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 435 data_mode); 436 BUG(); 437 } 438 } 439 440 /* 441 * Allocate buffer and its data. 442 */ 443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 444 { 445 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 446 gfp_mask); 447 448 if (!b) 449 return NULL; 450 451 b->c = c; 452 453 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 454 if (!b->data) { 455 kfree(b); 456 return NULL; 457 } 458 459 adjust_total_allocated(b->data_mode, (long)c->block_size); 460 461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 462 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 463 #endif 464 return b; 465 } 466 467 /* 468 * Free buffer and its data. 469 */ 470 static void free_buffer(struct dm_buffer *b) 471 { 472 struct dm_bufio_client *c = b->c; 473 474 adjust_total_allocated(b->data_mode, -(long)c->block_size); 475 476 free_buffer_data(c, b->data, b->data_mode); 477 kfree(b); 478 } 479 480 /* 481 * Link buffer to the hash list and clean or dirty queue. 482 */ 483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 484 { 485 struct dm_bufio_client *c = b->c; 486 487 c->n_buffers[dirty]++; 488 b->block = block; 489 b->list_mode = dirty; 490 list_add(&b->lru_list, &c->lru[dirty]); 491 __insert(b->c, b); 492 b->last_accessed = jiffies; 493 } 494 495 /* 496 * Unlink buffer from the hash list and dirty or clean queue. 497 */ 498 static void __unlink_buffer(struct dm_buffer *b) 499 { 500 struct dm_bufio_client *c = b->c; 501 502 BUG_ON(!c->n_buffers[b->list_mode]); 503 504 c->n_buffers[b->list_mode]--; 505 __remove(b->c, b); 506 list_del(&b->lru_list); 507 } 508 509 /* 510 * Place the buffer to the head of dirty or clean LRU queue. 511 */ 512 static void __relink_lru(struct dm_buffer *b, int dirty) 513 { 514 struct dm_bufio_client *c = b->c; 515 516 BUG_ON(!c->n_buffers[b->list_mode]); 517 518 c->n_buffers[b->list_mode]--; 519 c->n_buffers[dirty]++; 520 b->list_mode = dirty; 521 list_move(&b->lru_list, &c->lru[dirty]); 522 b->last_accessed = jiffies; 523 } 524 525 /*---------------------------------------------------------------- 526 * Submit I/O on the buffer. 527 * 528 * Bio interface is faster but it has some problems: 529 * the vector list is limited (increasing this limit increases 530 * memory-consumption per buffer, so it is not viable); 531 * 532 * the memory must be direct-mapped, not vmalloced; 533 * 534 * the I/O driver can reject requests spuriously if it thinks that 535 * the requests are too big for the device or if they cross a 536 * controller-defined memory boundary. 537 * 538 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 539 * it is not vmalloced, try using the bio interface. 540 * 541 * If the buffer is big, if it is vmalloced or if the underlying device 542 * rejects the bio because it is too large, use dm-io layer to do the I/O. 543 * The dm-io layer splits the I/O into multiple requests, avoiding the above 544 * shortcomings. 545 *--------------------------------------------------------------*/ 546 547 /* 548 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 549 * that the request was handled directly with bio interface. 550 */ 551 static void dmio_complete(unsigned long error, void *context) 552 { 553 struct dm_buffer *b = context; 554 555 b->bio.bi_error = error ? -EIO : 0; 556 b->bio.bi_end_io(&b->bio); 557 } 558 559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 560 bio_end_io_t *end_io) 561 { 562 int r; 563 struct dm_io_request io_req = { 564 .bi_op = rw, 565 .bi_op_flags = 0, 566 .notify.fn = dmio_complete, 567 .notify.context = b, 568 .client = b->c->dm_io, 569 }; 570 struct dm_io_region region = { 571 .bdev = b->c->bdev, 572 .sector = block << b->c->sectors_per_block_bits, 573 .count = b->c->block_size >> SECTOR_SHIFT, 574 }; 575 576 if (b->data_mode != DATA_MODE_VMALLOC) { 577 io_req.mem.type = DM_IO_KMEM; 578 io_req.mem.ptr.addr = b->data; 579 } else { 580 io_req.mem.type = DM_IO_VMA; 581 io_req.mem.ptr.vma = b->data; 582 } 583 584 b->bio.bi_end_io = end_io; 585 586 r = dm_io(&io_req, 1, ®ion, NULL); 587 if (r) { 588 b->bio.bi_error = r; 589 end_io(&b->bio); 590 } 591 } 592 593 static void inline_endio(struct bio *bio) 594 { 595 bio_end_io_t *end_fn = bio->bi_private; 596 int error = bio->bi_error; 597 598 /* 599 * Reset the bio to free any attached resources 600 * (e.g. bio integrity profiles). 601 */ 602 bio_reset(bio); 603 604 bio->bi_error = error; 605 end_fn(bio); 606 } 607 608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 609 bio_end_io_t *end_io) 610 { 611 char *ptr; 612 int len; 613 614 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 615 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits; 616 b->bio.bi_bdev = b->c->bdev; 617 b->bio.bi_end_io = inline_endio; 618 /* 619 * Use of .bi_private isn't a problem here because 620 * the dm_buffer's inline bio is local to bufio. 