xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 8730046c)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*----------------------------------------------------------------*/
195 
196 /*
197  * Default cache size: available memory divided by the ratio.
198  */
199 static unsigned long dm_bufio_default_cache_size;
200 
201 /*
202  * Total cache size set by the user.
203  */
204 static unsigned long dm_bufio_cache_size;
205 
206 /*
207  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
208  * at any time.  If it disagrees, the user has changed cache size.
209  */
210 static unsigned long dm_bufio_cache_size_latch;
211 
212 static DEFINE_SPINLOCK(param_spinlock);
213 
214 /*
215  * Buffers are freed after this timeout
216  */
217 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
218 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
219 
220 static unsigned long dm_bufio_peak_allocated;
221 static unsigned long dm_bufio_allocated_kmem_cache;
222 static unsigned long dm_bufio_allocated_get_free_pages;
223 static unsigned long dm_bufio_allocated_vmalloc;
224 static unsigned long dm_bufio_current_allocated;
225 
226 /*----------------------------------------------------------------*/
227 
228 /*
229  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
230  */
231 static unsigned long dm_bufio_cache_size_per_client;
232 
233 /*
234  * The current number of clients.
235  */
236 static int dm_bufio_client_count;
237 
238 /*
239  * The list of all clients.
240  */
241 static LIST_HEAD(dm_bufio_all_clients);
242 
243 /*
244  * This mutex protects dm_bufio_cache_size_latch,
245  * dm_bufio_cache_size_per_client and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248 
249 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
250 static void buffer_record_stack(struct dm_buffer *b)
251 {
252 	b->stack_trace.nr_entries = 0;
253 	b->stack_trace.max_entries = MAX_STACK;
254 	b->stack_trace.entries = b->stack_entries;
255 	b->stack_trace.skip = 2;
256 	save_stack_trace(&b->stack_trace);
257 }
258 #endif
259 
260 /*----------------------------------------------------------------
261  * A red/black tree acts as an index for all the buffers.
262  *--------------------------------------------------------------*/
263 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
264 {
265 	struct rb_node *n = c->buffer_tree.rb_node;
266 	struct dm_buffer *b;
267 
268 	while (n) {
269 		b = container_of(n, struct dm_buffer, node);
270 
271 		if (b->block == block)
272 			return b;
273 
274 		n = (b->block < block) ? n->rb_left : n->rb_right;
275 	}
276 
277 	return NULL;
278 }
279 
280 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
281 {
282 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
283 	struct dm_buffer *found;
284 
285 	while (*new) {
286 		found = container_of(*new, struct dm_buffer, node);
287 
288 		if (found->block == b->block) {
289 			BUG_ON(found != b);
290 			return;
291 		}
292 
293 		parent = *new;
294 		new = (found->block < b->block) ?
295 			&((*new)->rb_left) : &((*new)->rb_right);
296 	}
297 
298 	rb_link_node(&b->node, parent, new);
299 	rb_insert_color(&b->node, &c->buffer_tree);
300 }
301 
302 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
303 {
304 	rb_erase(&b->node, &c->buffer_tree);
305 }
306 
307 /*----------------------------------------------------------------*/
308 
309 static void adjust_total_allocated(enum data_mode data_mode, long diff)
310 {
311 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
312 		&dm_bufio_allocated_kmem_cache,
313 		&dm_bufio_allocated_get_free_pages,
314 		&dm_bufio_allocated_vmalloc,
315 	};
316 
317 	spin_lock(&param_spinlock);
318 
319 	*class_ptr[data_mode] += diff;
320 
321 	dm_bufio_current_allocated += diff;
322 
323 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
324 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
325 
326 	spin_unlock(&param_spinlock);
327 }
328 
329 /*
330  * Change the number of clients and recalculate per-client limit.
331  */
332 static void __cache_size_refresh(void)
333 {
334 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
335 	BUG_ON(dm_bufio_client_count < 0);
336 
337 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
338 
339 	/*
340 	 * Use default if set to 0 and report the actual cache size used.
341 	 */
342 	if (!dm_bufio_cache_size_latch) {
343 		(void)cmpxchg(&dm_bufio_cache_size, 0,
344 			      dm_bufio_default_cache_size);
345 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
346 	}
347 
348 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
349 					 (dm_bufio_client_count ? : 1);
350 }
351 
352 /*
353  * Allocating buffer data.
354  *
355  * Small buffers are allocated with kmem_cache, to use space optimally.
356  *
357  * For large buffers, we choose between get_free_pages and vmalloc.
358  * Each has advantages and disadvantages.
359  *
360  * __get_free_pages can randomly fail if the memory is fragmented.
361  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
362  * as low as 128M) so using it for caching is not appropriate.
363  *
364  * If the allocation may fail we use __get_free_pages. Memory fragmentation
365  * won't have a fatal effect here, but it just causes flushes of some other
366  * buffers and more I/O will be performed. Don't use __get_free_pages if it
367  * always fails (i.e. order >= MAX_ORDER).
368  *
369  * If the allocation shouldn't fail we use __vmalloc. This is only for the
370  * initial reserve allocation, so there's no risk of wasting all vmalloc
371  * space.
372  */
373 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
374 			       enum data_mode *data_mode)
375 {
376 	unsigned noio_flag;
377 	void *ptr;
378 
379 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
380 		*data_mode = DATA_MODE_SLAB;
381 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
382 	}
383 
384 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
385 	    gfp_mask & __GFP_NORETRY) {
386 		*data_mode = DATA_MODE_GET_FREE_PAGES;
387 		return (void *)__get_free_pages(gfp_mask,
388 						c->pages_per_block_bits);
389 	}
390 
391 	*data_mode = DATA_MODE_VMALLOC;
392 
393 	/*
394 	 * __vmalloc allocates the data pages and auxiliary structures with
395 	 * gfp_flags that were specified, but pagetables are always allocated
396 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
397 	 *
398 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
399 	 * all allocations done by this process (including pagetables) are done
400 	 * as if GFP_NOIO was specified.
401 	 */
402 
403 	if (gfp_mask & __GFP_NORETRY)
404 		noio_flag = memalloc_noio_save();
405 
406 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
407 
408 	if (gfp_mask & __GFP_NORETRY)
409 		memalloc_noio_restore(noio_flag);
410 
411 	return ptr;
412 }
413 
414 /*
415  * Free buffer's data.
