1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009-2011 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * This file is released under the GPL. 8 */ 9 10 #include <linux/dm-bufio.h> 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/slab.h> 15 #include <linux/sched/mm.h> 16 #include <linux/jiffies.h> 17 #include <linux/vmalloc.h> 18 #include <linux/shrinker.h> 19 #include <linux/module.h> 20 #include <linux/rbtree.h> 21 #include <linux/stacktrace.h> 22 #include <linux/jump_label.h> 23 24 #include "dm.h" 25 26 #define DM_MSG_PREFIX "bufio" 27 28 /* 29 * Memory management policy: 30 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 31 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 32 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 33 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 34 * dirty buffers. 35 */ 36 #define DM_BUFIO_MIN_BUFFERS 8 37 38 #define DM_BUFIO_MEMORY_PERCENT 2 39 #define DM_BUFIO_VMALLOC_PERCENT 25 40 #define DM_BUFIO_WRITEBACK_RATIO 3 41 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 42 43 /* 44 * Check buffer ages in this interval (seconds) 45 */ 46 #define DM_BUFIO_WORK_TIMER_SECS 30 47 48 /* 49 * Free buffers when they are older than this (seconds) 50 */ 51 #define DM_BUFIO_DEFAULT_AGE_SECS 300 52 53 /* 54 * The nr of bytes of cached data to keep around. 55 */ 56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 57 58 /* 59 * Align buffer writes to this boundary. 60 * Tests show that SSDs have the highest IOPS when using 4k writes. 61 */ 62 #define DM_BUFIO_WRITE_ALIGN 4096 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /*--------------------------------------------------------------*/ 72 73 /* 74 * Rather than use an LRU list, we use a clock algorithm where entries 75 * are held in a circular list. When an entry is 'hit' a reference bit 76 * is set. The least recently used entry is approximated by running a 77 * cursor around the list selecting unreferenced entries. Referenced 78 * entries have their reference bit cleared as the cursor passes them. 79 */ 80 struct lru_entry { 81 struct list_head list; 82 atomic_t referenced; 83 }; 84 85 struct lru_iter { 86 struct lru *lru; 87 struct list_head list; 88 struct lru_entry *stop; 89 struct lru_entry *e; 90 }; 91 92 struct lru { 93 struct list_head *cursor; 94 unsigned long count; 95 96 struct list_head iterators; 97 }; 98 99 /*--------------*/ 100 101 static void lru_init(struct lru *lru) 102 { 103 lru->cursor = NULL; 104 lru->count = 0; 105 INIT_LIST_HEAD(&lru->iterators); 106 } 107 108 static void lru_destroy(struct lru *lru) 109 { 110 WARN_ON_ONCE(lru->cursor); 111 WARN_ON_ONCE(!list_empty(&lru->iterators)); 112 } 113 114 /* 115 * Insert a new entry into the lru. 116 */ 117 static void lru_insert(struct lru *lru, struct lru_entry *le) 118 { 119 /* 120 * Don't be tempted to set to 1, makes the lru aspect 121 * perform poorly. 122 */ 123 atomic_set(&le->referenced, 0); 124 125 if (lru->cursor) { 126 list_add_tail(&le->list, lru->cursor); 127 } else { 128 INIT_LIST_HEAD(&le->list); 129 lru->cursor = &le->list; 130 } 131 lru->count++; 132 } 133 134 /*--------------*/ 135 136 /* 137 * Convert a list_head pointer to an lru_entry pointer. 138 */ 139 static inline struct lru_entry *to_le(struct list_head *l) 140 { 141 return container_of(l, struct lru_entry, list); 142 } 143 144 /* 145 * Initialize an lru_iter and add it to the list of cursors in the lru. 146 */ 147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it) 148 { 149 it->lru = lru; 150 it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL; 151 it->e = lru->cursor ? to_le(lru->cursor) : NULL; 152 list_add(&it->list, &lru->iterators); 153 } 154 155 /* 156 * Remove an lru_iter from the list of cursors in the lru. 157 */ 158 static inline void lru_iter_end(struct lru_iter *it) 159 { 160 list_del(&it->list); 161 } 162 163 /* Predicate function type to be used with lru_iter_next */ 164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context); 165 166 /* 167 * Advance the cursor to the next entry that passes the 168 * predicate, and return that entry. Returns NULL if the 169 * iteration is complete. 170 */ 171 static struct lru_entry *lru_iter_next(struct lru_iter *it, 172 iter_predicate pred, void *context) 173 { 174 struct lru_entry *e; 175 176 while (it->e) { 177 e = it->e; 178 179 /* advance the cursor */ 180 if (it->e == it->stop) 181 it->e = NULL; 182 else 183 it->e = to_le(it->e->list.next); 184 185 if (pred(e, context)) 186 return e; 187 } 188 189 return NULL; 190 } 191 192 /* 193 * Invalidate a specific lru_entry and update all cursors in 194 * the lru accordingly. 195 */ 196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e) 197 { 198 struct lru_iter *it; 199 200 list_for_each_entry(it, &lru->iterators, list) { 201 /* Move c->e forwards if necc. */ 202 if (it->e == e) { 203 it->e = to_le(it->e->list.next); 204 if (it->e == e) 205 it->e = NULL; 206 } 207 208 /* Move it->stop backwards if necc. */ 209 if (it->stop == e) { 210 it->stop = to_le(it->stop->list.prev); 211 if (it->stop == e) 212 it->stop = NULL; 213 } 214 } 215 } 216 217 /*--------------*/ 218 219 /* 220 * Remove a specific entry from the lru. 221 */ 222 static void lru_remove(struct lru *lru, struct lru_entry *le) 223 { 224 lru_iter_invalidate(lru, le); 225 if (lru->count == 1) { 226 lru->cursor = NULL; 227 } else { 228 if (lru->cursor == &le->list) 229 lru->cursor = lru->cursor->next; 230 list_del(&le->list); 231 } 232 lru->count--; 233 } 234 235 /* 236 * Mark as referenced. 237 */ 238 static inline void lru_reference(struct lru_entry *le) 239 { 240 atomic_set(&le->referenced, 1); 241 } 242 243 /*--------------*/ 244 245 /* 246 * Remove the least recently used entry (approx), that passes the predicate. 247 * Returns NULL on failure. 248 */ 249 enum evict_result { 250 ER_EVICT, 251 ER_DONT_EVICT, 252 ER_STOP, /* stop looking for something to evict */ 253 }; 254 255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context); 256 257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context) 258 { 259 unsigned long tested = 0; 260 struct list_head *h = lru->cursor; 261 struct lru_entry *le; 262 263 if (!h) 264 return NULL; 265 /* 266 * In the worst case we have to loop around twice. Once to clear 267 * the reference flags, and then again to discover the predicate 268 * fails for all entries. 269 */ 270 while (tested < lru->count) { 271 le = container_of(h, struct lru_entry, list); 272 273 if (atomic_read(&le->referenced)) { 274 atomic_set(&le->referenced, 0); 275 } else { 276 tested++; 277 switch (pred(le, context)) { 278 case ER_EVICT: 279 /* 280 * Adjust the cursor, so we start the next 281 * search from here. 282 */ 283 lru->cursor = le->list.next; 284 lru_remove(lru, le); 285 return le; 286 287 case ER_DONT_EVICT: 288 break; 289 290 case ER_STOP: 291 lru->cursor = le->list.next; 292 return NULL; 293 } 294 } 295 296 h = h->next; 297 298 cond_resched(); 299 } 300 301 return NULL; 302 } 303 304 /*--------------------------------------------------------------*/ 305 306 /* 307 * Buffer state bits. 308 */ 309 #define B_READING 0 310 #define B_WRITING 1 311 #define B_DIRTY 2 312 313 /* 314 * Describes how the block was allocated: 315 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 316 * See the comment at alloc_buffer_data. 317 */ 318 enum data_mode { 319 DATA_MODE_SLAB = 0, 320 DATA_MODE_GET_FREE_PAGES = 1, 321 DATA_MODE_VMALLOC = 2, 322 DATA_MODE_LIMIT = 3 323 }; 324 325 struct dm_buffer { 326 /* protected by the locks in dm_buffer_cache */ 327 struct rb_node node; 328 329 /* immutable, so don't need protecting */ 330 sector_t block; 331 void *data; 332 unsigned char data_mode; /* DATA_MODE_* */ 333 334 /* 335 * These two fields are used in isolation, so do not need 336 * a surrounding lock. 337 */ 338 atomic_t hold_count; 339 unsigned long last_accessed; 340 341 /* 342 * Everything else is protected by the mutex in 343 * dm_bufio_client 344 */ 345 unsigned long state; 346 struct lru_entry lru; 347 unsigned char list_mode; /* LIST_* */ 348 blk_status_t read_error; 349 blk_status_t write_error; 350 unsigned int dirty_start; 351 unsigned int dirty_end; 352 unsigned int write_start; 353 unsigned int write_end; 354 struct list_head write_list; 355 struct dm_bufio_client *c; 356 void (*end_io)(struct dm_buffer *b, blk_status_t bs); 357 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 358 #define MAX_STACK 10 359 unsigned int stack_len; 360 unsigned long stack_entries[MAX_STACK]; 361 #endif 362 }; 363 364 /*--------------------------------------------------------------*/ 365 366 /* 367 * The buffer cache manages buffers, particularly: 368 * - inc/dec of holder count 369 * - setting the last_accessed field 370 * - maintains clean/dirty state along with lru 371 * - selecting buffers that match predicates 372 * 373 * It does *not* handle: 374 * - allocation/freeing of buffers. 375 * - IO 376 * - Eviction or cache sizing. 377 * 378 * cache_get() and cache_put() are threadsafe, you do not need to 379 * protect these calls with a surrounding mutex. All the other 380 * methods are not threadsafe; they do use locking primitives, but 381 * only enough to ensure get/put are threadsafe. 382 */ 383 384 struct buffer_tree { 385 struct rw_semaphore lock; 386 struct rb_root root; 387 } ____cacheline_aligned_in_smp; 388 389 struct dm_buffer_cache { 390 struct lru lru[LIST_SIZE]; 391 /* 392 * We spread entries across multiple trees to reduce contention 393 * on the locks. 