1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/shrinker.h> 16 #include <linux/module.h> 17 18 #define DM_MSG_PREFIX "bufio" 19 20 /* 21 * Memory management policy: 22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 26 * dirty buffers. 27 */ 28 #define DM_BUFIO_MIN_BUFFERS 8 29 30 #define DM_BUFIO_MEMORY_PERCENT 2 31 #define DM_BUFIO_VMALLOC_PERCENT 25 32 #define DM_BUFIO_WRITEBACK_PERCENT 75 33 34 /* 35 * Check buffer ages in this interval (seconds) 36 */ 37 #define DM_BUFIO_WORK_TIMER_SECS 10 38 39 /* 40 * Free buffers when they are older than this (seconds) 41 */ 42 #define DM_BUFIO_DEFAULT_AGE_SECS 60 43 44 /* 45 * The number of bvec entries that are embedded directly in the buffer. 46 * If the chunk size is larger, dm-io is used to do the io. 47 */ 48 #define DM_BUFIO_INLINE_VECS 16 49 50 /* 51 * Buffer hash 52 */ 53 #define DM_BUFIO_HASH_BITS 20 54 #define DM_BUFIO_HASH(block) \ 55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \ 56 ((1 << DM_BUFIO_HASH_BITS) - 1)) 57 58 /* 59 * Don't try to use kmem_cache_alloc for blocks larger than this. 60 * For explanation, see alloc_buffer_data below. 61 */ 62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 64 65 /* 66 * dm_buffer->list_mode 67 */ 68 #define LIST_CLEAN 0 69 #define LIST_DIRTY 1 70 #define LIST_SIZE 2 71 72 /* 73 * Linking of buffers: 74 * All buffers are linked to cache_hash with their hash_list field. 75 * 76 * Clean buffers that are not being written (B_WRITING not set) 77 * are linked to lru[LIST_CLEAN] with their lru_list field. 78 * 79 * Dirty and clean buffers that are being written are linked to 80 * lru[LIST_DIRTY] with their lru_list field. When the write 81 * finishes, the buffer cannot be relinked immediately (because we 82 * are in an interrupt context and relinking requires process 83 * context), so some clean-not-writing buffers can be held on 84 * dirty_lru too. They are later added to lru in the process 85 * context. 86 */ 87 struct dm_bufio_client { 88 struct mutex lock; 89 90 struct list_head lru[LIST_SIZE]; 91 unsigned long n_buffers[LIST_SIZE]; 92 93 struct block_device *bdev; 94 unsigned block_size; 95 unsigned char sectors_per_block_bits; 96 unsigned char pages_per_block_bits; 97 unsigned char blocks_per_page_bits; 98 unsigned aux_size; 99 void (*alloc_callback)(struct dm_buffer *); 100 void (*write_callback)(struct dm_buffer *); 101 102 struct dm_io_client *dm_io; 103 104 struct list_head reserved_buffers; 105 unsigned need_reserved_buffers; 106 107 struct hlist_head *cache_hash; 108 wait_queue_head_t free_buffer_wait; 109 110 int async_write_error; 111 112 struct list_head client_list; 113 struct shrinker shrinker; 114 }; 115 116 /* 117 * Buffer state bits. 118 */ 119 #define B_READING 0 120 #define B_WRITING 1 121 #define B_DIRTY 2 122 123 /* 124 * Describes how the block was allocated: 125 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 126 * See the comment at alloc_buffer_data. 127 */ 128 enum data_mode { 129 DATA_MODE_SLAB = 0, 130 DATA_MODE_GET_FREE_PAGES = 1, 131 DATA_MODE_VMALLOC = 2, 132 DATA_MODE_LIMIT = 3 133 }; 134 135 struct dm_buffer { 136 struct hlist_node hash_list; 137 struct list_head lru_list; 138 sector_t block; 139 void *data; 140 enum data_mode data_mode; 141 unsigned char list_mode; /* LIST_* */ 142 unsigned hold_count; 143 int read_error; 144 int write_error; 145 unsigned long state; 146 unsigned long last_accessed; 147 struct dm_bufio_client *c; 148 struct bio bio; 149 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 150 }; 151 152 /*----------------------------------------------------------------*/ 153 154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 156 157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 158 { 159 unsigned ret = c->blocks_per_page_bits - 1; 160 161 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 162 163 return ret; 164 } 165 166 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 167 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 168 169 #define dm_bufio_in_request() (!!current->bio_list) 170 171 static void dm_bufio_lock(struct dm_bufio_client *c) 172 { 173 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 174 } 175 176 static int dm_bufio_trylock(struct dm_bufio_client *c) 177 { 178 return mutex_trylock(&c->lock); 179 } 180 181 static void dm_bufio_unlock(struct dm_bufio_client *c) 182 { 183 mutex_unlock(&c->lock); 184 } 185 186 /* 187 * FIXME Move to sched.h? 188 */ 189 #ifdef CONFIG_PREEMPT_VOLUNTARY 190 # define dm_bufio_cond_resched() \ 191 do { \ 192 if (unlikely(need_resched())) \ 193 _cond_resched(); \ 194 } while (0) 195 #else 196 # define dm_bufio_cond_resched() do { } while (0) 197 #endif 198 199 /*----------------------------------------------------------------*/ 200 201 /* 202 * Default cache size: available memory divided by the ratio. 203 */ 204 static unsigned long dm_bufio_default_cache_size; 205 206 /* 207 * Total cache size set by the user. 208 */ 209 static unsigned long dm_bufio_cache_size; 210 211 /* 212 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 213 * at any time. If it disagrees, the user has changed cache size. 214 */ 215 static unsigned long dm_bufio_cache_size_latch; 216 217 static DEFINE_SPINLOCK(param_spinlock); 218 219 /* 220 * Buffers are freed after this timeout 221 */ 222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 223 224 static unsigned long dm_bufio_peak_allocated; 225 static unsigned long dm_bufio_allocated_kmem_cache; 226 static unsigned long dm_bufio_allocated_get_free_pages; 227 static unsigned long dm_bufio_allocated_vmalloc; 228 static unsigned long dm_bufio_current_allocated; 229 230 /*----------------------------------------------------------------*/ 231 232 /* 233 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 234 */ 235 static unsigned long dm_bufio_cache_size_per_client; 236 237 /* 238 * The current number of clients. 