xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/dm-bufio.h>
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_PERCENT	75
37 
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS	30
42 
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS	300
47 
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52 
53 /*
54  * Align buffer writes to this boundary.
55  * Tests show that SSDs have the highest IOPS when using 4k writes.
56  */
57 #define DM_BUFIO_WRITE_ALIGN		4096
58 
59 /*
60  * dm_buffer->list_mode
61  */
62 #define LIST_CLEAN	0
63 #define LIST_DIRTY	1
64 #define LIST_SIZE	2
65 
66 /*
67  * Linking of buffers:
68  *	All buffers are linked to cache_hash with their hash_list field.
69  *
70  *	Clean buffers that are not being written (B_WRITING not set)
71  *	are linked to lru[LIST_CLEAN] with their lru_list field.
72  *
73  *	Dirty and clean buffers that are being written are linked to
74  *	lru[LIST_DIRTY] with their lru_list field. When the write
75  *	finishes, the buffer cannot be relinked immediately (because we
76  *	are in an interrupt context and relinking requires process
77  *	context), so some clean-not-writing buffers can be held on
78  *	dirty_lru too.  They are later added to lru in the process
79  *	context.
80  */
81 struct dm_bufio_client {
82 	struct mutex lock;
83 
84 	struct list_head lru[LIST_SIZE];
85 	unsigned long n_buffers[LIST_SIZE];
86 
87 	struct block_device *bdev;
88 	unsigned block_size;
89 	s8 sectors_per_block_bits;
90 	void (*alloc_callback)(struct dm_buffer *);
91 	void (*write_callback)(struct dm_buffer *);
92 
93 	struct kmem_cache *slab_buffer;
94 	struct kmem_cache *slab_cache;
95 	struct dm_io_client *dm_io;
96 
97 	struct list_head reserved_buffers;
98 	unsigned need_reserved_buffers;
99 
100 	unsigned minimum_buffers;
101 
102 	struct rb_root buffer_tree;
103 	wait_queue_head_t free_buffer_wait;
104 
105 	sector_t start;
106 
107 	int async_write_error;
108 
109 	struct list_head client_list;
110 	struct shrinker shrinker;
111 };
112 
113 /*
114  * Buffer state bits.
115  */
116 #define B_READING	0
117 #define B_WRITING	1
118 #define B_DIRTY		2
119 
120 /*
121  * Describes how the block was allocated:
122  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
123  * See the comment at alloc_buffer_data.
124  */
125 enum data_mode {
126 	DATA_MODE_SLAB = 0,
127 	DATA_MODE_GET_FREE_PAGES = 1,
128 	DATA_MODE_VMALLOC = 2,
129 	DATA_MODE_LIMIT = 3
130 };
131 
132 struct dm_buffer {
133 	struct rb_node node;
134 	struct list_head lru_list;
135 	sector_t block;
136 	void *data;
137 	unsigned char data_mode;		/* DATA_MODE_* */
138 	unsigned char list_mode;		/* LIST_* */
139 	blk_status_t read_error;
140 	blk_status_t write_error;
141 	unsigned hold_count;
142 	unsigned long state;
143 	unsigned long last_accessed;
144 	unsigned dirty_start;
145 	unsigned dirty_end;
146 	unsigned write_start;
147 	unsigned write_end;
148 	struct dm_bufio_client *c;
149 	struct list_head write_list;
150 	void (*end_io)(struct dm_buffer *, blk_status_t);
151 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
152 #define MAX_STACK 10
153 	struct stack_trace stack_trace;
154 	unsigned long stack_entries[MAX_STACK];
155 #endif
156 };
157 
158 /*----------------------------------------------------------------*/
159 
160 #define dm_bufio_in_request()	(!!current->bio_list)
161 
162 static void dm_bufio_lock(struct dm_bufio_client *c)
163 {
164 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
165 }
166 
167 static int dm_bufio_trylock(struct dm_bufio_client *c)
168 {
169 	return mutex_trylock(&c->lock);
170 }
171 
172 static void dm_bufio_unlock(struct dm_bufio_client *c)
173 {
174 	mutex_unlock(&c->lock);
175 }
176 
177 /*----------------------------------------------------------------*/
178 
179 /*
180  * Default cache size: available memory divided by the ratio.
181  */
182 static unsigned long dm_bufio_default_cache_size;
183 
184 /*
185  * Total cache size set by the user.
186  */
187 static unsigned long dm_bufio_cache_size;
188 
189 /*
190  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
191  * at any time.  If it disagrees, the user has changed cache size.
192  */
193 static unsigned long dm_bufio_cache_size_latch;
194 
195 static DEFINE_SPINLOCK(param_spinlock);
196 
197 /*
198  * Buffers are freed after this timeout
199  */
200 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
201 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
202 
203 static unsigned long dm_bufio_peak_allocated;
204 static unsigned long dm_bufio_allocated_kmem_cache;
205 static unsigned long dm_bufio_allocated_get_free_pages;
206 static unsigned long dm_bufio_allocated_vmalloc;
207 static unsigned long dm_bufio_current_allocated;
208 
209 /*----------------------------------------------------------------*/
210 
211 /*
212  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
213  */
214 static unsigned long dm_bufio_cache_size_per_client;
215 
216 /*
217  * The current number of clients.
218  */
219 static int dm_bufio_client_count;
220 
221 /*
222  * The list of all clients.
223  */
224 static LIST_HEAD(dm_bufio_all_clients);
225 
226 /*
227  * This mutex protects dm_bufio_cache_size_latch,
228  * dm_bufio_cache_size_per_client and dm_bufio_client_count
229  */
230 static DEFINE_MUTEX(dm_bufio_clients_lock);
231 
232 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
233 static void buffer_record_stack(struct dm_buffer *b)
234 {
235 	b->stack_trace.nr_entries = 0;
236 	b->stack_trace.max_entries = MAX_STACK;
237 	b->stack_trace.entries = b->stack_entries;
238 	b->stack_trace.skip = 2;
239 	save_stack_trace(&b->stack_trace);
240 }
241 #endif
242 
243 /*----------------------------------------------------------------
244  * A red/black tree acts as an index for all the buffers.
245  *--------------------------------------------------------------*/
246 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
247 {
248 	struct rb_node *n = c->buffer_tree.rb_node;
249 	struct dm_buffer *b;
250 
251 	while (n) {
252 		b = container_of(n, struct dm_buffer, node);
253 
254 		if (b->block == block)
255 			return b;
256 
257 		n = (b->block < block) ? n->rb_left : n->rb_right;
258 	}
259 
260 	return NULL;
261 }
262 
263 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
264 {
265 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
266 	struct dm_buffer *found;
267 
268 	while (*new) {
269 		found = container_of(*new, struct dm_buffer, node);
270 
271 		if (found->block == b->block) {
272 			BUG_ON(found != b);
273 			return;
274 		}
275 
276 		parent = *new;
277 		new = (found->block < b->block) ?