394 */ 395 unsigned int num_locks; 396 struct buffer_tree trees[]; 397 }; 398 399 static inline unsigned int cache_index(sector_t block, unsigned int num_locks) 400 { 401 return dm_hash_locks_index(block, num_locks); 402 } 403 404 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block) 405 { 406 down_read(&bc->trees[cache_index(block, bc->num_locks)].lock); 407 } 408 409 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block) 410 { 411 up_read(&bc->trees[cache_index(block, bc->num_locks)].lock); 412 } 413 414 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block) 415 { 416 down_write(&bc->trees[cache_index(block, bc->num_locks)].lock); 417 } 418 419 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block) 420 { 421 up_write(&bc->trees[cache_index(block, bc->num_locks)].lock); 422 } 423 424 /* 425 * Sometimes we want to repeatedly get and drop locks as part of an iteration. 426 * This struct helps avoid redundant drop and gets of the same lock. 427 */ 428 struct lock_history { 429 struct dm_buffer_cache *cache; 430 bool write; 431 unsigned int previous; 432 unsigned int no_previous; 433 }; 434 435 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write) 436 { 437 lh->cache = cache; 438 lh->write = write; 439 lh->no_previous = cache->num_locks; 440 lh->previous = lh->no_previous; 441 } 442 443 static void __lh_lock(struct lock_history *lh, unsigned int index) 444 { 445 if (lh->write) 446 down_write(&lh->cache->trees[index].lock); 447 else 448 down_read(&lh->cache->trees[index].lock); 449 } 450 451 static void __lh_unlock(struct lock_history *lh, unsigned int index) 452 { 453 if (lh->write) 454 up_write(&lh->cache->trees[index].lock); 455 else 456 up_read(&lh->cache->trees[index].lock); 457 } 458 459 /* 460 * Make sure you call this since it will unlock the final lock. 461 */ 462 static void lh_exit(struct lock_history *lh) 463 { 464 if (lh->previous != lh->no_previous) { 465 __lh_unlock(lh, lh->previous); 466 lh->previous = lh->no_previous; 467 } 468 } 469 470 /* 471 * Named 'next' because there is no corresponding 472 * 'up/unlock' call since it's done automatically. 473 */ 474 static void lh_next(struct lock_history *lh, sector_t b) 475 { 476 unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */ 477 478 if (lh->previous != lh->no_previous) { 479 if (lh->previous != index) { 480 __lh_unlock(lh, lh->previous); 481 __lh_lock(lh, index); 482 lh->previous = index; 483 } 484 } else { 485 __lh_lock(lh, index); 486 lh->previous = index; 487 } 488 } 489 490 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le) 491 { 492 return container_of(le, struct dm_buffer, lru); 493 } 494 495 static struct dm_buffer *list_to_buffer(struct list_head *l) 496 { 497 struct lru_entry *le = list_entry(l, struct lru_entry, list); 498 499 if (!le) 500 return NULL; 501 502 return le_to_buffer(le); 503 } 504 505 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks) 506 { 507 unsigned int i; 508 509 bc->num_locks = num_locks; 510 511 for (i = 0; i < bc->num_locks; i++) { 512 init_rwsem(&bc->trees[i].lock); 513 bc->trees[i].root = RB_ROOT; 514 } 515 516 lru_init(&bc->lru[LIST_CLEAN]); 517 lru_init(&bc->lru[LIST_DIRTY]); 518 } 519 520 static void cache_destroy(struct dm_buffer_cache *bc) 521 { 522 unsigned int i; 523 524 for (i = 0; i < bc->num_locks; i++) 525 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root)); 526 527 lru_destroy(&bc->lru[LIST_CLEAN]); 528 lru_destroy(&bc->lru[LIST_DIRTY]); 529 } 530 531 /*--------------*/ 532 533 /* 534 * not threadsafe, or racey depending how you look at it 535 */ 536 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode) 537 { 538 return bc->lru[list_mode].count; 539 } 540 541 static inline unsigned long cache_total(struct dm_buffer_cache *bc) 542 { 543 return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY); 544 } 545 546 /*--------------*/ 547 548 /* 549 * Gets a specific buffer, indexed by block. 550 * If the buffer is found then its holder count will be incremented and 551 * lru_reference will be called. 552 * 553 * threadsafe 554 */ 555 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block) 556 { 557 struct rb_node *n = root->rb_node; 558 struct dm_buffer *b; 559 560 while (n) { 561 b = container_of(n, struct dm_buffer, node); 562 563 if (b->block == block) 564 return b; 565 566 n = block < b->block ? n->rb_left : n->rb_right; 567 } 568 569 return NULL; 570 } 571 572 static void __cache_inc_buffer(struct dm_buffer *b) 573 { 574 atomic_inc(&b->hold_count); 575 WRITE_ONCE(b->last_accessed, jiffies); 576 } 577 578 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block) 579 { 580 struct dm_buffer *b; 581 582 cache_read_lock(bc, block); 583 b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block); 584 if (b) { 585 lru_reference(&b->lru); 586 __cache_inc_buffer(b); 587 } 588 cache_read_unlock(bc, block); 589 590 return b; 591 } 592 593 /*--------------*/ 594 595 /* 596 * Returns true if the hold count hits zero. 597 * threadsafe 598 */ 599 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b) 600 { 601 bool r; 602 603 cache_read_lock(bc, b->block); 604 BUG_ON(!atomic_read(&b->hold_count)); 605 r = atomic_dec_and_test(&b->hold_count); 606 cache_read_unlock(bc, b->block); 607 608 return r; 609 } 610 611 /*--------------*/ 612 613 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *); 614 615 /* 616 * Evicts a buffer based on a predicate. The oldest buffer that 617 * matches the predicate will be selected. In addition to the 618 * predicate the hold_count of the selected buffer will be zero. 619 */ 620 struct evict_wrapper { 621 struct lock_history *lh; 622 b_predicate pred; 623 void *context; 624 }; 625 626 /* 627 * Wraps the buffer predicate turning it into an lru predicate. Adds 628 * extra test for hold_count. 629 */ 630 static enum evict_result __evict_pred(struct lru_entry *le, void *context) 631 { 632 struct evict_wrapper *w = context; 633 struct dm_buffer *b = le_to_buffer(le); 634 635 lh_next(w->lh, b->block); 636 637 if (atomic_read(&b->hold_count)) 638 return ER_DONT_EVICT; 639 640 return w->pred(b, w->context); 641 } 642 643 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode, 644 b_predicate pred, void *context, 645 struct lock_history *lh) 646 { 647 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 648 struct lru_entry *le; 649 struct dm_buffer *b; 650 651 le = lru_evict(&bc->lru[list_mode], __evict_pred, &w); 652 if (!le) 653 return NULL; 654 655 b = le_to_buffer(le); 656 /* __evict_pred will have locked the appropriate tree. */ 657 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 658 659 return b; 660 } 661 662 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode, 663 b_predicate pred, void *context) 664 { 665 struct dm_buffer *b; 666 struct lock_history lh; 667 668 lh_init(&lh, bc, true); 669 b = __cache_evict(bc, list_mode, pred, context, &lh); 670 lh_exit(&lh); 671 672 return b; 673 } 674 675 /*--------------*/ 676 677 /* 678 * Mark a buffer as clean or dirty. Not threadsafe. 679 */ 680 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode) 681 { 682 cache_write_lock(bc, b->block); 683 if (list_mode != b->list_mode) { 684 lru_remove(&bc->lru[b->list_mode], &b->lru); 685 b->list_mode = list_mode; 686 lru_insert(&bc->lru[b->list_mode], &b->lru); 687 } 688 cache_write_unlock(bc, b->block); 689 } 690 691 /*--------------*/ 692 693 /* 694 * Runs through the lru associated with 'old_mode', if the predicate matches then 695 * it moves them to 'new_mode'. Not threadsafe. 696 */ 697 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 698 b_predicate pred, void *context, struct lock_history *lh) 699 { 700 struct lru_entry *le; 701 struct dm_buffer *b; 702 struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context}; 703 704 while (true) { 705 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w); 706 if (!le) 707 break; 708 709 b = le_to_buffer(le); 710 b->list_mode = new_mode; 711 lru_insert(&bc->lru[b->list_mode], &b->lru); 712 } 713 } 714 715 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode, 716 b_predicate pred, void *context) 717 { 718 struct lock_history lh; 719 720 lh_init(&lh, bc, true); 721 __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh); 722 lh_exit(&lh); 723 } 724 725 /*--------------*/ 726 727 /* 728 * Iterates through all clean or dirty entries calling a function for each 729 * entry. The callback may terminate the iteration early. Not threadsafe. 730 */ 731 732 /* 733 * Iterator functions should return one of these actions to indicate 734 * how the iteration should proceed. 735 */ 736 enum it_action { 737 IT_NEXT, 738 IT_COMPLETE, 739 }; 740 741 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context); 742 743 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode, 744 iter_fn fn, void *context, struct lock_history *lh) 745 { 746 struct lru *lru = &bc->lru[list_mode]; 747 struct lru_entry *le, *first; 748 749 if (!lru->cursor) 750 return; 751 752 first = le = to_le(lru->cursor); 753 do { 754 struct dm_buffer *b = le_to_buffer(le); 755 756 lh_next(lh, b->block); 757 758 switch (fn(b, context)) { 759 case IT_NEXT: 760 break; 761 762 case IT_COMPLETE: 763 return; 764 } 765 cond_resched(); 766 767 le = to_le(le->list.next); 768 } while (le != first); 769 } 770 771 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode, 772 iter_fn fn, void *context) 773 { 774 struct lock_history lh; 775 776 lh_init(&lh, bc, false); 777 __cache_iterate(bc, list_mode, fn, context, &lh); 778 lh_exit(&lh); 779 } 780 781 /*--------------*/ 782 783 /* 784 * Passes ownership of the buffer to the cache. Returns false if the 785 * buffer was already present (in which case ownership does not pass). 786 * eg, a race with another thread. 787 * 788 * Holder count should be 1 on insertion. 789 * 790 * Not threadsafe. 