416  */
417 static void free_buffer_data(struct dm_bufio_client *c,
418 			     void *data, enum data_mode data_mode)
419 {
420 	switch (data_mode) {
421 	case DATA_MODE_SLAB:
422 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
423 		break;
424 
425 	case DATA_MODE_GET_FREE_PAGES:
426 		free_pages((unsigned long)data, c->pages_per_block_bits);
427 		break;
428 
429 	case DATA_MODE_VMALLOC:
430 		vfree(data);
431 		break;
432 
433 	default:
434 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
435 		       data_mode);
436 		BUG();
437 	}
438 }
439 
440 /*
441  * Allocate buffer and its data.
442  */
443 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
444 {
445 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
446 				      gfp_mask);
447 
448 	if (!b)
449 		return NULL;
450 
451 	b->c = c;
452 
453 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
454 	if (!b->data) {
455 		kfree(b);
456 		return NULL;
457 	}
458 
459 	adjust_total_allocated(b->data_mode, (long)c->block_size);
460 
461 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
462 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
463 #endif
464 	return b;
465 }
466 
467 /*
468  * Free buffer and its data.
469  */
470 static void free_buffer(struct dm_buffer *b)
471 {
472 	struct dm_bufio_client *c = b->c;
473 
474 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
475 
476 	free_buffer_data(c, b->data, b->data_mode);
477 	kfree(b);
478 }
479 
480 /*
481  * Link buffer to the hash list and clean or dirty queue.
482  */
483 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	c->n_buffers[dirty]++;
488 	b->block = block;
489 	b->list_mode = dirty;
490 	list_add(&b->lru_list, &c->lru[dirty]);
491 	__insert(b->c, b);
492 	b->last_accessed = jiffies;
493 }
494 
495 /*
496  * Unlink buffer from the hash list and dirty or clean queue.
497  */
498 static void __unlink_buffer(struct dm_buffer *b)
499 {
500 	struct dm_bufio_client *c = b->c;
501 
502 	BUG_ON(!c->n_buffers[b->list_mode]);
503 
504 	c->n_buffers[b->list_mode]--;
505 	__remove(b->c, b);
506 	list_del(&b->lru_list);
507 }
508 
509 /*
510  * Place the buffer to the head of dirty or clean LRU queue.
511  */
512 static void __relink_lru(struct dm_buffer *b, int dirty)
513 {
514 	struct dm_bufio_client *c = b->c;
515 
516 	BUG_ON(!c->n_buffers[b->list_mode]);
517 
518 	c->n_buffers[b->list_mode]--;
519 	c->n_buffers[dirty]++;
520 	b->list_mode = dirty;
521 	list_move(&b->lru_list, &c->lru[dirty]);
522 	b->last_accessed = jiffies;
523 }
524 
525 /*----------------------------------------------------------------
526  * Submit I/O on the buffer.
527  *
528  * Bio interface is faster but it has some problems:
529  *	the vector list is limited (increasing this limit increases
530  *	memory-consumption per buffer, so it is not viable);
531  *
532  *	the memory must be direct-mapped, not vmalloced;
533  *
534  *	the I/O driver can reject requests spuriously if it thinks that
535  *	the requests are too big for the device or if they cross a
536  *	controller-defined memory boundary.
537  *
538  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
539  * it is not vmalloced, try using the bio interface.
540  *
541  * If the buffer is big, if it is vmalloced or if the underlying device
542  * rejects the bio because it is too large, use dm-io layer to do the I/O.
543  * The dm-io layer splits the I/O into multiple requests, avoiding the above
544  * shortcomings.
545  *--------------------------------------------------------------*/
546 
547 /*
548  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
549  * that the request was handled directly with bio interface.
550  */
551 static void dmio_complete(unsigned long error, void *context)
552 {
553 	struct dm_buffer *b = context;
554 
555 	b->bio.bi_error = error ? -EIO : 0;
556 	b->bio.bi_end_io(&b->bio);
557 }
558 
559 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
560 		     bio_end_io_t *end_io)
561 {
562 	int r;
563 	struct dm_io_request io_req = {
564 		.bi_op = rw,
565 		.bi_op_flags = 0,
566 		.notify.fn = dmio_complete,
567 		.notify.context = b,
568 		.client = b->c->dm_io,
569 	};
570 	struct dm_io_region region = {
571 		.bdev = b->c->bdev,
572 		.sector = block << b->c->sectors_per_block_bits,
573 		.count = b->c->block_size >> SECTOR_SHIFT,
574 	};
575 
576 	if (b->data_mode != DATA_MODE_VMALLOC) {
577 		io_req.mem.type = DM_IO_KMEM;
578 		io_req.mem.ptr.addr = b->data;
579 	} else {
580 		io_req.mem.type = DM_IO_VMA;
581 		io_req.mem.ptr.vma = b->data;
582 	}
583 
584 	b->bio.bi_end_io = end_io;
585 
586 	r = dm_io(&io_req, 1, &region, NULL);
587 	if (r) {
588 		b->bio.bi_error = r;
589 		end_io(&b->bio);
590 	}
591 }
592 
593 static void inline_endio(struct bio *bio)
594 {
595 	bio_end_io_t *end_fn = bio->bi_private;
596 	int error = bio->bi_error;
597 
598 	/*
599 	 * Reset the bio to free any attached resources
600 	 * (e.g. bio integrity profiles).
601 	 */
602 	bio_reset(bio);
603 
604 	bio->bi_error = error;
605 	end_fn(bio);
606 }
607 
608 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
609 			   bio_end_io_t *end_io)
610 {
611 	char *ptr;
612 	int len;
613 
614 	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
615 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
616 	b->bio.bi_bdev = b->c->bdev;
617 	b->bio.bi_end_io = inline_endio;
618 	/*
619 	 * Use of .bi_private isn't a problem here because
620 	 * the dm_buffer's inline bio is local to bufio.