278 			&((*new)->rb_left) : &((*new)->rb_right);
279 	}
280 
281 	rb_link_node(&b->node, parent, new);
282 	rb_insert_color(&b->node, &c->buffer_tree);
283 }
284 
285 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
286 {
287 	rb_erase(&b->node, &c->buffer_tree);
288 }
289 
290 /*----------------------------------------------------------------*/
291 
292 static void adjust_total_allocated(unsigned char data_mode, long diff)
293 {
294 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
295 		&dm_bufio_allocated_kmem_cache,
296 		&dm_bufio_allocated_get_free_pages,
297 		&dm_bufio_allocated_vmalloc,
298 	};
299 
300 	spin_lock(&param_spinlock);
301 
302 	*class_ptr[data_mode] += diff;
303 
304 	dm_bufio_current_allocated += diff;
305 
306 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
307 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
308 
309 	spin_unlock(&param_spinlock);
310 }
311 
312 /*
313  * Change the number of clients and recalculate per-client limit.
314  */
315 static void __cache_size_refresh(void)
316 {
317 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
318 	BUG_ON(dm_bufio_client_count < 0);
319 
320 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
321 
322 	/*
323 	 * Use default if set to 0 and report the actual cache size used.
324 	 */
325 	if (!dm_bufio_cache_size_latch) {
326 		(void)cmpxchg(&dm_bufio_cache_size, 0,
327 			      dm_bufio_default_cache_size);
328 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
329 	}
330 
331 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
332 					 (dm_bufio_client_count ? : 1);
333 }
334 
335 /*
336  * Allocating buffer data.
337  *
338  * Small buffers are allocated with kmem_cache, to use space optimally.
339  *
340  * For large buffers, we choose between get_free_pages and vmalloc.
341  * Each has advantages and disadvantages.
342  *
343  * __get_free_pages can randomly fail if the memory is fragmented.
344  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
345  * as low as 128M) so using it for caching is not appropriate.
346  *
347  * If the allocation may fail we use __get_free_pages. Memory fragmentation
348  * won't have a fatal effect here, but it just causes flushes of some other
349  * buffers and more I/O will be performed. Don't use __get_free_pages if it
350  * always fails (i.e. order >= MAX_ORDER).
351  *
352  * If the allocation shouldn't fail we use __vmalloc. This is only for the
353  * initial reserve allocation, so there's no risk of wasting all vmalloc
354  * space.
355  */
356 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
357 			       unsigned char *data_mode)
358 {
359 	if (unlikely(c->slab_cache != NULL)) {
360 		*data_mode = DATA_MODE_SLAB;
361 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
362 	}
363 
364 	if (c->block_size <= KMALLOC_MAX_SIZE &&
365 	    gfp_mask & __GFP_NORETRY) {
366 		*data_mode = DATA_MODE_GET_FREE_PAGES;
367 		return (void *)__get_free_pages(gfp_mask,
368 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
369 	}
370 
371 	*data_mode = DATA_MODE_VMALLOC;
372 
373 	/*
374 	 * __vmalloc allocates the data pages and auxiliary structures with
375 	 * gfp_flags that were specified, but pagetables are always allocated
376 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
377 	 *
378 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
379 	 * all allocations done by this process (including pagetables) are done
380 	 * as if GFP_NOIO was specified.
381 	 */
382 	if (gfp_mask & __GFP_NORETRY) {
383 		unsigned noio_flag = memalloc_noio_save();
384 		void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
385 
386 		memalloc_noio_restore(noio_flag);
387 		return ptr;
388 	}
389 
390 	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
391 }
392 
393 /*
394  * Free buffer's data.
395  */
396 static void free_buffer_data(struct dm_bufio_client *c,
397 			     void *data, unsigned char data_mode)
398 {
399 	switch (data_mode) {
400 	case DATA_MODE_SLAB:
401 		kmem_cache_free(c->slab_cache, data);
402 		break;
403 
404 	case DATA_MODE_GET_FREE_PAGES:
405 		free_pages((unsigned long)data,
406 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
407 		break;
408 
409 	case DATA_MODE_VMALLOC:
410 		vfree(data);
411 		break;
412 
413 	default:
414 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
415 		       data_mode);
416 		BUG();
417 	}
418 }
419 
420 /*
421  * Allocate buffer and its data.
422  */
423 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
424 {
425 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
426 
427 	if (!b)
428 		return NULL;
429 
430 	b->c = c;
431 
432 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
433 	if (!b->data) {
434 		kmem_cache_free(c->slab_buffer, b);
435 		return NULL;
436 	}
437 
438 	adjust_total_allocated(b->data_mode, (long)c->block_size);
439 
440 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
441 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
442 #endif
443 	return b;
444 }
445 
446 /*
447  * Free buffer and its data.
448  */
449 static void free_buffer(struct dm_buffer *b)
450 {
451 	struct dm_bufio_client *c = b->c;
452 
453 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
454 
455 	free_buffer_data(c, b->data, b->data_mode);
456 	kmem_cache_free(c->slab_buffer, b);
457 }
458 
459 /*
460  * Link buffer to the hash list and clean or dirty queue.
461  */
462 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
463 {
464 	struct dm_bufio_client *c = b->c;
465 
466 	c->n_buffers[dirty]++;
467 	b->block = block;
468 	b->list_mode = dirty;
469 	list_add(&b->lru_list, &c->lru[dirty]);
470 	__insert(b->c, b);
471 	b->last_accessed = jiffies;
472 }
473 
474 /*
475  * Unlink buffer from the hash list and dirty or clean queue.
476  */
477 static void __unlink_buffer(struct dm_buffer *b)
478 {
479 	struct dm_bufio_client *c = b->c;
480 
481 	BUG_ON(!c->n_buffers[b->list_mode]);
482 
483 	c->n_buffers[b->list_mode]--;
484 	__remove(b->c, b);
485 	list_del(&b->lru_list);
486 }
487 
488 /*
489  * Place the buffer to the head of dirty or clean LRU queue.
490  */
491 static void __relink_lru(struct dm_buffer *b, int dirty)
492 {
493 	struct dm_bufio_client *c = b->c;
494 
495 	BUG_ON(!c->n_buffers[b->list_mode]);
496 
497 	c->n_buffers[b->list_mode]--;
498 	c->n_buffers[dirty]++;
499 	b->list_mode = dirty;
500 	list_move(&b->lru_list, &c->lru[dirty]);
501 	b->last_accessed = jiffies;
502 }
503 
504 /*----------------------------------------------------------------
505  * Submit I/O on the buffer.
506  *
507  * Bio interface is faster but it has some problems:
508  *	the vector list is limited (increasing this limit increases
509  *	memory-consumption per buffer, so it is not viable);
510  *
511  *	the memory must be direct-mapped, not vmalloced;
512  *
513  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
514  * it is not vmalloced, try using the bio interface.
515  *
516  * If the buffer is big, if it is vmalloced or if the underlying device
517  * rejects the bio because it is too large, use dm-io layer to do the I/O.
518  * The dm-io layer splits the I/O into multiple requests, avoiding the above
519  * shortcomings.
520  *--------------------------------------------------------------*/
521 
522 /*
523  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
524  * that the request was handled directly with bio interface.