791 */ 792 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b) 793 { 794 struct rb_node **new = &root->rb_node, *parent = NULL; 795 struct dm_buffer *found; 796 797 while (*new) { 798 found = container_of(*new, struct dm_buffer, node); 799 800 if (found->block == b->block) 801 return false; 802 803 parent = *new; 804 new = b->block < found->block ? 805 &found->node.rb_left : &found->node.rb_right; 806 } 807 808 rb_link_node(&b->node, parent, new); 809 rb_insert_color(&b->node, root); 810 811 return true; 812 } 813 814 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b) 815 { 816 bool r; 817 818 if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE)) 819 return false; 820 821 cache_write_lock(bc, b->block); 822 BUG_ON(atomic_read(&b->hold_count) != 1); 823 r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b); 824 if (r) 825 lru_insert(&bc->lru[b->list_mode], &b->lru); 826 cache_write_unlock(bc, b->block); 827 828 return r; 829 } 830 831 /*--------------*/ 832 833 /* 834 * Removes buffer from cache, ownership of the buffer passes back to the caller. 835 * Fails if the hold_count is not one (ie. the caller holds the only reference). 836 * 837 * Not threadsafe. 838 */ 839 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b) 840 { 841 bool r; 842 843 cache_write_lock(bc, b->block); 844 845 if (atomic_read(&b->hold_count) != 1) { 846 r = false; 847 } else { 848 r = true; 849 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root); 850 lru_remove(&bc->lru[b->list_mode], &b->lru); 851 } 852 853 cache_write_unlock(bc, b->block); 854 855 return r; 856 } 857 858 /*--------------*/ 859 860 typedef void (*b_release)(struct dm_buffer *); 861 862 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block) 863 { 864 struct rb_node *n = root->rb_node; 865 struct dm_buffer *b; 866 struct dm_buffer *best = NULL; 867 868 while (n) { 869 b = container_of(n, struct dm_buffer, node); 870 871 if (b->block == block) 872 return b; 873 874 if (block <= b->block) { 875 n = n->rb_left; 876 best = b; 877 } else { 878 n = n->rb_right; 879 } 880 } 881 882 return best; 883 } 884 885 static void __remove_range(struct dm_buffer_cache *bc, 886 struct rb_root *root, 887 sector_t begin, sector_t end, 888 b_predicate pred, b_release release) 889 { 890 struct dm_buffer *b; 891 892 while (true) { 893 cond_resched(); 894 895 b = __find_next(root, begin); 896 if (!b || (b->block >= end)) 897 break; 898 899 begin = b->block + 1; 900 901 if (atomic_read(&b->hold_count)) 902 continue; 903 904 if (pred(b, NULL) == ER_EVICT) { 905 rb_erase(&b->node, root); 906 lru_remove(&bc->lru[b->list_mode], &b->lru); 907 release(b); 908 } 909 } 910 } 911 912 static void cache_remove_range(struct dm_buffer_cache *bc, 913 sector_t begin, sector_t end, 914 b_predicate pred, b_release release) 915 { 916 unsigned int i; 917 918 for (i = 0; i < bc->num_locks; i++) { 919 down_write(&bc->trees[i].lock); 920 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release); 921 up_write(&bc->trees[i].lock); 922 } 923 } 924 925 /*----------------------------------------------------------------*/ 926 927 /* 928 * Linking of buffers: 929 * All buffers are linked to buffer_cache with their node field. 930 * 931 * Clean buffers that are not being written (B_WRITING not set) 932 * are linked to lru[LIST_CLEAN] with their lru_list field. 933 * 934 * Dirty and clean buffers that are being written are linked to 935 * lru[LIST_DIRTY] with their lru_list field. When the write 936 * finishes, the buffer cannot be relinked immediately (because we 937 * are in an interrupt context and relinking requires process 938 * context), so some clean-not-writing buffers can be held on 939 * dirty_lru too. They are later added to lru in the process 940 * context. 941 */ 942 struct dm_bufio_client { 943 struct block_device *bdev; 944 unsigned int block_size; 945 s8 sectors_per_block_bits; 946 947 bool no_sleep; 948 struct mutex lock; 949 spinlock_t spinlock; 950 951 int async_write_error; 952 953 void (*alloc_callback)(struct dm_buffer *buf); 954 void (*write_callback)(struct dm_buffer *buf); 955 struct kmem_cache *slab_buffer; 956 struct kmem_cache *slab_cache; 957 struct dm_io_client *dm_io; 958 959 struct list_head reserved_buffers; 960 unsigned int need_reserved_buffers; 961 962 unsigned int minimum_buffers; 963 964 sector_t start; 965 966 struct shrinker shrinker; 967 struct work_struct shrink_work; 968 atomic_long_t need_shrink; 969 970 wait_queue_head_t free_buffer_wait; 971 972 struct list_head client_list; 973 974 /* 975 * Used by global_cleanup to sort the clients list. 976 */ 977 unsigned long oldest_buffer; 978 979 struct dm_buffer_cache cache; /* must be last member */ 980 }; 981 982 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 983 984 /*----------------------------------------------------------------*/ 985 986 #define dm_bufio_in_request() (!!current->bio_list) 987 988 static void dm_bufio_lock(struct dm_bufio_client *c) 989 { 990 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 991 spin_lock_bh(&c->spinlock); 992 else 993 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 994 } 995 996 static void dm_bufio_unlock(struct dm_bufio_client *c) 997 { 998 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 999 spin_unlock_bh(&c->spinlock); 1000 else 1001 mutex_unlock(&c->lock); 1002 } 1003 1004 /*----------------------------------------------------------------*/ 1005 1006 /* 1007 * Default cache size: available memory divided by the ratio. 1008 */ 1009 static unsigned long dm_bufio_default_cache_size; 1010 1011 /* 1012 * Total cache size set by the user. 1013 */ 1014 static unsigned long dm_bufio_cache_size; 1015 1016 /* 1017 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 1018 * at any time. If it disagrees, the user has changed cache size. 1019 */ 1020 static unsigned long dm_bufio_cache_size_latch; 1021 1022 static DEFINE_SPINLOCK(global_spinlock); 1023 1024 /* 1025 * Buffers are freed after this timeout 1026 */ 1027 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 1028 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 1029 1030 static unsigned long dm_bufio_peak_allocated; 1031 static unsigned long dm_bufio_allocated_kmem_cache; 1032 static unsigned long dm_bufio_allocated_get_free_pages; 1033 static unsigned long dm_bufio_allocated_vmalloc; 1034 static unsigned long dm_bufio_current_allocated; 1035 1036 /*----------------------------------------------------------------*/ 1037 1038 /* 1039 * The current number of clients. 1040 */ 1041 static int dm_bufio_client_count; 1042 1043 /* 1044 * The list of all clients. 1045 */ 1046 static LIST_HEAD(dm_bufio_all_clients); 1047 1048 /* 1049 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 1050 */ 1051 static DEFINE_MUTEX(dm_bufio_clients_lock); 1052 1053 static struct workqueue_struct *dm_bufio_wq; 1054 static struct delayed_work dm_bufio_cleanup_old_work; 1055 static struct work_struct dm_bufio_replacement_work; 1056 1057 1058 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1059 static void buffer_record_stack(struct dm_buffer *b) 1060 { 1061 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 1062 } 1063 #endif 1064 1065 /*----------------------------------------------------------------*/ 1066 1067 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 1068 { 1069 unsigned char data_mode; 1070 long diff; 1071 1072 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 1073 &dm_bufio_allocated_kmem_cache, 1074 &dm_bufio_allocated_get_free_pages, 1075 &dm_bufio_allocated_vmalloc, 1076 }; 1077 1078 data_mode = b->data_mode; 1079 diff = (long)b->c->block_size; 1080 if (unlink) 1081 diff = -diff; 1082 1083 spin_lock(&global_spinlock); 1084 1085 *class_ptr[data_mode] += diff; 1086 1087 dm_bufio_current_allocated += diff; 1088 1089 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 1090 dm_bufio_peak_allocated = dm_bufio_current_allocated; 1091 1092 if (!unlink) { 1093 if (dm_bufio_current_allocated > dm_bufio_cache_size) 1094 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 1095 } 1096 1097 spin_unlock(&global_spinlock); 1098 } 1099 1100 /* 1101 * Change the number of clients and recalculate per-client limit. 1102 */ 1103 static void __cache_size_refresh(void) 1104 { 1105 if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock))) 1106 return; 1107 if (WARN_ON(dm_bufio_client_count < 0)) 1108 return; 1109 1110 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 1111 1112 /* 1113 * Use default if set to 0 and report the actual cache size used. 1114 */ 1115 if (!dm_bufio_cache_size_latch) { 1116 (void)cmpxchg(&dm_bufio_cache_size, 0, 1117 dm_bufio_default_cache_size); 1118 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 1119 } 1120 } 1121 1122 /* 1123 * Allocating buffer data. 1124 * 1125 * Small buffers are allocated with kmem_cache, to use space optimally. 1126 * 1127 * For large buffers, we choose between get_free_pages and vmalloc. 1128 * Each has advantages and disadvantages. 1129 * 1130 * __get_free_pages can randomly fail if the memory is fragmented. 1131 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 1132 * as low as 128M) so using it for caching is not appropriate. 1133 * 1134 * If the allocation may fail we use __get_free_pages. Memory fragmentation 1135 * won't have a fatal effect here, but it just causes flushes of some other 1136 * buffers and more I/O will be performed. Don't use __get_free_pages if it 1137 * always fails (i.e. order > MAX_ORDER). 1138 * 1139 * If the allocation shouldn't fail we use __vmalloc. This is only for the 1140 * initial reserve allocation, so there's no risk of wasting all vmalloc 1141 * space. 