621 	 */
622 	b->bio.bi_private = end_io;
623 	bio_set_op_attrs(&b->bio, rw, 0);
624 
625 	/*
626 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
627 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
628 	 */
629 	ptr = b->data;
630 	len = b->c->block_size;
631 
632 	if (len >= PAGE_SIZE)
633 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
634 	else
635 		BUG_ON((unsigned long)ptr & (len - 1));
636 
637 	do {
638 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
639 				  len < PAGE_SIZE ? len : PAGE_SIZE,
640 				  offset_in_page(ptr))) {
641 			BUG_ON(b->c->block_size <= PAGE_SIZE);
642 			use_dmio(b, rw, block, end_io);
643 			return;
644 		}
645 
646 		len -= PAGE_SIZE;
647 		ptr += PAGE_SIZE;
648 	} while (len > 0);
649 
650 	submit_bio(&b->bio);
651 }
652 
653 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
654 		      bio_end_io_t *end_io)
655 {
656 	if (rw == WRITE && b->c->write_callback)
657 		b->c->write_callback(b);
658 
659 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
660 	    b->data_mode != DATA_MODE_VMALLOC)
661 		use_inline_bio(b, rw, block, end_io);
662 	else
663 		use_dmio(b, rw, block, end_io);
664 }
665 
666 /*----------------------------------------------------------------
667  * Writing dirty buffers
668  *--------------------------------------------------------------*/
669 
670 /*
671  * The endio routine for write.
672  *
673  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
674  * it.
675  */
676 static void write_endio(struct bio *bio)
677 {
678 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
679 
680 	b->write_error = bio->bi_error;
681 	if (unlikely(bio->bi_error)) {
682 		struct dm_bufio_client *c = b->c;
683 		int error = bio->bi_error;
684 		(void)cmpxchg(&c->async_write_error, 0, error);
685 	}
686 
687 	BUG_ON(!test_bit(B_WRITING, &b->state));
688 
689 	smp_mb__before_atomic();
690 	clear_bit(B_WRITING, &b->state);
691 	smp_mb__after_atomic();
692 
693 	wake_up_bit(&b->state, B_WRITING);
694 }
695 
696 /*
697  * Initiate a write on a dirty buffer, but don't wait for it.
698  *
699  * - If the buffer is not dirty, exit.
700  * - If there some previous write going on, wait for it to finish (we can't
701  *   have two writes on the same buffer simultaneously).
702  * - Submit our write and don't wait on it. We set B_WRITING indicating
703  *   that there is a write in progress.
704  */
705 static void __write_dirty_buffer(struct dm_buffer *b,
706 				 struct list_head *write_list)
707 {
708 	if (!test_bit(B_DIRTY, &b->state))
709 		return;
710 
711 	clear_bit(B_DIRTY, &b->state);
712 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
713 
714 	if (!write_list)
715 		submit_io(b, WRITE, b->block, write_endio);
716 	else
717 		list_add_tail(&b->write_list, write_list);
718 }
719 
720 static void __flush_write_list(struct list_head *write_list)
721 {
722 	struct blk_plug plug;
723 	blk_start_plug(&plug);
724 	while (!list_empty(write_list)) {
725 		struct dm_buffer *b =
726 			list_entry(write_list->next, struct dm_buffer, write_list);
727 		list_del(&b->write_list);
728 		submit_io(b, WRITE, b->block, write_endio);
729 		cond_resched();
730 	}
731 	blk_finish_plug(&plug);
732 }
733 
734 /*
735  * Wait until any activity on the buffer finishes.  Possibly write the
736  * buffer if it is dirty.  When this function finishes, there is no I/O
737  * running on the buffer and the buffer is not dirty.
738  */
739 static void __make_buffer_clean(struct dm_buffer *b)
740 {
741 	BUG_ON(b->hold_count);
742 
743 	if (!b->state)	/* fast case */
744 		return;
745 
746 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
747 	__write_dirty_buffer(b, NULL);
748 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
749 }
750 
751 /*
752  * Find some buffer that is not held by anybody, clean it, unlink it and
753  * return it.
754  */
755 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
756 {
757 	struct dm_buffer *b;
758 
759 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
760 		BUG_ON(test_bit(B_WRITING, &b->state));
761 		BUG_ON(test_bit(B_DIRTY, &b->state));
762 
763 		if (!b->hold_count) {
764 			__make_buffer_clean(b);
765 			__unlink_buffer(b);
766 			return b;
767 		}
768 		cond_resched();
769 	}
770 
771 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
772 		BUG_ON(test_bit(B_READING, &b->state));
773 
774 		if (!b->hold_count) {
775 			__make_buffer_clean(b);
776 			__unlink_buffer(b);
777 			return b;
778 		}
779 		cond_resched();
780 	}
781 
782 	return NULL;
783 }
784 
785 /*
786  * Wait until some other threads free some buffer or release hold count on
787  * some buffer.
788  *
789  * This function is entered with c->lock held, drops it and regains it
790  * before exiting.
791  */
792 static void __wait_for_free_buffer(struct dm_bufio_client *c)
793 {
794 	DECLARE_WAITQUEUE(wait, current);
795 
796 	add_wait_queue(&c->free_buffer_wait, &wait);
797 	set_task_state(current, TASK_UNINTERRUPTIBLE);
798 	dm_bufio_unlock(c);
799 
800 	io_schedule();
801 
802 	remove_wait_queue(&c->free_buffer_wait, &wait);
803 
804 	dm_bufio_lock(c);
805 }
806 
807 enum new_flag {
808 	NF_FRESH = 0,
809 	NF_READ = 1,
810 	NF_GET = 2,
811 	NF_PREFETCH = 3
812 };
813 
814 /*
815  * Allocate a new buffer. If the allocation is not possible, wait until
816  * some other thread frees a buffer.
817  *
818  * May drop the lock and regain it.
819  */
820 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
821 {
822 	struct dm_buffer *b;
823 	bool tried_noio_alloc = false;
824 
825 	/*
826 	 * dm-bufio is resistant to allocation failures (it just keeps
827 	 * one buffer reserved in cases all the allocations fail).
828 	 * So set flags to not try too hard:
829 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
830 	 *		    mutex and wait ourselves.
831 	 *	__GFP_NORETRY: don't retry and rather return failure
832 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
833 	 *	__GFP_NOWARN: don't print a warning in case of failure
834 	 *
835 	 * For debugging, if we set the cache size to 1, no new buffers will
836 	 * be allocated.