525  */
526 static void dmio_complete(unsigned long error, void *context)
527 {
528 	struct dm_buffer *b = context;
529 
530 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
531 }
532 
533 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
534 		     unsigned n_sectors, unsigned offset)
535 {
536 	int r;
537 	struct dm_io_request io_req = {
538 		.bi_op = rw,
539 		.bi_op_flags = 0,
540 		.notify.fn = dmio_complete,
541 		.notify.context = b,
542 		.client = b->c->dm_io,
543 	};
544 	struct dm_io_region region = {
545 		.bdev = b->c->bdev,
546 		.sector = sector,
547 		.count = n_sectors,
548 	};
549 
550 	if (b->data_mode != DATA_MODE_VMALLOC) {
551 		io_req.mem.type = DM_IO_KMEM;
552 		io_req.mem.ptr.addr = (char *)b->data + offset;
553 	} else {
554 		io_req.mem.type = DM_IO_VMA;
555 		io_req.mem.ptr.vma = (char *)b->data + offset;
556 	}
557 
558 	r = dm_io(&io_req, 1, &region, NULL);
559 	if (unlikely(r))
560 		b->end_io(b, errno_to_blk_status(r));
561 }
562 
563 static void bio_complete(struct bio *bio)
564 {
565 	struct dm_buffer *b = bio->bi_private;
566 	blk_status_t status = bio->bi_status;
567 	bio_put(bio);
568 	b->end_io(b, status);
569 }
570 
571 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
572 		    unsigned n_sectors, unsigned offset)
573 {
574 	struct bio *bio;
575 	char *ptr;
576 	unsigned vec_size, len;
577 
578 	vec_size = b->c->block_size >> PAGE_SHIFT;
579 	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
580 		vec_size += 2;
581 
582 	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
583 	if (!bio) {
584 dmio:
585 		use_dmio(b, rw, sector, n_sectors, offset);
586 		return;
587 	}
588 
589 	bio->bi_iter.bi_sector = sector;
590 	bio_set_dev(bio, b->c->bdev);
591 	bio_set_op_attrs(bio, rw, 0);
592 	bio->bi_end_io = bio_complete;
593 	bio->bi_private = b;
594 
595 	ptr = (char *)b->data + offset;
596 	len = n_sectors << SECTOR_SHIFT;
597 
598 	do {
599 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
600 		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
601 				  offset_in_page(ptr))) {
602 			bio_put(bio);
603 			goto dmio;
604 		}
605 
606 		len -= this_step;
607 		ptr += this_step;
608 	} while (len > 0);
609 
610 	submit_bio(bio);
611 }
612 
613 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
614 {
615 	unsigned n_sectors;
616 	sector_t sector;
617 	unsigned offset, end;
618 
619 	b->end_io = end_io;
620 
621 	if (likely(b->c->sectors_per_block_bits >= 0))
622 		sector = b->block << b->c->sectors_per_block_bits;
623 	else
624 		sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
625 	sector += b->c->start;
626 
627 	if (rw != REQ_OP_WRITE) {
628 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
629 		offset = 0;
630 	} else {
631 		if (b->c->write_callback)
632 			b->c->write_callback(b);
633 		offset = b->write_start;
634 		end = b->write_end;
635 		offset &= -DM_BUFIO_WRITE_ALIGN;
636 		end += DM_BUFIO_WRITE_ALIGN - 1;
637 		end &= -DM_BUFIO_WRITE_ALIGN;
638 		if (unlikely(end > b->c->block_size))
639 			end = b->c->block_size;
640 
641 		sector += offset >> SECTOR_SHIFT;
642 		n_sectors = (end - offset) >> SECTOR_SHIFT;
643 	}
644 
645 	if (b->data_mode != DATA_MODE_VMALLOC)
646 		use_bio(b, rw, sector, n_sectors, offset);
647 	else
648 		use_dmio(b, rw, sector, n_sectors, offset);
649 }
650 
651 /*----------------------------------------------------------------
652  * Writing dirty buffers
653  *--------------------------------------------------------------*/
654 
655 /*
656  * The endio routine for write.
657  *
658  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
659  * it.
660  */
661 static void write_endio(struct dm_buffer *b, blk_status_t status)
662 {
663 	b->write_error = status;
664 	if (unlikely(status)) {
665 		struct dm_bufio_client *c = b->c;
666 
667 		(void)cmpxchg(&c->async_write_error, 0,
668 				blk_status_to_errno(status));
669 	}
670 
671 	BUG_ON(!test_bit(B_WRITING, &b->state));
672 
673 	smp_mb__before_atomic();
674 	clear_bit(B_WRITING, &b->state);
675 	smp_mb__after_atomic();
676 
677 	wake_up_bit(&b->state, B_WRITING);
678 }
679 
680 /*
681  * Initiate a write on a dirty buffer, but don't wait for it.
682  *
683  * - If the buffer is not dirty, exit.
684  * - If there some previous write going on, wait for it to finish (we can't
685  *   have two writes on the same buffer simultaneously).
686  * - Submit our write and don't wait on it. We set B_WRITING indicating
687  *   that there is a write in progress.
688  */
689 static void __write_dirty_buffer(struct dm_buffer *b,
690 				 struct list_head *write_list)
691 {
692 	if (!test_bit(B_DIRTY, &b->state))
693 		return;
694 
695 	clear_bit(B_DIRTY, &b->state);
696 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
697 
698 	b->write_start = b->dirty_start;
699 	b->write_end = b->dirty_end;
700 
701 	if (!write_list)
702 		submit_io(b, REQ_OP_WRITE, write_endio);
703 	else
704 		list_add_tail(&b->write_list, write_list);
705 }
706 
707 static void __flush_write_list(struct list_head *write_list)
708 {
709 	struct blk_plug plug;
710 	blk_start_plug(&plug);
711 	while (!list_empty(write_list)) {
712 		struct dm_buffer *b =
713 			list_entry(write_list->next, struct dm_buffer, write_list);
714 		list_del(&b->write_list);
715 		submit_io(b, REQ_OP_WRITE, write_endio);
716 		cond_resched();
717 	}
718 	blk_finish_plug(&plug);
719 }
720 
721 /*
722  * Wait until any activity on the buffer finishes.  Possibly write the
723  * buffer if it is dirty.  When this function finishes, there is no I/O
724  * running on the buffer and the buffer is not dirty.
725  */
726 static void __make_buffer_clean(struct dm_buffer *b)
727 {
728 	BUG_ON(b->hold_count);
729 
730 	if (!b->state)	/* fast case */
731 		return;
732 
733 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
734 	__write_dirty_buffer(b, NULL);
735 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
736 }
737 
738 /*
739  * Find some buffer that is not held by anybody, clean it, unlink it and
740  * return it.
741  */
742 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
743 {
744 	struct dm_buffer *b;
745 
746 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
747 		BUG_ON(test_bit(B_WRITING, &b->state));
748 		BUG_ON(test_bit(B_DIRTY, &b->state));
749 
750 		if (!b->hold_count) {
751 			__make_buffer_clean(b);
752 			__unlink_buffer(b);
753 			return b;
754 		}
755 		cond_resched();
756 	}
757 
758 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
759 		BUG_ON(test_bit(B_READING, &b->state));
760 
761 		if (!b->hold_count) {
762 			__make_buffer_clean(b);
763 			__unlink_buffer(b);
764 			return b;
765 		}
766 		cond_resched();
767 	}
768 
769 	return NULL;
770 }
771 
772 /*
773  * Wait until some other threads free some buffer or release hold count on
774  * some buffer.
