1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/dm-bufio.h> 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 #include <linux/jump_label.h> 22 23 #define DM_MSG_PREFIX "bufio" 24 25 /* 26 * Memory management policy: 27 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 28 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 29 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 30 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 31 * dirty buffers. 32 */ 33 #define DM_BUFIO_MIN_BUFFERS 8 34 35 #define DM_BUFIO_MEMORY_PERCENT 2 36 #define DM_BUFIO_VMALLOC_PERCENT 25 37 #define DM_BUFIO_WRITEBACK_RATIO 3 38 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 39 40 /* 41 * Check buffer ages in this interval (seconds) 42 */ 43 #define DM_BUFIO_WORK_TIMER_SECS 30 44 45 /* 46 * Free buffers when they are older than this (seconds) 47 */ 48 #define DM_BUFIO_DEFAULT_AGE_SECS 300 49 50 /* 51 * The nr of bytes of cached data to keep around. 52 */ 53 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 54 55 /* 56 * Align buffer writes to this boundary. 57 * Tests show that SSDs have the highest IOPS when using 4k writes. 58 */ 59 #define DM_BUFIO_WRITE_ALIGN 4096 60 61 /* 62 * dm_buffer->list_mode 63 */ 64 #define LIST_CLEAN 0 65 #define LIST_DIRTY 1 66 #define LIST_SIZE 2 67 68 /* 69 * Linking of buffers: 70 * All buffers are linked to buffer_tree with their node field. 71 * 72 * Clean buffers that are not being written (B_WRITING not set) 73 * are linked to lru[LIST_CLEAN] with their lru_list field. 74 * 75 * Dirty and clean buffers that are being written are linked to 76 * lru[LIST_DIRTY] with their lru_list field. When the write 77 * finishes, the buffer cannot be relinked immediately (because we 78 * are in an interrupt context and relinking requires process 79 * context), so some clean-not-writing buffers can be held on 80 * dirty_lru too. They are later added to lru in the process 81 * context. 82 */ 83 struct dm_bufio_client { 84 struct mutex lock; 85 spinlock_t spinlock; 86 bool no_sleep; 87 88 struct list_head lru[LIST_SIZE]; 89 unsigned long n_buffers[LIST_SIZE]; 90 91 struct block_device *bdev; 92 unsigned block_size; 93 s8 sectors_per_block_bits; 94 void (*alloc_callback)(struct dm_buffer *); 95 void (*write_callback)(struct dm_buffer *); 96 struct kmem_cache *slab_buffer; 97 struct kmem_cache *slab_cache; 98 struct dm_io_client *dm_io; 99 100 struct list_head reserved_buffers; 101 unsigned need_reserved_buffers; 102 103 unsigned minimum_buffers; 104 105 struct rb_root buffer_tree; 106 wait_queue_head_t free_buffer_wait; 107 108 sector_t start; 109 110 int async_write_error; 111 112 struct list_head client_list; 113 114 struct shrinker shrinker; 115 struct work_struct shrink_work; 116 atomic_long_t need_shrink; 117 }; 118 119 /* 120 * Buffer state bits. 121 */ 122 #define B_READING 0 123 #define B_WRITING 1 124 #define B_DIRTY 2 125 126 /* 127 * Describes how the block was allocated: 128 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 129 * See the comment at alloc_buffer_data. 130 */ 131 enum data_mode { 132 DATA_MODE_SLAB = 0, 133 DATA_MODE_GET_FREE_PAGES = 1, 134 DATA_MODE_VMALLOC = 2, 135 DATA_MODE_LIMIT = 3 136 }; 137 138 struct dm_buffer { 139 struct rb_node node; 140 struct list_head lru_list; 141 struct list_head global_list; 142 sector_t block; 143 void *data; 144 unsigned char data_mode; /* DATA_MODE_* */ 145 unsigned char list_mode; /* LIST_* */ 146 blk_status_t read_error; 147 blk_status_t write_error; 148 unsigned accessed; 149 unsigned hold_count; 150 unsigned long state; 151 unsigned long last_accessed; 152 unsigned dirty_start; 153 unsigned dirty_end; 154 unsigned write_start; 155 unsigned write_end; 156 struct dm_bufio_client *c; 157 struct list_head write_list; 158 void (*end_io)(struct dm_buffer *, blk_status_t); 159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 160 #define MAX_STACK 10 161 unsigned int stack_len; 162 unsigned long stack_entries[MAX_STACK]; 163 #endif 164 }; 165 166 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled); 167 168 /*----------------------------------------------------------------*/ 169 170 #define dm_bufio_in_request() (!!current->bio_list) 171 172 static void dm_bufio_lock(struct dm_bufio_client *c) 173 { 174 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 175 spin_lock_bh(&c->spinlock); 176 else 177 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 178 } 179 180 static int dm_bufio_trylock(struct dm_bufio_client *c) 181 { 182 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 183 return spin_trylock_bh(&c->spinlock); 184 else 185 return mutex_trylock(&c->lock); 186 } 187 188 static void dm_bufio_unlock(struct dm_bufio_client *c) 189 { 190 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 191 spin_unlock_bh(&c->spinlock); 192 else 193 mutex_unlock(&c->lock); 194 } 195 196 /*----------------------------------------------------------------*/ 197 198 /* 199 * Default cache size: available memory divided by the ratio. 200 */ 201 static unsigned long dm_bufio_default_cache_size; 202 203 /* 204 * Total cache size set by the user. 205 */ 206 static unsigned long dm_bufio_cache_size; 207 208 /* 209 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 210 * at any time. If it disagrees, the user has changed cache size. 211 */ 212 static unsigned long dm_bufio_cache_size_latch; 213 214 static DEFINE_SPINLOCK(global_spinlock); 215 216 static LIST_HEAD(global_queue); 217 218 static unsigned long global_num = 0; 219 220 /* 221 * Buffers are freed after this timeout 222 */ 223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 224 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 225 226 static unsigned long dm_bufio_peak_allocated; 227 static unsigned long dm_bufio_allocated_kmem_cache; 228 static unsigned long dm_bufio_allocated_get_free_pages; 229 static unsigned long dm_bufio_allocated_vmalloc; 230 static unsigned long dm_bufio_current_allocated; 231 232 /*----------------------------------------------------------------*/ 233 234 /* 235 * The current number of clients. 236 */ 237 static int dm_bufio_client_count; 238 239 /* 240 * The list of all clients. 241 */ 242 static LIST_HEAD(dm_bufio_all_clients); 243 244 /* 245 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 246 */ 247 static DEFINE_MUTEX(dm_bufio_clients_lock); 248 249 static struct workqueue_struct *dm_bufio_wq; 250 static struct delayed_work dm_bufio_cleanup_old_work; 251 static struct work_struct dm_bufio_replacement_work; 252 253 254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 255 static void buffer_record_stack(struct dm_buffer *b) 256 { 257 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 258 } 259 #endif 260 261 /*---------------------------------------------------------------- 262 * A red/black tree acts as an index for all the buffers. 