239 */ 240 static int dm_bufio_client_count; 241 242 /* 243 * The list of all clients. 244 */ 245 static LIST_HEAD(dm_bufio_all_clients); 246 247 /* 248 * This mutex protects dm_bufio_cache_size_latch, 249 * dm_bufio_cache_size_per_client and dm_bufio_client_count 250 */ 251 static DEFINE_MUTEX(dm_bufio_clients_lock); 252 253 /*----------------------------------------------------------------*/ 254 255 static void adjust_total_allocated(enum data_mode data_mode, long diff) 256 { 257 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 258 &dm_bufio_allocated_kmem_cache, 259 &dm_bufio_allocated_get_free_pages, 260 &dm_bufio_allocated_vmalloc, 261 }; 262 263 spin_lock(¶m_spinlock); 264 265 *class_ptr[data_mode] += diff; 266 267 dm_bufio_current_allocated += diff; 268 269 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 270 dm_bufio_peak_allocated = dm_bufio_current_allocated; 271 272 spin_unlock(¶m_spinlock); 273 } 274 275 /* 276 * Change the number of clients and recalculate per-client limit. 277 */ 278 static void __cache_size_refresh(void) 279 { 280 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 281 BUG_ON(dm_bufio_client_count < 0); 282 283 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 284 285 /* 286 * Use default if set to 0 and report the actual cache size used. 287 */ 288 if (!dm_bufio_cache_size_latch) { 289 (void)cmpxchg(&dm_bufio_cache_size, 0, 290 dm_bufio_default_cache_size); 291 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 292 } 293 294 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 295 (dm_bufio_client_count ? : 1); 296 } 297 298 /* 299 * Allocating buffer data. 300 * 301 * Small buffers are allocated with kmem_cache, to use space optimally. 302 * 303 * For large buffers, we choose between get_free_pages and vmalloc. 304 * Each has advantages and disadvantages. 305 * 306 * __get_free_pages can randomly fail if the memory is fragmented. 307 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 308 * as low as 128M) so using it for caching is not appropriate. 309 * 310 * If the allocation may fail we use __get_free_pages. Memory fragmentation 311 * won't have a fatal effect here, but it just causes flushes of some other 312 * buffers and more I/O will be performed. Don't use __get_free_pages if it 313 * always fails (i.e. order >= MAX_ORDER). 314 * 315 * If the allocation shouldn't fail we use __vmalloc. This is only for the 316 * initial reserve allocation, so there's no risk of wasting all vmalloc 317 * space. 318 */ 319 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 320 enum data_mode *data_mode) 321 { 322 unsigned noio_flag; 323 void *ptr; 324 325 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 326 *data_mode = DATA_MODE_SLAB; 327 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 328 } 329 330 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 331 gfp_mask & __GFP_NORETRY) { 332 *data_mode = DATA_MODE_GET_FREE_PAGES; 333 return (void *)__get_free_pages(gfp_mask, 334 c->pages_per_block_bits); 335 } 336 337 *data_mode = DATA_MODE_VMALLOC; 338 339 /* 340 * __vmalloc allocates the data pages and auxiliary structures with 341 * gfp_flags that were specified, but pagetables are always allocated 342 * with GFP_KERNEL, no matter what was specified as gfp_mask. 343 * 344 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 345 * all allocations done by this process (including pagetables) are done 346 * as if GFP_NOIO was specified. 347 */ 348 349 if (gfp_mask & __GFP_NORETRY) 350 noio_flag = memalloc_noio_save(); 351 352 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 353 354 if (gfp_mask & __GFP_NORETRY) 355 memalloc_noio_restore(noio_flag); 356 357 return ptr; 358 } 359 360 /* 361 * Free buffer's data. 362 */ 363 static void free_buffer_data(struct dm_bufio_client *c, 364 void *data, enum data_mode data_mode) 365 { 366 switch (data_mode) { 367 case DATA_MODE_SLAB: 368 kmem_cache_free(DM_BUFIO_CACHE(c), data); 369 break; 370 371 case DATA_MODE_GET_FREE_PAGES: 372 free_pages((unsigned long)data, c->pages_per_block_bits); 373 break; 374 375 case DATA_MODE_VMALLOC: 376 vfree(data); 377 break; 378 379 default: 380 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 381 data_mode); 382 BUG(); 383 } 384 } 385 386 /* 387 * Allocate buffer and its data. 388 */ 389 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 390 { 391 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 392 gfp_mask); 393 394 if (!b) 395 return NULL; 396 397 b->c = c; 398 399 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 400 if (!b->data) { 401 kfree(b); 402 return NULL; 403 } 404 405 adjust_total_allocated(b->data_mode, (long)c->block_size); 406 407 return b; 408 } 409 410 /* 411 * Free buffer and its data. 412 */ 413 static void free_buffer(struct dm_buffer *b) 414 { 415 struct dm_bufio_client *c = b->c; 416 417 adjust_total_allocated(b->data_mode, -(long)c->block_size); 418 419 free_buffer_data(c, b->data, b->data_mode); 420 kfree(b); 421 } 422 423 /* 424 * Link buffer to the hash list and clean or dirty queue. 425 */ 426 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 427 { 428 struct dm_bufio_client *c = b->c; 429 430 c->n_buffers[dirty]++; 431 b->block = block; 432 b->list_mode = dirty; 433 list_add(&b->lru_list, &c->lru[dirty]); 434 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]); 435 b->last_accessed = jiffies; 436 } 437 438 /* 439 * Unlink buffer from the hash list and dirty or clean queue. 440 */ 441 static void __unlink_buffer(struct dm_buffer *b) 442 { 443 struct dm_bufio_client *c = b->c; 444 445 BUG_ON(!c->n_buffers[b->list_mode]); 446 447 c->n_buffers[b->list_mode]--; 448 hlist_del(&b->hash_list); 449 list_del(&b->lru_list); 450 } 451 452 /* 453 * Place the buffer to the head of dirty or clean LRU queue. 