775  *
776  * This function is entered with c->lock held, drops it and regains it
777  * before exiting.
778  */
779 static void __wait_for_free_buffer(struct dm_bufio_client *c)
780 {
781 	DECLARE_WAITQUEUE(wait, current);
782 
783 	add_wait_queue(&c->free_buffer_wait, &wait);
784 	set_current_state(TASK_UNINTERRUPTIBLE);
785 	dm_bufio_unlock(c);
786 
787 	io_schedule();
788 
789 	remove_wait_queue(&c->free_buffer_wait, &wait);
790 
791 	dm_bufio_lock(c);
792 }
793 
794 enum new_flag {
795 	NF_FRESH = 0,
796 	NF_READ = 1,
797 	NF_GET = 2,
798 	NF_PREFETCH = 3
799 };
800 
801 /*
802  * Allocate a new buffer. If the allocation is not possible, wait until
803  * some other thread frees a buffer.
804  *
805  * May drop the lock and regain it.
806  */
807 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
808 {
809 	struct dm_buffer *b;
810 	bool tried_noio_alloc = false;
811 
812 	/*
813 	 * dm-bufio is resistant to allocation failures (it just keeps
814 	 * one buffer reserved in cases all the allocations fail).
815 	 * So set flags to not try too hard:
816 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
817 	 *		    mutex and wait ourselves.
818 	 *	__GFP_NORETRY: don't retry and rather return failure
819 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
820 	 *	__GFP_NOWARN: don't print a warning in case of failure
821 	 *
822 	 * For debugging, if we set the cache size to 1, no new buffers will
823 	 * be allocated.
824 	 */
825 	while (1) {
826 		if (dm_bufio_cache_size_latch != 1) {
827 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
828 			if (b)
829 				return b;
830 		}
831 
832 		if (nf == NF_PREFETCH)
833 			return NULL;
834 
835 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
836 			dm_bufio_unlock(c);
837 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
838 			dm_bufio_lock(c);
839 			if (b)
840 				return b;
841 			tried_noio_alloc = true;
842 		}
843 
844 		if (!list_empty(&c->reserved_buffers)) {
845 			b = list_entry(c->reserved_buffers.next,
846 				       struct dm_buffer, lru_list);
847 			list_del(&b->lru_list);
848 			c->need_reserved_buffers++;
849 
850 			return b;
851 		}
852 
853 		b = __get_unclaimed_buffer(c);
854 		if (b)
855 			return b;
856 
857 		__wait_for_free_buffer(c);
858 	}
859 }
860 
861 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
862 {
863 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
864 
865 	if (!b)
866 		return NULL;
867 
868 	if (c->alloc_callback)
869 		c->alloc_callback(b);
870 
871 	return b;
872 }
873 
874 /*
875  * Free a buffer and wake other threads waiting for free buffers.
876  */
877 static void __free_buffer_wake(struct dm_buffer *b)
878 {
879 	struct dm_bufio_client *c = b->c;
880 
881 	if (!c->need_reserved_buffers)
882 		free_buffer(b);
883 	else {
884 		list_add(&b->lru_list, &c->reserved_buffers);
885 		c->need_reserved_buffers--;
886 	}
887 
888 	wake_up(&c->free_buffer_wait);
889 }
890 
891 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
892 					struct list_head *write_list)
893 {
894 	struct dm_buffer *b, *tmp;
895 
896 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
897 		BUG_ON(test_bit(B_READING, &b->state));
898 
899 		if (!test_bit(B_DIRTY, &b->state) &&
900 		    !test_bit(B_WRITING, &b->state)) {
901 			__relink_lru(b, LIST_CLEAN);
902 			continue;
903 		}
904 
905 		if (no_wait && test_bit(B_WRITING, &b->state))
906 			return;
907 
908 		__write_dirty_buffer(b, write_list);
909 		cond_resched();
910 	}
911 }
912 
913 /*
914  * Get writeback threshold and buffer limit for a given client.
915  */
916 static void __get_memory_limit(struct dm_bufio_client *c,
917 			       unsigned long *threshold_buffers,
918 			       unsigned long *limit_buffers)
919 {
920 	unsigned long buffers;
921 
922 	if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
923 		if (mutex_trylock(&dm_bufio_clients_lock)) {
924 			__cache_size_refresh();
925 			mutex_unlock(&dm_bufio_clients_lock);
926 		}
927 	}
928 
929 	buffers = dm_bufio_cache_size_per_client;
930 	if (likely(c->sectors_per_block_bits >= 0))
931 		buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
932 	else
933 		buffers /= c->block_size;
934 
935 	if (buffers < c->minimum_buffers)
936 		buffers = c->minimum_buffers;
937 
938 	*limit_buffers = buffers;
939 	*threshold_buffers = mult_frac(buffers,
940 				       DM_BUFIO_WRITEBACK_PERCENT, 100);
941 }
942 
943 /*
944  * Check if we're over watermark.
945  * If we are over threshold_buffers, start freeing buffers.
946  * If we're over "limit_buffers", block until we get under the limit.
947  */
948 static void __check_watermark(struct dm_bufio_client *c,
949 			      struct list_head *write_list)
950 {
951 	unsigned long threshold_buffers, limit_buffers;
952 
953 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
954 
955 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
956 	       limit_buffers) {
957 
958 		struct dm_buffer *b = __get_unclaimed_buffer(c);
959 
960 		if (!b)
961 			return;
962 
963 		__free_buffer_wake(b);
964 		cond_resched();
965 	}
966 
967 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
968 		__write_dirty_buffers_async(c, 1, write_list);
969 }
970 
971 /*----------------------------------------------------------------
972  * Getting a buffer
973  *--------------------------------------------------------------*/
974 
975 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
976 				     enum new_flag nf, int *need_submit,
977 				     struct list_head *write_list)
978 {
979 	struct dm_buffer *b, *new_b = NULL;
980 
981 	*need_submit = 0;
982 
983 	b = __find(c, block);
984 	if (b)
985 		goto found_buffer;
986 
987 	if (nf == NF_GET)
988 		return NULL;
989 
990 	new_b = __alloc_buffer_wait(c, nf);
991 	if (!new_b)
992 		return NULL;
993 
994 	/*
995 	 * We've had a period where the mutex was unlocked, so need to
996 	 * recheck the hash table.
997 	 */
998 	b = __find(c, block);
999 	if (b) {
1000 		__free_buffer_wake(new_b);
1001 		goto found_buffer;
1002 	}
1003 
1004 	__check_watermark(c, write_list);
1005 
1006 	b = new_b;
1007 	b->hold_count = 1;
1008 	b->read_error = 0;
1009 	b->write_error = 0;
1010 	__link_buffer(b, block, LIST_CLEAN);
1011 
1012 	if (nf == NF_FRESH) {
1013 		b->state = 0;
1014 		return b;
1015 	}
1016 
1017 	b->state = 1 << B_READING;
1018 	*need_submit = 1;
1019 
1020 	return b;
1021 
1022 found_buffer:
1023 	if (nf == NF_PREFETCH)
1024 		return NULL;
1025 	/*
1026 	 * Note: it is essential that we don't wait for the buffer to be
1027 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1028 	 * dm_bufio_prefetch can be used in the driver request routine.