837 	 */
838 	while (1) {
839 		if (dm_bufio_cache_size_latch != 1) {
840 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
841 			if (b)
842 				return b;
843 		}
844 
845 		if (nf == NF_PREFETCH)
846 			return NULL;
847 
848 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
849 			dm_bufio_unlock(c);
850 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
851 			dm_bufio_lock(c);
852 			if (b)
853 				return b;
854 			tried_noio_alloc = true;
855 		}
856 
857 		if (!list_empty(&c->reserved_buffers)) {
858 			b = list_entry(c->reserved_buffers.next,
859 				       struct dm_buffer, lru_list);
860 			list_del(&b->lru_list);
861 			c->need_reserved_buffers++;
862 
863 			return b;
864 		}
865 
866 		b = __get_unclaimed_buffer(c);
867 		if (b)
868 			return b;
869 
870 		__wait_for_free_buffer(c);
871 	}
872 }
873 
874 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
875 {
876 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
877 
878 	if (!b)
879 		return NULL;
880 
881 	if (c->alloc_callback)
882 		c->alloc_callback(b);
883 
884 	return b;
885 }
886 
887 /*
888  * Free a buffer and wake other threads waiting for free buffers.
889  */
890 static void __free_buffer_wake(struct dm_buffer *b)
891 {
892 	struct dm_bufio_client *c = b->c;
893 
894 	if (!c->need_reserved_buffers)
895 		free_buffer(b);
896 	else {
897 		list_add(&b->lru_list, &c->reserved_buffers);
898 		c->need_reserved_buffers--;
899 	}
900 
901 	wake_up(&c->free_buffer_wait);
902 }
903 
904 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
905 					struct list_head *write_list)
906 {
907 	struct dm_buffer *b, *tmp;
908 
909 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
910 		BUG_ON(test_bit(B_READING, &b->state));
911 
912 		if (!test_bit(B_DIRTY, &b->state) &&
913 		    !test_bit(B_WRITING, &b->state)) {
914 			__relink_lru(b, LIST_CLEAN);
915 			continue;
916 		}
917 
918 		if (no_wait && test_bit(B_WRITING, &b->state))
919 			return;
920 
921 		__write_dirty_buffer(b, write_list);
922 		cond_resched();
923 	}
924 }
925 
926 /*
927  * Get writeback threshold and buffer limit for a given client.
928  */
929 static void __get_memory_limit(struct dm_bufio_client *c,
930 			       unsigned long *threshold_buffers,
931 			       unsigned long *limit_buffers)
932 {
933 	unsigned long buffers;
934 
935 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
936 		mutex_lock(&dm_bufio_clients_lock);
937 		__cache_size_refresh();
938 		mutex_unlock(&dm_bufio_clients_lock);
939 	}
940 
941 	buffers = dm_bufio_cache_size_per_client >>
942 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
943 
944 	if (buffers < c->minimum_buffers)
945 		buffers = c->minimum_buffers;
946 
947 	*limit_buffers = buffers;
948 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
949 }
950 
951 /*
952  * Check if we're over watermark.
953  * If we are over threshold_buffers, start freeing buffers.
954  * If we're over "limit_buffers", block until we get under the limit.
955  */
956 static void __check_watermark(struct dm_bufio_client *c,
957 			      struct list_head *write_list)
958 {
959 	unsigned long threshold_buffers, limit_buffers;
960 
961 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
962 
963 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
964 	       limit_buffers) {
965 
966 		struct dm_buffer *b = __get_unclaimed_buffer(c);
967 
968 		if (!b)
969 			return;
970 
971 		__free_buffer_wake(b);
972 		cond_resched();
973 	}
974 
975 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
976 		__write_dirty_buffers_async(c, 1, write_list);
977 }
978 
979 /*----------------------------------------------------------------
980  * Getting a buffer
981  *--------------------------------------------------------------*/
982 
983 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
984 				     enum new_flag nf, int *need_submit,
985 				     struct list_head *write_list)
986 {
987 	struct dm_buffer *b, *new_b = NULL;
988 
989 	*need_submit = 0;
990 
991 	b = __find(c, block);
992 	if (b)
993 		goto found_buffer;
994 
995 	if (nf == NF_GET)
996 		return NULL;
997 
998 	new_b = __alloc_buffer_wait(c, nf);
999 	if (!new_b)
1000 		return NULL;
1001 
1002 	/*
1003 	 * We've had a period where the mutex was unlocked, so need to
1004 	 * recheck the hash table.
1005 	 */
1006 	b = __find(c, block);
1007 	if (b) {
1008 		__free_buffer_wake(new_b);
1009 		goto found_buffer;
1010 	}
1011 
1012 	__check_watermark(c, write_list);
1013 
1014 	b = new_b;
1015 	b->hold_count = 1;
1016 	b->read_error = 0;
1017 	b->write_error = 0;
1018 	__link_buffer(b, block, LIST_CLEAN);
1019 
1020 	if (nf == NF_FRESH) {
1021 		b->state = 0;
1022 		return b;
1023 	}
1024 
1025 	b->state = 1 << B_READING;
1026 	*need_submit = 1;
1027 
1028 	return b;
1029 
1030 found_buffer:
1031 	if (nf == NF_PREFETCH)
1032 		return NULL;
1033 	/*
1034 	 * Note: it is essential that we don't wait for the buffer to be
1035 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1036 	 * dm_bufio_prefetch can be used in the driver request routine.
1037 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1038 	 * the same buffer, it would deadlock if we waited.
1039 	 */
1040 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1041 		return NULL;
1042 
1043 	b->hold_count++;
1044 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1045 		     test_bit(B_WRITING, &b->state));
1046 	return b;
1047 }
1048 
1049 /*
1050  * The endio routine for reading: set the error, clear the bit and wake up
1051  * anyone waiting on the buffer.