1142 */ 1143 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 1144 unsigned char *data_mode) 1145 { 1146 if (unlikely(c->slab_cache != NULL)) { 1147 *data_mode = DATA_MODE_SLAB; 1148 return kmem_cache_alloc(c->slab_cache, gfp_mask); 1149 } 1150 1151 if (c->block_size <= KMALLOC_MAX_SIZE && 1152 gfp_mask & __GFP_NORETRY) { 1153 *data_mode = DATA_MODE_GET_FREE_PAGES; 1154 return (void *)__get_free_pages(gfp_mask, 1155 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1156 } 1157 1158 *data_mode = DATA_MODE_VMALLOC; 1159 1160 return __vmalloc(c->block_size, gfp_mask); 1161 } 1162 1163 /* 1164 * Free buffer's data. 1165 */ 1166 static void free_buffer_data(struct dm_bufio_client *c, 1167 void *data, unsigned char data_mode) 1168 { 1169 switch (data_mode) { 1170 case DATA_MODE_SLAB: 1171 kmem_cache_free(c->slab_cache, data); 1172 break; 1173 1174 case DATA_MODE_GET_FREE_PAGES: 1175 free_pages((unsigned long)data, 1176 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 1177 break; 1178 1179 case DATA_MODE_VMALLOC: 1180 vfree(data); 1181 break; 1182 1183 default: 1184 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 1185 data_mode); 1186 BUG(); 1187 } 1188 } 1189 1190 /* 1191 * Allocate buffer and its data. 1192 */ 1193 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 1194 { 1195 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 1196 1197 if (!b) 1198 return NULL; 1199 1200 b->c = c; 1201 1202 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 1203 if (!b->data) { 1204 kmem_cache_free(c->slab_buffer, b); 1205 return NULL; 1206 } 1207 adjust_total_allocated(b, false); 1208 1209 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1210 b->stack_len = 0; 1211 #endif 1212 return b; 1213 } 1214 1215 /* 1216 * Free buffer and its data. 1217 */ 1218 static void free_buffer(struct dm_buffer *b) 1219 { 1220 struct dm_bufio_client *c = b->c; 1221 1222 adjust_total_allocated(b, true); 1223 free_buffer_data(c, b->data, b->data_mode); 1224 kmem_cache_free(c->slab_buffer, b); 1225 } 1226 1227 /* 1228 *-------------------------------------------------------------------------- 1229 * Submit I/O on the buffer. 1230 * 1231 * Bio interface is faster but it has some problems: 1232 * the vector list is limited (increasing this limit increases 1233 * memory-consumption per buffer, so it is not viable); 1234 * 1235 * the memory must be direct-mapped, not vmalloced; 1236 * 1237 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 1238 * it is not vmalloced, try using the bio interface. 1239 * 1240 * If the buffer is big, if it is vmalloced or if the underlying device 1241 * rejects the bio because it is too large, use dm-io layer to do the I/O. 1242 * The dm-io layer splits the I/O into multiple requests, avoiding the above 1243 * shortcomings. 1244 *-------------------------------------------------------------------------- 1245 */ 1246 1247 /* 1248 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 1249 * that the request was handled directly with bio interface. 1250 */ 1251 static void dmio_complete(unsigned long error, void *context) 1252 { 1253 struct dm_buffer *b = context; 1254 1255 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 1256 } 1257 1258 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 1259 unsigned int n_sectors, unsigned int offset) 1260 { 1261 int r; 1262 struct dm_io_request io_req = { 1263 .bi_opf = op, 1264 .notify.fn = dmio_complete, 1265 .notify.context = b, 1266 .client = b->c->dm_io, 1267 }; 1268 struct dm_io_region region = { 1269 .bdev = b->c->bdev, 1270 .sector = sector, 1271 .count = n_sectors, 1272 }; 1273 1274 if (b->data_mode != DATA_MODE_VMALLOC) { 1275 io_req.mem.type = DM_IO_KMEM; 1276 io_req.mem.ptr.addr = (char *)b->data + offset; 1277 } else { 1278 io_req.mem.type = DM_IO_VMA; 1279 io_req.mem.ptr.vma = (char *)b->data + offset; 1280 } 1281 1282 r = dm_io(&io_req, 1, ®ion, NULL); 1283 if (unlikely(r)) 1284 b->end_io(b, errno_to_blk_status(r)); 1285 } 1286 1287 static void bio_complete(struct bio *bio) 1288 { 1289 struct dm_buffer *b = bio->bi_private; 1290 blk_status_t status = bio->bi_status; 1291 1292 bio_uninit(bio); 1293 kfree(bio); 1294 b->end_io(b, status); 1295 } 1296 1297 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 1298 unsigned int n_sectors, unsigned int offset) 1299 { 1300 struct bio *bio; 1301 char *ptr; 1302 unsigned int len; 1303 1304 bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 1305 if (!bio) { 1306 use_dmio(b, op, sector, n_sectors, offset); 1307 return; 1308 } 1309 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op); 1310 bio->bi_iter.bi_sector = sector; 1311 bio->bi_end_io = bio_complete; 1312 bio->bi_private = b; 1313 1314 ptr = (char *)b->data + offset; 1315 len = n_sectors << SECTOR_SHIFT; 1316 1317 __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr)); 1318 1319 submit_bio(bio); 1320 } 1321 1322 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 1323 { 1324 sector_t sector; 1325 1326 if (likely(c->sectors_per_block_bits >= 0)) 1327 sector = block << c->sectors_per_block_bits; 1328 else 1329 sector = block * (c->block_size >> SECTOR_SHIFT); 1330 sector += c->start; 1331 1332 return sector; 1333 } 1334 1335 static void submit_io(struct dm_buffer *b, enum req_op op, 1336 void (*end_io)(struct dm_buffer *, blk_status_t)) 1337 { 1338 unsigned int n_sectors; 1339 sector_t sector; 1340 unsigned int offset, end; 1341 1342 b->end_io = end_io; 1343 1344 sector = block_to_sector(b->c, b->block); 1345 1346 if (op != REQ_OP_WRITE) { 1347 n_sectors = b->c->block_size >> SECTOR_SHIFT; 1348 offset = 0; 1349 } else { 1350 if (b->c->write_callback) 1351 b->c->write_callback(b); 1352 offset = b->write_start; 1353 end = b->write_end; 1354 offset &= -DM_BUFIO_WRITE_ALIGN; 1355 end += DM_BUFIO_WRITE_ALIGN - 1; 1356 end &= -DM_BUFIO_WRITE_ALIGN; 1357 if (unlikely(end > b->c->block_size)) 1358 end = b->c->block_size; 1359 1360 sector += offset >> SECTOR_SHIFT; 1361 n_sectors = (end - offset) >> SECTOR_SHIFT; 1362 } 1363 1364 if (b->data_mode != DATA_MODE_VMALLOC) 1365 use_bio(b, op, sector, n_sectors, offset); 1366 else 1367 use_dmio(b, op, sector, n_sectors, offset); 1368 } 1369 1370 /* 1371 *-------------------------------------------------------------- 1372 * Writing dirty buffers 1373 *-------------------------------------------------------------- 1374 */ 1375 1376 /* 1377 * The endio routine for write. 1378 * 1379 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 1380 * it. 1381 */ 1382 static void write_endio(struct dm_buffer *b, blk_status_t status) 1383 { 1384 b->write_error = status; 1385 if (unlikely(status)) { 1386 struct dm_bufio_client *c = b->c; 1387 1388 (void)cmpxchg(&c->async_write_error, 0, 1389 blk_status_to_errno(status)); 1390 } 1391 1392 BUG_ON(!test_bit(B_WRITING, &b->state)); 1393 1394 smp_mb__before_atomic(); 1395 clear_bit(B_WRITING, &b->state); 1396 smp_mb__after_atomic(); 1397 1398 wake_up_bit(&b->state, B_WRITING); 1399 } 1400 1401 /* 1402 * Initiate a write on a dirty buffer, but don't wait for it. 1403 * 1404 * - If the buffer is not dirty, exit. 1405 * - If there some previous write going on, wait for it to finish (we can't 1406 * have two writes on the same buffer simultaneously). 1407 * - Submit our write and don't wait on it. We set B_WRITING indicating 1408 * that there is a write in progress. 1409 */ 1410 static void __write_dirty_buffer(struct dm_buffer *b, 1411 struct list_head *write_list) 1412 { 1413 if (!test_bit(B_DIRTY, &b->state)) 1414 return; 1415 1416 clear_bit(B_DIRTY, &b->state); 1417 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1418 1419 b->write_start = b->dirty_start; 1420 b->write_end = b->dirty_end; 1421 1422 if (!write_list) 1423 submit_io(b, REQ_OP_WRITE, write_endio); 1424 else 1425 list_add_tail(&b->write_list, write_list); 1426 } 1427 1428 static void __flush_write_list(struct list_head *write_list) 1429 { 1430 struct blk_plug plug; 1431 1432 blk_start_plug(&plug); 1433 while (!list_empty(write_list)) { 1434 struct dm_buffer *b = 1435 list_entry(write_list->next, struct dm_buffer, write_list); 1436 list_del(&b->write_list); 1437 submit_io(b, REQ_OP_WRITE, write_endio); 1438 cond_resched(); 1439 } 1440 blk_finish_plug(&plug); 1441 } 1442 1443 /* 1444 * Wait until any activity on the buffer finishes. Possibly write the 1445 * buffer if it is dirty. When this function finishes, there is no I/O 1446 * running on the buffer and the buffer is not dirty. 1447 */ 1448 static void __make_buffer_clean(struct dm_buffer *b) 1449 { 1450 BUG_ON(atomic_read(&b->hold_count)); 1451 1452 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 1453 if (!smp_load_acquire(&b->state)) /* fast case */ 1454 return; 1455 1456 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1457 __write_dirty_buffer(b, NULL); 1458 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 1459 } 1460 1461 static enum evict_result is_clean(struct dm_buffer *b, void *context) 1462 { 1463 struct dm_bufio_client *c = context; 1464 1465 /* These should never happen */ 1466 if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state))) 1467 return ER_DONT_EVICT; 1468 if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state))) 1469 return ER_DONT_EVICT; 1470 if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN)) 1471 return ER_DONT_EVICT; 1472 1473 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 1474 unlikely(test_bit(B_READING, &b->state))) 1475 return ER_DONT_EVICT; 1476 1477 return ER_EVICT; 1478 } 1479 1480 static enum evict_result is_dirty(struct dm_buffer *b, void *context) 1481 { 1482 /* These should never happen */ 1483 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1484 return ER_DONT_EVICT; 1485 if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY)) 1486 return ER_DONT_EVICT; 1487 1488 return ER_EVICT; 1489 } 1490 1491 /* 1492 * Find some buffer that is not held by anybody, clean it, unlink it and 1493 * return it. 1494 */ 1495 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 1496 { 1497 struct dm_buffer *b; 1498 1499 b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c); 1500 if (b) { 1501 /* this also waits for pending reads */ 1502 __make_buffer_clean(b); 1503 return b; 1504 } 1505 1506 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 1507 return NULL; 1508 1509 b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL); 1510 if (b) { 1511 __make_buffer_clean(b); 1512 return b; 1513 } 1514 1515 return NULL; 1516 } 1517 1518 /* 1519 * Wait until some other threads free some buffer or release hold count on 1520 * some buffer. 