1029 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1030 	 * the same buffer, it would deadlock if we waited.
1031 	 */
1032 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1033 		return NULL;
1034 
1035 	b->hold_count++;
1036 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1037 		     test_bit(B_WRITING, &b->state));
1038 	return b;
1039 }
1040 
1041 /*
1042  * The endio routine for reading: set the error, clear the bit and wake up
1043  * anyone waiting on the buffer.
1044  */
1045 static void read_endio(struct dm_buffer *b, blk_status_t status)
1046 {
1047 	b->read_error = status;
1048 
1049 	BUG_ON(!test_bit(B_READING, &b->state));
1050 
1051 	smp_mb__before_atomic();
1052 	clear_bit(B_READING, &b->state);
1053 	smp_mb__after_atomic();
1054 
1055 	wake_up_bit(&b->state, B_READING);
1056 }
1057 
1058 /*
1059  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1060  * functions is similar except that dm_bufio_new doesn't read the
1061  * buffer from the disk (assuming that the caller overwrites all the data
1062  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1063  */
1064 static void *new_read(struct dm_bufio_client *c, sector_t block,
1065 		      enum new_flag nf, struct dm_buffer **bp)
1066 {
1067 	int need_submit;
1068 	struct dm_buffer *b;
1069 
1070 	LIST_HEAD(write_list);
1071 
1072 	dm_bufio_lock(c);
1073 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1074 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1075 	if (b && b->hold_count == 1)
1076 		buffer_record_stack(b);
1077 #endif
1078 	dm_bufio_unlock(c);
1079 
1080 	__flush_write_list(&write_list);
1081 
1082 	if (!b)
1083 		return NULL;
1084 
1085 	if (need_submit)
1086 		submit_io(b, REQ_OP_READ, read_endio);
1087 
1088 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1089 
1090 	if (b->read_error) {
1091 		int error = blk_status_to_errno(b->read_error);
1092 
1093 		dm_bufio_release(b);
1094 
1095 		return ERR_PTR(error);
1096 	}
1097 
1098 	*bp = b;
1099 
1100 	return b->data;
1101 }
1102 
1103 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1104 		   struct dm_buffer **bp)
1105 {
1106 	return new_read(c, block, NF_GET, bp);
1107 }
1108 EXPORT_SYMBOL_GPL(dm_bufio_get);
1109 
1110 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1111 		    struct dm_buffer **bp)
1112 {
1113 	BUG_ON(dm_bufio_in_request());
1114 
1115 	return new_read(c, block, NF_READ, bp);
1116 }
1117 EXPORT_SYMBOL_GPL(dm_bufio_read);
1118 
1119 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1120 		   struct dm_buffer **bp)
1121 {
1122 	BUG_ON(dm_bufio_in_request());
1123 
1124 	return new_read(c, block, NF_FRESH, bp);
1125 }
1126 EXPORT_SYMBOL_GPL(dm_bufio_new);
1127 
1128 void dm_bufio_prefetch(struct dm_bufio_client *c,
1129 		       sector_t block, unsigned n_blocks)
1130 {
1131 	struct blk_plug plug;
1132 
1133 	LIST_HEAD(write_list);
1134 
1135 	BUG_ON(dm_bufio_in_request());
1136 
1137 	blk_start_plug(&plug);
1138 	dm_bufio_lock(c);
1139 
1140 	for (; n_blocks--; block++) {
1141 		int need_submit;
1142 		struct dm_buffer *b;
1143 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1144 				&write_list);
1145 		if (unlikely(!list_empty(&write_list))) {
1146 			dm_bufio_unlock(c);
1147 			blk_finish_plug(&plug);
1148 			__flush_write_list(&write_list);
1149 			blk_start_plug(&plug);
1150 			dm_bufio_lock(c);
1151 		}
1152 		if (unlikely(b != NULL)) {
1153 			dm_bufio_unlock(c);
1154 
1155 			if (need_submit)
1156 				submit_io(b, REQ_OP_READ, read_endio);
1157 			dm_bufio_release(b);
1158 
1159 			cond_resched();
1160 
1161 			if (!n_blocks)
1162 				goto flush_plug;
1163 			dm_bufio_lock(c);
1164 		}
1165 	}
1166 
1167 	dm_bufio_unlock(c);
1168 
1169 flush_plug:
1170 	blk_finish_plug(&plug);
1171 }
1172 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1173 
1174 void dm_bufio_release(struct dm_buffer *b)
1175 {
1176 	struct dm_bufio_client *c = b->c;
1177 
1178 	dm_bufio_lock(c);
1179 
1180 	BUG_ON(!b->hold_count);
1181 
1182 	b->hold_count--;
1183 	if (!b->hold_count) {
1184 		wake_up(&c->free_buffer_wait);
1185 
1186 		/*
1187 		 * If there were errors on the buffer, and the buffer is not
1188 		 * to be written, free the buffer. There is no point in caching
1189 		 * invalid buffer.
1190 		 */
1191 		if ((b->read_error || b->write_error) &&
1192 		    !test_bit(B_READING, &b->state) &&
1193 		    !test_bit(B_WRITING, &b->state) &&
1194 		    !test_bit(B_DIRTY, &b->state)) {
1195 			__unlink_buffer(b);
1196 			__free_buffer_wake(b);
1197 		}
1198 	}
1199 
1200 	dm_bufio_unlock(c);
1201 }
1202 EXPORT_SYMBOL_GPL(dm_bufio_release);
1203 
1204 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1205 					unsigned start, unsigned end)
1206 {
1207 	struct dm_bufio_client *c = b->c;
1208 
1209 	BUG_ON(start >= end);
1210 	BUG_ON(end > b->c->block_size);
1211 
1212 	dm_bufio_lock(c);
1213 
1214 	BUG_ON(test_bit(B_READING, &b->state));
1215 
1216 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1217 		b->dirty_start = start;
1218 		b->dirty_end = end;
1219 		__relink_lru(b, LIST_DIRTY);
1220 	} else {
1221 		if (start < b->dirty_start)
1222 			b->dirty_start = start;
1223 		if (end > b->dirty_end)
1224 			b->dirty_end = end;
1225 	}
1226 
1227 	dm_bufio_unlock(c);
1228 }
1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1230 
1231 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1232 {
1233 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1234 }
1235 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1236 
1237 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1238 {
1239 	LIST_HEAD(write_list);
1240 
1241 	BUG_ON(dm_bufio_in_request());
1242 
1243 	dm_bufio_lock(c);
1244 	__write_dirty_buffers_async(c, 0, &write_list);
1245 	dm_bufio_unlock(c);
1246 	__flush_write_list(&write_list);
1247 }
1248 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1249 
1250 /*
1251  * For performance, it is essential that the buffers are written asynchronously
1252  * and simultaneously (so that the block layer can merge the writes) and then
1253  * waited upon.