621 */ 622 b->bio.bi_private = end_io; 623 bio_set_op_attrs(&b->bio, rw, 0); 624 625 /* 626 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 627 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 628 */ 629 ptr = b->data; 630 len = b->c->block_size; 631 632 if (len >= PAGE_SIZE) 633 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 634 else 635 BUG_ON((unsigned long)ptr & (len - 1)); 636 637 do { 638 if (!bio_add_page(&b->bio, virt_to_page(ptr), 639 len < PAGE_SIZE ? len : PAGE_SIZE, 640 offset_in_page(ptr))) { 641 BUG_ON(b->c->block_size <= PAGE_SIZE); 642 use_dmio(b, rw, block, end_io); 643 return; 644 } 645 646 len -= PAGE_SIZE; 647 ptr += PAGE_SIZE; 648 } while (len > 0); 649 650 submit_bio(&b->bio); 651 } 652 653 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 654 bio_end_io_t *end_io) 655 { 656 if (rw == WRITE && b->c->write_callback) 657 b->c->write_callback(b); 658 659 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 660 b->data_mode != DATA_MODE_VMALLOC) 661 use_inline_bio(b, rw, block, end_io); 662 else 663 use_dmio(b, rw, block, end_io); 664 } 665 666 /*---------------------------------------------------------------- 667 * Writing dirty buffers 668 *--------------------------------------------------------------*/ 669 670 /* 671 * The endio routine for write. 672 * 673 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 674 * it. 675 */ 676 static void write_endio(struct bio *bio) 677 { 678 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 679 680 b->write_error = bio->bi_error; 681 if (unlikely(bio->bi_error)) { 682 struct dm_bufio_client *c = b->c; 683 int error = bio->bi_error; 684 (void)cmpxchg(&c->async_write_error, 0, error); 685 } 686 687 BUG_ON(!test_bit(B_WRITING, &b->state)); 688 689 smp_mb__before_atomic(); 690 clear_bit(B_WRITING, &b->state); 691 smp_mb__after_atomic(); 692 693 wake_up_bit(&b->state, B_WRITING); 694 } 695 696 /* 697 * Initiate a write on a dirty buffer, but don't wait for it. 698 * 699 * - If the buffer is not dirty, exit. 700 * - If there some previous write going on, wait for it to finish (we can't 701 * have two writes on the same buffer simultaneously). 702 * - Submit our write and don't wait on it. We set B_WRITING indicating 703 * that there is a write in progress. 704 */ 705 static void __write_dirty_buffer(struct dm_buffer *b, 706 struct list_head *write_list) 707 { 708 if (!test_bit(B_DIRTY, &b->state)) 709 return; 710 711 clear_bit(B_DIRTY, &b->state); 712 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 713 714 if (!write_list) 715 submit_io(b, WRITE, b->block, write_endio); 716 else 717 list_add_tail(&b->write_list, write_list); 718 } 719 720 static void __flush_write_list(struct list_head *write_list) 721 { 722 struct blk_plug plug; 723 blk_start_plug(&plug); 724 while (!list_empty(write_list)) { 725 struct dm_buffer *b = 726 list_entry(write_list->next, struct dm_buffer, write_list); 727 list_del(&b->write_list); 728 submit_io(b, WRITE, b->block, write_endio); 729 cond_resched(); 730 } 731 blk_finish_plug(&plug); 732 } 733 734 /* 735 * Wait until any activity on the buffer finishes. Possibly write the 736 * buffer if it is dirty. When this function finishes, there is no I/O 737 * running on the buffer and the buffer is not dirty. 738 */ 739 static void __make_buffer_clean(struct dm_buffer *b) 740 { 741 BUG_ON(b->hold_count); 742 743 if (!b->state) /* fast case */ 744 return; 745 746 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 747 __write_dirty_buffer(b, NULL); 748 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 749 } 750 751 /* 752 * Find some buffer that is not held by anybody, clean it, unlink it and 753 * return it. 754 */ 755 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 756 { 757 struct dm_buffer *b; 758 759 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 760 BUG_ON(test_bit(B_WRITING, &b->state)); 761 BUG_ON(test_bit(B_DIRTY, &b->state)); 762 763 if (!b->hold_count) { 764 __make_buffer_clean(b); 765 __unlink_buffer(b); 766 return b; 767 } 768 cond_resched(); 769 } 770 771 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 772 BUG_ON(test_bit(B_READING, &b->state)); 773 774 if (!b->hold_count) { 775 __make_buffer_clean(b); 776 __unlink_buffer(b); 777 return b; 778 } 779 cond_resched(); 780 } 781 782 return NULL; 783 } 784 785 /* 786 * Wait until some other threads free some buffer or release hold count on 787 * some buffer. 788 * 789 * This function is entered with c->lock held, drops it and regains it 790 * before exiting. 791 */ 792 static void __wait_for_free_buffer(struct dm_bufio_client *c) 793 { 794 DECLARE_WAITQUEUE(wait, current); 795 796 add_wait_queue(&c->free_buffer_wait, &wait); 797 set_task_state(current, TASK_UNINTERRUPTIBLE); 798 dm_bufio_unlock(c); 799 800 io_schedule(); 801 802 remove_wait_queue(&c->free_buffer_wait, &wait); 803 804 dm_bufio_lock(c); 805 } 806 807 enum new_flag { 808 NF_FRESH = 0, 809 NF_READ = 1, 810 NF_GET = 2, 811 NF_PREFETCH = 3 812 }; 813 814 /* 815 * Allocate a new buffer. If the allocation is not possible, wait until 816 * some other thread frees a buffer. 