1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * The number of bvec entries that are embedded directly in the buffer. 55 * If the chunk size is larger, dm-io is used to do the io. 56 */ 57 #define DM_BUFIO_INLINE_VECS 16 58 59 /* 60 * Don't try to use kmem_cache_alloc for blocks larger than this. 61 * For explanation, see alloc_buffer_data below. 62 */ 63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 65 66 /* 67 * dm_buffer->list_mode 68 */ 69 #define LIST_CLEAN 0 70 #define LIST_DIRTY 1 71 #define LIST_SIZE 2 72 73 /* 74 * Linking of buffers: 75 * All buffers are linked to cache_hash with their hash_list field. 76 * 77 * Clean buffers that are not being written (B_WRITING not set) 78 * are linked to lru[LIST_CLEAN] with their lru_list field. 79 * 80 * Dirty and clean buffers that are being written are linked to 81 * lru[LIST_DIRTY] with their lru_list field. When the write 82 * finishes, the buffer cannot be relinked immediately (because we 83 * are in an interrupt context and relinking requires process 84 * context), so some clean-not-writing buffers can be held on 85 * dirty_lru too. They are later added to lru in the process 86 * context. 87 */ 88 struct dm_bufio_client { 89 struct mutex lock; 90 91 struct list_head lru[LIST_SIZE]; 92 unsigned long n_buffers[LIST_SIZE]; 93 94 struct block_device *bdev; 95 unsigned block_size; 96 unsigned char sectors_per_block_bits; 97 unsigned char pages_per_block_bits; 98 unsigned char blocks_per_page_bits; 99 unsigned aux_size; 100 void (*alloc_callback)(struct dm_buffer *); 101 void (*write_callback)(struct dm_buffer *); 102 103 struct dm_io_client *dm_io; 104 105 struct list_head reserved_buffers; 106 unsigned need_reserved_buffers; 107 108 unsigned minimum_buffers; 109 110 struct rb_root buffer_tree; 111 wait_queue_head_t free_buffer_wait; 112 113 sector_t start; 114 115 int async_write_error; 116 117 struct list_head client_list; 118 struct shrinker shrinker; 119 }; 120 121 /* 122 * Buffer state bits. 123 */ 124 #define B_READING 0 125 #define B_WRITING 1 126 #define B_DIRTY 2 127 128 /* 129 * Describes how the block was allocated: 130 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 131 * See the comment at alloc_buffer_data. 132 */ 133 enum data_mode { 134 DATA_MODE_SLAB = 0, 135 DATA_MODE_GET_FREE_PAGES = 1, 136 DATA_MODE_VMALLOC = 2, 137 DATA_MODE_LIMIT = 3 138 }; 139 140 struct dm_buffer { 141 struct rb_node node; 142 struct list_head lru_list; 143 sector_t block; 144 void *data; 145 enum data_mode data_mode; 146 unsigned char list_mode; /* LIST_* */ 147 unsigned hold_count; 148 blk_status_t read_error; 149 blk_status_t write_error; 150 unsigned long state; 151 unsigned long last_accessed; 152 struct dm_bufio_client *c; 153 struct list_head write_list; 154 struct bio bio; 155 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 156 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 157 #define MAX_STACK 10 158 struct stack_trace stack_trace; 159 unsigned long stack_entries[MAX_STACK]; 160 #endif 161 }; 162 163 /*----------------------------------------------------------------*/ 164 165 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 166 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 167 168 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 169 { 170 unsigned ret = c->blocks_per_page_bits - 1; 171 172 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 173 174 return ret; 175 } 176 177 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 178 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 179 180 #define dm_bufio_in_request() (!!current->bio_list) 181 182 static void dm_bufio_lock(struct dm_bufio_client *c) 183 { 184 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 185 } 186 187 static int dm_bufio_trylock(struct dm_bufio_client *c) 188 { 189 return mutex_trylock(&c->lock); 190 } 191 192 static void dm_bufio_unlock(struct dm_bufio_client *c) 193 { 194 mutex_unlock(&c->lock); 195 } 196 197 /*----------------------------------------------------------------*/ 198 199 /* 200 * Default cache size: available memory divided by the ratio. 201 */ 202 static unsigned long dm_bufio_default_cache_size; 203 204 /* 205 * Total cache size set by the user. 206 */ 207 static unsigned long dm_bufio_cache_size; 208 209 /* 210 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 211 * at any time. If it disagrees, the user has changed cache size. 212 */ 213 static unsigned long dm_bufio_cache_size_latch; 214 215 static DEFINE_SPINLOCK(param_spinlock); 216 217 /* 218 * Buffers are freed after this timeout 219 */ 220 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 221 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 222 223 static unsigned long dm_bufio_peak_allocated; 224 static unsigned long dm_bufio_allocated_kmem_cache; 225 static unsigned long dm_bufio_allocated_get_free_pages; 226 static unsigned long dm_bufio_allocated_vmalloc; 227 static unsigned long dm_bufio_current_allocated; 228 229 /*----------------------------------------------------------------*/ 230 231 /* 232 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 233 */ 234 static unsigned long dm_bufio_cache_size_per_client; 235 236 /* 237 * The current number of clients. 238 */ 239 static int dm_bufio_client_count; 240 241 /* 242 * The list of all clients. 243 */ 244 static LIST_HEAD(dm_bufio_all_clients); 245 246 /* 247 * This mutex protects dm_bufio_cache_size_latch, 248 * dm_bufio_cache_size_per_client and dm_bufio_client_count 249 */ 250 static DEFINE_MUTEX(dm_bufio_clients_lock); 251 252 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 253 static void buffer_record_stack(struct dm_buffer *b) 254 { 255 b->stack_trace.nr_entries = 0; 256 b->stack_trace.max_entries = MAX_STACK; 257 b->stack_trace.entries = b->stack_entries; 258 b->stack_trace.skip = 2; 259 save_stack_trace(&b->stack_trace); 260 } 261 #endif 262 263 /*---------------------------------------------------------------- 264 * A red/black tree acts as an index for all the buffers. 265 *--------------------------------------------------------------*/ 266 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 267 { 268 struct rb_node *n = c->buffer_tree.rb_node; 269 struct dm_buffer *b; 270 271 while (n) { 272 b = container_of(n, struct dm_buffer, node); 273 274 if (b->block == block) 275 return b; 276 277 n = (b->block < block) ? n->rb_left : n->rb_right; 278 } 279 280 return NULL; 281 } 282 283 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 284 { 285 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 286 struct dm_buffer *found; 287 288 while (*new) { 289 found = container_of(*new, struct dm_buffer, node); 290 291 if (found->block == b->block) { 292 BUG_ON(found != b); 293 return; 294 } 295 296 parent = *new; 297 new = (found->block < b->block) ? 