454 */ 455 static void __relink_lru(struct dm_buffer *b, int dirty) 456 { 457 struct dm_bufio_client *c = b->c; 458 459 BUG_ON(!c->n_buffers[b->list_mode]); 460 461 c->n_buffers[b->list_mode]--; 462 c->n_buffers[dirty]++; 463 b->list_mode = dirty; 464 list_move(&b->lru_list, &c->lru[dirty]); 465 } 466 467 /*---------------------------------------------------------------- 468 * Submit I/O on the buffer. 469 * 470 * Bio interface is faster but it has some problems: 471 * the vector list is limited (increasing this limit increases 472 * memory-consumption per buffer, so it is not viable); 473 * 474 * the memory must be direct-mapped, not vmalloced; 475 * 476 * the I/O driver can reject requests spuriously if it thinks that 477 * the requests are too big for the device or if they cross a 478 * controller-defined memory boundary. 479 * 480 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 481 * it is not vmalloced, try using the bio interface. 482 * 483 * If the buffer is big, if it is vmalloced or if the underlying device 484 * rejects the bio because it is too large, use dm-io layer to do the I/O. 485 * The dm-io layer splits the I/O into multiple requests, avoiding the above 486 * shortcomings. 487 *--------------------------------------------------------------*/ 488 489 /* 490 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 491 * that the request was handled directly with bio interface. 492 */ 493 static void dmio_complete(unsigned long error, void *context) 494 { 495 struct dm_buffer *b = context; 496 497 b->bio.bi_end_io(&b->bio, error ? -EIO : 0); 498 } 499 500 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 501 bio_end_io_t *end_io) 502 { 503 int r; 504 struct dm_io_request io_req = { 505 .bi_rw = rw, 506 .notify.fn = dmio_complete, 507 .notify.context = b, 508 .client = b->c->dm_io, 509 }; 510 struct dm_io_region region = { 511 .bdev = b->c->bdev, 512 .sector = block << b->c->sectors_per_block_bits, 513 .count = b->c->block_size >> SECTOR_SHIFT, 514 }; 515 516 if (b->data_mode != DATA_MODE_VMALLOC) { 517 io_req.mem.type = DM_IO_KMEM; 518 io_req.mem.ptr.addr = b->data; 519 } else { 520 io_req.mem.type = DM_IO_VMA; 521 io_req.mem.ptr.vma = b->data; 522 } 523 524 b->bio.bi_end_io = end_io; 525 526 r = dm_io(&io_req, 1, ®ion, NULL); 527 if (r) 528 end_io(&b->bio, r); 529 } 530 531 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 532 bio_end_io_t *end_io) 533 { 534 char *ptr; 535 int len; 536 537 bio_init(&b->bio); 538 b->bio.bi_io_vec = b->bio_vec; 539 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS; 540 b->bio.bi_sector = block << b->c->sectors_per_block_bits; 541 b->bio.bi_bdev = b->c->bdev; 542 b->bio.bi_end_io = end_io; 543 544 /* 545 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 546 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 547 */ 548 ptr = b->data; 549 len = b->c->block_size; 550 551 if (len >= PAGE_SIZE) 552 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 553 else 554 BUG_ON((unsigned long)ptr & (len - 1)); 555 556 do { 557 if (!bio_add_page(&b->bio, virt_to_page(ptr), 558 len < PAGE_SIZE ? len : PAGE_SIZE, 559 virt_to_phys(ptr) & (PAGE_SIZE - 1))) { 560 BUG_ON(b->c->block_size <= PAGE_SIZE); 561 use_dmio(b, rw, block, end_io); 562 return; 563 } 564 565 len -= PAGE_SIZE; 566 ptr += PAGE_SIZE; 567 } while (len > 0); 568 569 submit_bio(rw, &b->bio); 570 } 571 572 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 573 bio_end_io_t *end_io) 574 { 575 if (rw == WRITE && b->c->write_callback) 576 b->c->write_callback(b); 577 578 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 579 b->data_mode != DATA_MODE_VMALLOC) 580 use_inline_bio(b, rw, block, end_io); 581 else 582 use_dmio(b, rw, block, end_io); 583 } 584 585 /*---------------------------------------------------------------- 586 * Writing dirty buffers 587 *--------------------------------------------------------------*/ 588 589 /* 590 * The endio routine for write. 591 * 592 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 593 * it. 594 */ 595 static void write_endio(struct bio *bio, int error) 596 { 597 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 598 599 b->write_error = error; 600 if (unlikely(error)) { 601 struct dm_bufio_client *c = b->c; 602 (void)cmpxchg(&c->async_write_error, 0, error); 603 } 604 605 BUG_ON(!test_bit(B_WRITING, &b->state)); 606 607 smp_mb__before_clear_bit(); 608 clear_bit(B_WRITING, &b->state); 609 smp_mb__after_clear_bit(); 610 611 wake_up_bit(&b->state, B_WRITING); 612 } 613 614 /* 615 * This function is called when wait_on_bit is actually waiting. 616 */ 617 static int do_io_schedule(void *word) 618 { 619 io_schedule(); 620 621 return 0; 622 } 623 624 /* 625 * Initiate a write on a dirty buffer, but don't wait for it. 626 * 627 * - If the buffer is not dirty, exit. 628 * - If there some previous write going on, wait for it to finish (we can't 629 * have two writes on the same buffer simultaneously). 630 * - Submit our write and don't wait on it. We set B_WRITING indicating 631 * that there is a write in progress. 632 */ 633 static void __write_dirty_buffer(struct dm_buffer *b) 634 { 635 if (!test_bit(B_DIRTY, &b->state)) 636 return; 637 638 clear_bit(B_DIRTY, &b->state); 639 wait_on_bit_lock(&b->state, B_WRITING, 640 do_io_schedule, TASK_UNINTERRUPTIBLE); 641 642 submit_io(b, WRITE, b->block, write_endio); 643 } 644 645 /* 646 * Wait until any activity on the buffer finishes. Possibly write the 647 * buffer if it is dirty. When this function finishes, there is no I/O 648 * running on the buffer and the buffer is not dirty. 