1521 * 1522 * This function is entered with c->lock held, drops it and regains it 1523 * before exiting. 1524 */ 1525 static void __wait_for_free_buffer(struct dm_bufio_client *c) 1526 { 1527 DECLARE_WAITQUEUE(wait, current); 1528 1529 add_wait_queue(&c->free_buffer_wait, &wait); 1530 set_current_state(TASK_UNINTERRUPTIBLE); 1531 dm_bufio_unlock(c); 1532 1533 /* 1534 * It's possible to miss a wake up event since we don't always 1535 * hold c->lock when wake_up is called. So we have a timeout here, 1536 * just in case. 1537 */ 1538 io_schedule_timeout(5 * HZ); 1539 1540 remove_wait_queue(&c->free_buffer_wait, &wait); 1541 1542 dm_bufio_lock(c); 1543 } 1544 1545 enum new_flag { 1546 NF_FRESH = 0, 1547 NF_READ = 1, 1548 NF_GET = 2, 1549 NF_PREFETCH = 3 1550 }; 1551 1552 /* 1553 * Allocate a new buffer. If the allocation is not possible, wait until 1554 * some other thread frees a buffer. 1555 * 1556 * May drop the lock and regain it. 1557 */ 1558 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 1559 { 1560 struct dm_buffer *b; 1561 bool tried_noio_alloc = false; 1562 1563 /* 1564 * dm-bufio is resistant to allocation failures (it just keeps 1565 * one buffer reserved in cases all the allocations fail). 1566 * So set flags to not try too hard: 1567 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 1568 * mutex and wait ourselves. 1569 * __GFP_NORETRY: don't retry and rather return failure 1570 * __GFP_NOMEMALLOC: don't use emergency reserves 1571 * __GFP_NOWARN: don't print a warning in case of failure 1572 * 1573 * For debugging, if we set the cache size to 1, no new buffers will 1574 * be allocated. 1575 */ 1576 while (1) { 1577 if (dm_bufio_cache_size_latch != 1) { 1578 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1579 if (b) 1580 return b; 1581 } 1582 1583 if (nf == NF_PREFETCH) 1584 return NULL; 1585 1586 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 1587 dm_bufio_unlock(c); 1588 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 1589 dm_bufio_lock(c); 1590 if (b) 1591 return b; 1592 tried_noio_alloc = true; 1593 } 1594 1595 if (!list_empty(&c->reserved_buffers)) { 1596 b = list_to_buffer(c->reserved_buffers.next); 1597 list_del(&b->lru.list); 1598 c->need_reserved_buffers++; 1599 1600 return b; 1601 } 1602 1603 b = __get_unclaimed_buffer(c); 1604 if (b) 1605 return b; 1606 1607 __wait_for_free_buffer(c); 1608 } 1609 } 1610 1611 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 1612 { 1613 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 1614 1615 if (!b) 1616 return NULL; 1617 1618 if (c->alloc_callback) 1619 c->alloc_callback(b); 1620 1621 return b; 1622 } 1623 1624 /* 1625 * Free a buffer and wake other threads waiting for free buffers. 1626 */ 1627 static void __free_buffer_wake(struct dm_buffer *b) 1628 { 1629 struct dm_bufio_client *c = b->c; 1630 1631 b->block = -1; 1632 if (!c->need_reserved_buffers) 1633 free_buffer(b); 1634 else { 1635 list_add(&b->lru.list, &c->reserved_buffers); 1636 c->need_reserved_buffers--; 1637 } 1638 1639 /* 1640 * We hold the bufio lock here, so no one can add entries to the 1641 * wait queue anyway. 1642 */ 1643 if (unlikely(waitqueue_active(&c->free_buffer_wait))) 1644 wake_up(&c->free_buffer_wait); 1645 } 1646 1647 static enum evict_result cleaned(struct dm_buffer *b, void *context) 1648 { 1649 if (WARN_ON_ONCE(test_bit(B_READING, &b->state))) 1650 return ER_DONT_EVICT; /* should never happen */ 1651 1652 if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state)) 1653 return ER_DONT_EVICT; 1654 else 1655 return ER_EVICT; 1656 } 1657 1658 static void __move_clean_buffers(struct dm_bufio_client *c) 1659 { 1660 cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL); 1661 } 1662 1663 struct write_context { 1664 int no_wait; 1665 struct list_head *write_list; 1666 }; 1667 1668 static enum it_action write_one(struct dm_buffer *b, void *context) 1669 { 1670 struct write_context *wc = context; 1671 1672 if (wc->no_wait && test_bit(B_WRITING, &b->state)) 1673 return IT_COMPLETE; 1674 1675 __write_dirty_buffer(b, wc->write_list); 1676 return IT_NEXT; 1677 } 1678 1679 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 1680 struct list_head *write_list) 1681 { 1682 struct write_context wc = {.no_wait = no_wait, .write_list = write_list}; 1683 1684 __move_clean_buffers(c); 1685 cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc); 1686 } 1687 1688 /* 1689 * Check if we're over watermark. 1690 * If we are over threshold_buffers, start freeing buffers. 1691 * If we're over "limit_buffers", block until we get under the limit. 1692 */ 1693 static void __check_watermark(struct dm_bufio_client *c, 1694 struct list_head *write_list) 1695 { 1696 if (cache_count(&c->cache, LIST_DIRTY) > 1697 cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO) 1698 __write_dirty_buffers_async(c, 1, write_list); 1699 } 1700 1701 /* 1702 *-------------------------------------------------------------- 1703 * Getting a buffer 1704 *-------------------------------------------------------------- 1705 */ 1706 1707 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b) 1708 { 1709 /* 1710 * Relying on waitqueue_active() is racey, but we sleep 1711 * with schedule_timeout anyway. 1712 */ 1713 if (cache_put(&c->cache, b) && 1714 unlikely(waitqueue_active(&c->free_buffer_wait))) 1715 wake_up(&c->free_buffer_wait); 1716 } 1717 1718 /* 1719 * This assumes you have already checked the cache to see if the buffer 1720 * is already present (it will recheck after dropping the lock for allocation). 1721 */ 1722 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1723 enum new_flag nf, int *need_submit, 1724 struct list_head *write_list) 1725 { 1726 struct dm_buffer *b, *new_b = NULL; 1727 1728 *need_submit = 0; 1729 1730 /* This can't be called with NF_GET */ 1731 if (WARN_ON_ONCE(nf == NF_GET)) 1732 return NULL; 1733 1734 new_b = __alloc_buffer_wait(c, nf); 1735 if (!new_b) 1736 return NULL; 1737 1738 /* 1739 * We've had a period where the mutex was unlocked, so need to 1740 * recheck the buffer tree. 1741 */ 1742 b = cache_get(&c->cache, block); 1743 if (b) { 1744 __free_buffer_wake(new_b); 1745 goto found_buffer; 1746 } 1747 1748 __check_watermark(c, write_list); 1749 1750 b = new_b; 1751 atomic_set(&b->hold_count, 1); 1752 WRITE_ONCE(b->last_accessed, jiffies); 1753 b->block = block; 1754 b->read_error = 0; 1755 b->write_error = 0; 1756 b->list_mode = LIST_CLEAN; 1757 1758 if (nf == NF_FRESH) 1759 b->state = 0; 1760 else { 1761 b->state = 1 << B_READING; 1762 *need_submit = 1; 1763 } 1764 1765 /* 1766 * We mustn't insert into the cache until the B_READING state 1767 * is set. Otherwise another thread could get it and use 1768 * it before it had been read. 1769 */ 1770 cache_insert(&c->cache, b); 1771 1772 return b; 1773 1774 found_buffer: 1775 if (nf == NF_PREFETCH) { 1776 cache_put_and_wake(c, b); 1777 return NULL; 1778 } 1779 1780 /* 1781 * Note: it is essential that we don't wait for the buffer to be 1782 * read if dm_bufio_get function is used. Both dm_bufio_get and 1783 * dm_bufio_prefetch can be used in the driver request routine. 1784 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1785 * the same buffer, it would deadlock if we waited. 1786 */ 1787 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1788 cache_put_and_wake(c, b); 1789 return NULL; 1790 } 1791 1792 return b; 1793 } 1794 1795 /* 1796 * The endio routine for reading: set the error, clear the bit and wake up 1797 * anyone waiting on the buffer. 1798 */ 1799 static void read_endio(struct dm_buffer *b, blk_status_t status) 1800 { 1801 b->read_error = status; 1802 1803 BUG_ON(!test_bit(B_READING, &b->state)); 1804 1805 smp_mb__before_atomic(); 1806 clear_bit(B_READING, &b->state); 1807 smp_mb__after_atomic(); 1808 1809 wake_up_bit(&b->state, B_READING); 1810 } 1811 1812 /* 1813 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1814 * functions is similar except that dm_bufio_new doesn't read the 1815 * buffer from the disk (assuming that the caller overwrites all the data 1816 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1817 */ 1818 static void *new_read(struct dm_bufio_client *c, sector_t block, 1819 enum new_flag nf, struct dm_buffer **bp) 1820 { 1821 int need_submit = 0; 1822 struct dm_buffer *b; 1823 1824 LIST_HEAD(write_list); 1825 1826 *bp = NULL; 1827 1828 /* 1829 * Fast path, hopefully the block is already in the cache. No need 1830 * to get the client lock for this. 1831 */ 1832 b = cache_get(&c->cache, block); 1833 if (b) { 1834 if (nf == NF_PREFETCH) { 1835 cache_put_and_wake(c, b); 1836 return NULL; 1837 } 1838 1839 /* 1840 * Note: it is essential that we don't wait for the buffer to be 1841 * read if dm_bufio_get function is used. Both dm_bufio_get and 1842 * dm_bufio_prefetch can be used in the driver request routine. 1843 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1844 * the same buffer, it would deadlock if we waited. 