263 *--------------------------------------------------------------*/ 264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 265 { 266 struct rb_node *n = c->buffer_tree.rb_node; 267 struct dm_buffer *b; 268 269 while (n) { 270 b = container_of(n, struct dm_buffer, node); 271 272 if (b->block == block) 273 return b; 274 275 n = block < b->block ? n->rb_left : n->rb_right; 276 } 277 278 return NULL; 279 } 280 281 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block) 282 { 283 struct rb_node *n = c->buffer_tree.rb_node; 284 struct dm_buffer *b; 285 struct dm_buffer *best = NULL; 286 287 while (n) { 288 b = container_of(n, struct dm_buffer, node); 289 290 if (b->block == block) 291 return b; 292 293 if (block <= b->block) { 294 n = n->rb_left; 295 best = b; 296 } else { 297 n = n->rb_right; 298 } 299 } 300 301 return best; 302 } 303 304 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 305 { 306 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 307 struct dm_buffer *found; 308 309 while (*new) { 310 found = container_of(*new, struct dm_buffer, node); 311 312 if (found->block == b->block) { 313 BUG_ON(found != b); 314 return; 315 } 316 317 parent = *new; 318 new = b->block < found->block ? 319 &found->node.rb_left : &found->node.rb_right; 320 } 321 322 rb_link_node(&b->node, parent, new); 323 rb_insert_color(&b->node, &c->buffer_tree); 324 } 325 326 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 327 { 328 rb_erase(&b->node, &c->buffer_tree); 329 } 330 331 /*----------------------------------------------------------------*/ 332 333 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 334 { 335 unsigned char data_mode; 336 long diff; 337 338 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 339 &dm_bufio_allocated_kmem_cache, 340 &dm_bufio_allocated_get_free_pages, 341 &dm_bufio_allocated_vmalloc, 342 }; 343 344 data_mode = b->data_mode; 345 diff = (long)b->c->block_size; 346 if (unlink) 347 diff = -diff; 348 349 spin_lock(&global_spinlock); 350 351 *class_ptr[data_mode] += diff; 352 353 dm_bufio_current_allocated += diff; 354 355 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 356 dm_bufio_peak_allocated = dm_bufio_current_allocated; 357 358 b->accessed = 1; 359 360 if (!unlink) { 361 list_add(&b->global_list, &global_queue); 362 global_num++; 363 if (dm_bufio_current_allocated > dm_bufio_cache_size) 364 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 365 } else { 366 list_del(&b->global_list); 367 global_num--; 368 } 369 370 spin_unlock(&global_spinlock); 371 } 372 373 /* 374 * Change the number of clients and recalculate per-client limit. 375 */ 376 static void __cache_size_refresh(void) 377 { 378 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 379 BUG_ON(dm_bufio_client_count < 0); 380 381 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 382 383 /* 384 * Use default if set to 0 and report the actual cache size used. 385 */ 386 if (!dm_bufio_cache_size_latch) { 387 (void)cmpxchg(&dm_bufio_cache_size, 0, 388 dm_bufio_default_cache_size); 389 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 390 } 391 } 392 393 /* 394 * Allocating buffer data. 395 * 396 * Small buffers are allocated with kmem_cache, to use space optimally. 397 * 398 * For large buffers, we choose between get_free_pages and vmalloc. 399 * Each has advantages and disadvantages. 400 * 401 * __get_free_pages can randomly fail if the memory is fragmented. 402 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 403 * as low as 128M) so using it for caching is not appropriate. 404 * 405 * If the allocation may fail we use __get_free_pages. Memory fragmentation 406 * won't have a fatal effect here, but it just causes flushes of some other 407 * buffers and more I/O will be performed. Don't use __get_free_pages if it 408 * always fails (i.e. order >= MAX_ORDER). 409 * 410 * If the allocation shouldn't fail we use __vmalloc. This is only for the 411 * initial reserve allocation, so there's no risk of wasting all vmalloc 412 * space. 413 */ 414 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 415 unsigned char *data_mode) 416 { 417 if (unlikely(c->slab_cache != NULL)) { 418 *data_mode = DATA_MODE_SLAB; 419 return kmem_cache_alloc(c->slab_cache, gfp_mask); 420 } 421 422 if (c->block_size <= KMALLOC_MAX_SIZE && 423 gfp_mask & __GFP_NORETRY) { 424 *data_mode = DATA_MODE_GET_FREE_PAGES; 425 return (void *)__get_free_pages(gfp_mask, 426 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 427 } 428 429 *data_mode = DATA_MODE_VMALLOC; 430 431 /* 432 * __vmalloc allocates the data pages and auxiliary structures with 433 * gfp_flags that were specified, but pagetables are always allocated 434 * with GFP_KERNEL, no matter what was specified as gfp_mask. 435 * 436 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 437 * all allocations done by this process (including pagetables) are done 438 * as if GFP_NOIO was specified. 439 */ 440 if (gfp_mask & __GFP_NORETRY) { 441 unsigned noio_flag = memalloc_noio_save(); 442 void *ptr = __vmalloc(c->block_size, gfp_mask); 443 444 memalloc_noio_restore(noio_flag); 445 return ptr; 446 } 447 448 return __vmalloc(c->block_size, gfp_mask); 449 } 450 451 /* 452 * Free buffer's data. 453 */ 454 static void free_buffer_data(struct dm_bufio_client *c, 455 void *data, unsigned char data_mode) 456 { 457 switch (data_mode) { 458 case DATA_MODE_SLAB: 459 kmem_cache_free(c->slab_cache, data); 460 break; 461 462 case DATA_MODE_GET_FREE_PAGES: 463 free_pages((unsigned long)data, 464 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 465 break; 466 467 case DATA_MODE_VMALLOC: 468 vfree(data); 469 break; 470 471 default: 472 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 473 data_mode); 474 BUG(); 475 } 476 } 477 478 /* 479 * Allocate buffer and its data. 480 */ 481 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 482 { 483 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 484 485 if (!b) 486 return NULL; 487 488 b->c = c; 489 490 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 491 if (!b->data) { 492 kmem_cache_free(c->slab_buffer, b); 493 return NULL; 494 } 495 496 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 497 b->stack_len = 0; 498 #endif 499 return b; 500 } 501 502 /* 503 * Free buffer and its data. 504 */ 505 static void free_buffer(struct dm_buffer *b) 506 { 507 struct dm_bufio_client *c = b->c; 508 509 free_buffer_data(c, b->data, b->data_mode); 510 kmem_cache_free(c->slab_buffer, b); 511 } 512 513 /* 514 * Link buffer to the buffer tree and clean or dirty queue. 515 */ 516 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 517 { 518 struct dm_bufio_client *c = b->c; 519 520 c->n_buffers[dirty]++; 521 b->block = block; 522 b->list_mode = dirty; 523 list_add(&b->lru_list, &c->lru[dirty]); 524 __insert(b->c, b); 525 b->last_accessed = jiffies; 526 527 adjust_total_allocated(b, false); 528 } 529 530 /* 531 * Unlink buffer from the buffer tree and dirty or clean queue. 532 */ 533 static void __unlink_buffer(struct dm_buffer *b) 534 { 535 struct dm_bufio_client *c = b->c; 536 537 BUG_ON(!c->n_buffers[b->list_mode]); 538 539 c->n_buffers[b->list_mode]--; 540 __remove(b->c, b); 541 list_del(&b->lru_list); 542 543 adjust_total_allocated(b, true); 544 } 545 546 /* 547 * Place the buffer to the head of dirty or clean LRU queue. 548 */ 549 static void __relink_lru(struct dm_buffer *b, int dirty) 550 { 551 struct dm_bufio_client *c = b->c; 552 553 b->accessed = 1; 554 555 BUG_ON(!c->n_buffers[b->list_mode]); 556 557 c->n_buffers[b->list_mode]--; 558 c->n_buffers[dirty]++; 559 b->list_mode = dirty; 560 list_move(&b->lru_list, &c->lru[dirty]); 561 b->last_accessed = jiffies; 562 } 563 564 /*---------------------------------------------------------------- 565 * Submit I/O on the buffer. 