1052  */
1053 static void read_endio(struct bio *bio)
1054 {
1055 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1056 
1057 	b->read_error = bio->bi_error;
1058 
1059 	BUG_ON(!test_bit(B_READING, &b->state));
1060 
1061 	smp_mb__before_atomic();
1062 	clear_bit(B_READING, &b->state);
1063 	smp_mb__after_atomic();
1064 
1065 	wake_up_bit(&b->state, B_READING);
1066 }
1067 
1068 /*
1069  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070  * functions is similar except that dm_bufio_new doesn't read the
1071  * buffer from the disk (assuming that the caller overwrites all the data
1072  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073  */
1074 static void *new_read(struct dm_bufio_client *c, sector_t block,
1075 		      enum new_flag nf, struct dm_buffer **bp)
1076 {
1077 	int need_submit;
1078 	struct dm_buffer *b;
1079 
1080 	LIST_HEAD(write_list);
1081 
1082 	dm_bufio_lock(c);
1083 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1084 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085 	if (b && b->hold_count == 1)
1086 		buffer_record_stack(b);
1087 #endif
1088 	dm_bufio_unlock(c);
1089 
1090 	__flush_write_list(&write_list);
1091 
1092 	if (!b)
1093 		return NULL;
1094 
1095 	if (need_submit)
1096 		submit_io(b, READ, b->block, read_endio);
1097 
1098 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1099 
1100 	if (b->read_error) {
1101 		int error = b->read_error;
1102 
1103 		dm_bufio_release(b);
1104 
1105 		return ERR_PTR(error);
1106 	}
1107 
1108 	*bp = b;
1109 
1110 	return b->data;
1111 }
1112 
1113 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114 		   struct dm_buffer **bp)
1115 {
1116 	return new_read(c, block, NF_GET, bp);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_get);
1119 
1120 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121 		    struct dm_buffer **bp)
1122 {
1123 	BUG_ON(dm_bufio_in_request());
1124 
1125 	return new_read(c, block, NF_READ, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_read);
1128 
1129 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130 		   struct dm_buffer **bp)
1131 {
1132 	BUG_ON(dm_bufio_in_request());
1133 
1134 	return new_read(c, block, NF_FRESH, bp);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_new);
1137 
1138 void dm_bufio_prefetch(struct dm_bufio_client *c,
1139 		       sector_t block, unsigned n_blocks)
1140 {
1141 	struct blk_plug plug;
1142 
1143 	LIST_HEAD(write_list);
1144 
1145 	BUG_ON(dm_bufio_in_request());
1146 
1147 	blk_start_plug(&plug);
1148 	dm_bufio_lock(c);
1149 
1150 	for (; n_blocks--; block++) {
1151 		int need_submit;
1152 		struct dm_buffer *b;
1153 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154 				&write_list);
1155 		if (unlikely(!list_empty(&write_list))) {
1156 			dm_bufio_unlock(c);
1157 			blk_finish_plug(&plug);
1158 			__flush_write_list(&write_list);
1159 			blk_start_plug(&plug);
1160 			dm_bufio_lock(c);
1161 		}
1162 		if (unlikely(b != NULL)) {
1163 			dm_bufio_unlock(c);
1164 
1165 			if (need_submit)
1166 				submit_io(b, READ, b->block, read_endio);
1167 			dm_bufio_release(b);
1168 
1169 			cond_resched();
1170 
1171 			if (!n_blocks)
1172 				goto flush_plug;
1173 			dm_bufio_lock(c);
1174 		}
1175 	}
1176 
1177 	dm_bufio_unlock(c);
1178 
1179 flush_plug:
1180 	blk_finish_plug(&plug);
1181 }
1182 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183 
1184 void dm_bufio_release(struct dm_buffer *b)
1185 {
1186 	struct dm_bufio_client *c = b->c;
1187 
1188 	dm_bufio_lock(c);
1189 
1190 	BUG_ON(!b->hold_count);
1191 
1192 	b->hold_count--;
1193 	if (!b->hold_count) {
1194 		wake_up(&c->free_buffer_wait);
1195 
1196 		/*
1197 		 * If there were errors on the buffer, and the buffer is not
1198 		 * to be written, free the buffer. There is no point in caching
1199 		 * invalid buffer.
1200 		 */
1201 		if ((b->read_error || b->write_error) &&
1202 		    !test_bit(B_READING, &b->state) &&
1203 		    !test_bit(B_WRITING, &b->state) &&
1204 		    !test_bit(B_DIRTY, &b->state)) {
1205 			__unlink_buffer(b);
1206 			__free_buffer_wake(b);
1207 		}
1208 	}
1209 
1210 	dm_bufio_unlock(c);
1211 }
1212 EXPORT_SYMBOL_GPL(dm_bufio_release);
1213 
1214 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1215 {
1216 	struct dm_bufio_client *c = b->c;
1217 
1218 	dm_bufio_lock(c);
1219 
1220 	BUG_ON(test_bit(B_READING, &b->state));
1221 
1222 	if (!test_and_set_bit(B_DIRTY, &b->state))
1223 		__relink_lru(b, LIST_DIRTY);
1224 
1225 	dm_bufio_unlock(c);
1226 }
1227 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1228 
1229 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1230 {
1231 	LIST_HEAD(write_list);
1232 
1233 	BUG_ON(dm_bufio_in_request());
1234 
1235 	dm_bufio_lock(c);
1236 	__write_dirty_buffers_async(c, 0, &write_list);
1237 	dm_bufio_unlock(c);
1238 	__flush_write_list(&write_list);
1239 }
1240 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1241 
1242 /*
1243  * For performance, it is essential that the buffers are written asynchronously
1244  * and simultaneously (so that the block layer can merge the writes) and then
1245  * waited upon.
1246  *
1247  * Finally, we flush hardware disk cache.
1248  */
1249 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1250 {
1251 	int a, f;
1252 	unsigned long buffers_processed = 0;
1253 	struct dm_buffer *b, *tmp;
1254 
1255 	LIST_HEAD(write_list);
1256 
1257 	dm_bufio_lock(c);
1258 	__write_dirty_buffers_async(c, 0, &write_list);
1259 	dm_bufio_unlock(c);
1260 	__flush_write_list(&write_list);
1261 	dm_bufio_lock(c);
1262 
1263 again:
1264 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1265 		int dropped_lock = 0;
1266 
1267 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1268 			buffers_processed++;
1269 
1270 		BUG_ON(test_bit(B_READING, &b->state));
1271 
1272 		if (test_bit(B_WRITING, &b->state)) {
1273 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1274 				dropped_lock = 1;
1275 				b->hold_count++;
1276 				dm_bufio_unlock(c);
1277 				wait_on_bit_io(&b->state, B_WRITING,
1278 					       TASK_UNINTERRUPTIBLE);
1279 				dm_bufio_lock(c);
1280 				b->hold_count--;
1281 			} else
1282 				wait_on_bit_io(&b->state, B_WRITING,
1283 					       TASK_UNINTERRUPTIBLE);
1284 		}
1285 
1286 		if (!test_bit(B_DIRTY, &b->state) &&
1287 		    !test_bit(B_WRITING, &b->state))
1288 			__relink_lru(b, LIST_CLEAN);
1289 
1290 		cond_resched();
1291 
1292 		/*
1293 		 * If we dropped the lock, the list is no longer consistent,
1294 		 * so we must restart the search.