1845 */ 1846 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) { 1847 cache_put_and_wake(c, b); 1848 return NULL; 1849 } 1850 } 1851 1852 if (!b) { 1853 if (nf == NF_GET) 1854 return NULL; 1855 1856 dm_bufio_lock(c); 1857 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1858 dm_bufio_unlock(c); 1859 } 1860 1861 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1862 if (b && (atomic_read(&b->hold_count) == 1)) 1863 buffer_record_stack(b); 1864 #endif 1865 1866 __flush_write_list(&write_list); 1867 1868 if (!b) 1869 return NULL; 1870 1871 if (need_submit) 1872 submit_io(b, REQ_OP_READ, read_endio); 1873 1874 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1875 1876 if (b->read_error) { 1877 int error = blk_status_to_errno(b->read_error); 1878 1879 dm_bufio_release(b); 1880 1881 return ERR_PTR(error); 1882 } 1883 1884 *bp = b; 1885 1886 return b->data; 1887 } 1888 1889 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1890 struct dm_buffer **bp) 1891 { 1892 return new_read(c, block, NF_GET, bp); 1893 } 1894 EXPORT_SYMBOL_GPL(dm_bufio_get); 1895 1896 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1897 struct dm_buffer **bp) 1898 { 1899 if (WARN_ON_ONCE(dm_bufio_in_request())) 1900 return ERR_PTR(-EINVAL); 1901 1902 return new_read(c, block, NF_READ, bp); 1903 } 1904 EXPORT_SYMBOL_GPL(dm_bufio_read); 1905 1906 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1907 struct dm_buffer **bp) 1908 { 1909 if (WARN_ON_ONCE(dm_bufio_in_request())) 1910 return ERR_PTR(-EINVAL); 1911 1912 return new_read(c, block, NF_FRESH, bp); 1913 } 1914 EXPORT_SYMBOL_GPL(dm_bufio_new); 1915 1916 void dm_bufio_prefetch(struct dm_bufio_client *c, 1917 sector_t block, unsigned int n_blocks) 1918 { 1919 struct blk_plug plug; 1920 1921 LIST_HEAD(write_list); 1922 1923 if (WARN_ON_ONCE(dm_bufio_in_request())) 1924 return; /* should never happen */ 1925 1926 blk_start_plug(&plug); 1927 1928 for (; n_blocks--; block++) { 1929 int need_submit; 1930 struct dm_buffer *b; 1931 1932 b = cache_get(&c->cache, block); 1933 if (b) { 1934 /* already in cache */ 1935 cache_put_and_wake(c, b); 1936 continue; 1937 } 1938 1939 dm_bufio_lock(c); 1940 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1941 &write_list); 1942 if (unlikely(!list_empty(&write_list))) { 1943 dm_bufio_unlock(c); 1944 blk_finish_plug(&plug); 1945 __flush_write_list(&write_list); 1946 blk_start_plug(&plug); 1947 dm_bufio_lock(c); 1948 } 1949 if (unlikely(b != NULL)) { 1950 dm_bufio_unlock(c); 1951 1952 if (need_submit) 1953 submit_io(b, REQ_OP_READ, read_endio); 1954 dm_bufio_release(b); 1955 1956 cond_resched(); 1957 1958 if (!n_blocks) 1959 goto flush_plug; 1960 dm_bufio_lock(c); 1961 } 1962 dm_bufio_unlock(c); 1963 } 1964 1965 flush_plug: 1966 blk_finish_plug(&plug); 1967 } 1968 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1969 1970 void dm_bufio_release(struct dm_buffer *b) 1971 { 1972 struct dm_bufio_client *c = b->c; 1973 1974 /* 1975 * If there were errors on the buffer, and the buffer is not 1976 * to be written, free the buffer. There is no point in caching 1977 * invalid buffer. 1978 */ 1979 if ((b->read_error || b->write_error) && 1980 !test_bit_acquire(B_READING, &b->state) && 1981 !test_bit(B_WRITING, &b->state) && 1982 !test_bit(B_DIRTY, &b->state)) { 1983 dm_bufio_lock(c); 1984 1985 /* cache remove can fail if there are other holders */ 1986 if (cache_remove(&c->cache, b)) { 1987 __free_buffer_wake(b); 1988 dm_bufio_unlock(c); 1989 return; 1990 } 1991 1992 dm_bufio_unlock(c); 1993 } 1994 1995 cache_put_and_wake(c, b); 1996 } 1997 EXPORT_SYMBOL_GPL(dm_bufio_release); 1998 1999 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 2000 unsigned int start, unsigned int end) 2001 { 2002 struct dm_bufio_client *c = b->c; 2003 2004 BUG_ON(start >= end); 2005 BUG_ON(end > b->c->block_size); 2006 2007 dm_bufio_lock(c); 2008 2009 BUG_ON(test_bit(B_READING, &b->state)); 2010 2011 if (!test_and_set_bit(B_DIRTY, &b->state)) { 2012 b->dirty_start = start; 2013 b->dirty_end = end; 2014 cache_mark(&c->cache, b, LIST_DIRTY); 2015 } else { 2016 if (start < b->dirty_start) 2017 b->dirty_start = start; 2018 if (end > b->dirty_end) 2019 b->dirty_end = end; 2020 } 2021 2022 dm_bufio_unlock(c); 2023 } 2024 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 2025 2026 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 2027 { 2028 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 2029 } 2030 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 2031 2032 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 2033 { 2034 LIST_HEAD(write_list); 2035 2036 if (WARN_ON_ONCE(dm_bufio_in_request())) 2037 return; /* should never happen */ 2038 2039 dm_bufio_lock(c); 2040 __write_dirty_buffers_async(c, 0, &write_list); 2041 dm_bufio_unlock(c); 2042 __flush_write_list(&write_list); 2043 } 2044 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 2045 2046 /* 2047 * For performance, it is essential that the buffers are written asynchronously 2048 * and simultaneously (so that the block layer can merge the writes) and then 2049 * waited upon. 2050 * 2051 * Finally, we flush hardware disk cache. 2052 */ 2053 static bool is_writing(struct lru_entry *e, void *context) 2054 { 2055 struct dm_buffer *b = le_to_buffer(e); 2056 2057 return test_bit(B_WRITING, &b->state); 2058 } 2059 2060 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 2061 { 2062 int a, f; 2063 unsigned long nr_buffers; 2064 struct lru_entry *e; 2065 struct lru_iter it; 2066 2067 LIST_HEAD(write_list); 2068 2069 dm_bufio_lock(c); 2070 __write_dirty_buffers_async(c, 0, &write_list); 2071 dm_bufio_unlock(c); 2072 __flush_write_list(&write_list); 2073 dm_bufio_lock(c); 2074 2075 nr_buffers = cache_count(&c->cache, LIST_DIRTY); 2076 lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it); 2077 while ((e = lru_iter_next(&it, is_writing, c))) { 2078 struct dm_buffer *b = le_to_buffer(e); 2079 __cache_inc_buffer(b); 2080 2081 BUG_ON(test_bit(B_READING, &b->state)); 2082 2083 if (nr_buffers) { 2084 nr_buffers--; 2085 dm_bufio_unlock(c); 2086 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2087 dm_bufio_lock(c); 2088 } else { 2089 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 2090 } 2091 2092 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state)) 2093 cache_mark(&c->cache, b, LIST_CLEAN); 2094 2095 cache_put_and_wake(c, b); 2096 2097 cond_resched(); 2098 } 2099 lru_iter_end(&it); 2100 2101 wake_up(&c->free_buffer_wait); 2102 dm_bufio_unlock(c); 2103 2104 a = xchg(&c->async_write_error, 0); 2105 f = dm_bufio_issue_flush(c); 2106 if (a) 2107 return a; 2108 2109 return f; 2110 } 2111 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 2112 2113 /* 2114 * Use dm-io to send an empty barrier to flush the device. 2115 */ 2116 int dm_bufio_issue_flush(struct dm_bufio_client *c) 2117 { 2118 struct dm_io_request io_req = { 2119 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 2120 .mem.type = DM_IO_KMEM, 2121 .mem.ptr.addr = NULL, 2122 .client = c->dm_io, 2123 }; 2124 struct dm_io_region io_reg = { 2125 .bdev = c->bdev, 2126 .sector = 0, 2127 .count = 0, 2128 }; 2129 2130 if (WARN_ON_ONCE(dm_bufio_in_request())) 2131 return -EINVAL; 2132 2133 return dm_io(&io_req, 1, &io_reg, NULL); 2134 } 2135 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 2136 2137 /* 2138 * Use dm-io to send a discard request to flush the device. 2139 */ 2140 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 2141 { 2142 struct dm_io_request io_req = { 2143 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 2144 .mem.type = DM_IO_KMEM, 2145 .mem.ptr.addr = NULL, 2146 .client = c->dm_io, 2147 }; 2148 struct dm_io_region io_reg = { 2149 .bdev = c->bdev, 2150 .sector = block_to_sector(c, block), 2151 .count = block_to_sector(c, count), 2152 }; 2153 2154 if (WARN_ON_ONCE(dm_bufio_in_request())) 2155 return -EINVAL; /* discards are optional */ 2156 2157 return dm_io(&io_req, 1, &io_reg, NULL); 2158 } 2159 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 2160 2161 static bool forget_buffer(struct dm_bufio_client *c, sector_t block) 2162 { 2163 struct dm_buffer *b; 2164 2165 b = cache_get(&c->cache, block); 2166 if (b) { 2167 if (likely(!smp_load_acquire(&b->state))) { 2168 if (cache_remove(&c->cache, b)) 2169 __free_buffer_wake(b); 2170 else 2171 cache_put_and_wake(c, b); 2172 } else { 2173 cache_put_and_wake(c, b); 2174 } 2175 } 2176 2177 return b ? true : false; 2178 } 2179 2180 /* 2181 * Free the given buffer. 2182 * 2183 * This is just a hint, if the buffer is in use or dirty, this function 2184 * does nothing. 2185 */ 2186 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 2187 { 2188 dm_bufio_lock(c); 2189 forget_buffer(c, block); 2190 dm_bufio_unlock(c); 2191 } 2192 EXPORT_SYMBOL_GPL(dm_bufio_forget); 2193 2194 static enum evict_result idle(struct dm_buffer *b, void *context) 2195 { 2196 return b->state ? ER_DONT_EVICT : ER_EVICT; 2197 } 2198 2199 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 2200 { 2201 dm_bufio_lock(c); 2202 cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake); 2203 dm_bufio_unlock(c); 2204 } 2205 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 2206 2207 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n) 2208 { 2209 c->minimum_buffers = n; 2210 } 2211 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 2212 2213 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c) 2214 { 2215 return c->block_size; 2216 } 2217 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 2218 2219 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 2220 { 2221 sector_t s = bdev_nr_sectors(c->bdev); 2222 2223 if (s >= c->start) 2224 s -= c->start; 2225 else 2226 s = 0; 2227 if (likely(c->sectors_per_block_bits >= 0)) 2228 s >>= c->sectors_per_block_bits; 2229 else 2230 sector_div(s, c->block_size >> SECTOR_SHIFT); 2231 return s; 2232 } 2233 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 2234 2235 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 2236 { 2237 return c->dm_io; 2238 } 2239 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 2240 2241 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 2242 { 2243 return b->block; 2244 } 2245 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 2246 2247 void *dm_bufio_get_block_data(struct dm_buffer *b) 2248 { 2249 return b->data; 2250 } 2251 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 2252 2253 void *dm_bufio_get_aux_data(struct dm_buffer *b) 2254 { 2255 return b + 1; 2256 } 2257 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 2258 2259 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 2260 { 2261 return b->c; 2262 } 2263 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 2264 2265 static enum it_action warn_leak(struct dm_buffer *b, void *context) 2266 { 2267 bool *warned = context; 2268 2269 WARN_ON(!