566 * 567 * Bio interface is faster but it has some problems: 568 * the vector list is limited (increasing this limit increases 569 * memory-consumption per buffer, so it is not viable); 570 * 571 * the memory must be direct-mapped, not vmalloced; 572 * 573 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 574 * it is not vmalloced, try using the bio interface. 575 * 576 * If the buffer is big, if it is vmalloced or if the underlying device 577 * rejects the bio because it is too large, use dm-io layer to do the I/O. 578 * The dm-io layer splits the I/O into multiple requests, avoiding the above 579 * shortcomings. 580 *--------------------------------------------------------------*/ 581 582 /* 583 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 584 * that the request was handled directly with bio interface. 585 */ 586 static void dmio_complete(unsigned long error, void *context) 587 { 588 struct dm_buffer *b = context; 589 590 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 591 } 592 593 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector, 594 unsigned n_sectors, unsigned offset) 595 { 596 int r; 597 struct dm_io_request io_req = { 598 .bi_opf = op, 599 .notify.fn = dmio_complete, 600 .notify.context = b, 601 .client = b->c->dm_io, 602 }; 603 struct dm_io_region region = { 604 .bdev = b->c->bdev, 605 .sector = sector, 606 .count = n_sectors, 607 }; 608 609 if (b->data_mode != DATA_MODE_VMALLOC) { 610 io_req.mem.type = DM_IO_KMEM; 611 io_req.mem.ptr.addr = (char *)b->data + offset; 612 } else { 613 io_req.mem.type = DM_IO_VMA; 614 io_req.mem.ptr.vma = (char *)b->data + offset; 615 } 616 617 r = dm_io(&io_req, 1, ®ion, NULL); 618 if (unlikely(r)) 619 b->end_io(b, errno_to_blk_status(r)); 620 } 621 622 static void bio_complete(struct bio *bio) 623 { 624 struct dm_buffer *b = bio->bi_private; 625 blk_status_t status = bio->bi_status; 626 bio_uninit(bio); 627 kfree(bio); 628 b->end_io(b, status); 629 } 630 631 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector, 632 unsigned n_sectors, unsigned offset) 633 { 634 struct bio *bio; 635 char *ptr; 636 unsigned vec_size, len; 637 638 vec_size = b->c->block_size >> PAGE_SHIFT; 639 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT)) 640 vec_size += 2; 641 642 bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN); 643 if (!bio) { 644 dmio: 645 use_dmio(b, op, sector, n_sectors, offset); 646 return; 647 } 648 bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op); 649 bio->bi_iter.bi_sector = sector; 650 bio->bi_end_io = bio_complete; 651 bio->bi_private = b; 652 653 ptr = (char *)b->data + offset; 654 len = n_sectors << SECTOR_SHIFT; 655 656 do { 657 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 658 if (!bio_add_page(bio, virt_to_page(ptr), this_step, 659 offset_in_page(ptr))) { 660 bio_put(bio); 661 goto dmio; 662 } 663 664 len -= this_step; 665 ptr += this_step; 666 } while (len > 0); 667 668 submit_bio(bio); 669 } 670 671 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 672 { 673 sector_t sector; 674 675 if (likely(c->sectors_per_block_bits >= 0)) 676 sector = block << c->sectors_per_block_bits; 677 else 678 sector = block * (c->block_size >> SECTOR_SHIFT); 679 sector += c->start; 680 681 return sector; 682 } 683 684 static void submit_io(struct dm_buffer *b, enum req_op op, 685 void (*end_io)(struct dm_buffer *, blk_status_t)) 686 { 687 unsigned n_sectors; 688 sector_t sector; 689 unsigned offset, end; 690 691 b->end_io = end_io; 692 693 sector = block_to_sector(b->c, b->block); 694 695 if (op != REQ_OP_WRITE) { 696 n_sectors = b->c->block_size >> SECTOR_SHIFT; 697 offset = 0; 698 } else { 699 if (b->c->write_callback) 700 b->c->write_callback(b); 701 offset = b->write_start; 702 end = b->write_end; 703 offset &= -DM_BUFIO_WRITE_ALIGN; 704 end += DM_BUFIO_WRITE_ALIGN - 1; 705 end &= -DM_BUFIO_WRITE_ALIGN; 706 if (unlikely(end > b->c->block_size)) 707 end = b->c->block_size; 708 709 sector += offset >> SECTOR_SHIFT; 710 n_sectors = (end - offset) >> SECTOR_SHIFT; 711 } 712 713 if (b->data_mode != DATA_MODE_VMALLOC) 714 use_bio(b, op, sector, n_sectors, offset); 715 else 716 use_dmio(b, op, sector, n_sectors, offset); 717 } 718 719 /*---------------------------------------------------------------- 720 * Writing dirty buffers 721 *--------------------------------------------------------------*/ 722 723 /* 724 * The endio routine for write. 725 * 726 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 727 * it. 728 */ 729 static void write_endio(struct dm_buffer *b, blk_status_t status) 730 { 731 b->write_error = status; 732 if (unlikely(status)) { 733 struct dm_bufio_client *c = b->c; 734 735 (void)cmpxchg(&c->async_write_error, 0, 736 blk_status_to_errno(status)); 737 } 738 739 BUG_ON(!test_bit(B_WRITING, &b->state)); 740 741 smp_mb__before_atomic(); 742 clear_bit(B_WRITING, &b->state); 743 smp_mb__after_atomic(); 744 745 wake_up_bit(&b->state, B_WRITING); 746 } 747 748 /* 749 * Initiate a write on a dirty buffer, but don't wait for it. 750 * 751 * - If the buffer is not dirty, exit. 752 * - If there some previous write going on, wait for it to finish (we can't 753 * have two writes on the same buffer simultaneously). 754 * - Submit our write and don't wait on it. We set B_WRITING indicating 755 * that there is a write in progress. 756 */ 757 static void __write_dirty_buffer(struct dm_buffer *b, 758 struct list_head *write_list) 759 { 760 if (!test_bit(B_DIRTY, &b->state)) 761 return; 762 763 clear_bit(B_DIRTY, &b->state); 764 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 765 766 b->write_start = b->dirty_start; 767 b->write_end = b->dirty_end; 768 769 if (!write_list) 770 submit_io(b, REQ_OP_WRITE, write_endio); 771 else 772 list_add_tail(&b->write_list, write_list); 773 } 774 775 static void __flush_write_list(struct list_head *write_list) 776 { 777 struct blk_plug plug; 778 blk_start_plug(&plug); 779 while (!list_empty(write_list)) { 780 struct dm_buffer *b = 781 list_entry(write_list->next, struct dm_buffer, write_list); 782 list_del(&b->write_list); 783 submit_io(b, REQ_OP_WRITE, write_endio); 784 cond_resched(); 785 } 786 blk_finish_plug(&plug); 787 } 788 789 /* 790 * Wait until any activity on the buffer finishes. Possibly write the 791 * buffer if it is dirty. When this function finishes, there is no I/O 792 * running on the buffer and the buffer is not dirty. 