298 &((*new)->rb_left) : &((*new)->rb_right); 299 } 300 301 rb_link_node(&b->node, parent, new); 302 rb_insert_color(&b->node, &c->buffer_tree); 303 } 304 305 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 306 { 307 rb_erase(&b->node, &c->buffer_tree); 308 } 309 310 /*----------------------------------------------------------------*/ 311 312 static void adjust_total_allocated(enum data_mode data_mode, long diff) 313 { 314 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 315 &dm_bufio_allocated_kmem_cache, 316 &dm_bufio_allocated_get_free_pages, 317 &dm_bufio_allocated_vmalloc, 318 }; 319 320 spin_lock(¶m_spinlock); 321 322 *class_ptr[data_mode] += diff; 323 324 dm_bufio_current_allocated += diff; 325 326 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 327 dm_bufio_peak_allocated = dm_bufio_current_allocated; 328 329 spin_unlock(¶m_spinlock); 330 } 331 332 /* 333 * Change the number of clients and recalculate per-client limit. 334 */ 335 static void __cache_size_refresh(void) 336 { 337 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 338 BUG_ON(dm_bufio_client_count < 0); 339 340 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 341 342 /* 343 * Use default if set to 0 and report the actual cache size used. 344 */ 345 if (!dm_bufio_cache_size_latch) { 346 (void)cmpxchg(&dm_bufio_cache_size, 0, 347 dm_bufio_default_cache_size); 348 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 349 } 350 351 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 352 (dm_bufio_client_count ? : 1); 353 } 354 355 /* 356 * Allocating buffer data. 357 * 358 * Small buffers are allocated with kmem_cache, to use space optimally. 359 * 360 * For large buffers, we choose between get_free_pages and vmalloc. 361 * Each has advantages and disadvantages. 362 * 363 * __get_free_pages can randomly fail if the memory is fragmented. 364 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 365 * as low as 128M) so using it for caching is not appropriate. 366 * 367 * If the allocation may fail we use __get_free_pages. Memory fragmentation 368 * won't have a fatal effect here, but it just causes flushes of some other 369 * buffers and more I/O will be performed. Don't use __get_free_pages if it 370 * always fails (i.e. order >= MAX_ORDER). 371 * 372 * If the allocation shouldn't fail we use __vmalloc. This is only for the 373 * initial reserve allocation, so there's no risk of wasting all vmalloc 374 * space. 375 */ 376 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 377 enum data_mode *data_mode) 378 { 379 unsigned noio_flag; 380 void *ptr; 381 382 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 383 *data_mode = DATA_MODE_SLAB; 384 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 385 } 386 387 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 388 gfp_mask & __GFP_NORETRY) { 389 *data_mode = DATA_MODE_GET_FREE_PAGES; 390 return (void *)__get_free_pages(gfp_mask, 391 c->pages_per_block_bits); 392 } 393 394 *data_mode = DATA_MODE_VMALLOC; 395 396 /* 397 * __vmalloc allocates the data pages and auxiliary structures with 398 * gfp_flags that were specified, but pagetables are always allocated 399 * with GFP_KERNEL, no matter what was specified as gfp_mask. 400 * 401 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 402 * all allocations done by this process (including pagetables) are done 403 * as if GFP_NOIO was specified. 404 */ 405 406 if (gfp_mask & __GFP_NORETRY) 407 noio_flag = memalloc_noio_save(); 408 409 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 410 411 if (gfp_mask & __GFP_NORETRY) 412 memalloc_noio_restore(noio_flag); 413 414 return ptr; 415 } 416 417 /* 418 * Free buffer's data. 419 */ 420 static void free_buffer_data(struct dm_bufio_client *c, 421 void *data, enum data_mode data_mode) 422 { 423 switch (data_mode) { 424 case DATA_MODE_SLAB: 425 kmem_cache_free(DM_BUFIO_CACHE(c), data); 426 break; 427 428 case DATA_MODE_GET_FREE_PAGES: 429 free_pages((unsigned long)data, c->pages_per_block_bits); 430 break; 431 432 case DATA_MODE_VMALLOC: 433 vfree(data); 434 break; 435 436 default: 437 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 438 data_mode); 439 BUG(); 440 } 441 } 442 443 /* 444 * Allocate buffer and its data. 445 */ 446 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 447 { 448 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 449 gfp_mask); 450 451 if (!b) 452 return NULL; 453 454 b->c = c; 455 456 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 457 if (!b->data) { 458 kfree(b); 459 return NULL; 460 } 461 462 adjust_total_allocated(b->data_mode, (long)c->block_size); 463 464 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 465 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 466 #endif 467 return b; 468 } 469 470 /* 471 * Free buffer and its data. 472 */ 473 static void free_buffer(struct dm_buffer *b) 474 { 475 struct dm_bufio_client *c = b->c; 476 477 adjust_total_allocated(b->data_mode, -(long)c->block_size); 478 479 free_buffer_data(c, b->data, b->data_mode); 480 kfree(b); 481 } 482 483 /* 484 * Link buffer to the hash list and clean or dirty queue. 485 */ 486 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 487 { 488 struct dm_bufio_client *c = b->c; 489 490 c->n_buffers[dirty]++; 491 b->block = block; 492 b->list_mode = dirty; 493 list_add(&b->lru_list, &c->lru[dirty]); 494 __insert(b->c, b); 495 b->last_accessed = jiffies; 496 } 497 498 /* 499 * Unlink buffer from the hash list and dirty or clean queue. 500 */ 501 static void __unlink_buffer(struct dm_buffer *b) 502 { 503 struct dm_bufio_client *c = b->c; 504 505 BUG_ON(!c->n_buffers[b->list_mode]); 506 507 c->n_buffers[b->list_mode]--; 508 __remove(b->c, b); 509 list_del(&b->lru_list); 510 } 511 512 /* 513 * Place the buffer to the head of dirty or clean LRU queue. 514 */ 515 static void __relink_lru(struct dm_buffer *b, int dirty) 516 { 517 struct dm_bufio_client *c = b->c; 518 519 BUG_ON(!c->n_buffers[b->list_mode]); 520 521 c->n_buffers[b->list_mode]--; 522 c->n_buffers[dirty]++; 523 b->list_mode = dirty; 524 list_move(&b->lru_list, &c->lru[dirty]); 525 b->last_accessed = jiffies; 526 } 527 528 /*---------------------------------------------------------------- 529 * Submit I/O on the buffer. 