1295 		 *
1296 		 * In the most common case, the buffer just processed is
1297 		 * relinked to the clean list, so we won't loop scanning the
1298 		 * same buffer again and again.
1299 		 *
1300 		 * This may livelock if there is another thread simultaneously
1301 		 * dirtying buffers, so we count the number of buffers walked
1302 		 * and if it exceeds the total number of buffers, it means that
1303 		 * someone is doing some writes simultaneously with us.  In
1304 		 * this case, stop, dropping the lock.
1305 		 */
1306 		if (dropped_lock)
1307 			goto again;
1308 	}
1309 	wake_up(&c->free_buffer_wait);
1310 	dm_bufio_unlock(c);
1311 
1312 	a = xchg(&c->async_write_error, 0);
1313 	f = dm_bufio_issue_flush(c);
1314 	if (a)
1315 		return a;
1316 
1317 	return f;
1318 }
1319 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1320 
1321 /*
1322  * Use dm-io to send and empty barrier flush the device.
1323  */
1324 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1325 {
1326 	struct dm_io_request io_req = {
1327 		.bi_op = REQ_OP_WRITE,
1328 		.bi_op_flags = REQ_PREFLUSH,
1329 		.mem.type = DM_IO_KMEM,
1330 		.mem.ptr.addr = NULL,
1331 		.client = c->dm_io,
1332 	};
1333 	struct dm_io_region io_reg = {
1334 		.bdev = c->bdev,
1335 		.sector = 0,
1336 		.count = 0,
1337 	};
1338 
1339 	BUG_ON(dm_bufio_in_request());
1340 
1341 	return dm_io(&io_req, 1, &io_reg, NULL);
1342 }
1343 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1344 
1345 /*
1346  * We first delete any other buffer that may be at that new location.
1347  *
1348  * Then, we write the buffer to the original location if it was dirty.
1349  *
1350  * Then, if we are the only one who is holding the buffer, relink the buffer
1351  * in the hash queue for the new location.
1352  *
1353  * If there was someone else holding the buffer, we write it to the new
1354  * location but not relink it, because that other user needs to have the buffer
1355  * at the same place.
1356  */
1357 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1358 {
1359 	struct dm_bufio_client *c = b->c;
1360 	struct dm_buffer *new;
1361 
1362 	BUG_ON(dm_bufio_in_request());
1363 
1364 	dm_bufio_lock(c);
1365 
1366 retry:
1367 	new = __find(c, new_block);
1368 	if (new) {
1369 		if (new->hold_count) {
1370 			__wait_for_free_buffer(c);
1371 			goto retry;
1372 		}
1373 
1374 		/*
1375 		 * FIXME: Is there any point waiting for a write that's going
1376 		 * to be overwritten in a bit?
1377 		 */
1378 		__make_buffer_clean(new);
1379 		__unlink_buffer(new);
1380 		__free_buffer_wake(new);
1381 	}
1382 
1383 	BUG_ON(!b->hold_count);
1384 	BUG_ON(test_bit(B_READING, &b->state));
1385 
1386 	__write_dirty_buffer(b, NULL);
1387 	if (b->hold_count == 1) {
1388 		wait_on_bit_io(&b->state, B_WRITING,
1389 			       TASK_UNINTERRUPTIBLE);
1390 		set_bit(B_DIRTY, &b->state);
1391 		__unlink_buffer(b);
1392 		__link_buffer(b, new_block, LIST_DIRTY);
1393 	} else {
1394 		sector_t old_block;
1395 		wait_on_bit_lock_io(&b->state, B_WRITING,
1396 				    TASK_UNINTERRUPTIBLE);
1397 		/*
1398 		 * Relink buffer to "new_block" so that write_callback
1399 		 * sees "new_block" as a block number.
1400 		 * After the write, link the buffer back to old_block.
1401 		 * All this must be done in bufio lock, so that block number
1402 		 * change isn't visible to other threads.
1403 		 */
1404 		old_block = b->block;
1405 		__unlink_buffer(b);
1406 		__link_buffer(b, new_block, b->list_mode);
1407 		submit_io(b, WRITE, new_block, write_endio);
1408 		wait_on_bit_io(&b->state, B_WRITING,
1409 			       TASK_UNINTERRUPTIBLE);
1410 		__unlink_buffer(b);
1411 		__link_buffer(b, old_block, b->list_mode);
1412 	}
1413 
1414 	dm_bufio_unlock(c);
1415 	dm_bufio_release(b);
1416 }
1417 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1418 
1419 /*
1420  * Free the given buffer.
1421  *
1422  * This is just a hint, if the buffer is in use or dirty, this function
1423  * does nothing.
1424  */
1425 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1426 {
1427 	struct dm_buffer *b;
1428 
1429 	dm_bufio_lock(c);
1430 
1431 	b = __find(c, block);
1432 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1433 		__unlink_buffer(b);
1434 		__free_buffer_wake(b);
1435 	}
1436 
1437 	dm_bufio_unlock(c);
1438 }
1439 EXPORT_SYMBOL(dm_bufio_forget);
1440 
1441 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1442 {
1443 	c->minimum_buffers = n;
1444 }
1445 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1446 
1447 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1448 {
1449 	return c->block_size;
1450 }
1451 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1452 
1453 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1454 {
1455 	return i_size_read(c->bdev->bd_inode) >>
1456 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1457 }
1458 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1459 
1460 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1461 {
1462 	return b->block;
1463 }
1464 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1465 
1466 void *dm_bufio_get_block_data(struct dm_buffer *b)
1467 {
1468 	return b->data;
1469 }
1470 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1471 
1472 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1473 {
1474 	return b + 1;
1475 }
1476 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1477 
1478 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1479 {
1480 	return b->c;
1481 }
1482 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1483 
1484 static void drop_buffers(struct dm_bufio_client *c)
1485 {
1486 	struct dm_buffer *b;
1487 	int i;
1488 	bool warned = false;
1489 
1490 	BUG_ON(dm_bufio_in_request());
1491 
1492 	/*
1493 	 * An optimization so that the buffers are not written one-by-one.