649 */ 650 static void __make_buffer_clean(struct dm_buffer *b) 651 { 652 BUG_ON(b->hold_count); 653 654 if (!b->state) /* fast case */ 655 return; 656 657 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE); 658 __write_dirty_buffer(b); 659 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE); 660 } 661 662 /* 663 * Find some buffer that is not held by anybody, clean it, unlink it and 664 * return it. 665 */ 666 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 667 { 668 struct dm_buffer *b; 669 670 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 671 BUG_ON(test_bit(B_WRITING, &b->state)); 672 BUG_ON(test_bit(B_DIRTY, &b->state)); 673 674 if (!b->hold_count) { 675 __make_buffer_clean(b); 676 __unlink_buffer(b); 677 return b; 678 } 679 dm_bufio_cond_resched(); 680 } 681 682 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 683 BUG_ON(test_bit(B_READING, &b->state)); 684 685 if (!b->hold_count) { 686 __make_buffer_clean(b); 687 __unlink_buffer(b); 688 return b; 689 } 690 dm_bufio_cond_resched(); 691 } 692 693 return NULL; 694 } 695 696 /* 697 * Wait until some other threads free some buffer or release hold count on 698 * some buffer. 699 * 700 * This function is entered with c->lock held, drops it and regains it 701 * before exiting. 702 */ 703 static void __wait_for_free_buffer(struct dm_bufio_client *c) 704 { 705 DECLARE_WAITQUEUE(wait, current); 706 707 add_wait_queue(&c->free_buffer_wait, &wait); 708 set_task_state(current, TASK_UNINTERRUPTIBLE); 709 dm_bufio_unlock(c); 710 711 io_schedule(); 712 713 set_task_state(current, TASK_RUNNING); 714 remove_wait_queue(&c->free_buffer_wait, &wait); 715 716 dm_bufio_lock(c); 717 } 718 719 enum new_flag { 720 NF_FRESH = 0, 721 NF_READ = 1, 722 NF_GET = 2, 723 NF_PREFETCH = 3 724 }; 725 726 /* 727 * Allocate a new buffer. If the allocation is not possible, wait until 728 * some other thread frees a buffer. 729 * 730 * May drop the lock and regain it. 731 */ 732 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 733 { 734 struct dm_buffer *b; 735 736 /* 737 * dm-bufio is resistant to allocation failures (it just keeps 738 * one buffer reserved in cases all the allocations fail). 739 * So set flags to not try too hard: 740 * GFP_NOIO: don't recurse into the I/O layer 741 * __GFP_NORETRY: don't retry and rather return failure 742 * __GFP_NOMEMALLOC: don't use emergency reserves 743 * __GFP_NOWARN: don't print a warning in case of failure 744 * 745 * For debugging, if we set the cache size to 1, no new buffers will 746 * be allocated. 747 */ 748 while (1) { 749 if (dm_bufio_cache_size_latch != 1) { 750 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 751 if (b) 752 return b; 753 } 754 755 if (nf == NF_PREFETCH) 756 return NULL; 757 758 if (!list_empty(&c->reserved_buffers)) { 759 b = list_entry(c->reserved_buffers.next, 760 struct dm_buffer, lru_list); 761 list_del(&b->lru_list); 762 c->need_reserved_buffers++; 763 764 return b; 765 } 766 767 b = __get_unclaimed_buffer(c); 768 if (b) 769 return b; 770 771 __wait_for_free_buffer(c); 772 } 773 } 774 775 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 776 { 777 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 778 779 if (!b) 780 return NULL; 781 782 if (c->alloc_callback) 783 c->alloc_callback(b); 784 785 return b; 786 } 787 788 /* 789 * Free a buffer and wake other threads waiting for free buffers. 790 */ 791 static void __free_buffer_wake(struct dm_buffer *b) 792 { 793 struct dm_bufio_client *c = b->c; 794 795 if (!c->need_reserved_buffers) 796 free_buffer(b); 797 else { 798 list_add(&b->lru_list, &c->reserved_buffers); 799 c->need_reserved_buffers--; 800 } 801 802 wake_up(&c->free_buffer_wait); 803 } 804 805 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait) 806 { 807 struct dm_buffer *b, *tmp; 808 809 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 810 BUG_ON(test_bit(B_READING, &b->state)); 811 812 if (!test_bit(B_DIRTY, &b->state) && 813 !test_bit(B_WRITING, &b->state)) { 814 __relink_lru(b, LIST_CLEAN); 815 continue; 816 } 817 818 if (no_wait && test_bit(B_WRITING, &b->state)) 819 return; 820 821 __write_dirty_buffer(b); 822 dm_bufio_cond_resched(); 823 } 824 } 825 826 /* 827 * Get writeback threshold and buffer limit for a given client. 828 */ 829 static void __get_memory_limit(struct dm_bufio_client *c, 830 unsigned long *threshold_buffers, 831 unsigned long *limit_buffers) 832 { 833 unsigned long buffers; 834 835 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) { 836 mutex_lock(&dm_bufio_clients_lock); 837 __cache_size_refresh(); 838 mutex_unlock(&dm_bufio_clients_lock); 839 } 840 841 buffers = dm_bufio_cache_size_per_client >> 842 (c->sectors_per_block_bits + SECTOR_SHIFT); 843 844 if (buffers < DM_BUFIO_MIN_BUFFERS) 845 buffers = DM_BUFIO_MIN_BUFFERS; 846 847 *limit_buffers = buffers; 848 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 849 } 850 851 /* 852 * Check if we're over watermark. 853 * If we are over threshold_buffers, start freeing buffers. 854 * If we're over "limit_buffers", block until we get under the limit. 855 */ 856 static void __check_watermark(struct dm_bufio_client *c) 857 { 858 unsigned long threshold_buffers, limit_buffers; 859 860 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 861 862 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 863 limit_buffers) { 864 865 struct dm_buffer *b = __get_unclaimed_buffer(c); 866 867 if (!b) 868 return; 869 870 __free_buffer_wake(b); 871 dm_bufio_cond_resched(); 872 } 873 874 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 875 __write_dirty_buffers_async(c, 1); 876 } 877 878 /* 879 * Find a buffer in the hash. 880 */ 881 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 882 { 883 struct dm_buffer *b; 884 885 hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)], 886 hash_list) { 887 dm_bufio_cond_resched(); 888 if (b->block == block) 889 return b; 890 } 891 892 return NULL; 893 } 894 895 /*---------------------------------------------------------------- 896 * Getting a buffer 897 *--------------------------------------------------------------*/ 898 899 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 900 enum new_flag nf, int *need_submit) 901 { 902 struct dm_buffer *b, *new_b = NULL; 903 904 *need_submit = 0; 905 906 b = __find(c, block); 907 if (b) 908 goto found_buffer; 909 910 if (nf == NF_GET) 911 return NULL; 912 913 new_b = __alloc_buffer_wait(c, nf); 914 if (!new_b) 915 return NULL; 916 917 /* 918 * We've had a period where the mutex was unlocked, so need to 919 * recheck the hash table. 