530 * 531 * Bio interface is faster but it has some problems: 532 * the vector list is limited (increasing this limit increases 533 * memory-consumption per buffer, so it is not viable); 534 * 535 * the memory must be direct-mapped, not vmalloced; 536 * 537 * the I/O driver can reject requests spuriously if it thinks that 538 * the requests are too big for the device or if they cross a 539 * controller-defined memory boundary. 540 * 541 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 542 * it is not vmalloced, try using the bio interface. 543 * 544 * If the buffer is big, if it is vmalloced or if the underlying device 545 * rejects the bio because it is too large, use dm-io layer to do the I/O. 546 * The dm-io layer splits the I/O into multiple requests, avoiding the above 547 * shortcomings. 548 *--------------------------------------------------------------*/ 549 550 /* 551 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 552 * that the request was handled directly with bio interface. 553 */ 554 static void dmio_complete(unsigned long error, void *context) 555 { 556 struct dm_buffer *b = context; 557 558 b->bio.bi_status = error ? BLK_STS_IOERR : 0; 559 b->bio.bi_end_io(&b->bio); 560 } 561 562 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 563 unsigned n_sectors, bio_end_io_t *end_io) 564 { 565 int r; 566 struct dm_io_request io_req = { 567 .bi_op = rw, 568 .bi_op_flags = 0, 569 .notify.fn = dmio_complete, 570 .notify.context = b, 571 .client = b->c->dm_io, 572 }; 573 struct dm_io_region region = { 574 .bdev = b->c->bdev, 575 .sector = sector, 576 .count = n_sectors, 577 }; 578 579 if (b->data_mode != DATA_MODE_VMALLOC) { 580 io_req.mem.type = DM_IO_KMEM; 581 io_req.mem.ptr.addr = b->data; 582 } else { 583 io_req.mem.type = DM_IO_VMA; 584 io_req.mem.ptr.vma = b->data; 585 } 586 587 b->bio.bi_end_io = end_io; 588 589 r = dm_io(&io_req, 1, ®ion, NULL); 590 if (r) { 591 b->bio.bi_status = errno_to_blk_status(r); 592 end_io(&b->bio); 593 } 594 } 595 596 static void inline_endio(struct bio *bio) 597 { 598 bio_end_io_t *end_fn = bio->bi_private; 599 blk_status_t status = bio->bi_status; 600 601 /* 602 * Reset the bio to free any attached resources 603 * (e.g. bio integrity profiles). 604 */ 605 bio_reset(bio); 606 607 bio->bi_status = status; 608 end_fn(bio); 609 } 610 611 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector, 612 unsigned n_sectors, bio_end_io_t *end_io) 613 { 614 char *ptr; 615 int len; 616 617 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 618 b->bio.bi_iter.bi_sector = sector; 619 b->bio.bi_bdev = b->c->bdev; 620 b->bio.bi_end_io = inline_endio; 621 /* 622 * Use of .bi_private isn't a problem here because 623 * the dm_buffer's inline bio is local to bufio. 624 */ 625 b->bio.bi_private = end_io; 626 bio_set_op_attrs(&b->bio, rw, 0); 627 628 /* 629 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 630 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 631 */ 632 ptr = b->data; 633 len = n_sectors << SECTOR_SHIFT; 634 635 if (len >= PAGE_SIZE) 636 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 637 else 638 BUG_ON((unsigned long)ptr & (len - 1)); 639 640 do { 641 if (!bio_add_page(&b->bio, virt_to_page(ptr), 642 len < PAGE_SIZE ? len : PAGE_SIZE, 643 offset_in_page(ptr))) { 644 BUG_ON(b->c->block_size <= PAGE_SIZE); 645 use_dmio(b, rw, sector, n_sectors, end_io); 646 return; 647 } 648 649 len -= PAGE_SIZE; 650 ptr += PAGE_SIZE; 651 } while (len > 0); 652 653 submit_bio(&b->bio); 654 } 655 656 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io) 657 { 658 unsigned n_sectors; 659 sector_t sector; 660 661 if (rw == WRITE && b->c->write_callback) 662 b->c->write_callback(b); 663 664 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start; 665 n_sectors = 1 << b->c->sectors_per_block_bits; 666 667 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) && 668 b->data_mode != DATA_MODE_VMALLOC) 669 use_inline_bio(b, rw, sector, n_sectors, end_io); 670 else 671 use_dmio(b, rw, sector, n_sectors, end_io); 672 } 673 674 /*---------------------------------------------------------------- 675 * Writing dirty buffers 676 *--------------------------------------------------------------*/ 677 678 /* 679 * The endio routine for write. 680 * 681 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 682 * it. 683 */ 684 static void write_endio(struct bio *bio) 685 { 686 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 687 688 b->write_error = bio->bi_status; 689 if (unlikely(bio->bi_status)) { 690 struct dm_bufio_client *c = b->c; 691 692 (void)cmpxchg(&c->async_write_error, 0, 693 blk_status_to_errno(bio->bi_status)); 694 } 695 696 BUG_ON(!test_bit(B_WRITING, &b->state)); 697 698 smp_mb__before_atomic(); 699 clear_bit(B_WRITING, &b->state); 700 smp_mb__after_atomic(); 701 702 wake_up_bit(&b->state, B_WRITING); 703 } 704 705 /* 706 * Initiate a write on a dirty buffer, but don't wait for it. 707 * 708 * - If the buffer is not dirty, exit. 709 * - If there some previous write going on, wait for it to finish (we can't 710 * have two writes on the same buffer simultaneously). 711 * - Submit our write and don't wait on it. We set B_WRITING indicating 712 * that there is a write in progress. 713 */ 714 static void __write_dirty_buffer(struct dm_buffer *b, 715 struct list_head *write_list) 716 { 717 if (!test_bit(B_DIRTY, &b->state)) 718 return; 719 720 clear_bit(B_DIRTY, &b->state); 721 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 722 723 if (!write_list) 724 submit_io(b, WRITE, write_endio); 725 else 726 list_add_tail(&b->write_list, write_list); 727 } 728 729 static void __flush_write_list(struct list_head *write_list) 730 { 731 struct blk_plug plug; 732 blk_start_plug(&plug); 733 while (!list_empty(write_list)) { 734 struct dm_buffer *b = 735 list_entry(write_list->next, struct dm_buffer, write_list); 736 list_del(&b->write_list); 737 submit_io(b, WRITE, write_endio); 738 cond_resched(); 739 } 740 blk_finish_plug(&plug); 741 } 742 743 /* 744 * Wait until any activity on the buffer finishes. Possibly write the 745 * buffer if it is dirty. When this function finishes, there is no I/O 746 * running on the buffer and the buffer is not dirty. 