1494 	 */
1495 	dm_bufio_write_dirty_buffers_async(c);
1496 
1497 	dm_bufio_lock(c);
1498 
1499 	while ((b = __get_unclaimed_buffer(c)))
1500 		__free_buffer_wake(b);
1501 
1502 	for (i = 0; i < LIST_SIZE; i++)
1503 		list_for_each_entry(b, &c->lru[i], lru_list) {
1504 			WARN_ON(!warned);
1505 			warned = true;
1506 			DMERR("leaked buffer %llx, hold count %u, list %d",
1507 			      (unsigned long long)b->block, b->hold_count, i);
1508 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1509 			print_stack_trace(&b->stack_trace, 1);
1510 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1511 #endif
1512 		}
1513 
1514 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1515 	while ((b = __get_unclaimed_buffer(c)))
1516 		__free_buffer_wake(b);
1517 #endif
1518 
1519 	for (i = 0; i < LIST_SIZE; i++)
1520 		BUG_ON(!list_empty(&c->lru[i]));
1521 
1522 	dm_bufio_unlock(c);
1523 }
1524 
1525 /*
1526  * We may not be able to evict this buffer if IO pending or the client
1527  * is still using it.  Caller is expected to know buffer is too old.
1528  *
1529  * And if GFP_NOFS is used, we must not do any I/O because we hold
1530  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1531  * rerouted to different bufio client.
1532  */
1533 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1534 {
1535 	if (!(gfp & __GFP_FS)) {
1536 		if (test_bit(B_READING, &b->state) ||
1537 		    test_bit(B_WRITING, &b->state) ||
1538 		    test_bit(B_DIRTY, &b->state))
1539 			return false;
1540 	}
1541 
1542 	if (b->hold_count)
1543 		return false;
1544 
1545 	__make_buffer_clean(b);
1546 	__unlink_buffer(b);
1547 	__free_buffer_wake(b);
1548 
1549 	return true;
1550 }
1551 
1552 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1553 {
1554         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1555         return retain_bytes / c->block_size;
1556 }
1557 
1558 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1559 			    gfp_t gfp_mask)
1560 {
1561 	int l;
1562 	struct dm_buffer *b, *tmp;
1563 	unsigned long freed = 0;
1564 	unsigned long count = nr_to_scan;
1565 	unsigned retain_target = get_retain_buffers(c);
1566 
1567 	for (l = 0; l < LIST_SIZE; l++) {
1568 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1569 			if (__try_evict_buffer(b, gfp_mask))
1570 				freed++;
1571 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1572 				return freed;
1573 			cond_resched();
1574 		}
1575 	}
1576 	return freed;
1577 }
1578 
1579 static unsigned long
1580 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1581 {
1582 	struct dm_bufio_client *c;
1583 	unsigned long freed;
1584 
1585 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1586 	if (sc->gfp_mask & __GFP_FS)
1587 		dm_bufio_lock(c);
1588 	else if (!dm_bufio_trylock(c))
1589 		return SHRINK_STOP;
1590 
1591 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1592 	dm_bufio_unlock(c);
1593 	return freed;
1594 }
1595 
1596 static unsigned long
1597 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1598 {
1599 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1600 
1601 	return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
1602 }
1603 
1604 /*
1605  * Create the buffering interface
1606  */
1607 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1608 					       unsigned reserved_buffers, unsigned aux_size,
1609 					       void (*alloc_callback)(struct dm_buffer *),
1610 					       void (*write_callback)(struct dm_buffer *))
1611 {
1612 	int r;
1613 	struct dm_bufio_client *c;
1614 	unsigned i;
1615 
1616 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1617 	       (block_size & (block_size - 1)));
1618 
1619 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1620 	if (!c) {
1621 		r = -ENOMEM;
1622 		goto bad_client;
1623 	}
1624 	c->buffer_tree = RB_ROOT;
1625 
1626 	c->bdev = bdev;
1627 	c->block_size = block_size;
1628 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1629 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1630 				  __ffs(block_size) - PAGE_SHIFT : 0;
1631 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1632 				  PAGE_SHIFT - __ffs(block_size) : 0);
1633 
1634 	c->aux_size = aux_size;
1635 	c->alloc_callback = alloc_callback;
1636 	c->write_callback = write_callback;
1637 
1638 	for (i = 0; i < LIST_SIZE; i++) {
1639 		INIT_LIST_HEAD(&c->lru[i]);
1640 		c->n_buffers[i] = 0;
1641 	}
1642 
1643 	mutex_init(&c->lock);
1644 	INIT_LIST_HEAD(&c->reserved_buffers);
1645 	c->need_reserved_buffers = reserved_buffers;
1646 
1647 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1648 
1649 	init_waitqueue_head(&c->free_buffer_wait);
1650 	c->async_write_error = 0;
1651 
1652 	c->dm_io = dm_io_client_create();
1653 	if (IS_ERR(c->dm_io)) {
1654 		r = PTR_ERR(c->dm_io);
1655 		goto bad_dm_io;
1656 	}
1657 
1658 	mutex_lock(&dm_bufio_clients_lock);
1659 	if (c->blocks_per_page_bits) {
1660 		if (!DM_BUFIO_CACHE_NAME(c)) {
1661 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1662 			if (!DM_BUFIO_CACHE_NAME(c)) {
1663 				r = -ENOMEM;
1664 				mutex_unlock(&dm_bufio_clients_lock);
1665 				goto bad_cache;
1666 			}
1667 		}
1668 
1669 		if (!DM_BUFIO_CACHE(c)) {
1670 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1671 							      c->block_size,
1672 							      c->block_size, 0, NULL);
1673 			if (!DM_BUFIO_CACHE(c)) {
1674 				r = -ENOMEM;
1675 				mutex_unlock(&dm_bufio_clients_lock);
1676 				goto bad_cache;
1677 			}
1678 		}
1679 	}
1680 	mutex_unlock(&dm_bufio_clients_lock);
1681 
1682 	while (c->need_reserved_buffers) {
1683 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1684 
1685 		if (!b) {
1686 			r = -ENOMEM;
1687 			goto bad_buffer;
1688 		}
1689 		__free_buffer_wake(b);
1690 	}
1691 
1692 	mutex_lock(&dm_bufio_clients_lock);
1693 	dm_bufio_client_count++;
1694 	list_add(&c->client_list, &dm_bufio_all_clients);
1695 	__cache_size_refresh();
1696 	mutex_unlock(&dm_bufio_clients_lock);
1697 
1698 	c->shrinker.count_objects = dm_bufio_shrink_count;
1699 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1700 	c->shrinker.seeks = 1;
1701 	c->shrinker.batch = 0;
1702 	register_shrinker(&c->shrinker);
1703 
1704 	return c;
1705 
1706 bad_buffer:
1707 bad_cache:
1708 	while (!list_empty(&c->reserved_buffers)) {
1709 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1710 						 struct dm_buffer, lru_list);
1711 		list_del(&b->lru_list);
1712 		free_buffer(b);
1713 	}
1714 	dm_io_client_destroy(c->dm_io);
1715 bad_dm_io:
1716 	kfree(c);
1717 bad_client:
1718 	return ERR_PTR(r);
1719 }
1720 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1721 
1722 /*
1723  * Free the buffering interface.