817 * 818 * May drop the lock and regain it. 819 */ 820 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 821 { 822 struct dm_buffer *b; 823 bool tried_noio_alloc = false; 824 825 /* 826 * dm-bufio is resistant to allocation failures (it just keeps 827 * one buffer reserved in cases all the allocations fail). 828 * So set flags to not try too hard: 829 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 830 * mutex and wait ourselves. 831 * __GFP_NORETRY: don't retry and rather return failure 832 * __GFP_NOMEMALLOC: don't use emergency reserves 833 * __GFP_NOWARN: don't print a warning in case of failure 834 * 835 * For debugging, if we set the cache size to 1, no new buffers will 836 * be allocated. 837 */ 838 while (1) { 839 if (dm_bufio_cache_size_latch != 1) { 840 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 841 if (b) 842 return b; 843 } 844 845 if (nf == NF_PREFETCH) 846 return NULL; 847 848 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 849 dm_bufio_unlock(c); 850 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 851 dm_bufio_lock(c); 852 if (b) 853 return b; 854 tried_noio_alloc = true; 855 } 856 857 if (!list_empty(&c->reserved_buffers)) { 858 b = list_entry(c->reserved_buffers.next, 859 struct dm_buffer, lru_list); 860 list_del(&b->lru_list); 861 c->need_reserved_buffers++; 862 863 return b; 864 } 865 866 b = __get_unclaimed_buffer(c); 867 if (b) 868 return b; 869 870 __wait_for_free_buffer(c); 871 } 872 } 873 874 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 875 { 876 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 877 878 if (!b) 879 return NULL; 880 881 if (c->alloc_callback) 882 c->alloc_callback(b); 883 884 return b; 885 } 886 887 /* 888 * Free a buffer and wake other threads waiting for free buffers. 889 */ 890 static void __free_buffer_wake(struct dm_buffer *b) 891 { 892 struct dm_bufio_client *c = b->c; 893 894 if (!c->need_reserved_buffers) 895 free_buffer(b); 896 else { 897 list_add(&b->lru_list, &c->reserved_buffers); 898 c->need_reserved_buffers--; 899 } 900 901 wake_up(&c->free_buffer_wait); 902 } 903 904 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 905 struct list_head *write_list) 906 { 907 struct dm_buffer *b, *tmp; 908 909 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 910 BUG_ON(test_bit(B_READING, &b->state)); 911 912 if (!test_bit(B_DIRTY, &b->state) && 913 !test_bit(B_WRITING, &b->state)) { 914 __relink_lru(b, LIST_CLEAN); 915 continue; 916 } 917 918 if (no_wait && test_bit(B_WRITING, &b->state)) 919 return; 920 921 __write_dirty_buffer(b, write_list); 922 cond_resched(); 923 } 924 } 925 926 /* 927 * Get writeback threshold and buffer limit for a given client. 928 */ 929 static void __get_memory_limit(struct dm_bufio_client *c, 930 unsigned long *threshold_buffers, 931 unsigned long *limit_buffers) 932 { 933 unsigned long buffers; 934 935 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) { 936 mutex_lock(&dm_bufio_clients_lock); 937 __cache_size_refresh(); 938 mutex_unlock(&dm_bufio_clients_lock); 939 } 940 941 buffers = dm_bufio_cache_size_per_client >> 942 (c->sectors_per_block_bits + SECTOR_SHIFT); 943 944 if (buffers < c->minimum_buffers) 945 buffers = c->minimum_buffers; 946 947 *limit_buffers = buffers; 948 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 949 } 950 951 /* 952 * Check if we're over watermark. 953 * If we are over threshold_buffers, start freeing buffers. 954 * If we're over "limit_buffers", block until we get under the limit. 955 */ 956 static void __check_watermark(struct dm_bufio_client *c, 957 struct list_head *write_list) 958 { 959 unsigned long threshold_buffers, limit_buffers; 960 961 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 962 963 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 964 limit_buffers) { 965 966 struct dm_buffer *b = __get_unclaimed_buffer(c); 967 968 if (!b) 969 return; 970 971 __free_buffer_wake(b); 972 cond_resched(); 973 } 974 975 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 976 __write_dirty_buffers_async(c, 1, write_list); 977 } 978 979 /*---------------------------------------------------------------- 980 * Getting a buffer 981 *--------------------------------------------------------------*/ 982 983 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 984 enum new_flag nf, int *need_submit, 985 struct list_head *write_list) 986 { 987 struct dm_buffer *b, *new_b = NULL; 988 989 *need_submit = 0; 990 991 b = __find(c, block); 992 if (b) 993 goto found_buffer; 994 995 if (nf == NF_GET) 996 return NULL; 997 998 new_b = __alloc_buffer_wait(c, nf); 999 if (!new_b) 1000 return NULL; 1001 1002 /* 1003 * We've had a period where the mutex was unlocked, so need to 1004 * recheck the hash table. 1005 */ 1006 b = __find(c, block); 1007 if (b) { 1008 __free_buffer_wake(new_b); 1009 goto found_buffer; 1010 } 1011 1012 __check_watermark(c, write_list); 1013 1014 b = new_b; 1015 b->hold_count = 1; 1016 b->read_error = 0; 1017 b->write_error = 0; 1018 __link_buffer(b, block, LIST_CLEAN); 1019 1020 if (nf == NF_FRESH) { 1021 b->state = 0; 1022 return b; 1023 } 1024 1025 b->state = 1 << B_READING; 1026 *need_submit = 1; 1027 1028 return b; 1029 1030 found_buffer: 1031 if (nf == NF_PREFETCH) 1032 return NULL; 1033 /* 1034 * Note: it is essential that we don't wait for the buffer to be 1035 * read if dm_bufio_get function is used. Both dm_bufio_get and 1036 * dm_bufio_prefetch can be used in the driver request routine. 