1254  *
1255  * Finally, we flush hardware disk cache.
1256  */
1257 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1258 {
1259 	int a, f;
1260 	unsigned long buffers_processed = 0;
1261 	struct dm_buffer *b, *tmp;
1262 
1263 	LIST_HEAD(write_list);
1264 
1265 	dm_bufio_lock(c);
1266 	__write_dirty_buffers_async(c, 0, &write_list);
1267 	dm_bufio_unlock(c);
1268 	__flush_write_list(&write_list);
1269 	dm_bufio_lock(c);
1270 
1271 again:
1272 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1273 		int dropped_lock = 0;
1274 
1275 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1276 			buffers_processed++;
1277 
1278 		BUG_ON(test_bit(B_READING, &b->state));
1279 
1280 		if (test_bit(B_WRITING, &b->state)) {
1281 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1282 				dropped_lock = 1;
1283 				b->hold_count++;
1284 				dm_bufio_unlock(c);
1285 				wait_on_bit_io(&b->state, B_WRITING,
1286 					       TASK_UNINTERRUPTIBLE);
1287 				dm_bufio_lock(c);
1288 				b->hold_count--;
1289 			} else
1290 				wait_on_bit_io(&b->state, B_WRITING,
1291 					       TASK_UNINTERRUPTIBLE);
1292 		}
1293 
1294 		if (!test_bit(B_DIRTY, &b->state) &&
1295 		    !test_bit(B_WRITING, &b->state))
1296 			__relink_lru(b, LIST_CLEAN);
1297 
1298 		cond_resched();
1299 
1300 		/*
1301 		 * If we dropped the lock, the list is no longer consistent,
1302 		 * so we must restart the search.
1303 		 *
1304 		 * In the most common case, the buffer just processed is
1305 		 * relinked to the clean list, so we won't loop scanning the
1306 		 * same buffer again and again.
1307 		 *
1308 		 * This may livelock if there is another thread simultaneously
1309 		 * dirtying buffers, so we count the number of buffers walked
1310 		 * and if it exceeds the total number of buffers, it means that
1311 		 * someone is doing some writes simultaneously with us.  In
1312 		 * this case, stop, dropping the lock.
1313 		 */
1314 		if (dropped_lock)
1315 			goto again;
1316 	}
1317 	wake_up(&c->free_buffer_wait);
1318 	dm_bufio_unlock(c);
1319 
1320 	a = xchg(&c->async_write_error, 0);
1321 	f = dm_bufio_issue_flush(c);
1322 	if (a)
1323 		return a;
1324 
1325 	return f;
1326 }
1327 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1328 
1329 /*
1330  * Use dm-io to send and empty barrier flush the device.
1331  */
1332 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1333 {
1334 	struct dm_io_request io_req = {
1335 		.bi_op = REQ_OP_WRITE,
1336 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1337 		.mem.type = DM_IO_KMEM,
1338 		.mem.ptr.addr = NULL,
1339 		.client = c->dm_io,
1340 	};
1341 	struct dm_io_region io_reg = {
1342 		.bdev = c->bdev,
1343 		.sector = 0,
1344 		.count = 0,
1345 	};
1346 
1347 	BUG_ON(dm_bufio_in_request());
1348 
1349 	return dm_io(&io_req, 1, &io_reg, NULL);
1350 }
1351 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1352 
1353 /*
1354  * We first delete any other buffer that may be at that new location.
1355  *
1356  * Then, we write the buffer to the original location if it was dirty.
1357  *
1358  * Then, if we are the only one who is holding the buffer, relink the buffer
1359  * in the hash queue for the new location.
1360  *
1361  * If there was someone else holding the buffer, we write it to the new
1362  * location but not relink it, because that other user needs to have the buffer
1363  * at the same place.
1364  */
1365 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1366 {
1367 	struct dm_bufio_client *c = b->c;
1368 	struct dm_buffer *new;
1369 
1370 	BUG_ON(dm_bufio_in_request());
1371 
1372 	dm_bufio_lock(c);
1373 
1374 retry:
1375 	new = __find(c, new_block);
1376 	if (new) {
1377 		if (new->hold_count) {
1378 			__wait_for_free_buffer(c);
1379 			goto retry;
1380 		}
1381 
1382 		/*
1383 		 * FIXME: Is there any point waiting for a write that's going
1384 		 * to be overwritten in a bit?
1385 		 */
1386 		__make_buffer_clean(new);
1387 		__unlink_buffer(new);
1388 		__free_buffer_wake(new);
1389 	}
1390 
1391 	BUG_ON(!b->hold_count);
1392 	BUG_ON(test_bit(B_READING, &b->state));
1393 
1394 	__write_dirty_buffer(b, NULL);
1395 	if (b->hold_count == 1) {
1396 		wait_on_bit_io(&b->state, B_WRITING,
1397 			       TASK_UNINTERRUPTIBLE);
1398 		set_bit(B_DIRTY, &b->state);
1399 		b->dirty_start = 0;
1400 		b->dirty_end = c->block_size;
1401 		__unlink_buffer(b);
1402 		__link_buffer(b, new_block, LIST_DIRTY);
1403 	} else {
1404 		sector_t old_block;
1405 		wait_on_bit_lock_io(&b->state, B_WRITING,
1406 				    TASK_UNINTERRUPTIBLE);
1407 		/*
1408 		 * Relink buffer to "new_block" so that write_callback
1409 		 * sees "new_block" as a block number.
1410 		 * After the write, link the buffer back to old_block.
1411 		 * All this must be done in bufio lock, so that block number
1412 		 * change isn't visible to other threads.
1413 		 */
1414 		old_block = b->block;
1415 		__unlink_buffer(b);
1416 		__link_buffer(b, new_block, b->list_mode);
1417 		submit_io(b, REQ_OP_WRITE, write_endio);
1418 		wait_on_bit_io(&b->state, B_WRITING,
1419 			       TASK_UNINTERRUPTIBLE);
1420 		__unlink_buffer(b);
1421 		__link_buffer(b, old_block, b->list_mode);
1422 	}
1423 
1424 	dm_bufio_unlock(c);
1425 	dm_bufio_release(b);
1426 }
1427 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1428 
1429 /*
1430  * Free the given buffer.
1431  *
1432  * This is just a hint, if the buffer is in use or dirty, this function
1433  * does nothing.