1724  * It is required that there are no references on any buffers.
1725  */
1726 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1727 {
1728 	unsigned i;
1729 
1730 	drop_buffers(c);
1731 
1732 	unregister_shrinker(&c->shrinker);
1733 
1734 	mutex_lock(&dm_bufio_clients_lock);
1735 
1736 	list_del(&c->client_list);
1737 	dm_bufio_client_count--;
1738 	__cache_size_refresh();
1739 
1740 	mutex_unlock(&dm_bufio_clients_lock);
1741 
1742 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1743 	BUG_ON(c->need_reserved_buffers);
1744 
1745 	while (!list_empty(&c->reserved_buffers)) {
1746 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1747 						 struct dm_buffer, lru_list);
1748 		list_del(&b->lru_list);
1749 		free_buffer(b);
1750 	}
1751 
1752 	for (i = 0; i < LIST_SIZE; i++)
1753 		if (c->n_buffers[i])
1754 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1755 
1756 	for (i = 0; i < LIST_SIZE; i++)
1757 		BUG_ON(c->n_buffers[i]);
1758 
1759 	dm_io_client_destroy(c->dm_io);
1760 	kfree(c);
1761 }
1762 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1763 
1764 static unsigned get_max_age_hz(void)
1765 {
1766 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1767 
1768 	if (max_age > UINT_MAX / HZ)
1769 		max_age = UINT_MAX / HZ;
1770 
1771 	return max_age * HZ;
1772 }
1773 
1774 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1775 {
1776 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1777 }
1778 
1779 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1780 {
1781 	struct dm_buffer *b, *tmp;
1782 	unsigned retain_target = get_retain_buffers(c);
1783 	unsigned count;
1784 
1785 	dm_bufio_lock(c);
1786 
1787 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1788 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1789 		if (count <= retain_target)
1790 			break;
1791 
1792 		if (!older_than(b, age_hz))
1793 			break;
1794 
1795 		if (__try_evict_buffer(b, 0))
1796 			count--;
1797 
1798 		cond_resched();
1799 	}
1800 
1801 	dm_bufio_unlock(c);
1802 }
1803 
1804 static void cleanup_old_buffers(void)
1805 {
1806 	unsigned long max_age_hz = get_max_age_hz();
1807 	struct dm_bufio_client *c;
1808 
1809 	mutex_lock(&dm_bufio_clients_lock);
1810 
1811 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1812 		__evict_old_buffers(c, max_age_hz);
1813 
1814 	mutex_unlock(&dm_bufio_clients_lock);
1815 }
1816 
1817 static struct workqueue_struct *dm_bufio_wq;
1818 static struct delayed_work dm_bufio_work;
1819 
1820 static void work_fn(struct work_struct *w)
1821 {
1822 	cleanup_old_buffers();
1823 
1824 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1825 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1826 }
1827 
1828 /*----------------------------------------------------------------
1829  * Module setup
1830  *--------------------------------------------------------------*/
1831 
1832 /*
1833  * This is called only once for the whole dm_bufio module.
1834  * It initializes memory limit.
1835  */
1836 static int __init dm_bufio_init(void)
1837 {
1838 	__u64 mem;
1839 
1840 	dm_bufio_allocated_kmem_cache = 0;
1841 	dm_bufio_allocated_get_free_pages = 0;
1842 	dm_bufio_allocated_vmalloc = 0;
1843 	dm_bufio_current_allocated = 0;
1844 
1845 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1846 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1847 
1848 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1849 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1850 
1851 	if (mem > ULONG_MAX)
1852 		mem = ULONG_MAX;
1853 
1854 #ifdef CONFIG_MMU
1855 	/*
1856 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1857 	 * in fs/proc/internal.h
1858 	 */
1859 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1860 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1861 #endif
1862 
1863 	dm_bufio_default_cache_size = mem;
1864 
1865 	mutex_lock(&dm_bufio_clients_lock);
1866 	__cache_size_refresh();
1867 	mutex_unlock(&dm_bufio_clients_lock);
1868 
1869 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1870 	if (!dm_bufio_wq)
1871 		return -ENOMEM;
1872 
1873 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1874 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1875 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * This is called once when unloading the dm_bufio module.
1882  */
1883 static void __exit dm_bufio_exit(void)
1884 {
1885 	int bug = 0;
1886 	int i;
1887 
1888 	cancel_delayed_work_sync(&dm_bufio_work);
1889 	destroy_workqueue(dm_bufio_wq);
1890 
1891 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1892 		kmem_cache_destroy(dm_bufio_caches[i]);
1893 
1894 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1895 		kfree(dm_bufio_cache_names[i]);
1896 
1897 	if (dm_bufio_client_count) {
1898 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1899 			__func__, dm_bufio_client_count);
1900 		bug = 1;
1901 	}
1902 
1903 	if (dm_bufio_current_allocated) {
1904 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1905 			__func__, dm_bufio_current_allocated);
1906 		bug = 1;
1907 	}
1908 
1909 	if (dm_bufio_allocated_get_free_pages) {
1910 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1911 		       __func__, dm_bufio_allocated_get_free_pages);
1912 		bug = 1;
1913 	}
1914 
1915 	if (dm_bufio_allocated_vmalloc) {
1916 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1917 		       __func__, dm_bufio_allocated_vmalloc);
1918 		bug = 1;
1919 	}
1920 
1921 	BUG_ON(bug);
1922 }
1923 
1924 module_init(dm_bufio_init)
1925 module_exit(dm_bufio_exit)
1926 
1927 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1928 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1929 
1930 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1931 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1932 
1933 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1934 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1935 
1936 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1937 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1938 
1939 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1940 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1941 
1942 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1943 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1944 
1945 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1946 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1947 
1948 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1949 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1950 
1951 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1952 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1953 MODULE_LICENSE("GPL");
1954