747 */ 748 static void __make_buffer_clean(struct dm_buffer *b) 749 { 750 BUG_ON(b->hold_count); 751 752 if (!b->state) /* fast case */ 753 return; 754 755 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 756 __write_dirty_buffer(b, NULL); 757 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 758 } 759 760 /* 761 * Find some buffer that is not held by anybody, clean it, unlink it and 762 * return it. 763 */ 764 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 765 { 766 struct dm_buffer *b; 767 768 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 769 BUG_ON(test_bit(B_WRITING, &b->state)); 770 BUG_ON(test_bit(B_DIRTY, &b->state)); 771 772 if (!b->hold_count) { 773 __make_buffer_clean(b); 774 __unlink_buffer(b); 775 return b; 776 } 777 cond_resched(); 778 } 779 780 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 781 BUG_ON(test_bit(B_READING, &b->state)); 782 783 if (!b->hold_count) { 784 __make_buffer_clean(b); 785 __unlink_buffer(b); 786 return b; 787 } 788 cond_resched(); 789 } 790 791 return NULL; 792 } 793 794 /* 795 * Wait until some other threads free some buffer or release hold count on 796 * some buffer. 797 * 798 * This function is entered with c->lock held, drops it and regains it 799 * before exiting. 800 */ 801 static void __wait_for_free_buffer(struct dm_bufio_client *c) 802 { 803 DECLARE_WAITQUEUE(wait, current); 804 805 add_wait_queue(&c->free_buffer_wait, &wait); 806 set_current_state(TASK_UNINTERRUPTIBLE); 807 dm_bufio_unlock(c); 808 809 io_schedule(); 810 811 remove_wait_queue(&c->free_buffer_wait, &wait); 812 813 dm_bufio_lock(c); 814 } 815 816 enum new_flag { 817 NF_FRESH = 0, 818 NF_READ = 1, 819 NF_GET = 2, 820 NF_PREFETCH = 3 821 }; 822 823 /* 824 * Allocate a new buffer. If the allocation is not possible, wait until 825 * some other thread frees a buffer. 826 * 827 * May drop the lock and regain it. 828 */ 829 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 830 { 831 struct dm_buffer *b; 832 bool tried_noio_alloc = false; 833 834 /* 835 * dm-bufio is resistant to allocation failures (it just keeps 836 * one buffer reserved in cases all the allocations fail). 837 * So set flags to not try too hard: 838 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 839 * mutex and wait ourselves. 840 * __GFP_NORETRY: don't retry and rather return failure 841 * __GFP_NOMEMALLOC: don't use emergency reserves 842 * __GFP_NOWARN: don't print a warning in case of failure 843 * 844 * For debugging, if we set the cache size to 1, no new buffers will 845 * be allocated. 846 */ 847 while (1) { 848 if (dm_bufio_cache_size_latch != 1) { 849 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 850 if (b) 851 return b; 852 } 853 854 if (nf == NF_PREFETCH) 855 return NULL; 856 857 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 858 dm_bufio_unlock(c); 859 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 860 dm_bufio_lock(c); 861 if (b) 862 return b; 863 tried_noio_alloc = true; 864 } 865 866 if (!list_empty(&c->reserved_buffers)) { 867 b = list_entry(c->reserved_buffers.next, 868 struct dm_buffer, lru_list); 869 list_del(&b->lru_list); 870 c->need_reserved_buffers++; 871 872 return b; 873 } 874 875 b = __get_unclaimed_buffer(c); 876 if (b) 877 return b; 878 879 __wait_for_free_buffer(c); 880 } 881 } 882 883 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 884 { 885 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 886 887 if (!b) 888 return NULL; 889 890 if (c->alloc_callback) 891 c->alloc_callback(b); 892 893 return b; 894 } 895 896 /* 897 * Free a buffer and wake other threads waiting for free buffers. 898 */ 899 static void __free_buffer_wake(struct dm_buffer *b) 900 { 901 struct dm_bufio_client *c = b->c; 902 903 if (!c->need_reserved_buffers) 904 free_buffer(b); 905 else { 906 list_add(&b->lru_list, &c->reserved_buffers); 907 c->need_reserved_buffers--; 908 } 909 910 wake_up(&c->free_buffer_wait); 911 } 912 913 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 914 struct list_head *write_list) 915 { 916 struct dm_buffer *b, *tmp; 917 918 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 919 BUG_ON(test_bit(B_READING, &b->state)); 920 921 if (!test_bit(B_DIRTY, &b->state) && 922 !test_bit(B_WRITING, &b->state)) { 923 __relink_lru(b, LIST_CLEAN); 924 continue; 925 } 926 927 if (no_wait && test_bit(B_WRITING, &b->state)) 928 return; 929 930 __write_dirty_buffer(b, write_list); 931 cond_resched(); 932 } 933 } 934 935 /* 936 * Get writeback threshold and buffer limit for a given client. 937 */ 938 static void __get_memory_limit(struct dm_bufio_client *c, 939 unsigned long *threshold_buffers, 940 unsigned long *limit_buffers) 941 { 942 unsigned long buffers; 943 944 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) { 945 if (mutex_trylock(&dm_bufio_clients_lock)) { 946 __cache_size_refresh(); 947 mutex_unlock(&dm_bufio_clients_lock); 948 } 949 } 950 951 buffers = dm_bufio_cache_size_per_client >> 952 (c->sectors_per_block_bits + SECTOR_SHIFT); 953 954 if (buffers < c->minimum_buffers) 955 buffers = c->minimum_buffers; 956 957 *limit_buffers = buffers; 958 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 959 } 960 961 /* 962 * Check if we're over watermark. 963 * If we are over threshold_buffers, start freeing buffers. 964 * If we're over "limit_buffers", block until we get under the limit. 965 */ 966 static void __check_watermark(struct dm_bufio_client *c, 967 struct list_head *write_list) 968 { 969 unsigned long threshold_buffers, limit_buffers; 970 971 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 972 973 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 974 limit_buffers) { 975 976 struct dm_buffer *b = __get_unclaimed_buffer(c); 977 978 if (!b) 979 return; 980 981 __free_buffer_wake(b); 982 cond_resched(); 983 } 984 985 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 986 __write_dirty_buffers_async(c, 1, write_list); 987 } 988 989 /*---------------------------------------------------------------- 990 * Getting a buffer 991 *--------------------------------------------------------------*/ 992 993 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 994 enum new_flag nf, int *need_submit, 995 struct list_head *write_list) 996 { 997 struct dm_buffer *b, *new_b = NULL; 998 999 *need_submit = 0; 1000 1001 b = __find(c, block); 1002 if (b) 1003 goto found_buffer; 1004 1005 if (nf == NF_GET) 1006 return NULL; 1007 1008 new_b = __alloc_buffer_wait(c, nf); 1009 if (!new_b) 1010 return NULL; 1011 1012 /* 1013 * We've had a period where the mutex was unlocked, so need to 1014 * recheck the hash table. 