793 */ 794 static void __make_buffer_clean(struct dm_buffer *b) 795 { 796 BUG_ON(b->hold_count); 797 798 /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */ 799 if (!smp_load_acquire(&b->state)) /* fast case */ 800 return; 801 802 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 803 __write_dirty_buffer(b, NULL); 804 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 805 } 806 807 /* 808 * Find some buffer that is not held by anybody, clean it, unlink it and 809 * return it. 810 */ 811 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 812 { 813 struct dm_buffer *b; 814 815 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 816 BUG_ON(test_bit(B_WRITING, &b->state)); 817 BUG_ON(test_bit(B_DIRTY, &b->state)); 818 819 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep && 820 unlikely(test_bit_acquire(B_READING, &b->state))) 821 continue; 822 823 if (!b->hold_count) { 824 __make_buffer_clean(b); 825 __unlink_buffer(b); 826 return b; 827 } 828 cond_resched(); 829 } 830 831 if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep) 832 return NULL; 833 834 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 835 BUG_ON(test_bit(B_READING, &b->state)); 836 837 if (!b->hold_count) { 838 __make_buffer_clean(b); 839 __unlink_buffer(b); 840 return b; 841 } 842 cond_resched(); 843 } 844 845 return NULL; 846 } 847 848 /* 849 * Wait until some other threads free some buffer or release hold count on 850 * some buffer. 851 * 852 * This function is entered with c->lock held, drops it and regains it 853 * before exiting. 854 */ 855 static void __wait_for_free_buffer(struct dm_bufio_client *c) 856 { 857 DECLARE_WAITQUEUE(wait, current); 858 859 add_wait_queue(&c->free_buffer_wait, &wait); 860 set_current_state(TASK_UNINTERRUPTIBLE); 861 dm_bufio_unlock(c); 862 863 io_schedule(); 864 865 remove_wait_queue(&c->free_buffer_wait, &wait); 866 867 dm_bufio_lock(c); 868 } 869 870 enum new_flag { 871 NF_FRESH = 0, 872 NF_READ = 1, 873 NF_GET = 2, 874 NF_PREFETCH = 3 875 }; 876 877 /* 878 * Allocate a new buffer. If the allocation is not possible, wait until 879 * some other thread frees a buffer. 880 * 881 * May drop the lock and regain it. 882 */ 883 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 884 { 885 struct dm_buffer *b; 886 bool tried_noio_alloc = false; 887 888 /* 889 * dm-bufio is resistant to allocation failures (it just keeps 890 * one buffer reserved in cases all the allocations fail). 891 * So set flags to not try too hard: 892 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 893 * mutex and wait ourselves. 894 * __GFP_NORETRY: don't retry and rather return failure 895 * __GFP_NOMEMALLOC: don't use emergency reserves 896 * __GFP_NOWARN: don't print a warning in case of failure 897 * 898 * For debugging, if we set the cache size to 1, no new buffers will 899 * be allocated. 900 */ 901 while (1) { 902 if (dm_bufio_cache_size_latch != 1) { 903 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 904 if (b) 905 return b; 906 } 907 908 if (nf == NF_PREFETCH) 909 return NULL; 910 911 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 912 dm_bufio_unlock(c); 913 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 914 dm_bufio_lock(c); 915 if (b) 916 return b; 917 tried_noio_alloc = true; 918 } 919 920 if (!list_empty(&c->reserved_buffers)) { 921 b = list_entry(c->reserved_buffers.next, 922 struct dm_buffer, lru_list); 923 list_del(&b->lru_list); 924 c->need_reserved_buffers++; 925 926 return b; 927 } 928 929 b = __get_unclaimed_buffer(c); 930 if (b) 931 return b; 932 933 __wait_for_free_buffer(c); 934 } 935 } 936 937 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 938 { 939 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 940 941 if (!b) 942 return NULL; 943 944 if (c->alloc_callback) 945 c->alloc_callback(b); 946 947 return b; 948 } 949 950 /* 951 * Free a buffer and wake other threads waiting for free buffers. 952 */ 953 static void __free_buffer_wake(struct dm_buffer *b) 954 { 955 struct dm_bufio_client *c = b->c; 956 957 if (!c->need_reserved_buffers) 958 free_buffer(b); 959 else { 960 list_add(&b->lru_list, &c->reserved_buffers); 961 c->need_reserved_buffers--; 962 } 963 964 wake_up(&c->free_buffer_wait); 965 } 966 967 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 968 struct list_head *write_list) 969 { 970 struct dm_buffer *b, *tmp; 971 972 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 973 BUG_ON(test_bit(B_READING, &b->state)); 974 975 if (!test_bit(B_DIRTY, &b->state) && 976 !test_bit(B_WRITING, &b->state)) { 977 __relink_lru(b, LIST_CLEAN); 978 continue; 979 } 980 981 if (no_wait && test_bit(B_WRITING, &b->state)) 982 return; 983 984 __write_dirty_buffer(b, write_list); 985 cond_resched(); 986 } 987 } 988 989 /* 990 * Check if we're over watermark. 991 * If we are over threshold_buffers, start freeing buffers. 992 * If we're over "limit_buffers", block until we get under the limit. 993 */ 994 static void __check_watermark(struct dm_bufio_client *c, 995 struct list_head *write_list) 996 { 997 if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO) 998 __write_dirty_buffers_async(c, 1, write_list); 999 } 1000 1001 /*---------------------------------------------------------------- 1002 * Getting a buffer 1003 *--------------------------------------------------------------*/ 1004 1005 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 1006 enum new_flag nf, int *need_submit, 1007 struct list_head *write_list) 1008 { 1009 struct dm_buffer *b, *new_b = NULL; 1010 1011 *need_submit = 0; 1012 1013 b = __find(c, block); 1014 if (b) 1015 goto found_buffer; 1016 1017 if (nf == NF_GET) 1018 return NULL; 1019 1020 new_b = __alloc_buffer_wait(c, nf); 1021 if (!new_b) 1022 return NULL; 1023 1024 /* 1025 * We've had a period where the mutex was unlocked, so need to 1026 * recheck the buffer tree. 1027 */ 1028 b = __find(c, block); 1029 if (b) { 1030 __free_buffer_wake(new_b); 1031 goto found_buffer; 1032 } 1033 1034 __check_watermark(c, write_list); 1035 1036 b = new_b; 1037 b->hold_count = 1; 1038 b->read_error = 0; 1039 b->write_error = 0; 1040 __link_buffer(b, block, LIST_CLEAN); 1041 1042 if (nf == NF_FRESH) { 1043 b->state = 0; 1044 return b; 1045 } 1046 1047 b->state = 1 << B_READING; 1048 *need_submit = 1; 1049 1050 return b; 1051 1052 found_buffer: 1053 if (nf == NF_PREFETCH) 1054 return NULL; 1055 /* 1056 * Note: it is essential that we don't wait for the buffer to be 1057 * read if dm_bufio_get function is used. Both dm_bufio_get and 1058 * dm_bufio_prefetch can be used in the driver request routine. 1059 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1060 * the same buffer, it would deadlock if we waited. 1061 */ 1062 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) 1063 return NULL; 1064 1065 b->hold_count++; 1066 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1067 test_bit(B_WRITING, &b->state)); 1068 return b; 1069 } 1070 1071 /* 1072 * The endio routine for reading: set the error, clear the bit and wake up 1073 * anyone waiting on the buffer. 