920 */ 921 b = __find(c, block); 922 if (b) { 923 __free_buffer_wake(new_b); 924 goto found_buffer; 925 } 926 927 __check_watermark(c); 928 929 b = new_b; 930 b->hold_count = 1; 931 b->read_error = 0; 932 b->write_error = 0; 933 __link_buffer(b, block, LIST_CLEAN); 934 935 if (nf == NF_FRESH) { 936 b->state = 0; 937 return b; 938 } 939 940 b->state = 1 << B_READING; 941 *need_submit = 1; 942 943 return b; 944 945 found_buffer: 946 if (nf == NF_PREFETCH) 947 return NULL; 948 /* 949 * Note: it is essential that we don't wait for the buffer to be 950 * read if dm_bufio_get function is used. Both dm_bufio_get and 951 * dm_bufio_prefetch can be used in the driver request routine. 952 * If the user called both dm_bufio_prefetch and dm_bufio_get on 953 * the same buffer, it would deadlock if we waited. 954 */ 955 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 956 return NULL; 957 958 b->hold_count++; 959 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 960 test_bit(B_WRITING, &b->state)); 961 return b; 962 } 963 964 /* 965 * The endio routine for reading: set the error, clear the bit and wake up 966 * anyone waiting on the buffer. 967 */ 968 static void read_endio(struct bio *bio, int error) 969 { 970 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 971 972 b->read_error = error; 973 974 BUG_ON(!test_bit(B_READING, &b->state)); 975 976 smp_mb__before_clear_bit(); 977 clear_bit(B_READING, &b->state); 978 smp_mb__after_clear_bit(); 979 980 wake_up_bit(&b->state, B_READING); 981 } 982 983 /* 984 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 985 * functions is similar except that dm_bufio_new doesn't read the 986 * buffer from the disk (assuming that the caller overwrites all the data 987 * and uses dm_bufio_mark_buffer_dirty to write new data back). 988 */ 989 static void *new_read(struct dm_bufio_client *c, sector_t block, 990 enum new_flag nf, struct dm_buffer **bp) 991 { 992 int need_submit; 993 struct dm_buffer *b; 994 995 dm_bufio_lock(c); 996 b = __bufio_new(c, block, nf, &need_submit); 997 dm_bufio_unlock(c); 998 999 if (!b) 1000 return b; 1001 1002 if (need_submit) 1003 submit_io(b, READ, b->block, read_endio); 1004 1005 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE); 1006 1007 if (b->read_error) { 1008 int error = b->read_error; 1009 1010 dm_bufio_release(b); 1011 1012 return ERR_PTR(error); 1013 } 1014 1015 *bp = b; 1016 1017 return b->data; 1018 } 1019 1020 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1021 struct dm_buffer **bp) 1022 { 1023 return new_read(c, block, NF_GET, bp); 1024 } 1025 EXPORT_SYMBOL_GPL(dm_bufio_get); 1026 1027 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1028 struct dm_buffer **bp) 1029 { 1030 BUG_ON(dm_bufio_in_request()); 1031 1032 return new_read(c, block, NF_READ, bp); 1033 } 1034 EXPORT_SYMBOL_GPL(dm_bufio_read); 1035 1036 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1037 struct dm_buffer **bp) 1038 { 1039 BUG_ON(dm_bufio_in_request()); 1040 1041 return new_read(c, block, NF_FRESH, bp); 1042 } 1043 EXPORT_SYMBOL_GPL(dm_bufio_new); 1044 1045 void dm_bufio_prefetch(struct dm_bufio_client *c, 1046 sector_t block, unsigned n_blocks) 1047 { 1048 struct blk_plug plug; 1049 1050 BUG_ON(dm_bufio_in_request()); 1051 1052 blk_start_plug(&plug); 1053 dm_bufio_lock(c); 1054 1055 for (; n_blocks--; block++) { 1056 int need_submit; 1057 struct dm_buffer *b; 1058 b = __bufio_new(c, block, NF_PREFETCH, &need_submit); 1059 if (unlikely(b != NULL)) { 1060 dm_bufio_unlock(c); 1061 1062 if (need_submit) 1063 submit_io(b, READ, b->block, read_endio); 1064 dm_bufio_release(b); 1065 1066 dm_bufio_cond_resched(); 1067 1068 if (!n_blocks) 1069 goto flush_plug; 1070 dm_bufio_lock(c); 1071 } 1072 1073 } 1074 1075 dm_bufio_unlock(c); 1076 1077 flush_plug: 1078 blk_finish_plug(&plug); 1079 } 1080 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1081 1082 void dm_bufio_release(struct dm_buffer *b) 1083 { 1084 struct dm_bufio_client *c = b->c; 1085 1086 dm_bufio_lock(c); 1087 1088 BUG_ON(!b->hold_count); 1089 1090 b->hold_count--; 1091 if (!b->hold_count) { 1092 wake_up(&c->free_buffer_wait); 1093 1094 /* 1095 * If there were errors on the buffer, and the buffer is not 1096 * to be written, free the buffer. There is no point in caching 1097 * invalid buffer. 1098 */ 1099 if ((b->read_error || b->write_error) && 1100 !test_bit(B_READING, &b->state) && 1101 !test_bit(B_WRITING, &b->state) && 1102 !test_bit(B_DIRTY, &b->state)) { 1103 __unlink_buffer(b); 1104 __free_buffer_wake(b); 1105 } 1106 } 1107 1108 dm_bufio_unlock(c); 1109 } 1110 EXPORT_SYMBOL_GPL(dm_bufio_release); 1111 1112 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1113 { 1114 struct dm_bufio_client *c = b->c; 1115 1116 dm_bufio_lock(c); 1117 1118 BUG_ON(test_bit(B_READING, &b->state)); 1119 1120 if (!test_and_set_bit(B_DIRTY, &b->state)) 1121 __relink_lru(b, LIST_DIRTY); 1122 1123 dm_bufio_unlock(c); 1124 } 1125 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1126 1127 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1128 { 1129 BUG_ON(dm_bufio_in_request()); 1130 1131 dm_bufio_lock(c); 1132 __write_dirty_buffers_async(c, 0); 1133 dm_bufio_unlock(c); 1134 } 1135 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1136 1137 /* 1138 * For performance, it is essential that the buffers are written asynchronously 1139 * and simultaneously (so that the block layer can merge the writes) and then 1140 * waited upon. 1141 * 1142 * Finally, we flush hardware disk cache. 