1037 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1038 * the same buffer, it would deadlock if we waited. 1039 */ 1040 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1041 return NULL; 1042 1043 b->hold_count++; 1044 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1045 test_bit(B_WRITING, &b->state)); 1046 return b; 1047 } 1048 1049 /* 1050 * The endio routine for reading: set the error, clear the bit and wake up 1051 * anyone waiting on the buffer. 1052 */ 1053 static void read_endio(struct bio *bio) 1054 { 1055 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1056 1057 b->read_error = bio->bi_error; 1058 1059 BUG_ON(!test_bit(B_READING, &b->state)); 1060 1061 smp_mb__before_atomic(); 1062 clear_bit(B_READING, &b->state); 1063 smp_mb__after_atomic(); 1064 1065 wake_up_bit(&b->state, B_READING); 1066 } 1067 1068 /* 1069 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1070 * functions is similar except that dm_bufio_new doesn't read the 1071 * buffer from the disk (assuming that the caller overwrites all the data 1072 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1073 */ 1074 static void *new_read(struct dm_bufio_client *c, sector_t block, 1075 enum new_flag nf, struct dm_buffer **bp) 1076 { 1077 int need_submit; 1078 struct dm_buffer *b; 1079 1080 LIST_HEAD(write_list); 1081 1082 dm_bufio_lock(c); 1083 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1084 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1085 if (b && b->hold_count == 1) 1086 buffer_record_stack(b); 1087 #endif 1088 dm_bufio_unlock(c); 1089 1090 __flush_write_list(&write_list); 1091 1092 if (!b) 1093 return NULL; 1094 1095 if (need_submit) 1096 submit_io(b, READ, b->block, read_endio); 1097 1098 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1099 1100 if (b->read_error) { 1101 int error = b->read_error; 1102 1103 dm_bufio_release(b); 1104 1105 return ERR_PTR(error); 1106 } 1107 1108 *bp = b; 1109 1110 return b->data; 1111 } 1112 1113 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1114 struct dm_buffer **bp) 1115 { 1116 return new_read(c, block, NF_GET, bp); 1117 } 1118 EXPORT_SYMBOL_GPL(dm_bufio_get); 1119 1120 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1121 struct dm_buffer **bp) 1122 { 1123 BUG_ON(dm_bufio_in_request()); 1124 1125 return new_read(c, block, NF_READ, bp); 1126 } 1127 EXPORT_SYMBOL_GPL(dm_bufio_read); 1128 1129 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1130 struct dm_buffer **bp) 1131 { 1132 BUG_ON(dm_bufio_in_request()); 1133 1134 return new_read(c, block, NF_FRESH, bp); 1135 } 1136 EXPORT_SYMBOL_GPL(dm_bufio_new); 1137 1138 void dm_bufio_prefetch(struct dm_bufio_client *c, 1139 sector_t block, unsigned n_blocks) 1140 { 1141 struct blk_plug plug; 1142 1143 LIST_HEAD(write_list); 1144 1145 BUG_ON(dm_bufio_in_request()); 1146 1147 blk_start_plug(&plug); 1148 dm_bufio_lock(c); 1149 1150 for (; n_blocks--; block++) { 1151 int need_submit; 1152 struct dm_buffer *b; 1153 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1154 &write_list); 1155 if (unlikely(!list_empty(&write_list))) { 1156 dm_bufio_unlock(c); 1157 blk_finish_plug(&plug); 1158 __flush_write_list(&write_list); 1159 blk_start_plug(&plug); 1160 dm_bufio_lock(c); 1161 } 1162 if (unlikely(b != NULL)) { 1163 dm_bufio_unlock(c); 1164 1165 if (need_submit) 1166 submit_io(b, READ, b->block, read_endio); 1167 dm_bufio_release(b); 1168 1169 cond_resched(); 1170 1171 if (!n_blocks) 1172 goto flush_plug; 1173 dm_bufio_lock(c); 1174 } 1175 } 1176 1177 dm_bufio_unlock(c); 1178 1179 flush_plug: 1180 blk_finish_plug(&plug); 1181 } 1182 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1183 1184 void dm_bufio_release(struct dm_buffer *b) 1185 { 1186 struct dm_bufio_client *c = b->c; 1187 1188 dm_bufio_lock(c); 1189 1190 BUG_ON(!b->hold_count); 1191 1192 b->hold_count--; 1193 if (!b->hold_count) { 1194 wake_up(&c->free_buffer_wait); 1195 1196 /* 1197 * If there were errors on the buffer, and the buffer is not 1198 * to be written, free the buffer. There is no point in caching 1199 * invalid buffer. 