1074 */ 1075 static void read_endio(struct dm_buffer *b, blk_status_t status) 1076 { 1077 b->read_error = status; 1078 1079 BUG_ON(!test_bit(B_READING, &b->state)); 1080 1081 smp_mb__before_atomic(); 1082 clear_bit(B_READING, &b->state); 1083 smp_mb__after_atomic(); 1084 1085 wake_up_bit(&b->state, B_READING); 1086 } 1087 1088 /* 1089 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1090 * functions is similar except that dm_bufio_new doesn't read the 1091 * buffer from the disk (assuming that the caller overwrites all the data 1092 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1093 */ 1094 static void *new_read(struct dm_bufio_client *c, sector_t block, 1095 enum new_flag nf, struct dm_buffer **bp) 1096 { 1097 int need_submit; 1098 struct dm_buffer *b; 1099 1100 LIST_HEAD(write_list); 1101 1102 dm_bufio_lock(c); 1103 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1104 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1105 if (b && b->hold_count == 1) 1106 buffer_record_stack(b); 1107 #endif 1108 dm_bufio_unlock(c); 1109 1110 __flush_write_list(&write_list); 1111 1112 if (!b) 1113 return NULL; 1114 1115 if (need_submit) 1116 submit_io(b, REQ_OP_READ, read_endio); 1117 1118 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1119 1120 if (b->read_error) { 1121 int error = blk_status_to_errno(b->read_error); 1122 1123 dm_bufio_release(b); 1124 1125 return ERR_PTR(error); 1126 } 1127 1128 *bp = b; 1129 1130 return b->data; 1131 } 1132 1133 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1134 struct dm_buffer **bp) 1135 { 1136 return new_read(c, block, NF_GET, bp); 1137 } 1138 EXPORT_SYMBOL_GPL(dm_bufio_get); 1139 1140 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1141 struct dm_buffer **bp) 1142 { 1143 BUG_ON(dm_bufio_in_request()); 1144 1145 return new_read(c, block, NF_READ, bp); 1146 } 1147 EXPORT_SYMBOL_GPL(dm_bufio_read); 1148 1149 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1150 struct dm_buffer **bp) 1151 { 1152 BUG_ON(dm_bufio_in_request()); 1153 1154 return new_read(c, block, NF_FRESH, bp); 1155 } 1156 EXPORT_SYMBOL_GPL(dm_bufio_new); 1157 1158 void dm_bufio_prefetch(struct dm_bufio_client *c, 1159 sector_t block, unsigned n_blocks) 1160 { 1161 struct blk_plug plug; 1162 1163 LIST_HEAD(write_list); 1164 1165 BUG_ON(dm_bufio_in_request()); 1166 1167 blk_start_plug(&plug); 1168 dm_bufio_lock(c); 1169 1170 for (; n_blocks--; block++) { 1171 int need_submit; 1172 struct dm_buffer *b; 1173 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1174 &write_list); 1175 if (unlikely(!list_empty(&write_list))) { 1176 dm_bufio_unlock(c); 1177 blk_finish_plug(&plug); 1178 __flush_write_list(&write_list); 1179 blk_start_plug(&plug); 1180 dm_bufio_lock(c); 1181 } 1182 if (unlikely(b != NULL)) { 1183 dm_bufio_unlock(c); 1184 1185 if (need_submit) 1186 submit_io(b, REQ_OP_READ, read_endio); 1187 dm_bufio_release(b); 1188 1189 cond_resched(); 1190 1191 if (!n_blocks) 1192 goto flush_plug; 1193 dm_bufio_lock(c); 1194 } 1195 } 1196 1197 dm_bufio_unlock(c); 1198 1199 flush_plug: 1200 blk_finish_plug(&plug); 1201 } 1202 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1203 1204 void dm_bufio_release(struct dm_buffer *b) 1205 { 1206 struct dm_bufio_client *c = b->c; 1207 1208 dm_bufio_lock(c); 1209 1210 BUG_ON(!b->hold_count); 1211 1212 b->hold_count--; 1213 if (!b->hold_count) { 1214 wake_up(&c->free_buffer_wait); 1215 1216 /* 1217 * If there were errors on the buffer, and the buffer is not 1218 * to be written, free the buffer. There is no point in caching 1219 * invalid buffer. 1220 */ 1221 if ((b->read_error || b->write_error) && 1222 !test_bit_acquire(B_READING, &b->state) && 1223 !test_bit(B_WRITING, &b->state) && 1224 !test_bit(B_DIRTY, &b->state)) { 1225 __unlink_buffer(b); 1226 __free_buffer_wake(b); 1227 } 1228 } 1229 1230 dm_bufio_unlock(c); 1231 } 1232 EXPORT_SYMBOL_GPL(dm_bufio_release); 1233 1234 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1235 unsigned start, unsigned end) 1236 { 1237 struct dm_bufio_client *c = b->c; 1238 1239 BUG_ON(start >= end); 1240 BUG_ON(end > b->c->block_size); 1241 1242 dm_bufio_lock(c); 1243 1244 BUG_ON(test_bit(B_READING, &b->state)); 1245 1246 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1247 b->dirty_start = start; 1248 b->dirty_end = end; 1249 __relink_lru(b, LIST_DIRTY); 1250 } else { 1251 if (start < b->dirty_start) 1252 b->dirty_start = start; 1253 if (end > b->dirty_end) 1254 b->dirty_end = end; 1255 } 1256 1257 dm_bufio_unlock(c); 1258 } 1259 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1260 1261 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1262 { 1263 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1264 } 1265 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1266 1267 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1268 { 1269 LIST_HEAD(write_list); 1270 1271 BUG_ON(dm_bufio_in_request()); 1272 1273 dm_bufio_lock(c); 1274 __write_dirty_buffers_async(c, 0, &write_list); 1275 dm_bufio_unlock(c); 1276 __flush_write_list(&write_list); 1277 } 1278 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1279 1280 /* 1281 * For performance, it is essential that the buffers are written asynchronously 1282 * and simultaneously (so that the block layer can merge the writes) and then 1283 * waited upon. 1284 * 1285 * Finally, we flush hardware disk cache. 1286 */ 1287 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1288 { 1289 int a, f; 1290 unsigned long buffers_processed = 0; 1291 struct dm_buffer *b, *tmp; 1292 1293 LIST_HEAD(write_list); 1294 1295 dm_bufio_lock(c); 1296 __write_dirty_buffers_async(c, 0, &write_list); 1297 dm_bufio_unlock(c); 1298 __flush_write_list(&write_list); 1299 dm_bufio_lock(c); 1300 1301 again: 1302 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1303 int dropped_lock = 0; 1304 1305 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1306 buffers_processed++; 1307 1308 BUG_ON(test_bit(B_READING, &b->state)); 1309 1310 if (test_bit(B_WRITING, &b->state)) { 1311 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1312 dropped_lock = 1; 1313 b->hold_count++; 1314 dm_bufio_unlock(c); 1315 wait_on_bit_io(&b->state, B_WRITING, 1316 TASK_UNINTERRUPTIBLE); 1317 dm_bufio_lock(c); 1318 b->hold_count--; 1319 } else 1320 wait_on_bit_io(&b->state, B_WRITING, 1321 TASK_UNINTERRUPTIBLE); 1322 } 1323 1324 if (!test_bit(B_DIRTY, &b->state) && 1325 !test_bit(B_WRITING, &b->state)) 1326 __relink_lru(b, LIST_CLEAN); 1327 1328 cond_resched(); 1329 1330 /* 1331 * If we dropped the lock, the list is no longer consistent, 1332 * so we must restart the search. 1333 * 1334 * In the most common case, the buffer just processed is 1335 * relinked to the clean list, so we won't loop scanning the 1336 * same buffer again and again. 1337 * 1338 * This may livelock if there is another thread simultaneously 1339 * dirtying buffers, so we count the number of buffers walked 1340 * and if it exceeds the total number of buffers, it means that 1341 * someone is doing some writes simultaneously with us. In 1342 * this case, stop, dropping the lock. 1343 */ 1344 if (dropped_lock) 1345 goto again; 1346 } 1347 wake_up(&c->free_buffer_wait); 1348 dm_bufio_unlock(c); 1349 1350 a = xchg(&c->async_write_error, 0); 1351 f = dm_bufio_issue_flush(c); 1352 if (a) 1353 return a; 1354 1355 return f; 1356 } 1357 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1358 1359 /* 1360 * Use dm-io to send an empty barrier to flush the device. 1361 */ 1362 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1363 { 1364 struct dm_io_request io_req = { 1365 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC, 1366 .mem.type = DM_IO_KMEM, 1367 .mem.ptr.addr = NULL, 1368 .client = c->dm_io, 1369 }; 1370 struct dm_io_region io_reg = { 1371 .bdev = c->bdev, 1372 .sector = 0, 1373 .count = 0, 1374 }; 1375 1376 BUG_ON(dm_bufio_in_request()); 1377 1378 return dm_io(&io_req, 1, &io_reg, NULL); 1379 } 1380 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1381 1382 /* 1383 * Use dm-io to send a discard request to flush the device. 