1434  */
1435 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1436 {
1437 	struct dm_buffer *b;
1438 
1439 	dm_bufio_lock(c);
1440 
1441 	b = __find(c, block);
1442 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1443 		__unlink_buffer(b);
1444 		__free_buffer_wake(b);
1445 	}
1446 
1447 	dm_bufio_unlock(c);
1448 }
1449 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1450 
1451 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1452 {
1453 	c->minimum_buffers = n;
1454 }
1455 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1456 
1457 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1458 {
1459 	return c->block_size;
1460 }
1461 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1462 
1463 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1464 {
1465 	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1466 	if (likely(c->sectors_per_block_bits >= 0))
1467 		s >>= c->sectors_per_block_bits;
1468 	else
1469 		sector_div(s, c->block_size >> SECTOR_SHIFT);
1470 	return s;
1471 }
1472 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1473 
1474 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1475 {
1476 	return b->block;
1477 }
1478 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1479 
1480 void *dm_bufio_get_block_data(struct dm_buffer *b)
1481 {
1482 	return b->data;
1483 }
1484 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1485 
1486 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1487 {
1488 	return b + 1;
1489 }
1490 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1491 
1492 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1493 {
1494 	return b->c;
1495 }
1496 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1497 
1498 static void drop_buffers(struct dm_bufio_client *c)
1499 {
1500 	struct dm_buffer *b;
1501 	int i;
1502 	bool warned = false;
1503 
1504 	BUG_ON(dm_bufio_in_request());
1505 
1506 	/*
1507 	 * An optimization so that the buffers are not written one-by-one.
1508 	 */
1509 	dm_bufio_write_dirty_buffers_async(c);
1510 
1511 	dm_bufio_lock(c);
1512 
1513 	while ((b = __get_unclaimed_buffer(c)))
1514 		__free_buffer_wake(b);
1515 
1516 	for (i = 0; i < LIST_SIZE; i++)
1517 		list_for_each_entry(b, &c->lru[i], lru_list) {
1518 			WARN_ON(!warned);
1519 			warned = true;
1520 			DMERR("leaked buffer %llx, hold count %u, list %d",
1521 			      (unsigned long long)b->block, b->hold_count, i);
1522 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1523 			print_stack_trace(&b->stack_trace, 1);
1524 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1525 #endif
1526 		}
1527 
1528 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1529 	while ((b = __get_unclaimed_buffer(c)))
1530 		__free_buffer_wake(b);
1531 #endif
1532 
1533 	for (i = 0; i < LIST_SIZE; i++)
1534 		BUG_ON(!list_empty(&c->lru[i]));
1535 
1536 	dm_bufio_unlock(c);
1537 }
1538 
1539 /*
1540  * We may not be able to evict this buffer if IO pending or the client
1541  * is still using it.  Caller is expected to know buffer is too old.
1542  *
1543  * And if GFP_NOFS is used, we must not do any I/O because we hold
1544  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1545  * rerouted to different bufio client.
1546  */
1547 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1548 {
1549 	if (!(gfp & __GFP_FS)) {
1550 		if (test_bit(B_READING, &b->state) ||
1551 		    test_bit(B_WRITING, &b->state) ||
1552 		    test_bit(B_DIRTY, &b->state))
1553 			return false;
1554 	}
1555 
1556 	if (b->hold_count)
1557 		return false;
1558 
1559 	__make_buffer_clean(b);
1560 	__unlink_buffer(b);
1561 	__free_buffer_wake(b);
1562 
1563 	return true;
1564 }
1565 
1566 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1567 {
1568 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1569 	if (likely(c->sectors_per_block_bits >= 0))
1570 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1571 	else
1572 		retain_bytes /= c->block_size;
1573 	return retain_bytes;
1574 }
1575 
1576 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1577 			    gfp_t gfp_mask)
1578 {
1579 	int l;
1580 	struct dm_buffer *b, *tmp;
1581 	unsigned long freed = 0;
1582 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1583 			      c->n_buffers[LIST_DIRTY];
1584 	unsigned long retain_target = get_retain_buffers(c);
1585 
1586 	for (l = 0; l < LIST_SIZE; l++) {
1587 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1588 			if (__try_evict_buffer(b, gfp_mask))
1589 				freed++;
1590 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1591 				return freed;
1592 			cond_resched();
1593 		}
1594 	}
1595 	return freed;
1596 }
1597 
1598 static unsigned long
1599 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1600 {
1601 	struct dm_bufio_client *c;
1602 	unsigned long freed;
1603 
1604 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1605 	if (sc->gfp_mask & __GFP_FS)
1606 		dm_bufio_lock(c);
1607 	else if (!dm_bufio_trylock(c))
1608 		return SHRINK_STOP;
1609 
1610 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1611 	dm_bufio_unlock(c);
1612 	return freed;
1613 }
1614 
1615 static unsigned long
1616 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1617 {
1618 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1619 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1620 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1621 	unsigned long retain_target = get_retain_buffers(c);
1622 
1623 	return (count < retain_target) ? 0 : (count - retain_target);
1624 }
1625 
1626 /*
1627  * Create the buffering interface
1628  */
1629 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1630 					       unsigned reserved_buffers, unsigned aux_size,
1631 					       void (*alloc_callback)(struct dm_buffer *),
1632 					       void (*write_callback)(struct dm_buffer *))
1633 {
1634 	int r;
1635 	struct dm_bufio_client *c;
1636 	unsigned i;
1637 	char slab_name[27];
1638 
1639 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1640 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1641 		r = -EINVAL;
1642 		goto bad_client;
1643 	}
1644 
1645 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1646 	if (!c) {
1647 		r = -ENOMEM;
1648 		goto bad_client;
1649 	}
1650 	c->buffer_tree = RB_ROOT;
1651 
1652 	c->bdev = bdev;
1653 	c->block_size = block_size;
1654 	if (is_power_of_2(block_size))
1655 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1656 	else
1657 		c->sectors_per_block_bits = -1;
1658 
1659 	c->alloc_callback = alloc_callback;
1660 	c->write_callback = write_callback;
1661 
1662 	for (i = 0; i < LIST_SIZE; i++) {
1663 		INIT_LIST_HEAD(&c->lru[i]);
1664 		c->n_buffers[i] = 0;
1665 	}
1666 
1667 	mutex_init(&c->lock);
1668 	INIT_LIST_HEAD(&c->reserved_buffers);
1669 	c->need_reserved_buffers = reserved_buffers;
1670 
1671 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1672 
1673 	init_waitqueue_head(&c->free_buffer_wait);
1674 	c->async_write_error = 0;
1675 
1676 	c->dm_io = dm_io_client_create();
1677 	if (IS_ERR(c->dm_io)) {
1678 		r = PTR_ERR(c->dm_io);
1679 		goto bad_dm_io;
1680 	}
1681 
1682 	if (block_size <= KMALLOC_MAX_SIZE &&
1683 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1684 		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1685 		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1686 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1687 						  SLAB_RECLAIM_ACCOUNT, NULL);
1688 		if (!c->slab_cache) {
1689 			r = -ENOMEM;
1690 			goto bad;
1691 		}
1692 	}
1693 	if (aux_size)
1694 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1695 	else
1696 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1697 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1698 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1699 	if (!c->slab_buffer) {
1700 		r = -ENOMEM;
1701 		goto bad;
1702 	}
1703 
1704 	while (c->need_reserved_buffers) {
1705 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1706 
1707 		if (!b) {
1708 			r = -ENOMEM;
1709 			goto bad;
1710 		}
1711 		__free_buffer_wake(b);
1712 	}
1713 
1714 	c->shrinker.count_objects = dm_bufio_shrink_count;
1715 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1716 	c->shrinker.seeks = 1;
1717 	c->shrinker.batch = 0;
1718 	r = register_shrinker(&c->shrinker);
1719 	if (r)
1720 		goto bad;
1721 
1722 	mutex_lock(&dm_bufio_clients_lock);
1723 	dm_bufio_client_count++;
1724 	list_add(&c->client_list, &dm_bufio_all_clients);
1725 	__cache_size_refresh();
1726 	mutex_unlock(&dm_bufio_clients_lock);
1727 
1728 	return c;
1729 
1730 bad:
1731 	while (!list_empty(&c->reserved_buffers)) {
1732 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1733 						 struct dm_buffer, lru_list);
1734 		list_del(&b->lru_list);
1735 		free_buffer(b);
1736 	}
1737 	kmem_cache_destroy(c->slab_cache);
1738 	kmem_cache_destroy(c->slab_buffer);
1739 	dm_io_client_destroy(c->dm_io);
1740 bad_dm_io:
1741 	mutex_destroy(&c->lock);
1742 	kfree(c);
1743 bad_client:
1744 	return ERR_PTR(r);
1745 }
1746 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1747 
1748 /*
1749  * Free the buffering interface.