1200 */ 1201 if ((b->read_error || b->write_error) && 1202 !test_bit(B_READING, &b->state) && 1203 !test_bit(B_WRITING, &b->state) && 1204 !test_bit(B_DIRTY, &b->state)) { 1205 __unlink_buffer(b); 1206 __free_buffer_wake(b); 1207 } 1208 } 1209 1210 dm_bufio_unlock(c); 1211 } 1212 EXPORT_SYMBOL_GPL(dm_bufio_release); 1213 1214 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1215 { 1216 struct dm_bufio_client *c = b->c; 1217 1218 dm_bufio_lock(c); 1219 1220 BUG_ON(test_bit(B_READING, &b->state)); 1221 1222 if (!test_and_set_bit(B_DIRTY, &b->state)) 1223 __relink_lru(b, LIST_DIRTY); 1224 1225 dm_bufio_unlock(c); 1226 } 1227 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1228 1229 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1230 { 1231 LIST_HEAD(write_list); 1232 1233 BUG_ON(dm_bufio_in_request()); 1234 1235 dm_bufio_lock(c); 1236 __write_dirty_buffers_async(c, 0, &write_list); 1237 dm_bufio_unlock(c); 1238 __flush_write_list(&write_list); 1239 } 1240 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1241 1242 /* 1243 * For performance, it is essential that the buffers are written asynchronously 1244 * and simultaneously (so that the block layer can merge the writes) and then 1245 * waited upon. 1246 * 1247 * Finally, we flush hardware disk cache. 1248 */ 1249 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1250 { 1251 int a, f; 1252 unsigned long buffers_processed = 0; 1253 struct dm_buffer *b, *tmp; 1254 1255 LIST_HEAD(write_list); 1256 1257 dm_bufio_lock(c); 1258 __write_dirty_buffers_async(c, 0, &write_list); 1259 dm_bufio_unlock(c); 1260 __flush_write_list(&write_list); 1261 dm_bufio_lock(c); 1262 1263 again: 1264 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1265 int dropped_lock = 0; 1266 1267 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1268 buffers_processed++; 1269 1270 BUG_ON(test_bit(B_READING, &b->state)); 1271 1272 if (test_bit(B_WRITING, &b->state)) { 1273 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1274 dropped_lock = 1; 1275 b->hold_count++; 1276 dm_bufio_unlock(c); 1277 wait_on_bit_io(&b->state, B_WRITING, 1278 TASK_UNINTERRUPTIBLE); 1279 dm_bufio_lock(c); 1280 b->hold_count--; 1281 } else 1282 wait_on_bit_io(&b->state, B_WRITING, 1283 TASK_UNINTERRUPTIBLE); 1284 } 1285 1286 if (!test_bit(B_DIRTY, &b->state) && 1287 !test_bit(B_WRITING, &b->state)) 1288 __relink_lru(b, LIST_CLEAN); 1289 1290 cond_resched(); 1291 1292 /* 1293 * If we dropped the lock, the list is no longer consistent, 1294 * so we must restart the search. 1295 * 1296 * In the most common case, the buffer just processed is 1297 * relinked to the clean list, so we won't loop scanning the 1298 * same buffer again and again. 1299 * 1300 * This may livelock if there is another thread simultaneously 1301 * dirtying buffers, so we count the number of buffers walked 1302 * and if it exceeds the total number of buffers, it means that 1303 * someone is doing some writes simultaneously with us. In 1304 * this case, stop, dropping the lock. 1305 */ 1306 if (dropped_lock) 1307 goto again; 1308 } 1309 wake_up(&c->free_buffer_wait); 1310 dm_bufio_unlock(c); 1311 1312 a = xchg(&c->async_write_error, 0); 1313 f = dm_bufio_issue_flush(c); 1314 if (a) 1315 return a; 1316 1317 return f; 1318 } 1319 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1320 1321 /* 1322 * Use dm-io to send and empty barrier flush the device. 1323 */ 1324 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1325 { 1326 struct dm_io_request io_req = { 1327 .bi_op = REQ_OP_WRITE, 1328 .bi_op_flags = REQ_PREFLUSH, 1329 .mem.type = DM_IO_KMEM, 1330 .mem.ptr.addr = NULL, 1331 .client = c->dm_io, 1332 }; 1333 struct dm_io_region io_reg = { 1334 .bdev = c->bdev, 1335 .sector = 0, 1336 .count = 0, 1337 }; 1338 1339 BUG_ON(dm_bufio_in_request()); 1340 1341 return dm_io(&io_req, 1, &io_reg, NULL); 1342 } 1343 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1344 1345 /* 1346 * We first delete any other buffer that may be at that new location. 1347 * 1348 * Then, we write the buffer to the original location if it was dirty. 1349 * 1350 * Then, if we are the only one who is holding the buffer, relink the buffer 1351 * in the hash queue for the new location. 1352 * 1353 * If there was someone else holding the buffer, we write it to the new 1354 * location but not relink it, because that other user needs to have the buffer 1355 * at the same place. 1356 */ 1357 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1358 { 1359 struct dm_bufio_client *c = b->c; 1360 struct dm_buffer *new; 1361 1362 BUG_ON(dm_bufio_in_request()); 1363 1364 dm_bufio_lock(c); 1365 1366 retry: 1367 new = __find(c, new_block); 1368 if (new) { 1369 if (new->hold_count) { 1370 __wait_for_free_buffer(c); 1371 goto retry; 1372 } 1373 1374 /* 1375 * FIXME: Is there any point waiting for a write that's going 1376 * to be overwritten in a bit? 1377 */ 1378 __make_buffer_clean(new); 1379 __unlink_buffer(new); 1380 __free_buffer_wake(new); 1381 } 1382 1383 BUG_ON(!b->hold_count); 1384 BUG_ON(test_bit(B_READING, &b->state)); 1385 1386 __write_dirty_buffer(b, NULL); 1387 if (b->hold_count == 1) { 1388 wait_on_bit_io(&b->state, B_WRITING, 1389 TASK_UNINTERRUPTIBLE); 1390 set_bit(B_DIRTY, &b->state); 1391 __unlink_buffer(b); 1392 __link_buffer(b, new_block, LIST_DIRTY); 1393 } else { 1394 sector_t old_block; 1395 wait_on_bit_lock_io(&b->state, B_WRITING, 1396 TASK_UNINTERRUPTIBLE); 1397 /* 1398 * Relink buffer to "new_block" so that write_callback 1399 * sees "new_block" as a block number. 1400 * After the write, link the buffer back to old_block. 1401 * All this must be done in bufio lock, so that block number 1402 * change isn't visible to other threads. 