1015 */ 1016 b = __find(c, block); 1017 if (b) { 1018 __free_buffer_wake(new_b); 1019 goto found_buffer; 1020 } 1021 1022 __check_watermark(c, write_list); 1023 1024 b = new_b; 1025 b->hold_count = 1; 1026 b->read_error = 0; 1027 b->write_error = 0; 1028 __link_buffer(b, block, LIST_CLEAN); 1029 1030 if (nf == NF_FRESH) { 1031 b->state = 0; 1032 return b; 1033 } 1034 1035 b->state = 1 << B_READING; 1036 *need_submit = 1; 1037 1038 return b; 1039 1040 found_buffer: 1041 if (nf == NF_PREFETCH) 1042 return NULL; 1043 /* 1044 * Note: it is essential that we don't wait for the buffer to be 1045 * read if dm_bufio_get function is used. Both dm_bufio_get and 1046 * dm_bufio_prefetch can be used in the driver request routine. 1047 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1048 * the same buffer, it would deadlock if we waited. 1049 */ 1050 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1051 return NULL; 1052 1053 b->hold_count++; 1054 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1055 test_bit(B_WRITING, &b->state)); 1056 return b; 1057 } 1058 1059 /* 1060 * The endio routine for reading: set the error, clear the bit and wake up 1061 * anyone waiting on the buffer. 1062 */ 1063 static void read_endio(struct bio *bio) 1064 { 1065 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1066 1067 b->read_error = bio->bi_status; 1068 1069 BUG_ON(!test_bit(B_READING, &b->state)); 1070 1071 smp_mb__before_atomic(); 1072 clear_bit(B_READING, &b->state); 1073 smp_mb__after_atomic(); 1074 1075 wake_up_bit(&b->state, B_READING); 1076 } 1077 1078 /* 1079 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1080 * functions is similar except that dm_bufio_new doesn't read the 1081 * buffer from the disk (assuming that the caller overwrites all the data 1082 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1083 */ 1084 static void *new_read(struct dm_bufio_client *c, sector_t block, 1085 enum new_flag nf, struct dm_buffer **bp) 1086 { 1087 int need_submit; 1088 struct dm_buffer *b; 1089 1090 LIST_HEAD(write_list); 1091 1092 dm_bufio_lock(c); 1093 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1094 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1095 if (b && b->hold_count == 1) 1096 buffer_record_stack(b); 1097 #endif 1098 dm_bufio_unlock(c); 1099 1100 __flush_write_list(&write_list); 1101 1102 if (!b) 1103 return NULL; 1104 1105 if (need_submit) 1106 submit_io(b, READ, read_endio); 1107 1108 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1109 1110 if (b->read_error) { 1111 int error = blk_status_to_errno(b->read_error); 1112 1113 dm_bufio_release(b); 1114 1115 return ERR_PTR(error); 1116 } 1117 1118 *bp = b; 1119 1120 return b->data; 1121 } 1122 1123 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1124 struct dm_buffer **bp) 1125 { 1126 return new_read(c, block, NF_GET, bp); 1127 } 1128 EXPORT_SYMBOL_GPL(dm_bufio_get); 1129 1130 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1131 struct dm_buffer **bp) 1132 { 1133 BUG_ON(dm_bufio_in_request()); 1134 1135 return new_read(c, block, NF_READ, bp); 1136 } 1137 EXPORT_SYMBOL_GPL(dm_bufio_read); 1138 1139 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1140 struct dm_buffer **bp) 1141 { 1142 BUG_ON(dm_bufio_in_request()); 1143 1144 return new_read(c, block, NF_FRESH, bp); 1145 } 1146 EXPORT_SYMBOL_GPL(dm_bufio_new); 1147 1148 void dm_bufio_prefetch(struct dm_bufio_client *c, 1149 sector_t block, unsigned n_blocks) 1150 { 1151 struct blk_plug plug; 1152 1153 LIST_HEAD(write_list); 1154 1155 BUG_ON(dm_bufio_in_request()); 1156 1157 blk_start_plug(&plug); 1158 dm_bufio_lock(c); 1159 1160 for (; n_blocks--; block++) { 1161 int need_submit; 1162 struct dm_buffer *b; 1163 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1164 &write_list); 1165 if (unlikely(!list_empty(&write_list))) { 1166 dm_bufio_unlock(c); 1167 blk_finish_plug(&plug); 1168 __flush_write_list(&write_list); 1169 blk_start_plug(&plug); 1170 dm_bufio_lock(c); 1171 } 1172 if (unlikely(b != NULL)) { 1173 dm_bufio_unlock(c); 1174 1175 if (need_submit) 1176 submit_io(b, READ, read_endio); 1177 dm_bufio_release(b); 1178 1179 cond_resched(); 1180 1181 if (!n_blocks) 1182 goto flush_plug; 1183 dm_bufio_lock(c); 1184 } 1185 } 1186 1187 dm_bufio_unlock(c); 1188 1189 flush_plug: 1190 blk_finish_plug(&plug); 1191 } 1192 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1193 1194 void dm_bufio_release(struct dm_buffer *b) 1195 { 1196 struct dm_bufio_client *c = b->c; 1197 1198 dm_bufio_lock(c); 1199 1200 BUG_ON(!b->hold_count); 1201 1202 b->hold_count--; 1203 if (!b->hold_count) { 1204 wake_up(&c->free_buffer_wait); 1205 1206 /* 1207 * If there were errors on the buffer, and the buffer is not 1208 * to be written, free the buffer. There is no point in caching 1209 * invalid buffer. 1210 */ 1211 if ((b->read_error || b->write_error) && 1212 !test_bit(B_READING, &b->state) && 1213 !test_bit(B_WRITING, &b->state) && 1214 !test_bit(B_DIRTY, &b->state)) { 1215 __unlink_buffer(b); 1216 __free_buffer_wake(b); 1217 } 1218 } 1219 1220 dm_bufio_unlock(c); 1221 } 1222 EXPORT_SYMBOL_GPL(dm_bufio_release); 1223 1224 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1225 { 1226 struct dm_bufio_client *c = b->c; 1227 1228 dm_bufio_lock(c); 1229 1230 BUG_ON(test_bit(B_READING, &b->state)); 1231 1232 if (!test_and_set_bit(B_DIRTY, &b->state)) 1233 __relink_lru(b, LIST_DIRTY); 1234 1235 dm_bufio_unlock(c); 1236 } 1237 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1238 1239 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1240 { 1241 LIST_HEAD(write_list); 1242 1243 BUG_ON(dm_bufio_in_request()); 1244 1245 dm_bufio_lock(c); 1246 __write_dirty_buffers_async(c, 0, &write_list); 1247 dm_bufio_unlock(c); 1248 __flush_write_list(&write_list); 1249 } 1250 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1251 1252 /* 1253 * For performance, it is essential that the buffers are written asynchronously 1254 * and simultaneously (so that the block layer can merge the writes) and then 1255 * waited upon. 1256 * 1257 * Finally, we flush hardware disk cache. 