1384 */ 1385 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 1386 { 1387 struct dm_io_request io_req = { 1388 .bi_opf = REQ_OP_DISCARD | REQ_SYNC, 1389 .mem.type = DM_IO_KMEM, 1390 .mem.ptr.addr = NULL, 1391 .client = c->dm_io, 1392 }; 1393 struct dm_io_region io_reg = { 1394 .bdev = c->bdev, 1395 .sector = block_to_sector(c, block), 1396 .count = block_to_sector(c, count), 1397 }; 1398 1399 BUG_ON(dm_bufio_in_request()); 1400 1401 return dm_io(&io_req, 1, &io_reg, NULL); 1402 } 1403 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 1404 1405 /* 1406 * We first delete any other buffer that may be at that new location. 1407 * 1408 * Then, we write the buffer to the original location if it was dirty. 1409 * 1410 * Then, if we are the only one who is holding the buffer, relink the buffer 1411 * in the buffer tree for the new location. 1412 * 1413 * If there was someone else holding the buffer, we write it to the new 1414 * location but not relink it, because that other user needs to have the buffer 1415 * at the same place. 1416 */ 1417 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1418 { 1419 struct dm_bufio_client *c = b->c; 1420 struct dm_buffer *new; 1421 1422 BUG_ON(dm_bufio_in_request()); 1423 1424 dm_bufio_lock(c); 1425 1426 retry: 1427 new = __find(c, new_block); 1428 if (new) { 1429 if (new->hold_count) { 1430 __wait_for_free_buffer(c); 1431 goto retry; 1432 } 1433 1434 /* 1435 * FIXME: Is there any point waiting for a write that's going 1436 * to be overwritten in a bit? 1437 */ 1438 __make_buffer_clean(new); 1439 __unlink_buffer(new); 1440 __free_buffer_wake(new); 1441 } 1442 1443 BUG_ON(!b->hold_count); 1444 BUG_ON(test_bit(B_READING, &b->state)); 1445 1446 __write_dirty_buffer(b, NULL); 1447 if (b->hold_count == 1) { 1448 wait_on_bit_io(&b->state, B_WRITING, 1449 TASK_UNINTERRUPTIBLE); 1450 set_bit(B_DIRTY, &b->state); 1451 b->dirty_start = 0; 1452 b->dirty_end = c->block_size; 1453 __unlink_buffer(b); 1454 __link_buffer(b, new_block, LIST_DIRTY); 1455 } else { 1456 sector_t old_block; 1457 wait_on_bit_lock_io(&b->state, B_WRITING, 1458 TASK_UNINTERRUPTIBLE); 1459 /* 1460 * Relink buffer to "new_block" so that write_callback 1461 * sees "new_block" as a block number. 1462 * After the write, link the buffer back to old_block. 1463 * All this must be done in bufio lock, so that block number 1464 * change isn't visible to other threads. 1465 */ 1466 old_block = b->block; 1467 __unlink_buffer(b); 1468 __link_buffer(b, new_block, b->list_mode); 1469 submit_io(b, REQ_OP_WRITE, write_endio); 1470 wait_on_bit_io(&b->state, B_WRITING, 1471 TASK_UNINTERRUPTIBLE); 1472 __unlink_buffer(b); 1473 __link_buffer(b, old_block, b->list_mode); 1474 } 1475 1476 dm_bufio_unlock(c); 1477 dm_bufio_release(b); 1478 } 1479 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1480 1481 static void forget_buffer_locked(struct dm_buffer *b) 1482 { 1483 if (likely(!b->hold_count) && likely(!smp_load_acquire(&b->state))) { 1484 __unlink_buffer(b); 1485 __free_buffer_wake(b); 1486 } 1487 } 1488 1489 /* 1490 * Free the given buffer. 1491 * 1492 * This is just a hint, if the buffer is in use or dirty, this function 1493 * does nothing. 1494 */ 1495 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1496 { 1497 struct dm_buffer *b; 1498 1499 dm_bufio_lock(c); 1500 1501 b = __find(c, block); 1502 if (b) 1503 forget_buffer_locked(b); 1504 1505 dm_bufio_unlock(c); 1506 } 1507 EXPORT_SYMBOL_GPL(dm_bufio_forget); 1508 1509 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 1510 { 1511 struct dm_buffer *b; 1512 sector_t end_block = block + n_blocks; 1513 1514 while (block < end_block) { 1515 dm_bufio_lock(c); 1516 1517 b = __find_next(c, block); 1518 if (b) { 1519 block = b->block + 1; 1520 forget_buffer_locked(b); 1521 } 1522 1523 dm_bufio_unlock(c); 1524 1525 if (!b) 1526 break; 1527 } 1528 1529 } 1530 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 1531 1532 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1533 { 1534 c->minimum_buffers = n; 1535 } 1536 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 1537 1538 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1539 { 1540 return c->block_size; 1541 } 1542 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1543 1544 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1545 { 1546 sector_t s = bdev_nr_sectors(c->bdev); 1547 if (s >= c->start) 1548 s -= c->start; 1549 else 1550 s = 0; 1551 if (likely(c->sectors_per_block_bits >= 0)) 1552 s >>= c->sectors_per_block_bits; 1553 else 1554 sector_div(s, c->block_size >> SECTOR_SHIFT); 1555 return s; 1556 } 1557 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1558 1559 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c) 1560 { 1561 return c->dm_io; 1562 } 1563 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client); 1564 1565 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1566 { 1567 return b->block; 1568 } 1569 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1570 1571 void *dm_bufio_get_block_data(struct dm_buffer *b) 1572 { 1573 return b->data; 1574 } 1575 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1576 1577 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1578 { 1579 return b + 1; 1580 } 1581 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1582 1583 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1584 { 1585 return b->c; 1586 } 1587 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1588 1589 static void drop_buffers(struct dm_bufio_client *c) 1590 { 1591 struct dm_buffer *b; 1592 int i; 1593 bool warned = false; 1594 1595 BUG_ON(dm_bufio_in_request()); 1596 1597 /* 1598 * An optimization so that the buffers are not written one-by-one. 1599 */ 1600 dm_bufio_write_dirty_buffers_async(c); 1601 1602 dm_bufio_lock(c); 1603 1604 while ((b = __get_unclaimed_buffer(c))) 1605 __free_buffer_wake(b); 1606 1607 for (i = 0; i < LIST_SIZE; i++) 1608 list_for_each_entry(b, &c->lru[i], lru_list) { 1609 WARN_ON(!warned); 1610 warned = true; 1611 DMERR("leaked buffer %llx, hold count %u, list %d", 1612 (unsigned long long)b->block, b->hold_count, i); 1613 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1614 stack_trace_print(b->stack_entries, b->stack_len, 1); 1615 /* mark unclaimed to avoid BUG_ON below */ 1616 b->hold_count = 0; 1617 #endif 1618 } 1619 1620 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1621 while ((b = __get_unclaimed_buffer(c))) 1622 __free_buffer_wake(b); 1623 #endif 1624 1625 for (i = 0; i < LIST_SIZE; i++) 1626 BUG_ON(!list_empty(&c->lru[i])); 1627 1628 dm_bufio_unlock(c); 1629 } 1630 1631 /* 1632 * We may not be able to evict this buffer if IO pending or the client 1633 * is still using it. Caller is expected to know buffer is too old. 1634 * 1635 * And if GFP_NOFS is used, we must not do any I/O because we hold 1636 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1637 * rerouted to different bufio client. 1638 */ 1639 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1640 { 1641 if (!