1143 */ 1144 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1145 { 1146 int a, f; 1147 unsigned long buffers_processed = 0; 1148 struct dm_buffer *b, *tmp; 1149 1150 dm_bufio_lock(c); 1151 __write_dirty_buffers_async(c, 0); 1152 1153 again: 1154 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1155 int dropped_lock = 0; 1156 1157 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1158 buffers_processed++; 1159 1160 BUG_ON(test_bit(B_READING, &b->state)); 1161 1162 if (test_bit(B_WRITING, &b->state)) { 1163 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1164 dropped_lock = 1; 1165 b->hold_count++; 1166 dm_bufio_unlock(c); 1167 wait_on_bit(&b->state, B_WRITING, 1168 do_io_schedule, 1169 TASK_UNINTERRUPTIBLE); 1170 dm_bufio_lock(c); 1171 b->hold_count--; 1172 } else 1173 wait_on_bit(&b->state, B_WRITING, 1174 do_io_schedule, 1175 TASK_UNINTERRUPTIBLE); 1176 } 1177 1178 if (!test_bit(B_DIRTY, &b->state) && 1179 !test_bit(B_WRITING, &b->state)) 1180 __relink_lru(b, LIST_CLEAN); 1181 1182 dm_bufio_cond_resched(); 1183 1184 /* 1185 * If we dropped the lock, the list is no longer consistent, 1186 * so we must restart the search. 1187 * 1188 * In the most common case, the buffer just processed is 1189 * relinked to the clean list, so we won't loop scanning the 1190 * same buffer again and again. 1191 * 1192 * This may livelock if there is another thread simultaneously 1193 * dirtying buffers, so we count the number of buffers walked 1194 * and if it exceeds the total number of buffers, it means that 1195 * someone is doing some writes simultaneously with us. In 1196 * this case, stop, dropping the lock. 1197 */ 1198 if (dropped_lock) 1199 goto again; 1200 } 1201 wake_up(&c->free_buffer_wait); 1202 dm_bufio_unlock(c); 1203 1204 a = xchg(&c->async_write_error, 0); 1205 f = dm_bufio_issue_flush(c); 1206 if (a) 1207 return a; 1208 1209 return f; 1210 } 1211 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1212 1213 /* 1214 * Use dm-io to send and empty barrier flush the device. 1215 */ 1216 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1217 { 1218 struct dm_io_request io_req = { 1219 .bi_rw = WRITE_FLUSH, 1220 .mem.type = DM_IO_KMEM, 1221 .mem.ptr.addr = NULL, 1222 .client = c->dm_io, 1223 }; 1224 struct dm_io_region io_reg = { 1225 .bdev = c->bdev, 1226 .sector = 0, 1227 .count = 0, 1228 }; 1229 1230 BUG_ON(dm_bufio_in_request()); 1231 1232 return dm_io(&io_req, 1, &io_reg, NULL); 1233 } 1234 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1235 1236 /* 1237 * We first delete any other buffer that may be at that new location. 1238 * 1239 * Then, we write the buffer to the original location if it was dirty. 1240 * 1241 * Then, if we are the only one who is holding the buffer, relink the buffer 1242 * in the hash queue for the new location. 1243 * 1244 * If there was someone else holding the buffer, we write it to the new 1245 * location but not relink it, because that other user needs to have the buffer 1246 * at the same place. 1247 */ 1248 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1249 { 1250 struct dm_bufio_client *c = b->c; 1251 struct dm_buffer *new; 1252 1253 BUG_ON(dm_bufio_in_request()); 1254 1255 dm_bufio_lock(c); 1256 1257 retry: 1258 new = __find(c, new_block); 1259 if (new) { 1260 if (new->hold_count) { 1261 __wait_for_free_buffer(c); 1262 goto retry; 1263 } 1264 1265 /* 1266 * FIXME: Is there any point waiting for a write that's going 1267 * to be overwritten in a bit? 1268 */ 1269 __make_buffer_clean(new); 1270 __unlink_buffer(new); 1271 __free_buffer_wake(new); 1272 } 1273 1274 BUG_ON(!b->hold_count); 1275 BUG_ON(test_bit(B_READING, &b->state)); 1276 1277 __write_dirty_buffer(b); 1278 if (b->hold_count == 1) { 1279 wait_on_bit(&b->state, B_WRITING, 1280 do_io_schedule, TASK_UNINTERRUPTIBLE); 1281 set_bit(B_DIRTY, &b->state); 1282 __unlink_buffer(b); 1283 __link_buffer(b, new_block, LIST_DIRTY); 1284 } else { 1285 sector_t old_block; 1286 wait_on_bit_lock(&b->state, B_WRITING, 1287 do_io_schedule, TASK_UNINTERRUPTIBLE); 1288 /* 1289 * Relink buffer to "new_block" so that write_callback 1290 * sees "new_block" as a block number. 1291 * After the write, link the buffer back to old_block. 1292 * All this must be done in bufio lock, so that block number 1293 * change isn't visible to other threads. 1294 */ 1295 old_block = b->block; 1296 __unlink_buffer(b); 1297 __link_buffer(b, new_block, b->list_mode); 1298 submit_io(b, WRITE, new_block, write_endio); 1299 wait_on_bit(&b->state, B_WRITING, 1300 do_io_schedule, TASK_UNINTERRUPTIBLE); 1301 __unlink_buffer(b); 1302 __link_buffer(b, old_block, b->list_mode); 1303 } 1304 1305 dm_bufio_unlock(c); 1306 dm_bufio_release(b); 1307 } 1308 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1309 1310 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1311 { 1312 return c->block_size; 1313 } 1314 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1315 1316 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1317 { 1318 return i_size_read(c->bdev->bd_inode) >> 1319 (SECTOR_SHIFT + c->sectors_per_block_bits); 1320 } 1321 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1322 1323 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1324 { 1325 return b->block; 1326 } 1327 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1328 1329 void *dm_bufio_get_block_data(struct dm_buffer *b) 1330 { 1331 return b->data; 1332 } 1333 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1334 1335 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1336 { 1337 return b + 1; 1338 } 1339 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1340 1341 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1342 { 1343 return b->c; 1344 } 1345 