1258 */ 1259 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1260 { 1261 blk_status_t a; 1262 int f; 1263 unsigned long buffers_processed = 0; 1264 struct dm_buffer *b, *tmp; 1265 1266 LIST_HEAD(write_list); 1267 1268 dm_bufio_lock(c); 1269 __write_dirty_buffers_async(c, 0, &write_list); 1270 dm_bufio_unlock(c); 1271 __flush_write_list(&write_list); 1272 dm_bufio_lock(c); 1273 1274 again: 1275 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1276 int dropped_lock = 0; 1277 1278 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1279 buffers_processed++; 1280 1281 BUG_ON(test_bit(B_READING, &b->state)); 1282 1283 if (test_bit(B_WRITING, &b->state)) { 1284 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1285 dropped_lock = 1; 1286 b->hold_count++; 1287 dm_bufio_unlock(c); 1288 wait_on_bit_io(&b->state, B_WRITING, 1289 TASK_UNINTERRUPTIBLE); 1290 dm_bufio_lock(c); 1291 b->hold_count--; 1292 } else 1293 wait_on_bit_io(&b->state, B_WRITING, 1294 TASK_UNINTERRUPTIBLE); 1295 } 1296 1297 if (!test_bit(B_DIRTY, &b->state) && 1298 !test_bit(B_WRITING, &b->state)) 1299 __relink_lru(b, LIST_CLEAN); 1300 1301 cond_resched(); 1302 1303 /* 1304 * If we dropped the lock, the list is no longer consistent, 1305 * so we must restart the search. 1306 * 1307 * In the most common case, the buffer just processed is 1308 * relinked to the clean list, so we won't loop scanning the 1309 * same buffer again and again. 1310 * 1311 * This may livelock if there is another thread simultaneously 1312 * dirtying buffers, so we count the number of buffers walked 1313 * and if it exceeds the total number of buffers, it means that 1314 * someone is doing some writes simultaneously with us. In 1315 * this case, stop, dropping the lock. 1316 */ 1317 if (dropped_lock) 1318 goto again; 1319 } 1320 wake_up(&c->free_buffer_wait); 1321 dm_bufio_unlock(c); 1322 1323 a = xchg(&c->async_write_error, 0); 1324 f = dm_bufio_issue_flush(c); 1325 if (a) 1326 return a; 1327 1328 return f; 1329 } 1330 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1331 1332 /* 1333 * Use dm-io to send and empty barrier flush the device. 1334 */ 1335 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1336 { 1337 struct dm_io_request io_req = { 1338 .bi_op = REQ_OP_WRITE, 1339 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1340 .mem.type = DM_IO_KMEM, 1341 .mem.ptr.addr = NULL, 1342 .client = c->dm_io, 1343 }; 1344 struct dm_io_region io_reg = { 1345 .bdev = c->bdev, 1346 .sector = 0, 1347 .count = 0, 1348 }; 1349 1350 BUG_ON(dm_bufio_in_request()); 1351 1352 return dm_io(&io_req, 1, &io_reg, NULL); 1353 } 1354 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1355 1356 /* 1357 * We first delete any other buffer that may be at that new location. 1358 * 1359 * Then, we write the buffer to the original location if it was dirty. 1360 * 1361 * Then, if we are the only one who is holding the buffer, relink the buffer 1362 * in the hash queue for the new location. 1363 * 1364 * If there was someone else holding the buffer, we write it to the new 1365 * location but not relink it, because that other user needs to have the buffer 1366 * at the same place. 1367 */ 1368 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1369 { 1370 struct dm_bufio_client *c = b->c; 1371 struct dm_buffer *new; 1372 1373 BUG_ON(dm_bufio_in_request()); 1374 1375 dm_bufio_lock(c); 1376 1377 retry: 1378 new = __find(c, new_block); 1379 if (new) { 1380 if (new->hold_count) { 1381 __wait_for_free_buffer(c); 1382 goto retry; 1383 } 1384 1385 /* 1386 * FIXME: Is there any point waiting for a write that's going 1387 * to be overwritten in a bit? 1388 */ 1389 __make_buffer_clean(new); 1390 __unlink_buffer(new); 1391 __free_buffer_wake(new); 1392 } 1393 1394 BUG_ON(!b->hold_count); 1395 BUG_ON(test_bit(B_READING, &b->state)); 1396 1397 __write_dirty_buffer(b, NULL); 1398 if (b->hold_count == 1) { 1399 wait_on_bit_io(&b->state, B_WRITING, 1400 TASK_UNINTERRUPTIBLE); 1401 set_bit(B_DIRTY, &b->state); 1402 __unlink_buffer(b); 1403 __link_buffer(b, new_block, LIST_DIRTY); 1404 } else { 1405 sector_t old_block; 1406 wait_on_bit_lock_io(&b->state, B_WRITING, 1407 TASK_UNINTERRUPTIBLE); 1408 /* 1409 * Relink buffer to "new_block" so that write_callback 1410 * sees "new_block" as a block number. 1411 * After the write, link the buffer back to old_block. 1412 * All this must be done in bufio lock, so that block number 1413 * change isn't visible to other threads. 1414 */ 1415 old_block = b->block; 1416 __unlink_buffer(b); 1417 __link_buffer(b, new_block, b->list_mode); 1418 submit_io(b, WRITE, write_endio); 1419 wait_on_bit_io(&b->state, B_WRITING, 1420 TASK_UNINTERRUPTIBLE); 1421 __unlink_buffer(b); 1422 __link_buffer(b, old_block, b->list_mode); 1423 } 1424 1425 dm_bufio_unlock(c); 1426 dm_bufio_release(b); 1427 } 1428 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1429 1430 /* 1431 * Free the given buffer. 1432 * 1433 * This is just a hint, if the buffer is in use or dirty, this function 1434 * does nothing. 1435 */ 1436 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1437 { 1438 struct dm_buffer *b; 1439 1440 dm_bufio_lock(c); 1441 1442 b = __find(c, block); 1443 if (b && likely(!b->hold_count) && likely(!b->state)) { 1444 __unlink_buffer(b); 1445 __free_buffer_wake(b); 1446 } 1447 1448 dm_bufio_unlock(c); 1449 } 1450 EXPORT_SYMBOL(dm_bufio_forget); 1451 1452 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1453 { 1454 c->minimum_buffers = n; 1455 } 1456 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1457 1458 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1459 { 1460 return c->block_size; 1461 } 1462 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1463 1464 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1465 { 1466 return i_size_read(c->bdev->bd_inode) >> 1467 (SECTOR_SHIFT + c->sectors_per_block_bits); 1468 } 1469 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1470 1471 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1472 { 1473 return b->block; 1474 } 1475 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1476 1477 void *dm_bufio_get_block_data(struct dm_buffer *b) 1478 { 1479 return b->data; 1480 } 1481 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1482 1483 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1484 { 1485 return b + 1; 1486 } 1487 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1488 1489 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1490 { 1491 return b->c; 1492 } 1493 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1494 1495 static void drop_buffers(struct dm_bufio_client *c) 1496 { 1497 struct dm_buffer *b; 1498 int i; 1499 bool warned = false; 1500 1501 BUG_ON(dm_bufio_in_request()); 1502 1503 /* 1504 * An optimization so that the buffers are not written one-by-one. 1505 */ 1506 dm_bufio_write_dirty_buffers_async(c); 1507 1508 dm_bufio_lock(c); 1509 1510 while ((b = __get_unclaimed_buffer(c))) 1511 __free_buffer_wake(b); 1512 1513 for (i = 