1403 */ 1404 old_block = b->block; 1405 __unlink_buffer(b); 1406 __link_buffer(b, new_block, b->list_mode); 1407 submit_io(b, WRITE, new_block, write_endio); 1408 wait_on_bit_io(&b->state, B_WRITING, 1409 TASK_UNINTERRUPTIBLE); 1410 __unlink_buffer(b); 1411 __link_buffer(b, old_block, b->list_mode); 1412 } 1413 1414 dm_bufio_unlock(c); 1415 dm_bufio_release(b); 1416 } 1417 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1418 1419 /* 1420 * Free the given buffer. 1421 * 1422 * This is just a hint, if the buffer is in use or dirty, this function 1423 * does nothing. 1424 */ 1425 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1426 { 1427 struct dm_buffer *b; 1428 1429 dm_bufio_lock(c); 1430 1431 b = __find(c, block); 1432 if (b && likely(!b->hold_count) && likely(!b->state)) { 1433 __unlink_buffer(b); 1434 __free_buffer_wake(b); 1435 } 1436 1437 dm_bufio_unlock(c); 1438 } 1439 EXPORT_SYMBOL(dm_bufio_forget); 1440 1441 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1442 { 1443 c->minimum_buffers = n; 1444 } 1445 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1446 1447 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1448 { 1449 return c->block_size; 1450 } 1451 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1452 1453 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1454 { 1455 return i_size_read(c->bdev->bd_inode) >> 1456 (SECTOR_SHIFT + c->sectors_per_block_bits); 1457 } 1458 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1459 1460 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1461 { 1462 return b->block; 1463 } 1464 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1465 1466 void *dm_bufio_get_block_data(struct dm_buffer *b) 1467 { 1468 return b->data; 1469 } 1470 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1471 1472 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1473 { 1474 return b + 1; 1475 } 1476 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1477 1478 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1479 { 1480 return b->c; 1481 } 1482 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1483 1484 static void drop_buffers(struct dm_bufio_client *c) 1485 { 1486 struct dm_buffer *b; 1487 int i; 1488 bool warned = false; 1489 1490 BUG_ON(dm_bufio_in_request()); 1491 1492 /* 1493 * An optimization so that the buffers are not written one-by-one. 1494 */ 1495 dm_bufio_write_dirty_buffers_async(c); 1496 1497 dm_bufio_lock(c); 1498 1499 while ((b = __get_unclaimed_buffer(c))) 1500 __free_buffer_wake(b); 1501 1502 for (i = 0; i < LIST_SIZE; i++) 1503 list_for_each_entry(b, &c->lru[i], lru_list) { 1504 WARN_ON(!warned); 1505 warned = true; 1506 DMERR("leaked buffer %llx, hold count %u, list %d", 1507 (unsigned long long)b->block, b->hold_count, i); 1508 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1509 print_stack_trace(&b->stack_trace, 1); 1510 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1511 #endif 1512 } 1513 1514 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1515 while ((b = __get_unclaimed_buffer(c))) 1516 __free_buffer_wake(b); 1517 #endif 1518 1519 for (i = 0; i < LIST_SIZE; i++) 1520 BUG_ON(!list_empty(&c->lru[i])); 1521 1522 dm_bufio_unlock(c); 1523 } 1524 1525 /* 1526 * We may not be able to evict this buffer if IO pending or the client 1527 * is still using it. Caller is expected to know buffer is too old. 1528 * 1529 * And if GFP_NOFS is used, we must not do any I/O because we hold 1530 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1531 * rerouted to different bufio client. 1532 */ 1533 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1534 { 1535 if (!(gfp & __GFP_FS)) { 1536 if (test_bit(B_READING, &b->state) || 1537 test_bit(B_WRITING, &b->state) || 1538 test_bit(B_DIRTY, &b->state)) 1539 return false; 1540 } 1541 1542 if (b->hold_count) 1543 return false; 1544 1545 __make_buffer_clean(b); 1546 __unlink_buffer(b); 1547 __free_buffer_wake(b); 1548 1549 return true; 1550 } 1551 1552 static unsigned get_retain_buffers(struct dm_bufio_client *c) 1553 { 1554 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1555 return retain_bytes / c->block_size; 1556 } 1557 1558 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1559 gfp_t gfp_mask) 1560 { 1561 int l; 1562 struct dm_buffer *b, *tmp; 1563 unsigned long freed = 0; 1564 unsigned long count = nr_to_scan; 1565 unsigned retain_target = get_retain_buffers(c); 1566 1567 for (l = 0; l < LIST_SIZE; l++) { 1568 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1569 if (__try_evict_buffer(b, gfp_mask)) 1570 freed++; 1571 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1572 return freed; 1573 cond_resched(); 1574 } 1575 } 1576 return freed; 1577 } 1578 1579 static unsigned long 1580 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1581 { 1582 struct dm_bufio_client *c; 1583 unsigned long freed; 1584 1585 c = container_of(shrink, struct dm_bufio_client, shrinker); 1586 if (sc->gfp_mask & __GFP_FS) 1587 dm_bufio_lock(c); 1588 else if (!dm_bufio_trylock(c)) 