(*warned)); 2270 *warned = true; 2271 DMERR("leaked buffer %llx, hold count %u, list %d", 2272 (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode); 2273 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2274 stack_trace_print(b->stack_entries, b->stack_len, 1); 2275 /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */ 2276 atomic_set(&b->hold_count, 0); 2277 #endif 2278 return IT_NEXT; 2279 } 2280 2281 static void drop_buffers(struct dm_bufio_client *c) 2282 { 2283 int i; 2284 struct dm_buffer *b; 2285 2286 if (WARN_ON(dm_bufio_in_request())) 2287 return; /* should never happen */ 2288 2289 /* 2290 * An optimization so that the buffers are not written one-by-one. 2291 */ 2292 dm_bufio_write_dirty_buffers_async(c); 2293 2294 dm_bufio_lock(c); 2295 2296 while ((b = __get_unclaimed_buffer(c))) 2297 __free_buffer_wake(b); 2298 2299 for (i = 0; i < LIST_SIZE; i++) { 2300 bool warned = false; 2301 2302 cache_iterate(&c->cache, i, warn_leak, &warned); 2303 } 2304 2305 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 2306 while ((b = __get_unclaimed_buffer(c))) 2307 __free_buffer_wake(b); 2308 #endif 2309 2310 for (i = 0; i < LIST_SIZE; i++) 2311 WARN_ON(cache_count(&c->cache, i)); 2312 2313 dm_bufio_unlock(c); 2314 } 2315 2316 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 2317 { 2318 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 2319 2320 if (likely(c->sectors_per_block_bits >= 0)) 2321 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 2322 else 2323 retain_bytes /= c->block_size; 2324 2325 return retain_bytes; 2326 } 2327 2328 static void __scan(struct dm_bufio_client *c) 2329 { 2330 int l; 2331 struct dm_buffer *b; 2332 unsigned long freed = 0; 2333 unsigned long retain_target = get_retain_buffers(c); 2334 unsigned long count = cache_total(&c->cache); 2335 2336 for (l = 0; l < LIST_SIZE; l++) { 2337 while (true) { 2338 if (count - freed <= retain_target) 2339 atomic_long_set(&c->need_shrink, 0); 2340 if (!atomic_long_read(&c->need_shrink)) 2341 break; 2342 2343 b = cache_evict(&c->cache, l, 2344 l == LIST_CLEAN ? is_clean : is_dirty, c); 2345 if (!b) 2346 break; 2347 2348 __make_buffer_clean(b); 2349 __free_buffer_wake(b); 2350 2351 atomic_long_dec(&c->need_shrink); 2352 freed++; 2353 cond_resched(); 2354 } 2355 } 2356 } 2357 2358 static void shrink_work(struct work_struct *w) 2359 { 2360 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 2361 2362 dm_bufio_lock(c); 2363 __scan(c); 2364 dm_bufio_unlock(c); 2365 } 2366 2367 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 2368 { 2369 struct dm_bufio_client *c; 2370 2371 c = container_of(shrink, struct dm_bufio_client, shrinker); 2372 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 2373 queue_work(dm_bufio_wq, &c->shrink_work); 2374 2375 return sc->nr_to_scan; 2376 } 2377 2378 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 2379 { 2380 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 2381 unsigned long count = cache_total(&c->cache); 2382 unsigned long retain_target = get_retain_buffers(c); 2383 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 2384 2385 if (unlikely(count < retain_target)) 2386 count = 0; 2387 else 2388 count -= retain_target; 2389 2390 if (unlikely(count < queued_for_cleanup)) 2391 count = 0; 2392 else 2393 count -= queued_for_cleanup; 2394 2395 return count; 2396 } 2397 2398 /* 2399 * Create the buffering interface 2400 */ 2401 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size, 2402 unsigned int reserved_buffers, unsigned int aux_size, 2403 void (*alloc_callback)(struct dm_buffer *), 2404 void (*write_callback)(struct dm_buffer *), 2405 unsigned int flags) 2406 { 2407 int r; 2408 unsigned int num_locks; 2409 struct dm_bufio_client *c; 2410 char slab_name[27]; 2411 2412 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 2413 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 2414 r = -EINVAL; 2415 goto bad_client; 2416 } 2417 2418 num_locks = dm_num_hash_locks(); 2419 c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL); 2420 if (!c) { 2421 r = -ENOMEM; 2422 goto bad_client; 2423 } 2424 cache_init(&c->cache, num_locks); 2425 2426 c->bdev = bdev; 2427 c->block_size = block_size; 2428 if (is_power_of_2(block_size)) 2429 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 2430 else 2431 c->sectors_per_block_bits = -1; 2432 2433 c->alloc_callback = alloc_callback; 2434 c->write_callback = write_callback; 2435 2436 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 2437 c->no_sleep = true; 2438 static_branch_inc(&no_sleep_enabled); 2439 } 2440 2441 mutex_init(&c->lock); 2442 spin_lock_init(&c->spinlock); 2443 INIT_LIST_HEAD(&c->reserved_buffers); 2444 c->need_reserved_buffers = reserved_buffers; 2445 2446 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 2447 2448 init_waitqueue_head(&c->free_buffer_wait); 2449 c->async_write_error = 0; 2450 2451 c->dm_io = dm_io_client_create(); 2452 if (IS_ERR(c->dm_io)) { 2453 r = PTR_ERR(c->dm_io); 2454 goto bad_dm_io; 2455 } 2456 2457 if (block_size <= KMALLOC_MAX_SIZE && 2458 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 2459 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE); 2460 2461 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size); 2462 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 2463 SLAB_RECLAIM_ACCOUNT, NULL); 2464 if (!c->slab_cache) { 2465 r = -ENOMEM; 2466 goto bad; 2467 } 2468 } 2469 if (aux_size) 2470 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size); 2471 else 2472 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer"); 2473 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 2474 0, SLAB_RECLAIM_ACCOUNT, NULL); 2475 if (!c->slab_buffer) { 2476 r = -ENOMEM; 2477 goto bad; 2478 } 2479 2480 while (c->need_reserved_buffers) { 2481 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 2482 2483 if (!b) { 2484 r = -ENOMEM; 2485 goto bad; 2486 } 2487 __free_buffer_wake(b); 2488 } 2489 2490 INIT_WORK(&c->shrink_work, shrink_work); 2491 atomic_long_set(&c->need_shrink, 0); 2492 2493 c->shrinker.count_objects = dm_bufio_shrink_count; 2494 c->shrinker.scan_objects = dm_bufio_shrink_scan; 2495 c->shrinker.seeks = 1; 2496 c->shrinker.batch = 0; 2497 r = register_shrinker(&c->shrinker, "dm-bufio:(%u:%u)", 2498 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2499 if (r) 2500 goto bad; 2501 2502 mutex_lock(&dm_bufio_clients_lock); 2503 dm_bufio_client_count++; 2504 list_add(&c->client_list, &dm_bufio_all_clients); 2505 __cache_size_refresh(); 2506 mutex_unlock(&dm_bufio_clients_lock); 2507 2508 return c; 2509 2510 bad: 2511 while (!list_empty(&c->reserved_buffers)) { 2512 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2513 2514 list_del(&b->lru.list); 2515 free_buffer(b); 2516 } 2517 kmem_cache_destroy(c->slab_cache); 2518 kmem_cache_destroy(c->slab_buffer); 2519 dm_io_client_destroy(c->dm_io); 2520 bad_dm_io: 2521 mutex_destroy(&c->lock); 2522 if (c->no_sleep) 2523 static_branch_dec(&no_sleep_enabled); 2524 kfree(c); 2525 bad_client: 2526 return ERR_PTR(r); 2527 } 2528 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 2529 2530 /* 2531 * Free the buffering interface. 2532 * It is required that there are no references on any buffers. 2533 */ 2534 void dm_bufio_client_destroy(struct dm_bufio_client *c) 2535 { 2536 unsigned int i; 2537 2538 drop_buffers(c); 2539 2540 unregister_shrinker(&c->shrinker); 2541 flush_work(&c->shrink_work); 2542 2543 mutex_lock(&dm_bufio_clients_lock); 2544 2545 list_del(&c->client_list); 2546 dm_bufio_client_count--; 2547 __cache_size_refresh(); 2548 2549 mutex_unlock(&dm_bufio_clients_lock); 2550 2551 WARN_ON(c->need_reserved_buffers); 2552 2553 while (!list_empty(&c->reserved_buffers)) { 2554 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next); 2555 2556 list_del(&b->lru.list); 2557 free_buffer(b); 2558 } 2559 2560 for (i = 0; i < LIST_SIZE; i++) 2561 if (cache_count(&c->cache, i)) 2562 DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i)); 2563 2564 for (i = 0; i < LIST_SIZE; i++) 2565 WARN_ON(cache_count(&c->cache, i)); 2566 2567 cache_destroy(&c->cache); 2568 kmem_cache_destroy(c->slab_cache); 2569 kmem_cache_destroy(c->slab_buffer); 2570 dm_io_client_destroy(c->dm_io); 2571 mutex_destroy(&c->lock); 2572 if (c->no_sleep) 2573 static_branch_dec(&no_sleep_enabled); 2574 kfree(c); 2575 } 2576 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 2577 2578 void dm_bufio_client_reset(struct dm_bufio_client *c) 2579 { 2580 drop_buffers(c); 2581 flush_work(&c->shrink_work); 2582 } 2583 EXPORT_SYMBOL_GPL(dm_bufio_client_reset); 2584 2585 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 2586 { 2587 c->start = start; 2588 } 2589 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 2590 2591 /*--------------------------------------------------------------*/ 2592 2593 static unsigned int get_max_age_hz(void) 2594 { 2595 unsigned int max_age = READ_ONCE(dm_bufio_max_age); 2596 2597 if (max_age > UINT_MAX / HZ) 2598 max_age = UINT_MAX / HZ; 2599 2600 return max_age * HZ; 2601 } 2602 2603 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 2604 { 2605 return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz); 2606 } 2607 2608 struct evict_params { 2609 gfp_t gfp; 2610 unsigned long age_hz; 2611 2612 /* 2613 * This gets updated with the largest last_accessed (ie. most 2614 * recently used) of the evicted buffers. It will not be reinitialised 2615 * by __evict_many(), so you can use it across multiple invocations. 