0; i < LIST_SIZE; i++) 1514 list_for_each_entry(b, &c->lru[i], lru_list) { 1515 WARN_ON(!warned); 1516 warned = true; 1517 DMERR("leaked buffer %llx, hold count %u, list %d", 1518 (unsigned long long)b->block, b->hold_count, i); 1519 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1520 print_stack_trace(&b->stack_trace, 1); 1521 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1522 #endif 1523 } 1524 1525 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1526 while ((b = __get_unclaimed_buffer(c))) 1527 __free_buffer_wake(b); 1528 #endif 1529 1530 for (i = 0; i < LIST_SIZE; i++) 1531 BUG_ON(!list_empty(&c->lru[i])); 1532 1533 dm_bufio_unlock(c); 1534 } 1535 1536 /* 1537 * We may not be able to evict this buffer if IO pending or the client 1538 * is still using it. Caller is expected to know buffer is too old. 1539 * 1540 * And if GFP_NOFS is used, we must not do any I/O because we hold 1541 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1542 * rerouted to different bufio client. 1543 */ 1544 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1545 { 1546 if (!(gfp & __GFP_FS)) { 1547 if (test_bit(B_READING, &b->state) || 1548 test_bit(B_WRITING, &b->state) || 1549 test_bit(B_DIRTY, &b->state)) 1550 return false; 1551 } 1552 1553 if (b->hold_count) 1554 return false; 1555 1556 __make_buffer_clean(b); 1557 __unlink_buffer(b); 1558 __free_buffer_wake(b); 1559 1560 return true; 1561 } 1562 1563 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1564 { 1565 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1566 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT); 1567 } 1568 1569 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1570 gfp_t gfp_mask) 1571 { 1572 int l; 1573 struct dm_buffer *b, *tmp; 1574 unsigned long freed = 0; 1575 unsigned long count = nr_to_scan; 1576 unsigned long retain_target = get_retain_buffers(c); 1577 1578 for (l = 0; l < LIST_SIZE; l++) { 1579 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1580 if (__try_evict_buffer(b, gfp_mask)) 1581 freed++; 1582 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1583 return freed; 1584 cond_resched(); 1585 } 1586 } 1587 return freed; 1588 } 1589 1590 static unsigned long 1591 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1592 { 1593 struct dm_bufio_client *c; 1594 unsigned long freed; 1595 1596 c = container_of(shrink, struct dm_bufio_client, shrinker); 1597 if (sc->gfp_mask & __GFP_FS) 1598 dm_bufio_lock(c); 1599 else if (!dm_bufio_trylock(c)) 1600 return SHRINK_STOP; 1601 1602 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1603 dm_bufio_unlock(c); 1604 return freed; 1605 } 1606 1607 static unsigned long 1608 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1609 { 1610 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1611 1612 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]); 1613 } 1614 1615 /* 1616 * Create the buffering interface 1617 */ 1618 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1619 unsigned reserved_buffers, unsigned aux_size, 1620 void (*alloc_callback)(struct dm_buffer *), 1621 void (*write_callback)(struct dm_buffer *)) 1622 { 1623 int r; 1624 struct dm_bufio_client *c; 1625 unsigned i; 1626 1627 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1628 (block_size & (block_size - 1))); 1629 1630 c = kzalloc(sizeof(*c), GFP_KERNEL); 1631 if (!c) { 1632 r = -ENOMEM; 1633 goto bad_client; 1634 } 1635 c->buffer_tree = RB_ROOT; 1636 1637 c->bdev = bdev; 1638 c->block_size = block_size; 1639 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1640 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1641 __ffs(block_size) - PAGE_SHIFT : 0; 1642 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1643 PAGE_SHIFT - __ffs(block_size) : 0); 1644 1645 c->aux_size = aux_size; 1646 c->alloc_callback = alloc_callback; 1647 c->write_callback = write_callback; 1648 1649 for (i = 0; i < LIST_SIZE; i++) { 1650 INIT_LIST_HEAD(&c->lru[i]); 1651 c->n_buffers[i] = 0; 1652 } 1653 1654 mutex_init(&c->lock); 1655 INIT_LIST_HEAD(&c->reserved_buffers); 1656 c->need_reserved_buffers = reserved_buffers; 1657 1658 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1659 1660 init_waitqueue_head(&c->free_buffer_wait); 1661 c->async_write_error = 0; 1662 1663 c->dm_io = dm_io_client_create(); 1664 if (IS_ERR(c->dm_io)) { 1665 r = PTR_ERR(c->dm_io); 1666 goto bad_dm_io; 1667 } 1668 1669 mutex_lock(&dm_bufio_clients_lock); 1670 if (c->blocks_per_page_bits) { 1671 if (!DM_BUFIO_CACHE_NAME(c)) { 1672 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1673 if (!DM_BUFIO_CACHE_NAME(c)) { 1674 r = -ENOMEM; 1675 mutex_unlock(&dm_bufio_clients_lock); 1676 goto bad_cache; 1677 } 1678 } 1679 1680 if (!DM_BUFIO_CACHE(c)) { 1681 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1682 c->block_size, 1683 c->block_size, 0, NULL); 1684 if (!DM_BUFIO_CACHE(c)) { 1685 r = -ENOMEM; 1686 mutex_unlock(&dm_bufio_clients_lock); 1687 goto bad_cache; 1688 } 1689 } 1690 } 1691 mutex_unlock(&dm_bufio_clients_lock); 1692 1693 while (c->need_reserved_buffers) { 1694 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1695 1696 if (!b) { 1697 r = -ENOMEM; 1698 goto bad_buffer; 1699 } 1700 __free_buffer_wake(b); 1701 } 1702 1703 mutex_lock(&dm_bufio_clients_lock); 1704 dm_bufio_client_count++; 1705 list_add(&c->client_list, &dm_bufio_all_clients); 1706 __cache_size_refresh(); 1707 mutex_unlock(&dm_bufio_clients_lock); 1708 1709 c->shrinker.count_objects = dm_bufio_shrink_count; 1710 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1711 c->shrinker.seeks = 1; 1712 c->shrinker.batch = 0; 1713 register_shrinker(&c->shrinker); 1714 1715 return c; 1716 1717 bad_buffer: 1718 bad_cache: 1719 while (!list_empty(&c->reserved_buffers)) { 1720 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1721 struct dm_buffer, lru_list); 1722 list_del(&b->lru_list); 1723 free_buffer(b); 1724 } 1725 dm_io_client_destroy(c->dm_io); 1726 bad_dm_io: 1727 kfree(c); 1728 bad_client: 1729 return ERR_PTR(r); 1730 } 1731 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1732 1733 /* 1734 * Free the buffering interface. 1735 * It is required that there are no references on any buffers. 