(gfp & __GFP_FS) || 1642 (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) { 1643 if (test_bit_acquire(B_READING, &b->state) || 1644 test_bit(B_WRITING, &b->state) || 1645 test_bit(B_DIRTY, &b->state)) 1646 return false; 1647 } 1648 1649 if (b->hold_count) 1650 return false; 1651 1652 __make_buffer_clean(b); 1653 __unlink_buffer(b); 1654 __free_buffer_wake(b); 1655 1656 return true; 1657 } 1658 1659 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1660 { 1661 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1662 if (likely(c->sectors_per_block_bits >= 0)) 1663 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 1664 else 1665 retain_bytes /= c->block_size; 1666 return retain_bytes; 1667 } 1668 1669 static void __scan(struct dm_bufio_client *c) 1670 { 1671 int l; 1672 struct dm_buffer *b, *tmp; 1673 unsigned long freed = 0; 1674 unsigned long count = c->n_buffers[LIST_CLEAN] + 1675 c->n_buffers[LIST_DIRTY]; 1676 unsigned long retain_target = get_retain_buffers(c); 1677 1678 for (l = 0; l < LIST_SIZE; l++) { 1679 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1680 if (count - freed <= retain_target) 1681 atomic_long_set(&c->need_shrink, 0); 1682 if (!atomic_long_read(&c->need_shrink)) 1683 return; 1684 if (__try_evict_buffer(b, GFP_KERNEL)) { 1685 atomic_long_dec(&c->need_shrink); 1686 freed++; 1687 } 1688 cond_resched(); 1689 } 1690 } 1691 } 1692 1693 static void shrink_work(struct work_struct *w) 1694 { 1695 struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work); 1696 1697 dm_bufio_lock(c); 1698 __scan(c); 1699 dm_bufio_unlock(c); 1700 } 1701 1702 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1703 { 1704 struct dm_bufio_client *c; 1705 1706 c = container_of(shrink, struct dm_bufio_client, shrinker); 1707 atomic_long_add(sc->nr_to_scan, &c->need_shrink); 1708 queue_work(dm_bufio_wq, &c->shrink_work); 1709 1710 return sc->nr_to_scan; 1711 } 1712 1713 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1714 { 1715 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1716 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1717 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1718 unsigned long retain_target = get_retain_buffers(c); 1719 unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink); 1720 1721 if (unlikely(count < retain_target)) 1722 count = 0; 1723 else 1724 count -= retain_target; 1725 1726 if (unlikely(count < queued_for_cleanup)) 1727 count = 0; 1728 else 1729 count -= queued_for_cleanup; 1730 1731 return count; 1732 } 1733 1734 /* 1735 * Create the buffering interface 1736 */ 1737 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1738 unsigned reserved_buffers, unsigned aux_size, 1739 void (*alloc_callback)(struct dm_buffer *), 1740 void (*write_callback)(struct dm_buffer *), 1741 unsigned int flags) 1742 { 1743 int r; 1744 struct dm_bufio_client *c; 1745 unsigned i; 1746 char slab_name[27]; 1747 1748 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 1749 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 1750 r = -EINVAL; 1751 goto bad_client; 1752 } 1753 1754 c = kzalloc(sizeof(*c), GFP_KERNEL); 1755 if (!c) { 1756 r = -ENOMEM; 1757 goto bad_client; 1758 } 1759 c->buffer_tree = RB_ROOT; 1760 1761 c->bdev = bdev; 1762 c->block_size = block_size; 1763 if (is_power_of_2(block_size)) 1764 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1765 else 1766 c->sectors_per_block_bits = -1; 1767 1768 c->alloc_callback = alloc_callback; 1769 c->write_callback = write_callback; 1770 1771 if (flags & DM_BUFIO_CLIENT_NO_SLEEP) { 1772 c->no_sleep = true; 1773 static_branch_inc(&no_sleep_enabled); 1774 } 1775 1776 for (i = 0; i < LIST_SIZE; i++) { 1777 INIT_LIST_HEAD(&c->lru[i]); 1778 c->n_buffers[i] = 0; 1779 } 1780 1781 mutex_init(&c->lock); 1782 spin_lock_init(&c->spinlock); 1783 INIT_LIST_HEAD(&c->reserved_buffers); 1784 c->need_reserved_buffers = reserved_buffers; 1785 1786 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 1787 1788 init_waitqueue_head(&c->free_buffer_wait); 1789 c->async_write_error = 0; 1790 1791 c->dm_io = dm_io_client_create(); 1792 if (IS_ERR(c->dm_io)) { 1793 r = PTR_ERR(c->dm_io); 1794 goto bad_dm_io; 1795 } 1796 1797 if (block_size <= KMALLOC_MAX_SIZE && 1798 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 1799 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE); 1800 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size); 1801 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 1802 SLAB_RECLAIM_ACCOUNT, NULL); 1803 if (!c->slab_cache) { 1804 r = -ENOMEM; 1805 goto bad; 1806 } 1807 } 1808 if (aux_size) 1809 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size); 1810 else 1811 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer"); 1812 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 1813 0, SLAB_RECLAIM_ACCOUNT, NULL); 1814 if (!c->slab_buffer) { 1815 r = -ENOMEM; 1816 goto bad; 1817 } 1818 1819 while (c->need_reserved_buffers) { 1820 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1821 1822 if (!b) { 1823 r = -ENOMEM; 1824 goto bad; 1825 } 1826 __free_buffer_wake(b); 1827 } 1828 1829 INIT_WORK(&c->shrink_work, shrink_work); 1830 atomic_long_set(&c->need_shrink, 0); 1831 1832 c->shrinker.count_objects = dm_bufio_shrink_count; 1833 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1834 c->shrinker.seeks = 1; 1835 c->shrinker.batch = 0; 1836 r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name, 1837 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 1838 if (r) 1839 goto bad; 1840 1841 mutex_lock(&dm_bufio_clients_lock); 1842 dm_bufio_client_count++; 1843 list_add(&c->client_list, &dm_bufio_all_clients); 1844 __cache_size_refresh(); 1845 mutex_unlock(&dm_bufio_clients_lock); 1846 1847 return c; 1848 1849 bad: 1850 while (!list_empty(&c->reserved_buffers)) { 1851 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1852 struct dm_buffer, lru_list); 1853 list_del(&b->lru_list); 1854 free_buffer(b); 1855 } 1856 kmem_cache_destroy(c->slab_cache); 1857 kmem_cache_destroy(c->slab_buffer); 1858 dm_io_client_destroy(c->dm_io); 1859 bad_dm_io: 1860 mutex_destroy(&c->lock); 1861 kfree(c); 1862 bad_client: 1863 return ERR_PTR(r); 1864 } 1865 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1866 1867 /* 1868 * Free the buffering interface. 1869 * It is required that there are no references on any buffers. 1870 */ 1871 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1872 { 1873 unsigned i; 1874 1875 drop_buffers(c); 1876 1877 unregister_shrinker(&c->shrinker); 1878 flush_work(&c->shrink_work); 1879 1880 mutex_lock(&dm_bufio_clients_lock); 1881 1882 list_del(&c->client_list); 1883 dm_bufio_client_count--; 1884 __cache_size_refresh(); 1885 1886 mutex_unlock(&dm_bufio_clients_lock); 1887 1888 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1889 BUG_ON(c->need_reserved_buffers); 1890 1891 while (!list_empty(&c->reserved_buffers)) { 1892 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1893 struct dm_buffer, lru_list); 1894 list_del(&b->lru_list); 1895 free_buffer(b); 1896 } 1897 1898 for (i = 0; i < LIST_SIZE; i++) 1899 if (c->n_buffers[i]) 1900 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1901 1902 for (i = 0; i < LIST_SIZE; i++) 1903 BUG_ON(c->n_buffers[i]); 1904 1905 kmem_cache_destroy(c->slab_cache); 1906 kmem_cache_destroy(c->slab_buffer); 1907 dm_io_client_destroy(c->dm_io); 1908 mutex_destroy(&c->lock); 1909 if (c->no_sleep) 1910 static_branch_dec(&no_sleep_enabled); 1911 