1589 return SHRINK_STOP; 1590 1591 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1592 dm_bufio_unlock(c); 1593 return freed; 1594 } 1595 1596 static unsigned long 1597 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1598 { 1599 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1600 1601 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]); 1602 } 1603 1604 /* 1605 * Create the buffering interface 1606 */ 1607 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1608 unsigned reserved_buffers, unsigned aux_size, 1609 void (*alloc_callback)(struct dm_buffer *), 1610 void (*write_callback)(struct dm_buffer *)) 1611 { 1612 int r; 1613 struct dm_bufio_client *c; 1614 unsigned i; 1615 1616 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1617 (block_size & (block_size - 1))); 1618 1619 c = kzalloc(sizeof(*c), GFP_KERNEL); 1620 if (!c) { 1621 r = -ENOMEM; 1622 goto bad_client; 1623 } 1624 c->buffer_tree = RB_ROOT; 1625 1626 c->bdev = bdev; 1627 c->block_size = block_size; 1628 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1629 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1630 __ffs(block_size) - PAGE_SHIFT : 0; 1631 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1632 PAGE_SHIFT - __ffs(block_size) : 0); 1633 1634 c->aux_size = aux_size; 1635 c->alloc_callback = alloc_callback; 1636 c->write_callback = write_callback; 1637 1638 for (i = 0; i < LIST_SIZE; i++) { 1639 INIT_LIST_HEAD(&c->lru[i]); 1640 c->n_buffers[i] = 0; 1641 } 1642 1643 mutex_init(&c->lock); 1644 INIT_LIST_HEAD(&c->reserved_buffers); 1645 c->need_reserved_buffers = reserved_buffers; 1646 1647 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1648 1649 init_waitqueue_head(&c->free_buffer_wait); 1650 c->async_write_error = 0; 1651 1652 c->dm_io = dm_io_client_create(); 1653 if (IS_ERR(c->dm_io)) { 1654 r = PTR_ERR(c->dm_io); 1655 goto bad_dm_io; 1656 } 1657 1658 mutex_lock(&dm_bufio_clients_lock); 1659 if (c->blocks_per_page_bits) { 1660 if (!DM_BUFIO_CACHE_NAME(c)) { 1661 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1662 if (!DM_BUFIO_CACHE_NAME(c)) { 1663 r = -ENOMEM; 1664 mutex_unlock(&dm_bufio_clients_lock); 1665 goto bad_cache; 1666 } 1667 } 1668 1669 if (!DM_BUFIO_CACHE(c)) { 1670 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1671 c->block_size, 1672 c->block_size, 0, NULL); 1673 if (!DM_BUFIO_CACHE(c)) { 1674 r = -ENOMEM; 1675 mutex_unlock(&dm_bufio_clients_lock); 1676 goto bad_cache; 1677 } 1678 } 1679 } 1680 mutex_unlock(&dm_bufio_clients_lock); 1681 1682 while (c->need_reserved_buffers) { 1683 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1684 1685 if (!b) { 1686 r = -ENOMEM; 1687 goto bad_buffer; 1688 } 1689 __free_buffer_wake(b); 1690 } 1691 1692 mutex_lock(&dm_bufio_clients_lock); 1693 dm_bufio_client_count++; 1694 list_add(&c->client_list, &dm_bufio_all_clients); 1695 __cache_size_refresh(); 1696 mutex_unlock(&dm_bufio_clients_lock); 1697 1698 c->shrinker.count_objects = dm_bufio_shrink_count; 1699 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1700 c->shrinker.seeks = 1; 1701 c->shrinker.batch = 0; 1702 register_shrinker(&c->shrinker); 1703 1704 return c; 1705 1706 bad_buffer: 1707 bad_cache: 1708 while (!list_empty(&c->reserved_buffers)) { 1709 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1710 struct dm_buffer, lru_list); 1711 list_del(&b->lru_list); 1712 free_buffer(b); 1713 } 1714 dm_io_client_destroy(c->dm_io); 1715 bad_dm_io: 1716 kfree(c); 1717 bad_client: 1718 return ERR_PTR(r); 1719 } 1720 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1721 1722 /* 1723 * Free the buffering interface. 1724 * It is required that there are no references on any buffers. 1725 */ 1726 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1727 { 1728 unsigned i; 1729 1730 drop_buffers(c); 1731 1732 unregister_shrinker(&c->shrinker); 1733 1734 mutex_lock(&dm_bufio_clients_lock); 1735 1736 list_del(&c->client_list); 1737 dm_bufio_client_count--; 1738 __cache_size_refresh(); 1739 1740 mutex_unlock(&dm_bufio_clients_lock); 1741 1742 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1743 BUG_ON(c->need_reserved_buffers); 1744 1745 while (!list_empty(&c->reserved_buffers)) { 1746 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1747 struct dm_buffer, lru_list); 1748 list_del(&b->lru_list); 1749 free_buffer(b); 1750 } 1751 1752 for (i = 0; i < LIST_SIZE; i++) 1753 if (c->n_buffers[i]) 1754 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1755 1756 for (i = 0; i < LIST_SIZE; i++) 1757 BUG_ON(c->n_buffers[i]); 1758 1759 dm_io_client_destroy(c->dm_io); 1760 kfree(c); 1761 } 1762 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1763 1764 static unsigned get_max_age_hz(void) 1765 { 1766 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1767 1768 if (max_age > UINT_MAX / HZ) 1769 max_age = UINT_MAX / HZ; 1770 1771 return max_age * HZ; 1772 } 1773 1774 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1775 { 1776 return time_after_eq(jiffies, b->last_accessed + age_hz); 1777 } 1778 1779 