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1346 1347 static void drop_buffers(struct dm_bufio_client *c) 1348 { 1349 struct dm_buffer *b; 1350 int i; 1351 1352 BUG_ON(dm_bufio_in_request()); 1353 1354 /* 1355 * An optimization so that the buffers are not written one-by-one. 1356 */ 1357 dm_bufio_write_dirty_buffers_async(c); 1358 1359 dm_bufio_lock(c); 1360 1361 while ((b = __get_unclaimed_buffer(c))) 1362 __free_buffer_wake(b); 1363 1364 for (i = 0; i < LIST_SIZE; i++) 1365 list_for_each_entry(b, &c->lru[i], lru_list) 1366 DMERR("leaked buffer %llx, hold count %u, list %d", 1367 (unsigned long long)b->block, b->hold_count, i); 1368 1369 for (i = 0; i < LIST_SIZE; i++) 1370 BUG_ON(!list_empty(&c->lru[i])); 1371 1372 dm_bufio_unlock(c); 1373 } 1374 1375 /* 1376 * Test if the buffer is unused and too old, and commit it. 1377 * At if noio is set, we must not do any I/O because we hold 1378 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to 1379 * different bufio client. 1380 */ 1381 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp, 1382 unsigned long max_jiffies) 1383 { 1384 if (jiffies - b->last_accessed < max_jiffies) 1385 return 1; 1386 1387 if (!(gfp & __GFP_IO)) { 1388 if (test_bit(B_READING, &b->state) || 1389 test_bit(B_WRITING, &b->state) || 1390 test_bit(B_DIRTY, &b->state)) 1391 return 1; 1392 } 1393 1394 if (b->hold_count) 1395 return 1; 1396 1397 __make_buffer_clean(b); 1398 __unlink_buffer(b); 1399 __free_buffer_wake(b); 1400 1401 return 0; 1402 } 1403 1404 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1405 struct shrink_control *sc) 1406 { 1407 int l; 1408 struct dm_buffer *b, *tmp; 1409 1410 for (l = 0; l < LIST_SIZE; l++) { 1411 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) 1412 if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) && 1413 !--nr_to_scan) 1414 return; 1415 dm_bufio_cond_resched(); 1416 } 1417 } 1418 1419 static int shrink(struct shrinker *shrinker, struct shrink_control *sc) 1420 { 1421 struct dm_bufio_client *c = 1422 container_of(shrinker, struct dm_bufio_client, shrinker); 1423 unsigned long r; 1424 unsigned long nr_to_scan = sc->nr_to_scan; 1425 1426 if (sc->gfp_mask & __GFP_IO) 1427 dm_bufio_lock(c); 1428 else if (!dm_bufio_trylock(c)) 1429 return !nr_to_scan ? 0 : -1; 1430 1431 if (nr_to_scan) 1432 __scan(c, nr_to_scan, sc); 1433 1434 r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1435 if (r > INT_MAX) 1436 r = INT_MAX; 1437 1438 dm_bufio_unlock(c); 1439 1440 return r; 1441 } 1442 1443 /* 1444 * Create the buffering interface 1445 */ 1446 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1447 unsigned reserved_buffers, unsigned aux_size, 1448 void (*alloc_callback)(struct dm_buffer *), 1449 void (*write_callback)(struct dm_buffer *)) 1450 { 1451 int r; 1452 struct dm_bufio_client *c; 1453 unsigned i; 1454 1455 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1456 (block_size & (block_size - 1))); 1457 1458 c = kmalloc(sizeof(*c), GFP_KERNEL); 1459 if (!c) { 1460 r = -ENOMEM; 1461 goto bad_client; 1462 } 1463 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS); 1464 if (!c->cache_hash) { 1465 r = -ENOMEM; 1466 goto bad_hash; 1467 } 1468 1469 c->bdev = bdev; 1470 c->block_size = block_size; 1471 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT; 1472 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ? 1473 ffs(block_size) - 1 - PAGE_SHIFT : 0; 1474 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ? 1475 PAGE_SHIFT - (ffs(block_size) - 1) : 0); 1476 1477 c->aux_size = aux_size; 1478 c->alloc_callback = alloc_callback; 1479 c->write_callback = write_callback; 1480 1481 for (i = 0; i < LIST_SIZE; i++) { 1482 INIT_LIST_HEAD(&c->lru[i]); 1483 c->n_buffers[i] = 0; 1484 } 1485 1486 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++) 1487 INIT_HLIST_HEAD(&c->cache_hash[i]); 1488 1489 mutex_init(&c->lock); 1490 INIT_LIST_HEAD(&c->reserved_buffers); 1491 c->need_reserved_buffers = reserved_buffers; 1492 1493 init_waitqueue_head(&c->free_buffer_wait); 1494 c->async_write_error = 0; 1495 1496 c->dm_io = dm_io_client_create(); 1497 if (IS_ERR(c->dm_io)) { 1498 r = PTR_ERR(c->dm_io); 1499 goto bad_dm_io; 1500 } 1501 1502 mutex_lock(&dm_bufio_clients_lock); 1503 if (c->blocks_per_page_bits) { 1504 if (!DM_BUFIO_CACHE_NAME(c)) { 1505 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1506 if (!DM_BUFIO_CACHE_NAME(c)) { 1507 r = -ENOMEM; 1508 mutex_unlock(&dm_bufio_clients_lock); 1509 goto bad_cache; 1510 } 1511 } 1512 1513 if (!DM_BUFIO_CACHE(c)) { 1514 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1515 c->block_size, 1516 c->block_size, 0, NULL); 1517 if (!DM_BUFIO_CACHE(c)) { 1518 r = -ENOMEM; 1519 mutex_unlock(&dm_bufio_clients_lock); 1520 goto bad_cache; 1521 } 1522 } 1523 } 1524 mutex_unlock(&dm_bufio_clients_lock); 1525 1526 while (c->need_reserved_buffers) { 1527 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1528 1529 if (!b) { 1530 r = -ENOMEM; 1531 goto bad_buffer; 1532 } 1533 __free_buffer_wake(b); 1534 } 1535 1536 mutex_lock(&dm_bufio_clients_lock); 1537 dm_bufio_client_count++; 1538 list_add(&c->client_list, &dm_bufio_all_clients); 1539 __cache_size_refresh(); 1540 mutex_unlock(&dm_bufio_clients_lock); 1541 1542 c->shrinker.shrink = shrink; 1543 c->shrinker.seeks = 1; 1544 c->shrinker.batch = 0; 1545 register_shrinker(&c->shrinker); 1546 1547 return c; 1548 1549 bad_buffer: 1550 bad_cache: 1551 while (!list_empty(&c->reserved_buffers)) { 1552 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1553 struct dm_buffer, lru_list); 1554 list_del(&b->lru_list); 1555 free_buffer(b); 1556 } 1557 dm_io_client_destroy(c->dm_io); 1558 bad_dm_io: 1559 vfree(c->cache_hash); 1560 bad_hash: 1561 kfree(c); 1562 bad_client: 1563 return ERR_PTR(r); 1564 } 1565 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1566 1567 /* 1568 * Free the buffering interface. 