kfree(c); 1912 } 1913 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1914 1915 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1916 { 1917 c->start = start; 1918 } 1919 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1920 1921 static unsigned get_max_age_hz(void) 1922 { 1923 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1924 1925 if (max_age > UINT_MAX / HZ) 1926 max_age = UINT_MAX / HZ; 1927 1928 return max_age * HZ; 1929 } 1930 1931 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1932 { 1933 return time_after_eq(jiffies, b->last_accessed + age_hz); 1934 } 1935 1936 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1937 { 1938 struct dm_buffer *b, *tmp; 1939 unsigned long retain_target = get_retain_buffers(c); 1940 unsigned long count; 1941 LIST_HEAD(write_list); 1942 1943 dm_bufio_lock(c); 1944 1945 __check_watermark(c, &write_list); 1946 if (unlikely(!list_empty(&write_list))) { 1947 dm_bufio_unlock(c); 1948 __flush_write_list(&write_list); 1949 dm_bufio_lock(c); 1950 } 1951 1952 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1953 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1954 if (count <= retain_target) 1955 break; 1956 1957 if (!older_than(b, age_hz)) 1958 break; 1959 1960 if (__try_evict_buffer(b, 0)) 1961 count--; 1962 1963 cond_resched(); 1964 } 1965 1966 dm_bufio_unlock(c); 1967 } 1968 1969 static void do_global_cleanup(struct work_struct *w) 1970 { 1971 struct dm_bufio_client *locked_client = NULL; 1972 struct dm_bufio_client *current_client; 1973 struct dm_buffer *b; 1974 unsigned spinlock_hold_count; 1975 unsigned long threshold = dm_bufio_cache_size - 1976 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 1977 unsigned long loops = global_num * 2; 1978 1979 mutex_lock(&dm_bufio_clients_lock); 1980 1981 while (1) { 1982 cond_resched(); 1983 1984 spin_lock(&global_spinlock); 1985 if (unlikely(dm_bufio_current_allocated <= threshold)) 1986 break; 1987 1988 spinlock_hold_count = 0; 1989 get_next: 1990 if (!loops--) 1991 break; 1992 if (unlikely(list_empty(&global_queue))) 1993 break; 1994 b = list_entry(global_queue.prev, struct dm_buffer, global_list); 1995 1996 if (b->accessed) { 1997 b->accessed = 0; 1998 list_move(&b->global_list, &global_queue); 1999 if (likely(++spinlock_hold_count < 16)) 2000 goto get_next; 2001 spin_unlock(&global_spinlock); 2002 continue; 2003 } 2004 2005 current_client = b->c; 2006 if (unlikely(current_client != locked_client)) { 2007 if (locked_client) 2008 dm_bufio_unlock(locked_client); 2009 2010 if (!dm_bufio_trylock(current_client)) { 2011 spin_unlock(&global_spinlock); 2012 dm_bufio_lock(current_client); 2013 locked_client = current_client; 2014 continue; 2015 } 2016 2017 locked_client = current_client; 2018 } 2019 2020 spin_unlock(&global_spinlock); 2021 2022 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) { 2023 spin_lock(&global_spinlock); 2024 list_move(&b->global_list, &global_queue); 2025 spin_unlock(&global_spinlock); 2026 } 2027 } 2028 2029 spin_unlock(&global_spinlock); 2030 2031 if (locked_client) 2032 dm_bufio_unlock(locked_client); 2033 2034 mutex_unlock(&dm_bufio_clients_lock); 2035 } 2036 2037 static void cleanup_old_buffers(void) 2038 { 2039 unsigned long max_age_hz = get_max_age_hz(); 2040 struct dm_bufio_client *c; 2041 2042 mutex_lock(&dm_bufio_clients_lock); 2043 2044 __cache_size_refresh(); 2045 2046 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 2047 __evict_old_buffers(c, max_age_hz); 2048 2049 mutex_unlock(&dm_bufio_clients_lock); 2050 } 2051 2052 static void work_fn(struct work_struct *w) 2053 { 2054 cleanup_old_buffers(); 2055 2056 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2057 DM_BUFIO_WORK_TIMER_SECS * HZ); 2058 } 2059 2060 /*---------------------------------------------------------------- 2061 * Module setup 2062 *--------------------------------------------------------------*/ 2063 2064 /* 2065 * This is called only once for the whole dm_bufio module. 2066 * It initializes memory limit. 2067 */ 2068 static int __init dm_bufio_init(void) 2069 { 2070 __u64 mem; 2071 2072 dm_bufio_allocated_kmem_cache = 0; 2073 dm_bufio_allocated_get_free_pages = 0; 2074 dm_bufio_allocated_vmalloc = 0; 2075 dm_bufio_current_allocated = 0; 2076 2077 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2078 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2079 2080 if (mem > ULONG_MAX) 2081 mem = ULONG_MAX; 2082 2083 #ifdef CONFIG_MMU 2084 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2085 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2086 #endif 2087 2088 dm_bufio_default_cache_size = mem; 2089 2090 mutex_lock(&dm_bufio_clients_lock); 2091 __cache_size_refresh(); 2092 mutex_unlock(&dm_bufio_clients_lock); 2093 2094 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2095 if (!dm_bufio_wq) 2096 return -ENOMEM; 2097 2098 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2099 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2100 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2101 DM_BUFIO_WORK_TIMER_SECS * HZ); 2102 2103 return 0; 2104 } 2105 2106 /* 2107 * This is called once when unloading the dm_bufio module. 2108 */ 2109 static void __exit dm_bufio_exit(void) 2110 { 2111 int bug = 0; 2112 2113 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2114 destroy_workqueue(dm_bufio_wq); 2115 2116 if (dm_bufio_client_count) { 2117 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2118 __func__, dm_bufio_client_count); 2119 bug = 1; 2120 } 2121 2122 if (dm_bufio_current_allocated) { 2123 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2124 __func__, dm_bufio_current_allocated); 2125 bug = 1; 2126 } 2127 2128 if (dm_bufio_allocated_get_free_pages) { 2129 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2130 __func__, dm_bufio_allocated_get_free_pages); 2131 bug = 1; 2132 } 2133 2134 if (dm_bufio_allocated_vmalloc) { 2135 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2136 __func__, dm_bufio_allocated_vmalloc); 2137 bug = 1; 2138 } 2139 2140 BUG_ON(bug); 2141 } 2142 2143 module_init(dm_bufio_init) 2144 module_exit(dm_bufio_exit) 2145 2146 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 2147 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2148 2149 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 2150 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2151 2152 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 2153 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2154 2155 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2156 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2157 2158 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2159 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2160 2161 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2162 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2163 2164 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2165 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2166 2167 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2168 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2169 2170 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2171 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2172 MODULE_LICENSE("GPL"); 2173