1736 */ 1737 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1738 { 1739 unsigned i; 1740 1741 drop_buffers(c); 1742 1743 unregister_shrinker(&c->shrinker); 1744 1745 mutex_lock(&dm_bufio_clients_lock); 1746 1747 list_del(&c->client_list); 1748 dm_bufio_client_count--; 1749 __cache_size_refresh(); 1750 1751 mutex_unlock(&dm_bufio_clients_lock); 1752 1753 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1754 BUG_ON(c->need_reserved_buffers); 1755 1756 while (!list_empty(&c->reserved_buffers)) { 1757 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1758 struct dm_buffer, lru_list); 1759 list_del(&b->lru_list); 1760 free_buffer(b); 1761 } 1762 1763 for (i = 0; i < LIST_SIZE; i++) 1764 if (c->n_buffers[i]) 1765 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1766 1767 for (i = 0; i < LIST_SIZE; i++) 1768 BUG_ON(c->n_buffers[i]); 1769 1770 dm_io_client_destroy(c->dm_io); 1771 kfree(c); 1772 } 1773 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1774 1775 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1776 { 1777 c->start = start; 1778 } 1779 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1780 1781 static unsigned get_max_age_hz(void) 1782 { 1783 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1784 1785 if (max_age > UINT_MAX / HZ) 1786 max_age = UINT_MAX / HZ; 1787 1788 return max_age * HZ; 1789 } 1790 1791 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1792 { 1793 return time_after_eq(jiffies, b->last_accessed + age_hz); 1794 } 1795 1796 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1797 { 1798 struct dm_buffer *b, *tmp; 1799 unsigned long retain_target = get_retain_buffers(c); 1800 unsigned long count; 1801 LIST_HEAD(write_list); 1802 1803 dm_bufio_lock(c); 1804 1805 __check_watermark(c, &write_list); 1806 if (unlikely(!list_empty(&write_list))) { 1807 dm_bufio_unlock(c); 1808 __flush_write_list(&write_list); 1809 dm_bufio_lock(c); 1810 } 1811 1812 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1813 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1814 if (count <= retain_target) 1815 break; 1816 1817 if (!older_than(b, age_hz)) 1818 break; 1819 1820 if (__try_evict_buffer(b, 0)) 1821 count--; 1822 1823 cond_resched(); 1824 } 1825 1826 dm_bufio_unlock(c); 1827 } 1828 1829 static void cleanup_old_buffers(void) 1830 { 1831 unsigned long max_age_hz = get_max_age_hz(); 1832 struct dm_bufio_client *c; 1833 1834 mutex_lock(&dm_bufio_clients_lock); 1835 1836 __cache_size_refresh(); 1837 1838 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1839 __evict_old_buffers(c, max_age_hz); 1840 1841 mutex_unlock(&dm_bufio_clients_lock); 1842 } 1843 1844 static struct workqueue_struct *dm_bufio_wq; 1845 static struct delayed_work dm_bufio_work; 1846 1847 static void work_fn(struct work_struct *w) 1848 { 1849 cleanup_old_buffers(); 1850 1851 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1852 DM_BUFIO_WORK_TIMER_SECS * HZ); 1853 } 1854 1855 /*---------------------------------------------------------------- 1856 * Module setup 1857 *--------------------------------------------------------------*/ 1858 1859 /* 1860 * This is called only once for the whole dm_bufio module. 1861 * It initializes memory limit. 1862 */ 1863 static int __init dm_bufio_init(void) 1864 { 1865 __u64 mem; 1866 1867 dm_bufio_allocated_kmem_cache = 0; 1868 dm_bufio_allocated_get_free_pages = 0; 1869 dm_bufio_allocated_vmalloc = 0; 1870 dm_bufio_current_allocated = 0; 1871 1872 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1873 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1874 1875 mem = (__u64)((totalram_pages - totalhigh_pages) * 1876 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1877 1878 if (mem > ULONG_MAX) 1879 mem = ULONG_MAX; 1880 1881 #ifdef CONFIG_MMU 1882 /* 1883 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1884 * in fs/proc/internal.h 1885 */ 1886 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1887 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1888 #endif 1889 1890 dm_bufio_default_cache_size = mem; 1891 1892 mutex_lock(&dm_bufio_clients_lock); 1893 __cache_size_refresh(); 1894 mutex_unlock(&dm_bufio_clients_lock); 1895 1896 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1897 if (!dm_bufio_wq) 1898 return -ENOMEM; 1899 1900 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1901 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1902 DM_BUFIO_WORK_TIMER_SECS * HZ); 1903 1904 return 0; 1905 } 1906 1907 /* 1908 * This is called once when unloading the dm_bufio module. 1909 */ 1910 static void __exit dm_bufio_exit(void) 1911 { 1912 int bug = 0; 1913 int i; 1914 1915 cancel_delayed_work_sync(&dm_bufio_work); 1916 destroy_workqueue(dm_bufio_wq); 1917 1918 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1919 kmem_cache_destroy(dm_bufio_caches[i]); 1920 1921 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1922 kfree(dm_bufio_cache_names[i]); 1923 1924 if (dm_bufio_client_count) { 1925 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1926 __func__, dm_bufio_client_count); 1927 bug = 1; 1928 } 1929 1930 if (dm_bufio_current_allocated) { 1931 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1932 __func__, dm_bufio_current_allocated); 1933 bug = 1; 1934 } 1935 1936 if (dm_bufio_allocated_get_free_pages) { 1937 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1938 __func__, dm_bufio_allocated_get_free_pages); 1939 bug = 1; 1940 } 1941 1942 if (dm_bufio_allocated_vmalloc) { 1943 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1944 __func__, dm_bufio_allocated_vmalloc); 1945 bug = 1; 1946 } 1947 1948 BUG_ON(bug); 1949 } 1950 1951 module_init(dm_bufio_init) 1952 module_exit(dm_bufio_exit) 1953 1954 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1955 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1956 1957 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1958 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1959 1960 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 1961 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1962 1963 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1964 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1965 1966 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1967 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1968 1969 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1970 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1971 1972 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1973 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1974 1975 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1976 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1977 1978 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1979 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1980 MODULE_LICENSE("GPL"); 1981