2616 */ 2617 unsigned long last_accessed; 2618 }; 2619 2620 /* 2621 * We may not be able to evict this buffer if IO pending or the client 2622 * is still using it. 2623 * 2624 * And if GFP_NOFS is used, we must not do any I/O because we hold 2625 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 2626 * rerouted to different bufio client. 2627 */ 2628 static enum evict_result select_for_evict(struct dm_buffer *b, void *context) 2629 { 2630 struct evict_params *params = context; 2631 2632 if (!(params->gfp & __GFP_FS) || 2633 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 2634 if (test_bit_acquire(B_READING, &b->state) || 2635 test_bit(B_WRITING, &b->state) || 2636 test_bit(B_DIRTY, &b->state)) 2637 return ER_DONT_EVICT; 2638 } 2639 2640 return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP; 2641 } 2642 2643 static unsigned long __evict_many(struct dm_bufio_client *c, 2644 struct evict_params *params, 2645 int list_mode, unsigned long max_count) 2646 { 2647 unsigned long count; 2648 unsigned long last_accessed; 2649 struct dm_buffer *b; 2650 2651 for (count = 0; count < max_count; count++) { 2652 b = cache_evict(&c->cache, list_mode, select_for_evict, params); 2653 if (!b) 2654 break; 2655 2656 last_accessed = READ_ONCE(b->last_accessed); 2657 if (time_after_eq(params->last_accessed, last_accessed)) 2658 params->last_accessed = last_accessed; 2659 2660 __make_buffer_clean(b); 2661 __free_buffer_wake(b); 2662 2663 cond_resched(); 2664 } 2665 2666 return count; 2667 } 2668 2669 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 2670 { 2671 struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0}; 2672 unsigned long retain = get_retain_buffers(c); 2673 unsigned long count; 2674 LIST_HEAD(write_list); 2675 2676 dm_bufio_lock(c); 2677 2678 __check_watermark(c, &write_list); 2679 if (unlikely(!list_empty(&write_list))) { 2680 dm_bufio_unlock(c); 2681 __flush_write_list(&write_list); 2682 dm_bufio_lock(c); 2683 } 2684 2685 count = cache_total(&c->cache); 2686 if (count > retain) 2687 __evict_many(c, ¶ms, LIST_CLEAN, count - retain); 2688 2689 dm_bufio_unlock(c); 2690 } 2691 2692 static void cleanup_old_buffers(void) 2693 { 2694 unsigned long max_age_hz = get_max_age_hz(); 2695 struct dm_bufio_client *c; 2696 2697 mutex_lock(&dm_bufio_clients_lock); 2698 2699 __cache_size_refresh(); 2700 2701 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2702 evict_old_buffers(c, max_age_hz); 2703 2704 mutex_unlock(&dm_bufio_clients_lock); 2705 } 2706 2707 static void work_fn(struct work_struct *w) 2708 { 2709 cleanup_old_buffers(); 2710 2711 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2712 DM_BUFIO_WORK_TIMER_SECS * HZ); 2713 } 2714 2715 /*--------------------------------------------------------------*/ 2716 2717 /* 2718 * Global cleanup tries to evict the oldest buffers from across _all_ 2719 * the clients. It does this by repeatedly evicting a few buffers from 2720 * the client that holds the oldest buffer. It's approximate, but hopefully 2721 * good enough. 2722 */ 2723 static struct dm_bufio_client *__pop_client(void) 2724 { 2725 struct list_head *h; 2726 2727 if (list_empty(&dm_bufio_all_clients)) 2728 return NULL; 2729 2730 h = dm_bufio_all_clients.next; 2731 list_del(h); 2732 return container_of(h, struct dm_bufio_client, client_list); 2733 } 2734 2735 /* 2736 * Inserts the client in the global client list based on its 2737 * 'oldest_buffer' field. 2738 */ 2739 static void __insert_client(struct dm_bufio_client *new_client) 2740 { 2741 struct dm_bufio_client *c; 2742 struct list_head *h = dm_bufio_all_clients.next; 2743 2744 while (h != &dm_bufio_all_clients) { 2745 c = container_of(h, struct dm_bufio_client, client_list); 2746 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer)) 2747 break; 2748 h = h->next; 2749 } 2750 2751 list_add_tail(&new_client->client_list, h); 2752 } 2753 2754 static unsigned long __evict_a_few(unsigned long nr_buffers) 2755 { 2756 unsigned long count; 2757 struct dm_bufio_client *c; 2758 struct evict_params params = { 2759 .gfp = GFP_KERNEL, 2760 .age_hz = 0, 2761 /* set to jiffies in case there are no buffers in this client */ 2762 .last_accessed = jiffies 2763 }; 2764 2765 c = __pop_client(); 2766 if (!c) 2767 return 0; 2768 2769 dm_bufio_lock(c); 2770 count = __evict_many(c, ¶ms, LIST_CLEAN, nr_buffers); 2771 dm_bufio_unlock(c); 2772 2773 if (count) 2774 c->oldest_buffer = params.last_accessed; 2775 __insert_client(c); 2776 2777 return count; 2778 } 2779 2780 static void check_watermarks(void) 2781 { 2782 LIST_HEAD(write_list); 2783 struct dm_bufio_client *c; 2784 2785 mutex_lock(&dm_bufio_clients_lock); 2786 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 2787 dm_bufio_lock(c); 2788 __check_watermark(c, &write_list); 2789 dm_bufio_unlock(c); 2790 } 2791 mutex_unlock(&dm_bufio_clients_lock); 2792 2793 __flush_write_list(&write_list); 2794 } 2795 2796 static void evict_old(void) 2797 { 2798 unsigned long threshold = dm_bufio_cache_size - 2799 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 2800 2801 mutex_lock(&dm_bufio_clients_lock); 2802 while (dm_bufio_current_allocated > threshold) { 2803 if (!__evict_a_few(64)) 2804 break; 2805 cond_resched(); 2806 } 2807 mutex_unlock(&dm_bufio_clients_lock); 2808 } 2809 2810 static void do_global_cleanup(struct work_struct *w) 2811 { 2812 check_watermarks(); 2813 evict_old(); 2814 } 2815 2816 /* 2817 *-------------------------------------------------------------- 2818 * Module setup 2819 *-------------------------------------------------------------- 2820 */ 2821 2822 /* 2823 * This is called only once for the whole dm_bufio module. 2824 * It initializes memory limit. 2825 */ 2826 static int __init dm_bufio_init(void) 2827 { 2828 __u64 mem; 2829 2830 dm_bufio_allocated_kmem_cache = 0; 2831 dm_bufio_allocated_get_free_pages = 0; 2832 dm_bufio_allocated_vmalloc = 0; 2833 dm_bufio_current_allocated = 0; 2834 2835 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2836 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2837 2838 if (mem > ULONG_MAX) 2839 mem = ULONG_MAX; 2840 2841 #ifdef CONFIG_MMU 2842 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2843 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2844 #endif 2845 2846 dm_bufio_default_cache_size = mem; 2847 2848 mutex_lock(&dm_bufio_clients_lock); 2849 __cache_size_refresh(); 2850 mutex_unlock(&dm_bufio_clients_lock); 2851 2852 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2853 if (!dm_bufio_wq) 2854 return -ENOMEM; 2855 2856 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2857 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2858 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2859 DM_BUFIO_WORK_TIMER_SECS * HZ); 2860 2861 return 0; 2862 } 2863 2864 /* 2865 * This is called once when unloading the dm_bufio module. 2866 */ 2867 static void __exit dm_bufio_exit(void) 2868 { 2869 int bug = 0; 2870 2871 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2872 destroy_workqueue(dm_bufio_wq); 2873 2874 if (dm_bufio_client_count) { 2875 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2876 __func__, dm_bufio_client_count); 2877 bug = 1; 2878 } 2879 2880 if (dm_bufio_current_allocated) { 2881 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2882 __func__, dm_bufio_current_allocated); 2883 bug = 1; 2884 } 2885 2886 if (dm_bufio_allocated_get_free_pages) { 2887 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2888 __func__, dm_bufio_allocated_get_free_pages); 2889 bug = 1; 2890 } 2891 2892 if (dm_bufio_allocated_vmalloc) { 2893 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2894 __func__, dm_bufio_allocated_vmalloc); 2895 bug = 1; 2896 } 2897 2898 WARN_ON(bug); /* leaks are not worth crashing the system */ 2899 } 2900 2901 module_init(dm_bufio_init) 2902 module_exit(dm_bufio_exit) 2903 2904 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644); 2905 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2906 2907 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644); 2908 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2909 2910 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644); 2911 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2912 2913 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644); 2914 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2915 2916 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444); 2917 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2918 2919 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444); 2920 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2921 2922 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444); 2923 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2924 2925 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444); 2926 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2927 2928 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2929 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2930 MODULE_LICENSE("GPL"); 2931