1750  * It is required that there are no references on any buffers.
1751  */
1752 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1753 {
1754 	unsigned i;
1755 
1756 	drop_buffers(c);
1757 
1758 	unregister_shrinker(&c->shrinker);
1759 
1760 	mutex_lock(&dm_bufio_clients_lock);
1761 
1762 	list_del(&c->client_list);
1763 	dm_bufio_client_count--;
1764 	__cache_size_refresh();
1765 
1766 	mutex_unlock(&dm_bufio_clients_lock);
1767 
1768 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1769 	BUG_ON(c->need_reserved_buffers);
1770 
1771 	while (!list_empty(&c->reserved_buffers)) {
1772 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1773 						 struct dm_buffer, lru_list);
1774 		list_del(&b->lru_list);
1775 		free_buffer(b);
1776 	}
1777 
1778 	for (i = 0; i < LIST_SIZE; i++)
1779 		if (c->n_buffers[i])
1780 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1781 
1782 	for (i = 0; i < LIST_SIZE; i++)
1783 		BUG_ON(c->n_buffers[i]);
1784 
1785 	kmem_cache_destroy(c->slab_cache);
1786 	kmem_cache_destroy(c->slab_buffer);
1787 	dm_io_client_destroy(c->dm_io);
1788 	mutex_destroy(&c->lock);
1789 	kfree(c);
1790 }
1791 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1792 
1793 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1794 {
1795 	c->start = start;
1796 }
1797 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1798 
1799 static unsigned get_max_age_hz(void)
1800 {
1801 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1802 
1803 	if (max_age > UINT_MAX / HZ)
1804 		max_age = UINT_MAX / HZ;
1805 
1806 	return max_age * HZ;
1807 }
1808 
1809 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1810 {
1811 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1812 }
1813 
1814 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1815 {
1816 	struct dm_buffer *b, *tmp;
1817 	unsigned long retain_target = get_retain_buffers(c);
1818 	unsigned long count;
1819 	LIST_HEAD(write_list);
1820 
1821 	dm_bufio_lock(c);
1822 
1823 	__check_watermark(c, &write_list);
1824 	if (unlikely(!list_empty(&write_list))) {
1825 		dm_bufio_unlock(c);
1826 		__flush_write_list(&write_list);
1827 		dm_bufio_lock(c);
1828 	}
1829 
1830 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1831 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1832 		if (count <= retain_target)
1833 			break;
1834 
1835 		if (!older_than(b, age_hz))
1836 			break;
1837 
1838 		if (__try_evict_buffer(b, 0))
1839 			count--;
1840 
1841 		cond_resched();
1842 	}
1843 
1844 	dm_bufio_unlock(c);
1845 }
1846 
1847 static void cleanup_old_buffers(void)
1848 {
1849 	unsigned long max_age_hz = get_max_age_hz();
1850 	struct dm_bufio_client *c;
1851 
1852 	mutex_lock(&dm_bufio_clients_lock);
1853 
1854 	__cache_size_refresh();
1855 
1856 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1857 		__evict_old_buffers(c, max_age_hz);
1858 
1859 	mutex_unlock(&dm_bufio_clients_lock);
1860 }
1861 
1862 static struct workqueue_struct *dm_bufio_wq;
1863 static struct delayed_work dm_bufio_work;
1864 
1865 static void work_fn(struct work_struct *w)
1866 {
1867 	cleanup_old_buffers();
1868 
1869 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1870 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1871 }
1872 
1873 /*----------------------------------------------------------------
1874  * Module setup
1875  *--------------------------------------------------------------*/
1876 
1877 /*
1878  * This is called only once for the whole dm_bufio module.
1879  * It initializes memory limit.
1880  */
1881 static int __init dm_bufio_init(void)
1882 {
1883 	__u64 mem;
1884 
1885 	dm_bufio_allocated_kmem_cache = 0;
1886 	dm_bufio_allocated_get_free_pages = 0;
1887 	dm_bufio_allocated_vmalloc = 0;
1888 	dm_bufio_current_allocated = 0;
1889 
1890 	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1891 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1892 
1893 	if (mem > ULONG_MAX)
1894 		mem = ULONG_MAX;
1895 
1896 #ifdef CONFIG_MMU
1897 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1898 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1899 #endif
1900 
1901 	dm_bufio_default_cache_size = mem;
1902 
1903 	mutex_lock(&dm_bufio_clients_lock);
1904 	__cache_size_refresh();
1905 	mutex_unlock(&dm_bufio_clients_lock);
1906 
1907 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1908 	if (!dm_bufio_wq)
1909 		return -ENOMEM;
1910 
1911 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1912 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1913 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1914 
1915 	return 0;
1916 }
1917 
1918 /*
1919  * This is called once when unloading the dm_bufio module.
1920  */
1921 static void __exit dm_bufio_exit(void)
1922 {
1923 	int bug = 0;
1924 
1925 	cancel_delayed_work_sync(&dm_bufio_work);
1926 	destroy_workqueue(dm_bufio_wq);
1927 
1928 	if (dm_bufio_client_count) {
1929 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1930 			__func__, dm_bufio_client_count);
1931 		bug = 1;
1932 	}
1933 
1934 	if (dm_bufio_current_allocated) {
1935 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1936 			__func__, dm_bufio_current_allocated);
1937 		bug = 1;
1938 	}
1939 
1940 	if (dm_bufio_allocated_get_free_pages) {
1941 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1942 		       __func__, dm_bufio_allocated_get_free_pages);
1943 		bug = 1;
1944 	}
1945 
1946 	if (dm_bufio_allocated_vmalloc) {
1947 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1948 		       __func__, dm_bufio_allocated_vmalloc);
1949 		bug = 1;
1950 	}
1951 
1952 	BUG_ON(bug);
1953 }
1954 
1955 module_init(dm_bufio_init)
1956 module_exit(dm_bufio_exit)
1957 
1958 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1959 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1960 
1961 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1962 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1963 
1964 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1965 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1966 
1967 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1968 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1969 
1970 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1971 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1972 
1973 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1974 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1975 
1976 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1977 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1978 
1979 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1980 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1981 
1982 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1983 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1984 MODULE_LICENSE("GPL");
1985