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1780 { 1781 struct dm_buffer *b, *tmp; 1782 unsigned retain_target = get_retain_buffers(c); 1783 unsigned count; 1784 1785 dm_bufio_lock(c); 1786 1787 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1788 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1789 if (count <= retain_target) 1790 break; 1791 1792 if (!older_than(b, age_hz)) 1793 break; 1794 1795 if (__try_evict_buffer(b, 0)) 1796 count--; 1797 1798 cond_resched(); 1799 } 1800 1801 dm_bufio_unlock(c); 1802 } 1803 1804 static void cleanup_old_buffers(void) 1805 { 1806 unsigned long max_age_hz = get_max_age_hz(); 1807 struct dm_bufio_client *c; 1808 1809 mutex_lock(&dm_bufio_clients_lock); 1810 1811 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1812 __evict_old_buffers(c, max_age_hz); 1813 1814 mutex_unlock(&dm_bufio_clients_lock); 1815 } 1816 1817 static struct workqueue_struct *dm_bufio_wq; 1818 static struct delayed_work dm_bufio_work; 1819 1820 static void work_fn(struct work_struct *w) 1821 { 1822 cleanup_old_buffers(); 1823 1824 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1825 DM_BUFIO_WORK_TIMER_SECS * HZ); 1826 } 1827 1828 /*---------------------------------------------------------------- 1829 * Module setup 1830 *--------------------------------------------------------------*/ 1831 1832 /* 1833 * This is called only once for the whole dm_bufio module. 1834 * It initializes memory limit. 1835 */ 1836 static int __init dm_bufio_init(void) 1837 { 1838 __u64 mem; 1839 1840 dm_bufio_allocated_kmem_cache = 0; 1841 dm_bufio_allocated_get_free_pages = 0; 1842 dm_bufio_allocated_vmalloc = 0; 1843 dm_bufio_current_allocated = 0; 1844 1845 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1846 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1847 1848 mem = (__u64)((totalram_pages - totalhigh_pages) * 1849 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1850 1851 if (mem > ULONG_MAX) 1852 mem = ULONG_MAX; 1853 1854 #ifdef CONFIG_MMU 1855 /* 1856 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1857 * in fs/proc/internal.h 1858 */ 1859 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1860 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1861 #endif 1862 1863 dm_bufio_default_cache_size = mem; 1864 1865 mutex_lock(&dm_bufio_clients_lock); 1866 __cache_size_refresh(); 1867 mutex_unlock(&dm_bufio_clients_lock); 1868 1869 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1870 if (!dm_bufio_wq) 1871 return -ENOMEM; 1872 1873 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1874 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1875 DM_BUFIO_WORK_TIMER_SECS * HZ); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * This is called once when unloading the dm_bufio module. 1882 */ 1883 static void __exit dm_bufio_exit(void) 1884 { 1885 int bug = 0; 1886 int i; 1887 1888 cancel_delayed_work_sync(&dm_bufio_work); 1889 destroy_workqueue(dm_bufio_wq); 1890 1891 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1892 kmem_cache_destroy(dm_bufio_caches[i]); 1893 1894 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1895 kfree(dm_bufio_cache_names[i]); 1896 1897 if (dm_bufio_client_count) { 1898 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1899 __func__, dm_bufio_client_count); 1900 bug = 1; 1901 } 1902 1903 if (dm_bufio_current_allocated) { 1904 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1905 __func__, dm_bufio_current_allocated); 1906 bug = 1; 1907 } 1908 1909 if (dm_bufio_allocated_get_free_pages) { 1910 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1911 __func__, dm_bufio_allocated_get_free_pages); 1912 bug = 1; 1913 } 1914 1915 if (dm_bufio_allocated_vmalloc) { 1916 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1917 __func__, dm_bufio_allocated_vmalloc); 1918 bug = 1; 1919 } 1920 1921 BUG_ON(bug); 1922 } 1923 1924 module_init(dm_bufio_init) 1925 module_exit(dm_bufio_exit) 1926 1927 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1928 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1929 1930 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1931 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1932 1933 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR); 1934 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1935 1936 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1937 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1938 1939 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1940 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1941 1942 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1943 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1944 1945 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1946 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1947 1948 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1949 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1950 1951 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1952 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1953 MODULE_LICENSE("GPL"); 1954