1569 * It is required that there are no references on any buffers. 1570 */ 1571 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1572 { 1573 unsigned i; 1574 1575 drop_buffers(c); 1576 1577 unregister_shrinker(&c->shrinker); 1578 1579 mutex_lock(&dm_bufio_clients_lock); 1580 1581 list_del(&c->client_list); 1582 dm_bufio_client_count--; 1583 __cache_size_refresh(); 1584 1585 mutex_unlock(&dm_bufio_clients_lock); 1586 1587 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++) 1588 BUG_ON(!hlist_empty(&c->cache_hash[i])); 1589 1590 BUG_ON(c->need_reserved_buffers); 1591 1592 while (!list_empty(&c->reserved_buffers)) { 1593 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1594 struct dm_buffer, lru_list); 1595 list_del(&b->lru_list); 1596 free_buffer(b); 1597 } 1598 1599 for (i = 0; i < LIST_SIZE; i++) 1600 if (c->n_buffers[i]) 1601 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1602 1603 for (i = 0; i < LIST_SIZE; i++) 1604 BUG_ON(c->n_buffers[i]); 1605 1606 dm_io_client_destroy(c->dm_io); 1607 vfree(c->cache_hash); 1608 kfree(c); 1609 } 1610 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1611 1612 static void cleanup_old_buffers(void) 1613 { 1614 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age); 1615 struct dm_bufio_client *c; 1616 1617 if (max_age > ULONG_MAX / HZ) 1618 max_age = ULONG_MAX / HZ; 1619 1620 mutex_lock(&dm_bufio_clients_lock); 1621 list_for_each_entry(c, &dm_bufio_all_clients, client_list) { 1622 if (!dm_bufio_trylock(c)) 1623 continue; 1624 1625 while (!list_empty(&c->lru[LIST_CLEAN])) { 1626 struct dm_buffer *b; 1627 b = list_entry(c->lru[LIST_CLEAN].prev, 1628 struct dm_buffer, lru_list); 1629 if (__cleanup_old_buffer(b, 0, max_age * HZ)) 1630 break; 1631 dm_bufio_cond_resched(); 1632 } 1633 1634 dm_bufio_unlock(c); 1635 dm_bufio_cond_resched(); 1636 } 1637 mutex_unlock(&dm_bufio_clients_lock); 1638 } 1639 1640 static struct workqueue_struct *dm_bufio_wq; 1641 static struct delayed_work dm_bufio_work; 1642 1643 static void work_fn(struct work_struct *w) 1644 { 1645 cleanup_old_buffers(); 1646 1647 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1648 DM_BUFIO_WORK_TIMER_SECS * HZ); 1649 } 1650 1651 /*---------------------------------------------------------------- 1652 * Module setup 1653 *--------------------------------------------------------------*/ 1654 1655 /* 1656 * This is called only once for the whole dm_bufio module. 1657 * It initializes memory limit. 1658 */ 1659 static int __init dm_bufio_init(void) 1660 { 1661 __u64 mem; 1662 1663 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1664 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1665 1666 mem = (__u64)((totalram_pages - totalhigh_pages) * 1667 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1668 1669 if (mem > ULONG_MAX) 1670 mem = ULONG_MAX; 1671 1672 #ifdef CONFIG_MMU 1673 /* 1674 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1675 * in fs/proc/internal.h 1676 */ 1677 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1678 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1679 #endif 1680 1681 dm_bufio_default_cache_size = mem; 1682 1683 mutex_lock(&dm_bufio_clients_lock); 1684 __cache_size_refresh(); 1685 mutex_unlock(&dm_bufio_clients_lock); 1686 1687 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache"); 1688 if (!dm_bufio_wq) 1689 return -ENOMEM; 1690 1691 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1692 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1693 DM_BUFIO_WORK_TIMER_SECS * HZ); 1694 1695 return 0; 1696 } 1697 1698 /* 1699 * This is called once when unloading the dm_bufio module. 1700 */ 1701 static void __exit dm_bufio_exit(void) 1702 { 1703 int bug = 0; 1704 int i; 1705 1706 cancel_delayed_work_sync(&dm_bufio_work); 1707 destroy_workqueue(dm_bufio_wq); 1708 1709 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) { 1710 struct kmem_cache *kc = dm_bufio_caches[i]; 1711 1712 if (kc) 1713 kmem_cache_destroy(kc); 1714 } 1715 1716 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1717 kfree(dm_bufio_cache_names[i]); 1718 1719 if (dm_bufio_client_count) { 1720 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1721 __func__, dm_bufio_client_count); 1722 bug = 1; 1723 } 1724 1725 if (dm_bufio_current_allocated) { 1726 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1727 __func__, dm_bufio_current_allocated); 1728 bug = 1; 1729 } 1730 1731 if (dm_bufio_allocated_get_free_pages) { 1732 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1733 __func__, dm_bufio_allocated_get_free_pages); 1734 bug = 1; 1735 } 1736 1737 if (dm_bufio_allocated_vmalloc) { 1738 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1739 __func__, dm_bufio_allocated_vmalloc); 1740 bug = 1; 1741 } 1742 1743 if (bug) 1744 BUG(); 1745 } 1746 1747 module_init(dm_bufio_init) 1748 module_exit(dm_bufio_exit) 1749 1750 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1751 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1752 1753 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1754 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1755 1756 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1757 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1758 1759 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1760 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1761 1762 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1763 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1764 1765 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1766 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1767 1768 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1769 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1770 1771 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1772 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1773 MODULE_LICENSE("GPL"); 1774